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Abstract

Hydrogels are hydrophilic polymer networks that swell upon submersion in water. Thanks
to their bio-compatibility, compliance, and ability to undergo large deformations, hydrogels can
be used in a wide variety of applications such as in situ sensors for measuring cell-generated
forces and drug delivery vehicles. In this work we investigate the equilibrium mechanical
responses that can be achieved with hydrogel-based shells filled with a liquid core. Two types
of gel shell geometries are considered - a cylinder and a spherical shell. Each shell is filled
with either water or oil and subjected to compressive loading. We illustrate the influence of
the shell geometry and the core composition on the mechanical response of the structure. We
find that all core-shell structures stiffen under increasing compressive loading due to the load-
induced expulsion of water molecules from the hydrogel shell. Furthermore, we show that
cylindrical core-shell configurations are stiffer then their spherical equivalents. Interestingly,
we demonstrate that the compression of a core-shell structure with an aqueous core leads to the
transportation of water molecules from the core into the hydrogel. These results will guide the

design of novel core-shell structures with tunable properties and mechanical responses.

“e-mail address: valentine @engineering.ucsb.edu
e-mail address: noyco@technion.ac.il



M. Levin, M.T. Valentine, and N. Cohen 2

1 Introduction

Hydrogels are formed by the submersion of a loosely cross-linked and highly hydrophilic poly-
mer network in water. Water influx causes the 3-dimensional network to expand substantially by
swelling, as compared to its dehydrated volume, rather than dissolve (Ullah et al., 2015; Vara-
prasad et al., 2017). The swelling process is driven by a difference in the chemical potential of
solvent molecules inside and outside the gel (Flory, 1953). In addition, swelling is characterized
by the stretching of polymer chains in order to make room for the water molecules (Cohen and
McMeeking, 2019). The equilibrium swollen configuration of the gel is achieved when mechanical
and chemical equilibriums are reached. The latter is achieved when the difference in the chemical
potential of water molecules inside and outside the gel vanishes.

Hydrogels are an important class of bio-compatible soft materials that are well established
for use in wound healing (Boateng et al., 2008; Kamoun et al., 2017; Gupta et al., 2019) and
tissue replacement (Lee and Mooney, 2001; Drury and Mooney, 2003; Hoffman, 2012; Jagur-
Grodzinski, 2006; Li and Mooney, 2016), owing to their tunable mechanical properties, low cell
cytotoxicity, selective permeability, and the ability to functionalize the hydrogel surface to control
gel:cell interactions. Hydrogels are critically important for the encapsulation and controlled release
of a wide range of therapeutic compounds (Graham and McNeill, 1984; Gupta et al., 2002; Duncan,
2003; Dreiss, 2020). They are also increasingly used in regenerative medicine and cell therapies
to provide appropriate physiochemical environments for delivery or implantation of islet, stem,
or progenitor cells into tissues of interest (Xu et al., 2019; Wang et al., 2018; Choe et al., 2018;
Burdick et al., 2016). Hydrogel mechanics in particular are known to be critically important in
proliferation and differentiation of encapsulated stem cells (Banerjee et al., 2009; Lee et al., 2013;
Engler et al., 2000).

This class of materials also hold promise as in situ sensors of cell-generated boundary forces

(see Ribeiro et al. (2016); Huang et al. (2016); Roca-Cusachs et al. (2017); Vorselen et al. (2020))



M. Levin, M.T. Valentine, and N. Cohen 3

that are known to regulate critical cell functions ranging from receptor signaling and transcription
to differentiation and proliferation (Mendez and Janmey, 2012; Uroz et al., 2018; Franck et al.,
2011). The large majority of traction force measurements have been performed using compliant
planar hydrogels to which isolated cells attach (Huang et al., 2012; Munevar et al., 2001). While
these have provided critical information regarding the structures and mechanisms of cell force sens-
ing, the 2D geometry causes cells to maximize adherence area and adopt highly polarized shapes,
thus limiting their relevance to physiological conditions. To meet this need, we and others (Vorse-
len et al., 2020; Mohagheghian et al., 2018; Kaytanl et al., 2020) are developing new strategies
to measure the full 3D deformations of compressible polymeric hydrogel microspheres to which
cells can apply both shear and normal forces, which we call microsphere-based traction force mi-
croscopy (uTFM). Unlike methods that study isolated cells within bulk hydrogel matrices, fTFM
maintains native cell-cell contacts and allows multi-cellular aggregates and tissues to be studied
with minimal perturbation. Moreover, hydrogel microspheres can sustain shear, allowing cells to
naturally interact with neighboring cells, while their finite compressibility allows measurement of
both the anisotropic deviations in the boundary tractions and the isotropic (hydrostatic) pressure
(Kaytanl et al., 2020).

Critical to the deployment of these hydrogel-based devices and sensors in biological and medi-
cal settings is the ability to control the hydrogel mechanics. In general, hydrogel stiffness influences
adhesion, motility, and other functions of cells that contact the gel. In the case of TFM, it sets the
range of detectable traction forces due to the limited optical resolution of fluorescence microscopy,
which is used to measure the boundary deformation. One challenge in the general use of hydrogels
is the limited range of mechanical responses that can be developed using homogeneous, single-
phase gels. Recent advances in droplet-based microfluidics provide an avenue to manufacturing
multiphase core-shell particles with a hydrogel-based shell and a liquid core which contains one or
more internal inclusions (Xu and Nisisako, 2020; Nisisako and Hatsuzawa, 2016; Ran et al., 2017).

In principle, such a method can expand the design palette for hydrogel materials for use in delivery,
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encapsulation, and sensing. Through careful design of the hydrogel based core-shell composition
and properties, we demonstrate that we can tune the mechanical response of hydrogels to enhance
their performance in a variety of applications. For example, such methods can be used to match the
properties of hydrogel based cell sensors to the tissues in which they are deployed, or to provide a
perturbative input to test the tissue response. Moreover, the liquid core provides an opportunity to
store payload molecules, including therapeutics, which can then be delivered upon tissue-generated
compression (Ran et al., 2017; Mahdavi et al., 2020).

In this work we investigate the response of hydrogel-based core-shell composites to external
loading, following the works of Drozdov (2015) and Cohen (2019). We begin by summarizing
the theoretical background. We then consider the mechanical response of spherical or cylindrical
hydrogel shells that are filled with a liquid core of either water, which can permeate the shell, or
oil, which cannot. Using simulations of structures with different dimensions, geometries, and com-
positions, we demonstrate the wide range of mechanical responses that can be achieved through
hydrogel composite design and provide a design framework for the development of hydrogel ma-

terials optimized for specific applications.

2 Theoretical background

During the manufacturing of fluid-filled polymeric gels using microfluidics methods, the gel and
its fluid core are generally co-formed (Xu and Nisisako, 2020; Ran et al., 2017; Mahdavi et al.,
2020). However, to model the properties that can be achieved using this process we artificially
divide the fabrication process into two phases. First, we consider a dry polymeric shell that swells
in the presence of water molecules. Subsequently, we “fill” the shell with a liquid, leading to a fluid
filled polymeric hydrogel. We follow by applying an external load which forces the expulsion of
water molecules from the hydrogel, resulting in its dehydration and stiffening. This mechanism is
observed in biological systems such as the liquefaction of the vitreous body of the eye (Levin and

Cohen, 2021).
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Figure 1: Illustration of the dry, the swollen, and the loaded configurations.

Accordingly, we begin by considering a dry incompressible hydrophilic polymeric shell com-
prising Ny randomly oriented and uniformly distributed chains per unit referential volume, where
each chain is made of n repeat units (or monomers). The total volume of the polymer is approx-
imated via V,, = n Nyv,, where v, is the volume of a monomer. The location of the referential
material points in the dry configuration are denoted by x.

The polymer shell is submerged in a water bath at temperature 7" and pressure p and allowed
to swell. We refer to the configuration in which chemical and mechanical equilibrium is reached
as the swollen state. Here, m liquid molecules diffuse into the gel such that its total volume is
V, = V,, 4 7v;, where v, is the volume of a water molecule. The material points are denoted by
x and we define the deformation gradient from the reference to the swollen state by F = 0x /Ox.
Assuming that the liquid and the polymer segments are incompressible, the total volumetric change
due to the free swelling process is J=detF = f/g /V,. We follow by filling the swollen polymeric

shell with either water or oil and sealing it.

Next, the swollen polymeric shell is subjected to a quasi-static external loading that results in
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the migration of liquid molecules into or out of the gel to achieve an equilibrium configuration. We
denote the volume of the gel in the loaded state by V, = V,, + mv;, where m is the number of
liquid molecules in equilibrium. The material points are denoted by y and accordingly we define
the deformation gradient from the swollen to the loaded state by F; = Jy/0x. The ratio between
the volumes in the swollen and the loaded state is J; = det F.

For completeness, we denote that the deformation gradient from the reference to the loaded
state is F = F;F. The total volumetric deformation J = det F = V,/V,, > 0 accounts for the
addition of water molecules to the dry polymer in the loaded state. It is convenient to define the
volume fraction of the polymer and the liquid phases in the gel viac, = 1/J and ¢, = (J — 1) /J,
respectively.

The free energy-density per unit referential volume associated with the swelling process and

the exertion of an external force can be written as

w:wn+wm+n(1—J)+wo. (1)

Cp

The first contribution in Eq. (1) is the free energy-density per unit referential volume associated
with the distortion of the polymer network. In this work, we employ the neo-Hookean model,

G
2

Un=5 (L=3-2InJ), )

where I; = Tr (FTF) and G is the shear modulus.
The second contribution in Eq. (1) stems from the mixing process of the liquid and the polymer.

Following the works of Flory (1942) and Huggins (1942), we employ the form

ky T
wm:bT(mlncl—l—No Inc, + xmey,), 3)
P

where the first two terms account for the entropy of mixing, as modeled by Flory (1942) and Hug-
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gins (1942), and the third term stems from enthalpic mechanisms during the swelling process.
Broadly, the enthalpy pertains to the heat that is being absorbed or released during the mixing pro-
cess and motivates the liquid molecules to penetrate or leave the gel. The dimensionless interaction
parameter Yy accounts for the interaction between the polymer and the liquid solvent. Note that
Eq. (3) assumes that n > 5 (Cohen and McMeeking, 2019). In addition, since we consider poly-
mer networks that are completely hydrophilic, oil molecules cannot penetrate the gel and are thus
not accounted for in Eq. (3). However, the analysis can be expanded to account for hydrophobic
interactions as well.

The third term in Eq. (1) enforces the incompressibility of the polymer and the liquid molecules
in the gel. The Lagrange multiplier II is determined from the boundary and the equilibrium condi-
tions and can be understood as the total pressure of the solvent-polymer mixture, which is the sum
of the osmotic and the solvent pressure. The last term of Eq. (1) (i.e. v)y) is the free energy-density
per unit referential volume of the dry polymer.

The true (Cauchy) stress tensor can be determined from the free energy-density function (Eq.
(1)) via

— 18_¢FT G

_ = T _ _
o=~ SLFT = = (FFT 1) - TIT, (4)

where I is the identity tensor. The first Piola-Kirchhoff stress is given via P = J o F~71.
The free energy-density function in Eq. (1) also allows to determine the chemical potential of a

liquid molecule in the gel network via

W= :ka(lncl+cp+Xc§)+Hvl. 5

We recall that the chemical potential of a liquid molecule accounts for the change in the free energy
resulting from the relocation of one liquid molecule into or out of the gel.
The equilibrium state of the gel requires mechanical equilibrium, i.e. V - o = 0 where the

divergence operator is carried out with respect to the current coordinate system. Additionally, the
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stress tensor must satisfy the prescribed boundary conditions. To achieve chemical equilibrium, the
chemical potential of the liquid molecules inside the gel must be equal to the chemical potential of
the solvent, given by ;; = (p — Po) v; Where py is the liquid pressure in a reference state. Therefore,
chemical equilibrium requires that . = p;, where Eq. (5) is used.

In the following, we consider tubular and spherical hydrophilic shells that are filled with either
water or oil. In the simulations, we set k, 7 = 4.1 - 102! J (i.e. room temperature), the shear
modulus of the dry polymer G = 103 Pa, and the interaction parameter y = 0.2. We point out
that the trends of the responses of the gels are independent of the value of the shear modulus G,
and thus we normalize the pressure by the shear modulus. To determine the chemical potential, we

recall that the volume of a water molecule is v; = 3 - 1072 m?3 and set p = po.

3 Liquid filled tubular gels

We begin by considering a cylindrical polymeric shell that is filled with either oil or water. It is
convenient to use a cylindrical coordinate system {f{, O, Z} to define the material points in the
reference configuration such that R; < R < R,, 0 < © < 27,and 0 < Z < L. Here, R; and
R, denote the inner and the outer radii of the shell, respectively, O is the polar angle, 7 is the
longitudinal coordinate, and L is the total length of the cylinder.

The tube swells under a fixed length L such that 0., (R = R;) = 0 and 0., (R =R,) = 0,
where o0, is the radial stress. We denote the inner and the outer radii in the freely swollen state
by rF% and r¥, respectively. Next, we fill the tube with liquid, seal and fix the ends such that no
displacements are possible along the Z-direction, and apply a radial pressure p to the outer surface
(see Fig. (2)). Such radial pressure can be generated by an osmotic pressure or cell-generated

forces. In the loaded state, the length of the tube remains L and the radius is given by r = r (R).
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Figure 2: Illustration of a cylindrical shell filled with water under an external pressure. Water
molecules can migrate from the core to the hydrogel and escape from the hydrogel to the surround-
ing environment.

Accordingly, the deformation gradient from the reference to the loaded state can be written as

&0 0
F = £ 0 |- (6)
0 0 1

The mechanical equilibrium equations along the © and the Z directions are satisfied automati-

cally. Equilibrium along the radial direction requires

80'7-7- Orr — 0
+ “ =0, @
or r
where oy is the tangential Cauchy stress component. The mechanical boundary conditions in the
loaded state depend on the liquid inside the cylindrical shell, as described in the following. In

addition, we require that ;o = 0 to satisfy chemical equilibrium.
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3.1 Oil filled tubular hydrogel

First, consider a hydrophilic cylindrical hydrogel that is filled with oil. The hydrophobic oil
molecules repel the water in the cylindrical hydrogel and therefore maintain a fixed inner ra-
dius, i.e. 7 (R = R;) = rf’S. The externally applied pressure imposes the boundary condition
o (r=R,) = —p. We note that the chemical potential of the oil molecules inside the shell is
not necessarily equal to that of the water molecules in the surrounding environment. Rather, forces
stemming from hydrophobic-hydrophilic repulsion ensure equilibrium.

Figs. (3a) and (3b) depict the normalized dimensionless pressure p/G and the volumetric de-
formation .J; as a function of the outer radial stretch 7, /rf%, respectively, for three geometric ratios
R,/R; = 1.1, 1.5, and 2. We find that the increase in pressure leads to a reduction in the gel volume.
Recall that the polymer and the water molecules are assumed to be incompressible and therefore
the decrease in volume stems from the expulsion of water molecules from the gel through the outer
boundary. To understand this process, note that the chemical potential of the water molecules inside
the gel increases with the pressure, thereby motivating an outward diffusion and an overall reduc-
tion in volume. As the pressure increases, there are fewer water molecules capable of escaping the
gel tube, leading to a more moderate reduction in the radius, and therefore in volume.

The observed trend is similar for the three geometric ratios that are considered here. However,
increasing R,/ R; allows the diffusion of more water molecules and therefore a larger reduction in
the outer radius. Due to the constant inner radius, the volumetric deformations due to the compres-
sive loading are larger for thicker tubes. Additionally, we find that thinner tubes are stiffer in the

sense that larger pressures are required to achieve a given radial stretch.

3.2 Water filled hydrogel

Next, we consider a hydrophilic tubular hydrogel filled with a water core. We apply an external
pressure on the outer boundary o,.. (r = R,) = —p. Here, the inner boundary is traction free (i.e.

o (r = R;) = 0) since any pressure that is transferred to the water inside the tube leads to the
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Figure 3: (a) The normalized pressure p/G and (b) the change in the volume J; as a function of the
outer radial stretch r,/rf" for an oil filled cylindrical polymeric gel characterized by the outer to
inner radius ratio R,/R; = 1.1, 1.5, and 2.
diffusion of water molecules from the inner core to the gel, as depicted in Fig. (2).

Figs. (4a), (4b), and (4c) illustrate the normalized (dimensionless) pressure p/G, the inner
radial stretch r;/r/, and the volumetric deformation of the swollen network due to the load J; as
a function of the outer radial stretch 7,/ rf S respectively, for three geometric ratios R,/R; = 1.1,
1.5, and 2. Note that we observe a more pronounced decrease in the outer radius stretch r,/rf™
as the external pressure increases in thinner water filled shells; this is exactly opposite of the trend
observed in oil filled hydrogel tubes (Fig. (3a)). In addition, thinner tubes experience smaller
changes in the stretch of the inner radius r;/rf and, consequently, in the volume. This stems
from the differences in the initial volumes of the tube, i.e. thinner tubes can uptake less water than
thicker tubes.

It is important to emphasize that the kinematic changes observed here stem from a balance
between the diffusion of water molecules into and out of the gel through the inner and the outer
boundaries, respectively. A comparison between Figs. (4a) and (3a) reveals opposite trends: cylin-
drical shells can be stiffer or softer if they are filled with oil or water, respectively. In addition, the
range of pressures required to deform water-filled hydrogels are much lower due to the possible

reduction in the inner radius.
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Figure 4: (a) The normalized pressure p/G, (b) the stretch of the inner radius r;/ rlF S and (c) the
change in the volume J; as a function of the outer radial stretch r, /7" for a water filled cylindrical
polymeric gel characterized by the outer to inner radius ratio R,/R; = 1.1, 1.5, and 2.

4 Liquid filled spherical shell gels

Next, we investigate the response of spherical shells that are filled with either oil or water. To this
end, it is convenient to employ a spherical coordinate system {R, @, <i>} and denote the referential
material points R; < R < R,,0 < 0O < m,and 0 < & < 27. Here, R; and R, denote the radius and
the inner and the outer radii of the shell, respectively, © is the polar angle, and ® is the azimuthal
angle.
The spherical shell is allowed to undergo free swelling such thato,. (R = R;) = 0and o, (R = R,) =

0, where o,, is the radial stress. As before, we denote the inner and the outer radii in the swollen
state by /¥ and 7%, respectively. Next, we fill the spherical shell with liquid and apply a radial
pressure p to the outer surface, as illustrated in Fig. (5). Note that the loading is axisymmetric and
we define the radial mapping of the material points via » = r (R). Accordingly, the deformation

gradient from the reference to the loaded state can be written as

dr
0 0

F=10 £ 0 (8)
0 0 %

The mechanical equilibrium equations along the © and the & directions are automatically satis-

fied with the deformation gradient in Eq. (8). The remaining equilibrium equation along the radial
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Figure 5: Illustration of a spherical shell filled with water under external pressure.

direction is

8arr + 20rr —0g9 — O¢po _

or r

0, )

where oy and o4, are the polar and the azimuthal Cauchy stress components, respectively.

Once again, we highlight that chemical equilibrium requires that the chemical potential of the
water molecules inside the gel are equal to the chemical potential of the water molecules in the
surrounding environment, i.e. ¢ = 0. This condition must be satisfied in the swollen and the
loaded states. The mechanical boundary conditions in the loaded state depend on the liquid inside

the spherical shell and are described in the following.

4.1 Oil filled spherical shell

We begin by filling the hydrophilic spherical shell gel with oil. Accordingly, the mechanical bound-
ary conditions are given in terms of a fixed inner radius r (R = R;) = r"° and an externally applied
pressure o, (r = R,) = —p.

Figs. (6a) and (6b) plot the normalized (dimensionless) applied pressure p/G and the volu-

metric deformation J; versus the outer radial stretch r,/ rf S for the geometric ratios R, /R; = 1.1,
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Figure 6: (a) The normalized pressure p/G and (b) the volumetric deformation J; as a function of
the outer radial stretch r, /r™ for an oil filled spherical polymeric gel characterized by the outer to
inner radius ratio R,/R; = 1.1, 1.5, and 2.
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Figure 7: (a) The normalized pressure p/G and (b) the stretch of the inner radius r; / rzF S, and (c) the
change in the volume J; as a function of the outer radial stretch r,, /7S for a water filled spherical
polymeric gel characterized by the outer to inner radius ratio R,/R; = 1.1, 1.5, and 2.

1.5, and 2. As before, the pressure p motivates the escape of water molecules through the outer
boundary. Since the swelling of thinner shells results in a smaller uptake of water molecules, we
find that thinner shells are stiffer and experience smaller volumetric deformations under an applied
pressure as compared to thicker shells.

Interestingly, comparison of Figs. (6a) and (3a) shows that tubular core-shell gels are stiffer
than spherical shells. Consequently, spherical shells experience larger reduction in volume, as
can be also concluded by comparing Figs. (6b) and (3b). This effect directly stems from the
longitudinal constraints we imposed on the cylindrical gel, which limits its elongation, while the

sphere is allowed to contract in all directions.
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4.2 Water filled spherical shell

Next, we consider a hydrophilic spherical hydrogel shell filled with water. The mechanical bound-
ary conditions are o, (r = R,) = —p, i.e. the applied pressure on the outer boundary, and
o (r = R;) = 0, stemming from the ability of water molecules that are trapped in the core to
penetrate into the gel, as showed in Fig. (5).

Figs. (7a), (7b), and (7c¢) plot the normalized pressure p/G, the inner radial stretch r;/ TZF % and
the volumetric deformation .J; as a function of the outer radial stretch r,/ rf s respectively, for the
three geometric ratios R,/R; = 1.1, 1.5, and 2. Similar to the case of the tubular gels, we find
opposing trends regarding the geometric effects on the stiffness of water- and oil- filled spherical
shells. Specifically, spherical shells with higher R,/R; ratios are softer if they are filled with oil
but stiffer if they are filled with water.

Examination of Fig. (7b) shows that the relative decrease in the inner radius is smaller for thin
tubes. As a result, thicker tubes experience a larger reduction in volume for the same r,/ rf S as
shown in (7c). To understand this, we recall that the water in the core diffuses into the gel through
the inner boundary, thereby increasing the volume of the shell. This increase is counteracted by the
expulsion of water molecules through the outer boundary, resulting in a net volume reduction. It
is interesting to note that theoretically, a high enough pressure can force all of the water molecules
out of the gel, thereby resulting in a much stiffer polymeric sphere.

Comparing Figs. (4c) and (7c) for cylindrical and spherical water filled shells, respectively,
reveals a more significant reduction in the volume for spherical shells. This result stems from the

longitudinal constraints imposed on the cylindrical shells.

5 Conclusions

This work presents a comprehensive study of the mechanical response of hydrogel based core-shell

structures. We demonstrate that a compressive loading leads to a reduction in the overall volume
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of tubular and spherical hydrogel shells due to the pressure induced expulsion of water molecules
from within the hydrogels to the surrounding aqueous environment. The thickness of the shell
determines the initial stiffness and the overall behavior of the core-shell system. Spherical and the
tubular hydrogel shells exhibit similar trends under compressive loading. However, tubular gels
are stiffer due to the imposed longitudinal constraints that are enforced, whereas spherical shells
contract in all directions and experience larger volumetric deformations. This result suggests that
the choice of shell geometry can be used to enhance the performance of hydrogels as vehicles for
the delivery of drugs or other payloads.

The liquid core composition is also critical to the stiffness and the overall behavior of the hydro-
gel system. In oil filled systems, thinner shells experience a moderate reduction in the gel volume,
as the inner radius is fixed due to the repulsion between oil and water molecules. By contrast,
the inner radius of water-filled cylindrical shells significantly contracts under a compressive load.
This phenomenon stems from the transportation of water molecules from the inner aqueous core
to the hydrophilic shell. We point out that during this process, some water molecules escape the
shell towards the surrounding environment to comply with the chemical equilibrium conditions.
Interestingly, in water filled core-shell structures thinner shells experience higher stretches than
thicker tubes and are softer. While this work focused on purely hydrophilic polymers, it can be
easily amended to account for hydrophobic or a mixture of hydrophobic/hydrophilic gels. Our
results serve as a design guide that can be used to enhance the performance of gels in various
applications, including cell-based sensors with tunable mechanical response, drug-loaded vehicles
capable of compression-induced delivery, and bio-compatible materials for use in wound healing,

tissue replacement, and cell encapsulation for regenerative therapies.
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