Information and Inference: A Journal of the IMA (2020) 00, 1-64
doi:10.1093/imaiai/iaaa027

Composite optimization for robust rank one bilinear sensing

VASILEIOS CHARISOPOULOS AND DAMEK DAvis
School of Operations Research and Information Engineering, Cornell University, Ithaca,
NY 14850, USA

MATEO Diaz
Center for Applied Mathematics, Cornell University, Ithaca, NY 14850, USA

AND

DMITRIY DRUSVYATSKIY '
Department of Mathematics, University of Washington, Seattle, WA 98195, USA
TCorresponding author. Email: ddrusv@uw.edu

[Received on 18 January 2019; revised on 3 July 2020; accepted on 30 July 2020]

We consider the task of recovering a pair of vectors from a set of rank one bilinear measurements, possibly
corrupted by noise. Most notably, the problem of robust blind deconvolution can be modeled in this way.
We consider a natural nonsmooth formulation of the rank one bilinear sensing problem and show that
its moduli of weak convexity, sharpness and Lipschitz continuity are all dimension independent, under
favorable statistical assumptions. This phenomenon persists even when up to half of the measurements are
corrupted by noise. Consequently, standard algorithms, such as the subgradient and prox-linear methods,
converge at a rapid dimension-independent rate when initialized within a constant relative error of the
solution. We complete the paper with a new initialization strategy, complementing the local search
algorithms. The initialization procedure is both provably efficient and robust to outlying measurements.
Numerical experiments, on both simulated and real data, illustrate the developed theory and methods.

Keywords:  blind deconvolution; Gauss—Newton; subgradient method; weak convexity; composite
optimization; spectral.

1. Introduction

A variety of tasks in data science amount to solving a nonlinear system F(x) = 0, where F: RY — R™
is a highly structured smooth map. The setting when F is a quadratic map already subsumes important
problems such as phase retrieval [14,45,56], blind deconvolution [5,41,44,58], matrix completion
[15,22,57] and covariance matrix estimation [18,43], to name a few. Recent works have suggested a
number of two-stage procedures for globally solving such problems. The first stage—initialization—
yields a rough estimate x,, of an optimal solution, often using spectral techniques. The second stage—
local refinement—uses a local search algorithm that rapidly converges to an optimal solution, when
initialized at x;,. For a detailed discussion, we refer the reader to the recent survey [19].
The typical starting point for local refinement is to form an optimization problem

ir»el%;il”f(X) = h(F(x)), (1.1)

where h(-) is a carefully chosen penalty function and 2 is a constraint set. Most widely used
penalties are smooth and convex, e.g. the squared ¢,-norm h(z) = %HZH% is ubiquitous in this context.
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2 V. CHARISOPOULOS ET AL.

Equipped with such penalties, the problem (1.1) is smooth and therefore gradient-based methods become

immediately applicable. The main analytic challenge is that the condition number % of the
problem (1.1) often grows with the dimension of the ambient space d. This is the case for example
for phase retrieval, blind deconvolution and matrix completion problems, see e.g. [19] and references
therein. Consequently, generic nonlinear programming guarantees yield efficiency estimates that are far
too pessimistic. Instead, a fruitful strategy is to recognize that the Hessian may be well conditioned
along the ‘relevant’ set of directions, which suffice to guarantee rapid convergence. This is where new
insight and analytic techniques for each particular problem come to bear (e.g. [45,47,58]).

Smoothness of the penalty function 4(-) in (1.1) is crucially used by the aforementioned techniques.
A different recent line of work [7,24,25,30] has instead suggested the use of nonsmooth convex
penalties—most notably the £;-norm /(z) = ||z||;. Such a nonsmooth formulation will play a central
role in our work. A number of algorithms are available for nonsmooth compositional problems (1.1),
most notably the subgradient method

X,y 1 = Proj ox, — a,v,) with v, € af (x,),

and the prox-linear algorithm

X, = argmin h(F(x,) + VF(x,)(x — xt)) + 2—||x — xl||%.
xeZ o

The local convergence guarantees of both methods can be succinctly described as follows. Set 2™ :=
argmin o-f and suppose there exist constants p, i, Lf > ( satisfying:

e (approximation) |h(F(y)) — h(F(x) + VF(x)(y — x))| < 4lly — x|} forall x € Z;
o (sharpness) f(x) —inf f > u - dist(x, Z7*) forall x € 2,
e (Lipschitz bound) ||v|, < Lf for all v € 9f (x) with dist(x, Z™) < ﬁ.

Then when equipped with an appropriate sequence ¢, and initialized at x;, satisfying dist(x,, 2™*) < £,

both the subgradient and prox-linear iterates will converge to an optimal solution of the problem. The
prox-linear algorithm converges quadratically, while the subgradient method converges at a linear rate
governed by the ratio % € (0,1).

A possible advantage of nonsmooth techniques can be gleaned from the phase retrieval problem.
The papers [30, Corollary 3.1,3.2], [25, Corollary 3.8] recently, showed that for the phase retrieval
problem, standard statistical assumptions imply that with high probability all the constants p, u, Ly > 0
are dimension independent. Consequently, completely generic guarantees outlined above, without any
modification, imply that both methods converge at a dimension-independent rate, when initialized
within constant relative error of the optimal solution. This is in sharp contrast to the smooth formulation
of the problem, where a more nuanced analysis is required, based on restricted smoothness and
convexity. Moreover, this approach is robust to outliers in the sense that analogous guarantees persist
even when up to half of the measurements are corrupted by noise.

In light of the success of the nonsmooth penalty approach for phase retrieval, it is intriguing to
determine if nonsmooth techniques can be fruitful for a wider class of large-scale problems. Our current
work fits squarely within this research program. In this work, we analyze a nonsmooth penalty technique
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COMPOSITE OPTIMIZATION FOR ROBUST RANK ONE BILINEAR SENSING 3

for the problem of rank-1 bilinear sensing. Formally, we consider the task of robustly recovering a pair
(w,X) € R4 x R% from m bilinear measurements:

¥ = (€ w){(ri, X) + n;, (1.2)
where 7 is an arbitrary noise corruption with frequency pp,; := ‘Suﬁ;f 1 that is at most one half, and
¢; € RY and r; € R? are known measurement vectors. Such bilinear systems and their complex
analogues arise often in biological systems, control theory, coding theory and image deblurring, among
others. Most notably such problems appear when recovering a pair (u,v) € C” x C" from the
convolution measurements y = (Lu) * (Rv) € C™. When passing to the Fourier domain, this problem
is equivalent to that of solving a complex bilinear system of equations; see the pioneering work [5] on
blind deconvolution. All the arguments we present can be extended to the complex case. We focus on
the real case for simplicity.

In this work, we analyze the following nonsmooth formulation of the problem:

1 m
min fw,x) == — [(£;, w)(r;, x) — y;l, (1.3)
w2, lxlla<vv/M m ,;

where v > 1 is a user-specified constant and M = x| - Our contributions are two-fold:

1. (Local refinement) Suppose that the vectors £; and r; are both i.i.d. Sub-Gaussian and satisfy a

mild growth condition (automatic for Gaussian random vectors). We will show that as long as the
number of measurements satisfies m = % In (C + #Pm) , where C is a small dimension-
independent constant, the formulation (1.3) admits dimension-independent constants p, Lf and
o with high probability. Consequently, subgradient and prox-linear methods rapidly converge to
the optimal solution at a dimension-independent rate when initialized at a point x;, with constant
relative error % <1
2. (Initialization) Suppose now that £; and r; are both i.i.d. Gaussian and are independent from

the noise 1. We develop an initialization procedure that in the regime m 2 d| + d, and pg; €
lIwoxg —wx Il

Iwxf||F
procedure is motivated by the analogous initialization algorithm for robust phase retrieval
[30,61]. To the best of our knowledge, this is the only available initialization procedure for
rank-1 bilinear sensing with provable guarantees in presence of gross outliers. We also develop
complementary guarantees under the weaker assumption that the vectors (¢;, r;) corresponding to
exact measurements are independent from the noise 7, in the outlying measurements. This noise
model allows one to plant outlying measurements from a completely different pair of signals,
and is therefore computationally more challenging.

[0,1/10], will find a point x satisfying < 1, with high probability. The proposed

The literature studying bilinear systems is rich. It is well known [20,34,42] that the optimal sample
complexity in the noiseless regime is m 2 d; + d, if no further assumptions (e.g. sparsity) are imposed
on the signals. Therefore, from a sample complexity viewpoint, our guarantees are optimal. Incidentally,
to our best knowledge, all alternative approaches are either suboptimal by a polylogarithmic factor in
d;,d, or require knowing the sign pattern of one of the underlying signals [4,5].

As we alluded to above, our main motivation for studying rank-1 bilinear sensing is the blind
deconvolution problem. Recent algorithmic advances for blind deconvolution can be classified into two
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4 V. CHARISOPOULOS ET AL.

main approaches: works based on convex relaxations and those employing gradient descent on a smooth
nonconvex function. The influential convex techniques of [4,5] ‘lift” the objective to a higher dimension,
thereby necessitating the resolution of a high-dimensional semidefinite program. The more recent work
of [1,2] instead relaxes the feasible region in the natural parameter space, under the assumption that the
coordinate signs of either w or X are known a priori. Finally, with the exception of [5], the aforementioned
works do not provide guarantees in the noisy regime.

Nonconvex approaches for blind deconvolution typically apply gradient descent to a smooth
formulation of the problem [32,41,45]. Since the condition number of the problem scales with
dimension, as we mentioned previously, these works introduce a nuanced analysis that is specific to
the gradient method. The authors of [41] propose applying gradient descent on a regularized objective
function and identify a ‘basin of attraction’ around the solution. The paper [45] instead analyzes gradient
descent on the unregularized objective. They use the leave-one-out technique and prove that the iterates
remain within a region where the objective function satisfies restricted strong convexity and smoothness
conditions. The sample complexities of the methods in [32,41,45] are optimal up to polylog factors.

The popular formulation for the blind deconvolution problem [S] necessitates one of the sets of
measurement vectors 7; or £; to be deterministic. Indeed, they are built from the columns of a discrete
Fourier transform (DFT) matrix. Consequently, our assumptions that both r; and ¢; are random is
an oversimplification. Similar assumptions are made in [1-3] for example. Nonetheless, extensive
experiments in Section 6.4 show that even in this semi-stochastic setting the proposed algorithms work
remarkably well. In particular, for difficult instances with a large incoherence parameter, we observe
that the proposed algorithms perform on par and often better than gradient descent on the smooth
formulations of the problem.

The nonconvex strategies mentioned above all use spectral methods for initialization. These methods
are not robust to outliers, since they rely on the leading singular vectors/values of a potentially noisy
measurement operator. Adapting the spectral initialization of [30] to bilinear inverse problems enables
us to deal with gross outliers of arbitrary magnitude. Indeed, high variance noise makes it easier for
our initialization to ‘reject’ outlying measurements. The recent work [26] studied the landscape of an
unconstrained version of (1.3) and showed that the spurious critical points concentrate close to a co-
dimension two subspace. Thus, suggesting there might be a large region with friendly geometry.

A related line of work [36,37,62] considers the original blind deconvolution problem of recovering a
pair (u, v) from their convolution u * v when u is low-dimensional and v is a sparse vector. These works
are based on a very different approach to modeling the problem than the one we consider here. It would
be interesting to see if similar ideas can be extended to this setting.

The outline of the paper is as follows. Section 2 records basic notation we will use throughout
the paper. Section 3 reviews the impact of sharpness and weak convexity on the rapid convergence of
numerical methods. Section 4 establishes estimates of weak convexity, sharpness and Lipschitz moduli
for the rank-1 bilinear sensing problem under statistical assumptions on the data. Section 5 introduces
the initialization procedure and proves its correctness even if a constant fraction of measurements
is corrupted by gross outliers. The final Section 6 presents numerical experiments illustrating the
theoretical results in the paper.

2. Notation

The section records basic notation that we will use throughout the paper. To this end, we always endow
R? with the dot product, (x,y) = xTy, and the induced norm ||x||, = +/{x, x). The symbol S9! denotes
the unit sphere in RY, while B denotes the open unit ball. When convenient, we will use the notation
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COMPOSITE OPTIMIZATION FOR ROBUST RANK ONE BILINEAR SENSING 5

B to emphasize the dimension of the ambient space. More generally, B, (x) will stand for the open ball
around x of radius r. We define the distance and the nearest-point projection of a point x onto a closed
setQ C R4 by

dist(x, Q) = inf ||x — yll, and proj,(x) = argmin [lx — yll,,
yeQ yeQ

respectively. For any pair of real-valued functions f, g: RY — R, the notation f < g means that there
exists a positive constant C such that f(x) < Cg(x) for all x € RY. We write f =< g if both f < g and
83/

We will always use the trace inner product (X, Y) = Tr(X " Y) on the space of matrices R¥*%_ The
symbols ||A||Op and ||A||r will denote the operator and Frobenius norm of A, respectively. Assuming

d <m,themapo: Rdxm _ Ri returns the vector of ordered singular values o (A) = 0,(4) = --- >
0,(A). Note the equalities [|Al| = |lo(A)|, and ||A||Op =0,(A).

Nonsmooth functions will appear throughout this work. Consequently will use some basic construc-
tions of generalized differentiation, as set out for example in the monographs [9,46,50,54]. Consider a
function f: RY — R U {400} and a point x, with f(x) finite. Then the Fréchet subdifferential of f at X,
denoted by 3f (x), is the set of all vectors v € R? satisfying

O Z2f@)+vy—x)+o(ly—xl) asy—wx (2.1)

Thus, a vector v lies in the subdifferential df(x) precisely when the function y — f(x) + (v,y — x)
locally minorizes f up to first-order. We say that a point x is stationary for f whenever the inclusion,
0 € 9f(x), holds. Standard results show for convex functions f, the subdifferential df (x) reduces to the
subdifferential in the sense of convex analysis, while for differentiable functions f it consists only of the
gradient 9f (x) = {Vf(x)}.

Notice that in general, the little-o term in (2.1) may depend on the base-point x, and the estimate
(2.1) therefore may be nonuniform. In this work, we will only encounter functions whose subgradients
automatically satisfy a uniform type of lower-approximation property. We say that a function f: R —
R U {400} is p-weakly convex' if the perturbed function x +— f(x) + §||x||% is convex. It is
straightforward to see that for any p-weakly convex function f, subgradients automatically satisfy the
uniform bound:

FO) = f@) + v,y —x) — guy —x3  Vx,yeRL WY e df(x).

We will comment further on the class of weakly convex functions in Section 3.

2
We say that a random vector X in RY is n-sub-Gaussian whenever E exp ((“1’7)2{) ) < 2 for all vectors

u € S, The Sub-gaussian norm of a real-valued random variable X is defined to be || X Iy, = inf{t >

0: Eexp (f—j) < 2}, while the sub-exponential norm is defined by |[X|,, = inf{t > 0 : Eexp (@) <
2}. Given a sample y = (yy, . ..,Y,), we will write med(y) to denote its median.

1 Weakly convex functions also go by other names such as lower-C2, uniformly prox-regularity, paraconvex and semiconvex.
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6 V. CHARISOPOULOS ET AL.

3. Algorithms for sharp weakly convex problems

The central thrust of this work is that under reasonable statistical assumptions, the penalty formulation
(1.3) satisfies two key properties: (1) the objective function is weakly convex and (2) grows at least
linearly as one moves away from the solution set. In this section, we review the consequences of these
two properties for local rapid convergence of numerical methods. The discussion mostly follows the
recent work [24], though elements of this viewpoint can already be seen in the two papers [25,30] on
robust phase retrieval.

Setting the stage, we introduce the following assumption.

AssUMPTION A Consider the optimization problem,
min X). 3.1
xXe <Q/‘f( ) ( )

Suppose that the following properties hold for some real w, p > 0.

1. (Weak convexity) The set .2 is closed and convex, while the function f: RY — R is p-weakly
convex.

2. (Sharpness) The set of minimizers 2™* := argmin,_ 4-f(x) is nonempty and the inequality

fx) —inff > p - dist (x, 3{*) holds for all x € 2~

The class of weakly convex functions is broad and its importance in optimization is well documented
[6,48,51,53,55]. It trivially includes all convex functions and all C L_smooth functions with Lipschitz
gradient. More broadly, it includes all compositions

J(x) = h(FX)),

where /() is convex and L,-Lipschitz, and F(-) is C 1_smooth with B-Lipschitz Jacobian. Indeed then
the composite function f = & o F is weakly convex with parameter p = L, 3, see e.g. [29, Lemma 4.2].
In particular, our target problem (1.3) is clearly weakly convex, being a composition of the £, norm and
a quadratic map. The estimate p = L, 8 on the weak convexity constant is often much too pessimistic,
however. Indeed, under statistical assumptions, we will see that the target problem (1.3) has a much
better weak convexity constant. The notion of sharpness, and the related error bound property, is now
ubiquitous in nonlinear optimization. Indeed, sharpness underlies much of perturbation theory and rapid
convergence guarantees of various numerical methods. For a systematic treatment of error bounds and
their applications, we refer the reader to the monographs of Dontchev—Rockafellar [27] and Ioffe [33]
and the article of Lewis—Pang [40].

Taken together, weak convexity and sharpness provide an appealing framework for deriving local
rapid convergence guarantees for numerical methods. In this work, we specifically focus on two such
procedures: the subgradient and prox-linear algorithms. To this end, we aim to estimate both the radius
of rapid converge around the solution set and the rate of convergence. Our ultimate goal is to show that
when specialized to the problem (1.3), with high probability, both of these quantities are independent of
the ambient dimensions d; and d, as soon as the number of measurements is sufficiently large.

Both the subgradient and prox-linear algorithms have the property that when initialized at a
stationary point of the problem, they could stay there for all subsequent iterations. Since we are
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COMPOSITE OPTIMIZATION FOR ROBUST RANK ONE BILINEAR SENSING 7

interested in finding global minima, and not just stationary points, we must therefore estimate the
neighborhood of the solution set that has no extraneous stationary points. This is the content of the
following simple lemma [24, Lemma 3.1].

LEMMA 3.1 Suppose that Assumption A holds. Then the problem (3.1) has no stationary points x
satisfying

2
0 < dist(x; 27 < —'u.
0

Proof. Fix a critical point x € 2" ¢ 2. Letting x* := proj -« (x), we deduce p - dist(x, Z*) <
f) —faH) <5 lx—x*> =4 dist’(x, 2°*). Dividing by dist(x, 2 ), the result follows. O

The estimate 27“ of the radius in Lemma 3.1 is tight. To see this, consider minimizing the univariate

function f(x) = |A%x% — 1] on the real line 2" = R. Observe that the set of minimizers is 2™* = :I:% ,

while x = 0 is always an extraneous stationary point. A quick computation shows that the smallest
valid weak convexity constant is p = 212, while the largest valid shargness constant is & = A. We
therefore deduce dist(0, 2™*) = % = 27“. Hence, the radius of the region 7" that is devoid of extraneous
stationary points is tight.

In light of Lemma 3.1, let us define for any y > 0 the tube

T, = [z e R?: dist(z, 2°) < v - s (3.2)
0

Thus, we would like to search for algorithms whose basin of attraction is a tube ﬁy for some numerical
constant y > 0. Due to the above discussion, such a basin of attraction is in essence optimal.

We next discuss two rapidly converging algorithms. The first is the Polyak subgradient method,
outlined in Algorithm 1. Notice that the only parameter that is needed to implement the procedure is the
minimal value of the problem (3.1). This value is sometimes known; case in point, the minimal value of
the penalty formulation (1.3) is zero when the bilinear measurements are exact.

Algorithm 1 Polyak Subgradient Method

Data: x, € R?
Step k: (k > 0)
Choose ¢, € 9f (x;). If ¢, = 0, then exit algorithm.

Set x| = proj o- (xk - f—(x")lﬁh:ﬁlzn%f {k).

The rate of convergence of the method relies on the Lipschitz constant and the condition measure:

Ly =suplli¢l 1§ € 9f0.xe 7} and  Ti= -
7

A straightforward argument [24, Lemma 3.2] shows 7 € [0, 1]. The following theorem appears as [24,
Theorem 4.1], while its application to phase retrieval was investigated in [25].
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8 V. CHARISOPOULOS ET AL.

THEOREM 3.1 (Polyak subgradient method). Suppose that Assumption A holds and fix areal y € (0, 1).
Then Algorithm 1 initialized at any x;, € ﬂy produces iterates that converge Q-linearly to 2%, that is

dist? (x,., 1, 27%) < (1 — (- y)tz) dist(x, 2%) Yk > 0. (3.3)

When the minimal value of the problem (3.1) is unknown, there is a straightforward modification
of the subgradient method that converges R-linearly. The idea is to choose a geometrically decaying
control sequence for the stepsize. The disadvantage is that the convergence guarantees rely on Lf, p and
W, thus a successful implementation may need to have access to reliable estimates of those quantities.

Algorithm 2 Subgradient method withgeometrically decreasing stepsize
Data: Real L > Oand g € (0, 1).
Step k: (k > 0)
Choose ¢, € dg(x;). If ¢, = 0, then exit algorithm.
Set stepsize o, = A - q~.

Update iterate x;, | = proj - (xk — akﬁ).

The following theorem appears as [24, Theorem 6.1]. The convex version of the result dates back to
Goffin [31].

THEOREM 3.2 (Geometrically decaying subgradient method). Suppose that Assumption A holds, fix a

real y € (0,1) and suppose T < /ﬁ. Set A := Z—’ﬁ;andq := /1 — (1 — y)72. Then the iterates X
generated by Algorithm 2, initialized at a point x, € yy satisfy:

2,2 k
dis?(x; 27%) < ”p“ (1 — - y)tz) Vk > 0. (3.4)

2

Notice that both subgradient Algorithms 1 and 2 are at best locally linearly convergent, with a
relatively cheap per-iteration cost. As the last example, we discuss an algorithm that is specifically
designed for convex compositions, which is locally quadratically convergent. The caveat is that the
method may have a higher per-iteration cost, since in each iteration one must solve an auxiliary convex
problem.

Setting the stage, let us introduce the following assumption.

AssuMPTION B. Consider the optimization problem,
minf(x) := h(F(x)). 3.5

Suppose that the following properties holds for some real u, p > 0.

1. (Convexity and smoothness) The function /4(-) and the set 2 are convex and F(-) is differen-
tiable.
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COMPOSITE OPTIMIZATION FOR ROBUST RANK ONE BILINEAR SENSING 9
2. (Approximation accuracy) The convex models f,(y) := A(F(x) + VF(x)(y — x)) satisfy:

FO) —fMI < Slly—x13  Vaye Z

D

3. (Sharpness) The set of minimizers 2" := argmin  5-f(x) is nonempty and the inequality

f@) —inff > p - dist (x, 2%) holds for all x € 2.

It is straightforward to see that Assumption B implies that f is p-weakly convex, see e.g. [29, Lemma
7.3]. Therefore, Assumption B implies Assumption A.

Algorithm 3 describes the prox-linear method—a close variant of Gauss—Newton. For a historical
account of the prox-linear method, see e.g. [12,29,39] and the references therein.

Algorithm 3 Prox-linear algorithm

Data: Initial point x; € R¢, proximal parameter 8 > 0.
Step k: (k > 0)

Setx;, | < argmin {h (F(x,) + VF(x)(x — x)) + gllx — xk||2] .

xeZ

The following theorem proves that under Assumption B, the prox-linear method converges quadrat-
ically, when initialized sufficiently close to the solution set. Guarantees of this type have appeared, for
example, in [11,28,30]. For the sake of completeness, we provide a quick argument.

THEOREM 3.3 (Prox-linear algorithm). Suppose Assumption B holds. Choose any 8 > p and set y :=
o/B. Then Algorithm 3 initialized at any point x,, € ﬂy converges quadratically:

dist(y, 27%) < £ - disP(x, 27%)  Vk>0.

Proof. Consider an iterate x; and choose any x* € proj 9-«(x;). Taking into account that the function
x = fi, () + §||x — x;||? is strongly convex and x| is its minimizer, we deduce

(ka(ka) + §||xk+1 -~ xk||2) + §||xk+1 — X<, () + §||x* -l
Using Assumption B.2, we therefore obtain
fog) + §||xk+] — X|1P <O+ Bl — )1
Rearranging and using sharpness (Assumption B.3), we conclude

- dist( g, 27) < flgy) —fO6*) < B - dist® (x, 27),

as claimed. O
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10 V. CHARISOPOULOS ET AL.

4. Assumptions and models

In this section, we aim to interpret the efficiency of the subgradient and prox-linear algorithms discussed
in Section 3, when applied to our target problem (1.3). To this end, we must estimate the three parameters
05 I, Lf > (. These quantities control both the size of the attraction neighborhood around the optimal
solution set and the rate of convergence within the neighborhood. In particular, we will show that these
quantities are independent of the ambient dimension d,,d, under natural assumptions on the data-
generating mechanism.

It will be convenient for the time being to abstract away from the formulation (1.3), and instead
consider the function

1
gw,x) = ;nmm — i,

where .o7: RU1*% _ R™ is an arbitrary linear map and y € R™ is an arbitrary vector. The formulation
(1.3) corresponds to the particular linear map <AX) = (K,TXVi)?’:]. Since we will be interested in the
prox-linear method, let us define the convex model

1 A .
B (05 0) = — [/ (wxT +wE =0T + (b —wx") =yl

Our strategy is as follows. Section 4.1 identifies deterministic assumptions on the data, <7 and y, that
yield favorable estimates of p, u, Lf > 0. Then Section 4.2 shows that these deterministic assumptions
hold with high probability under natural statistical assumptions on the data-generating mechanism.

4.1 Favorable deterministic properties

The following property, widely used in the literature, will play a central role in our analysis.

AssumPTION C (Restricted isometry property (RIP)). There exist constants ¢;,c, > 0 such that for all
matrices X € R%*% of rank at most two the following bound holds:

1
cliXlly < Xl < eI

The classical RIP condition [17,52] used the £,-norm instead of the £;-norm. The ¢, version that
we use here has appeared in previous works [16,18] and also goes by the name of restricted uniform
boundedness [13].

The following proposition estimates the two constants p and Lf, governing the performance of the
subgradient and prox-linear methods under Assumption C. See Appendix A.1 for a proof.

PROPOSITION 4.1 (Approximation accuracy and Lipschitz continuity). Suppose Assumption C holds
and let K > 0 be arbitrary. Then the following estimates hold:

A A A A c ~ A ~ ~
1909, 3) = 8 (1 D] < - 000) = (D3 V& e R, Vi ib € R,

lg(w, x) — g0V, D) < V26,K - [|(w,x) — (0, D),  Vx,k € KB,w, W € KB.
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COMPOSITE OPTIMIZATION FOR ROBUST RANK ONE BILINEAR SENSING 11

We next move on to estimates of the sharpness constant w. To this end, consider two vectors w € R‘f
and x € R, and set M := |lxw! || r=xl,- w’ l|,. Without loss of generality, henceforth, we suppose
[lwll, = |Ix]l,. Our estimates on the sharpness constant will be valid only on bounded sets. Consequently,
define the two sets:

I =M - BN x B2), L= {(aw, (1)) 1/v < | < ).

The set ., simply encodes a bounded region, while .} encodes all rank-1 factorizations of the
matrix wx' with bounded factors. We begin with the following theorem, which analyzes the sharpness

properties of the idealized function
e, w) > lwx " — x|

This key geometrical property will allow us to establish sharpness for any measurement map .o/
satisfying RIP. The proof is quite tedious, and therefore we have placed it in Appendix A.2.

THEOREM 4.2 For any v > 1, we have the following bound:

W%dist((w, x),.7}) for all (w,x) € .7,.

T =T
lwx" —wx ||p =

Thus, the function (x,w) — |lwx" — wx"|| F is sharp on the set .7, with coefficient W\/]Z-n We

note in passing that the analogue of Theorem 4.2 for symmetric matrices was proved in [58, Lemma
54].
The sharpness of the loss g(-, -) in the noiseless regime (i.e. when y = 2Awx")) is now immediate.

ProposITION 4.3 (Sharpness in the noiseless regime). Suppose that Assumption C holds and that
equality, y = @/(wx "), holds. Then for any v > 1, we have the following bound:

CI«/M

———dist((w, x), LF for all (w,x) € .7,.
2V2(w+ 1) ((v9,.77) 0

gw,x) —g(w,x) >

Proof. Using Assumption C and Theorem 4.2, we deduce

civM
24200 + 1)

_ 1 __ __
gw,x) — g(w,X) = ;nmf(wa — WXy = eplwx” —wx ||y >

dist((w,x),.7}),

as claimed. O

Sharpness in the noisy case requires an additional assumption. We record it below. Henceforth, for
any set ., we define the restricted linear map o7, R *xd2 5 RII by setting 7 #(X) := (AX));c.o

AsSUMPTION D (Z-outlier bounds). There exists a set .# C {1,...,m}, vectors w € R, ¥ e R and a
constant ¢; > 0 such that the following hold.

(Cl) Equality y; = mf(v_w_cT)i holds for all i ¢ 7.
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12 V. CHARISOPOULOS ET AL.

(C2) For all matrices X € R%*% of rank at most two, we have

1 1
Xlp < — X, —— Xl 4.1
Xl g mllﬂff( I m||~Q7y( N 4.1

Combining Assumption D with Theorem 4.2 quickly yields sharpness of the objective even in the
noisy setting.

PROPOSITION 4.4 (Sharpness in the noisy regime). Suppose that Assumption D holds. Then

C3\/M

—— dist((w,x),.<*F for all (w,x) € .Z,.
S dis(n 0.7 W € 7,

gw,x) —gw,x) >

Proof. Defining n = a/(wx") — y, we have the following bound:

g(W’ x)_ g(w’ )_C)

1 -
— (/0o = 35T+l =l )

= % | (wx | — vT/)_cT)Ill + Z (‘ (ﬂ(WXT— V_W_CT))Z. +n;
ics

= |(eroe” = 5D) [ = 1ni)

> — [ 1/wx” —ix Dl -2 \ (ﬁf(wa - WﬁT))J
ied
= S| =) |- T3 (e 57|
ic icd
VM

> cyllwx’ —wx |y > dist((w,x), 7)),

22w + 1)
where the first inequality follows by the reverse triangle inequality, the second inequality follows by
Assumption (C2) and the final inequality follows from Theorem 4.2. The proof is complete. g

To summarize, suppose Assumptions C and D are valid. Then in the notation of Section 3, we may
set:

C3\/M

=c,, L,=cvvV2M, =
P=t 579 W TR

2u_c_3_«/1171

T e At

subgradient method is governed by t = ff =2

Consequently, the tube radius of .7 is

and the linear convergence rate of the

o m. In particular, the local search algorithms
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COMPOSITE OPTIMIZATION FOR ROBUST RANK ONE BILINEAR SENSING 13

dist((x,w),-75)

VA

must be initialized at a point (x, w), whose relative distance to the solution set is upper
bounded by a constant. We record this conclusion below.

COROLLARY 4.1 (Convergence guarantees). Suppose Assumptions C and D are valid, and consider the
optimization problem

. 1
min  g(w,x) = —||4a/(wx—r) -yl
(x,w)es, m

Choose any pair (w, X)) satisfying

dist((wg, xg), -)5) o c3
VIwxT |z 4/2¢,(v + 1)

Then the following are true.

1. (Polyak subgradient) Algorithm 1 initialized (w, x,) produces iterates that converge linearly to
75, that is

k
dist?((wy, x;), L5 <( 3 A Vk >0
e o\ 230+ 0 Rdern T

2 it 2
. . o aa/lwxtlr L . 3 .
2. (Geometric subgradient) Set A := T2t 1 andg := /1 B0 Then the iterates x;,

generated by Algorithm 2, initialized at (w,), x,) converge linearly:

k > 0.

k
dist? ((wy, xp), L) (1 c% C%
[wxT | 32c(v+1* ) 323w+ 1)?

3. (Prox-linear) Algorithm 3 with 8 = p and initialized at (w, x,) converges quadratically:

dist((wge ), 7)) _ ot “

NI 2V2¢,(v + 1)

Vk >0

4.2 Assumptions under generative models

In this section, we present natural generative models under which Assumptions C and D are guaranteed
to hold. Recall that at the high level, we aim to recover the pair of signals (w, X) based on given corrupted

bilinear measurements y. Formally, let us fix two disjoint sets ., C [m] and .7, C [m], called the

inlier and outlier sets. Intuitively, the index set .#,, encodes exact measurements while .7, encodes
measurements that have been replaced by gross outliers. Define the corruption frequency py,;; := ‘{;‘“l ;

henceforth, we will suppose py,; € [0, 1/2). Then for an arbitrary, potentially random sequence {§;}7" |,
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14 V. CHARISOPOULOS ET AL.

we consider the measurement model:

(€ W) (r %) ifie.s;,

42
£, ifie.? . “2)

Yi =

In accordance with the previous section, we define the linear map .«7: R *% — R™ by oAX) =
(ZiTXri)T: |- To simplify notation, we let L € R™*d1 denote the matrix whose rows, in column form, are
¢; and we let R € R"™*42 denote the matrix whose rows are r;. Note that we make no assumptions about
the nature of &;. In particular, &; can even encode exact measurements for a different signal.

We focus on the following fully stochastic matrix model. For simplicity, the reader may assume both
L and R are Gaussian with i.i.d. entries, though the results of this paper extend beyond this case. We
should note that in more realistic circumstances, such as the problem of blind deconvolution, it is more
appropriate for one of the matrices L or R to be deterministic. Though the theoretical guarantees we
present only hold in the fully stochastic setting, numerical experiments in Section 6.4 indicate that the
proposed methods are effective even when one of the matrices is deterministic.

RANDOM MATRIX MODEL

M The vectors ¢; and r; are i.i.d. realizations of n-sub-Gaussian random vectors £ € R and r €
R, respectively. Suppose moreover that £ and r are independent and satisfy the nondegeneracy
condition,

inf  P(le"Xr| > > po, 43
X: ralnlixgz (1€ Xr| =2 ng) 2 pg 4.3)
IX]lp=1

for some real w, py > 0.

Thus, the model M asserts that £; and r; are generated by independent sub-Gaussian random vectors.
The nondegeneracy condition (4.3) essentially asserts that with positive probability, the products £ ' Xr
are non-negligible, uniformly over all unit norm rank two matrices X. In particular, the following
example shows that Gaussian matrices with i.i.d. entries are admissible under model M.

ExaMPLE 4.5 (Gaussian matrices satisfy model M). Assume that £ and r are standard Gaussian random
vectors in R4 and R, respectively. We claim this setting is admissible under M. To see this, fix a rank
2 matrix X having unit Frobenius norm. Consider now a singular value decomposition X = oyu;v| +
azuzv;, and note the equality, a]2 +022 = 1. Foreachindex i = 1,2 define a; := (£, u;) and b; := (v;, ).
Then clearly a,, a,, b;, b, are i.i.d. standard Gaussian, see e.g. [60, Exercise 3.3.6]. Thus, for any ¢ > 0,
we compute
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COMPOSITE OPTIMIZATION FOR ROBUST RANK ONE BILINEAR SENSING 15

Notice that conditioned on a;,a,, we have oya, b, + 0ya,b, ~ N(0, (0ya,)* + (0,a,)?). Thus, letting z
be a standard normal, we have

P(¢TXr| > ) =E (P (/ (01a)) + (0205)I2] > c | ""“2))
=P (\/(01“1)2 + (02a9)% 12| = )

> P(oylagz] > ¢) > P (lalz| 2c)

Therefore, we may simply set iy = median(|a,z|)/ V2 and Po = %

4.2.1 Assumptions C and D under model M In this section, we record the following theorem, which
shows validity of Assumptions C and D under M, with high probability. We defer the proof of the next
result to Appendix B.1.

THEOREM 4.6 (Measurement model M). Consider a set .# C {1,...,m} satisfying |4 < m/2.
Then there exist constants c¢y,c¢,,¢3,¢4,C5,¢ > 0 depending only on pg,py,n such that the

following holds. As long as m > %ln (c2 + 1—2\C—2ﬂ/m) then with probability at least

1 —4exp ( —c3 (1 — 2|f|/m)2m), every matrix X € R%*% of rank at most two satisfies

lXllE < —II%(X)Ill cslIX 1 g (4.4)

and
1 54
- [I17 7« GOl — 17 Ol ] = c6 (1 - %) 1 X1l - 4.5)

Combining Theorem 4.6 with Corollary 4.1, we obtain the following guarantee.

COROLLARY 4.2 (Convergence guarantees). Consider the measurement model (4.2) and suppose that
model M is valid. Consider the optimization problem

min w,X
(Jmin fOr.x) = Z| - il

Then there exist constants ¢y, ¢, ¢3,¢4,¢5,¢4 > 0 depending only on g, pg, n such that as long as

> < (d1+dr+1)

¢ . . .
M2 = o pan)? In (62 + —1—2Pfail) and you choose any pair (w, x,) with relative error

dist((wg, xp), -7 ) ( 2pfall)

VIWET || 4fc5(v+1)

then with probability at least 1 — 4 exp (—03(1 - 2Pfai1)2m) the following are true.

(4.6)
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16 V. CHARISOPOULOS ET AL.

1. (Polyak subgradient) Algorithm 1 initialized (w, x,) produces iterates that converge linearly to

7, that is
. 2\ 2
dist?(wy, xp), 75 (_ cz (1 - 2pgy) . cz (1= 2pgy) VES 0
Wil 32¢(v + 1) 32¢2(v + 1)? -
2 2 ==T 2 2
. . _ 2U=2pa)* V15 I |y U=2pui)
2. (Geometric subgradient) Set 1 := TN andg := /1 HZorhT Then the
iterates x; generated by Algorithm 2, initialized at (w, x,) converge linearly:
. 2\* 2
dist? ((wg ), 7)) _ | — co (1= 2m)" ) 6 (1 — 2ppai) >0
[wx " |l 32¢2(v + 1) 32¢(v + 1)2 -

3. (Prox-linear) Algorithm 3 with 8 = p and initialized at (w, x;) converges quadratically:

diSt((Wk,)Ck), %*) < 272k ] Cq (1 — prail)

N 2V/2¢5(v + 1)

Vk >0

Thus with high probability, if one initializes the subgradient and prox-linear methods at a pair
dist((w0.%0)-7,") - c6(1~2prait)

Vs s 4V2eso+D)’
set at a dimension independent rate.

(Wg, Xo) satisfying then the methods will converge to the optimal solution

5. Initialization

Previous sections have focused on local convergence guarantees under various statistical assumptions.

In particular, under Assumptions C and D, one must initialize the local search procedures at a point
dist((x,w),-7})

v
section, we present a new spectral initialization routine (Algorithm 4) that is able to efficiently find such
point (w, x). The algorithm is inspired by [30, Section 4] and [61].

Before describing the intuition behind the procedure, let us formally introduce our assumptions.
Throughout this section, we make the following assumption on the data-generating mechanism, which
is stronger than model M:

(w,x), whose relative distance to the solution set is upper bounded by a constant. In this

M The entries of matrices L and R are i.i.d. Gaussian.

Our arguments rely heavily on properties of the Gaussian distribution. We note, however, that
our experimental results suggest that Algorithm 4 provides high-quality initializations under weaker
distributional assumptions.

Recall that in the previous sections, the noise £ was arbitrary. In this section, however, we must
assume more about the nature of the noise. We will consider two different settings.

(N1) The measurement vectors {(¢;,7;)}7"; and the noise sequence {&;}" | are independent.
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(N2) The inlying measurement vectors {({;, 7;)};c 7, and the corrupted observations {§;};c . are
independent.

The noise models N1 and N2 differ in how an adversary may choose to corrupt the measurements.
Model N1 allows an adversary to corrupt the signal, but does not allow observation of the measurement

vectors {(€;,r;)}7" ;. On the other hand, model N2 allows an adversary to observe the outlying

measurement vectors {(£;,7,)};c ot and arbitrarily corrupt those measurements. For example, the

adversary may replace the outlying measurements with those taken from a completely different signal:
y; = (e/wx ")), fori € 7

i out*

Algorithm 4 Initialization.
Data: y € R",L € R"*% R ¢ R"*%
S — i | |y < med(lyl)}
Form directional estimates:

init 1 T init 1 T
LM > ity R™ — 03 7 1in;

TRinit

A : T rinit 2 :
W <= argmin, qd, -1 p L™p, and X < argmin, ga,-1 ¢ q.

Estimate the norm of the signal:

1 m
M < argmin G(B) := — > |y; — B{L;, W) (r;, R},
BeR m

i=1

wo < signM)|M|"%%,  and  x, < M|

return (wg, xg)

We can now describe the intuition underlying Algorithm 4. Throughout we denote unit vectors
parallel to w and x by w, and Xx,, respectively. Algorithm 4 exploits the expected near orthogonality
of the random vectors ¢; and r; to the directions w, and X,, respectively, in order to select a ‘good’ set
of measurement vectors. Namely, since E [(¢;,w,)] = E [(r;,X,)] = 0, we expect minimal eigenvectors
of Lint and RNt to be near w, and X,, respectively. Since our measurements are bilinear, we cannot
necessarily select vectors for which [(£;,w,)| and |(r;, X, )| are both small, rather, we may only select
vectors for which the product ‘(Zl-, w,) (ri,)'c*)| is small, leading to subtle ambiguities not present in [30,
Section 4] and [61], see Fig. 1. Corruptions add further ambiguities since the noise model N2 allows a
constant fraction of measurements to be adversarially modified.

Formally, Algorithm 4 estimates an initial signal (w,x,) in two stages: first, it constructs a pair of
directions (W, x) that estimate the true directions

| 1

W, = ——Ww and X, = —X
Wl
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18 V. CHARISOPOULOS ET AL.

y

FIG. 1. Intuition behind spectral initialization. The pair £, 1 will be included since both vectors are almost orthogonal to the true
directions. €5, r, is unlikely to be included since r; is almost aligned with x*.

(up to sign); then it constructs an estimate M of the signed signal norm £M, which corrects for sign
errors in the first stage. We now discuss both stages in more detail, starting with the direction estimate.
Most proofs will be deferred to Appendix C. The general proof strategy we follow is analogous to [30,
Section 4] for phase retrieval, with some subtle modifications due to asymmetry.

DIRECTION ESTIMATE. In the first stage of the algorithm, we estimate the directions w, and Xx,, up
to sign. Key to our argument is the following decomposition for model N1 (which will be proved in
Appendix C.1):

‘jsel‘

init _ |2 - _T init
L :_Idl _J/]W*W* +AL, R - m

- =T
m 'Idz — VXX, + AR’

where y;,y, 2 | and the matrices A;, Ap have small operator norm (decreasing with (d; + d,)/m),

~

with high probability. Using the Davis—Kahan sin¢ theorem [23], we can then show that the minimal
eigenvectors of L™ and R'™" are sufficiently close to {£=w,} and {=X,}, respectively.

ProrosITION 5.1 (Directional estimates). There exist numerical constants ¢y, ¢, C > 0, so that for any
Prai € [0,1/10] and ¢ € [0, 1], with probability at least 1 — ¢, exp (—c,mt), the following hold:

C- (,/ % + t) under model N1, and
. ~~T *x x 1
min wa — sw'x H <
set£l) F C- (pfaﬂ + —maX{ffll Dl t) under model N2.

NorM ESTIMATE. In the second stage of the algorithm, we estimate M as well as correct the sign of
the direction estimates from the previous stage. In particular, for any (w,%) € SY1~! x S%2~! define the
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quantity

C
5= 1+—5) min HmT—sw bl
( ce(1 = 2ppaip) ] selx1) T

) (5.1
F

where ¢5 and ¢ are as in Theorem 4.6. Then we prove the following estimate (see Appendix C.2).

ProposITION 5.2 (Norm estimate). Under either noise model, N1 and N2, there exist numerical

constants ¢,,...,cg > 0 so that if m > <ditdthy, (c2 + #ﬁ)m), then with probability at least

(1=2pgin)?
1 —4exp (—c3(1 — 2pf,dil)2m), we have that any minimizer M of the function

G(B) := n% ; ly; — B, W) (R, 7|

satisfies ||A7| — M| < M. Moreover, if in this event § < 1, then we have sign(]\//\l) =
. MT - _T
argminggy ”wx — SW,X, ||F

Thus, the preceding proposition shows that tighter estimates on the norm M result from better
directional estimates in the first stage of Algorithm 4. In light of Proposition 5.2, we next estimate
the probability of the event § < 1/2, which in particular implies with high probability sign(ll//\[) =
argmingc 4.y ”WJ?T - sv_v*)_c;r HF
ProposITION 5.3 (Sign estimate). Under either model N1 and N2, there exist numerical constants
C0»C1»Cp» €3 > 0 such that if py < ¢y and m > c5(d; + d,), then the estimate holds:?

P (8 > 1/2) < ¢ exp (—com).

Proof. Using Theorem 4.6 and Propositions 5.1, we deduce that for any ¢ € [0, 1], with probability
1 —c exp (—czmt), we have

C- \/%) under model N1 and
C-\Prait + \/@) under model N2.

Thus, under model N1, it suffices to set t = (2C)_2 — %. Then the probability of the event
8 < 1/21is at least 1 — ¢ exp (—cz((ZC)’zm — max{dl,dz})). On the other hand, under model N2, it
suffices to assume 2Cpy,; < 1 and then we can set t = (((2C) ™! — ppi)? — W). The probability
of the event § < 1/2 is then at least 1 — ¢ (exp (—cz(m((ZC)_l _pfail)2 — max{dl,dz}))). Finally,
using the bound max{d,,d,} < d; +d, < % yields the result. g

s <

STEP 3: FINAL ESTIMATE. Putting the directional and norm estimates together, we arrive at the following
theorem.

2 In the case of model N1, one can set cg = 1/10.
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THEOREM 5.4 There exist numerical constants ¢y, ¢y, cy,c3,C > 0 such that if pgy < ¢y and m >
c4(d; + d,), then for all 7 € [0, 1], with probability at least 1 — ¢, exp (—cmt) , we have

max{d;,d»}
[woxg —wx' | _ c- \/—I—-H) under model N1 and
— = <
Pl C -\ Prai +\/%) under model N2.

Proof. Suppose that we are in the events guaranteed by Propositions 5.1, 5.2 and 5.3. Then noting that
wo = sign(M)[M|'/*w, x, = |M|'/*%,
we find that

Hwoxg — T HF = Hsign(M)|M|w32T ~ Mw i

M| —M ___
M| =M

~~T . =~ - =T
wx ' —sign(M)w,x, + i

:M‘

F

<M wa _ sign(yw T H + Ms

=M~(2+c—5) wa —swa s
¢o(1 = 2pgyin) &)
where c5 and ¢4 are defined in Theorem 4.6. Appealing to Proposition 5.1, the result follows. g

Combining Corollary 4.1 and Theorem 5.4, we arrive at the following guarantee for the stage
procedure.

CoroLLARY 5.1 (Efficiency estimates). Suppose either of the models N1 and N2. Let (w,x;) be the
output of the initialization Algorithm4. Set M= ||w0)c0 |- and consider the optimization problem

: 1
min _g(w.x) = —[loAwxT) =yl (5.2)
lxll2. Wl <v2M m

Setv 1=,/ 213[’[ and notice that the feasible region of (5.2) coincides with .#,. Then there exist constants
€p»C1>Cp,C3,¢5 > 0 and ¢y € (0, 1) such that as long as m > ¢3(d; + d,) and pg;; < ¢, the following
properties hold with probability 1 — ¢, exp(—ch).3
1. (Subgradient) Both Algorithms 1 and 2 (with appropriate A,q) initialized (wg,x,) produce
iterates that converge linearly to .}, that is

dist? (g, xp), 75

k
— <cy(l—c Vk > 0.
”WXT”F 4( 4)

3 In the case of model N1, one can set co = 1/10.

LZ0Z dUNp 20 U0 Josn ZoN uuy Aq 6E09E6G/.Z0CBRYIBIEWI/EE0L 0 L/I0P/SI0IE-80UBAPE/IEIEW/WO0"dNO"oIWSPEdE//:SAY WOl Papeojumod



COMPOSITE OPTIMIZATION FOR ROBUST RANK ONE BILINEAR SENSING 21

2. (Prox-linear) Algorithm 3 initialized at (w,x,) (with appropriate 8 > 0) converges quadrati-
cally:

dist((wy, x;), %)) <

— ~
VIwxTlp

es- 27 VKo

Proof.  'We provide the proof under model N1. The proof under model N2 is completely analogous.
Combining Propositions 5.2, 5.3 and Theorem 5.4, we deduce that there exist constants ¢, ¢y, ¢, ¢3, C
such that as long as m > c¢3(d; + d,) and py;; < ¢, then for any ¢ € [0, 1], with probability 1 —
cy exp (—szt), we have

(5.3)

and

||w0xg — T ”F <c | max{d,,d,} .
M m

In particular, notice from (5.3) that 1 < v < /3 and therefore the feasible region ., contains an
optimal solution of the original problem (1.3). Using Theorem 4.2, we have

M .
2 —d s 5yk .
2200 + 1) ist((wg: ). )

Combining the estimates, we conclude

: * T _ ==T
dist((wg, xq), ;") < 2\/5(]) N lwoxg —wx' |l < 2@(}) e [max{d,,d,} e
VM M m

Thus to ensure the relative error assumption (4.6), it suffices to ensure the inequality

di,d 1—2p..
2«/5(v+1)c\/@< 6 (1= 2Pa)
m 4\/565(\)-'—1)

where cs, c¢g are the constants from Corollary 4.2. Using the bound v < «/§, it suffices to set

2
c(1 —2p) max{d,,d,}
r= — .
16+/3¢5C m

Thus, the probability of the desired event becomes 1 — ¢, (exp (—c3(cym — max{d,,d,})) for some
constant c¢,. Finally, using the bound max{d;,d,} < d; +d, < % and applying Corollary 4.2 completes
the proof. ]
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6. Numerical experiments

In this section, we demonstrate the performance and stability of the prox-linear and subgradient
methods, and the initialization procedure, when applied to real and artificial instances of Problem
(1.3). All experiments were performed using the programming language Julia [8]. A reference
implementation and code for the experiments is available in [21].

SUBGRADIENT METHOD IMPLEMENTATION. Implementation of the subgradient method for Problem (1.3)
is simple and has low per-iteration cost. Indeed, one may simply choose the subgradient

1 < . 2 0

— > sign((€ whx ) — ) ( (x.7,) o | T €w) € af (w,x),

e ‘i
where sign(f) denotes the sign of ¢, with the convention sign(0) = 0. The cost of computing this
subgradient is on the order of four matrix multiplications. When applying Algorithm 2, choosing the
correct parameters is important, since its convergence is especially sensitive to the value of the stepsize
decay g; the experiment described in Section 6.1.2 demonstrates this sensitivity. Setting A = 1.0 sufficed
for all the experiments depicted hereafter.

PROX-LINEAR METHOD IMPLEMENTATION. Recall that the convex models used by the prox-linear method
take the form:

1
S 0920 = — I (wix] +wi(x —x) T+ w—wox]) —vll;. (6.1)

Equivalently, one may rewrite this expression as a least absolute deviation objective:

1 < _
Fona 00) = — ; ( (et [ (Cwor!) (V; - ;ka) — ;= (LW ()
= Aj —_— Yi

Z

— Az =yl .
m

Thus, each iteration of Algorithm 3 requires solving a strongly convex optimization problem:

1 1
= argmin { — Az — 3|, + — [lzlI3} .
ey = argmin { — 4z = 51, + 5 ||z||2]

%,

Motivated by the work of [30] on robust phase retrieval, we solve this subproblem with the graph
splitting variant of the alternating direction method of multipliers (ADMM), as described in [49]. This
iterative method applies to problems of the form

in 1=l + — 1212
mimn — — — |Z
zeZ m Y 2o 2

s.t. t = Az
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The ADMM method takes the form:

|1 P 2
7« aggr;vm [5 lIzl13 + 3 |z — G — 20 Hz]

. 1 - P 2
!« arginln[% e =yl + ) |l — (@ — Vk)”z]

-1
(Z+) <« |:Id1+d2 ATi| |:]d1+d2 ATi| (Z//+)\)
ty A -1, 0 0 tr+v
Ay <A+ @ —z) v < v+ —1),

where A € R4+% and v € R™ are dual multipliers and p > 0 is a control parameter. Each above
step may be computed analytically. We found in our experiments that choosing « = 1 and p ~ %
yielded fast convergence. Our stopping criteria for this subproblem is considered met when the primal

residual satisfies [|(z;.,7,) — (z. )| < & (v/d, + dy + max {||zl,, lI7]l,}) and the dual residual satisfies
[psvy) — QoI < & - (Vd) +dy + max {[IA]l,, Iv]l,}) with g, =275,

6.1 Artificial data

We first illustrate the performance of the prox-linear and subgradient methods under noise model N1
with i.i.d. standard Gaussian noise ;. Both methods are initialized with Algorithm 4. We experimented
with Gaussian noise of varying variances and observed that higher levels did not adversely affect the
performance of our algorithm. This is not surprising, since the theory suggests that both the objective
and the initialization procedure are robust to gross outliers. We analyze the performance with problem
dimensions d; € {400, 1000} and d, = 500 and with number of measurements m = c - (d; + d,) with ¢
varying from 1 to 8. In Figs 2 and 3, we have depicted how the quantity

e —wi™|

[T

changes per iteration for the prox-linear and subgradient methods. We conducted tests in both the
moderate corruption (pg,; = 0.25) and high corruption (p,; = 0.45) regimes. For both methods, under
moderate corruption (pg; = 0.25), we see that exact recovery is possible as long as ¢ > 5. Likewise,
even in high corruption regime (py,; = 0.45), exact recovery is still possible as long as ¢ > 8. We also
illustrate the performance of Algorithm 1 when there is no corruption at all in Fig. 2, which converges
an order of magnitude faster than Algorithm 2.

In terms of algorithm performance, we see that the prox-linear method takes few outer iterations,
approximately 15, to achieve very high accuracy, while the subgradient method requires a few
hundred iterations. This behavior is expected as the prox-linear method converges quadratically and
the subgradient method converges linearly. Although the number of iterations of the prox-linear method
is small, we demonstrate in the sequel that its total run-time, including the cost of solving subproblems,
can be higher than the subgradient method. Interestingly, Fig. 3 shows how the performance of the
prox-linear method stagnates for the first few iterations before dropping at a quadratic rate. This might
indicate that for these choices of ¢ the initialization procedure outputs a point slightly outside of the
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Convergence of subgradient method
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FiG. 2. Dimensions are (dy,d>) = (400,500) in the first column and (dy,d>) = (1000,500) in the second column. We plot
the error ||wk)c];r —wx! Il F/Ilv_w_cT || vs. iteration count. Top row is using Algorithm 2 with pg;; = 0.25. Second row is using
Algorithm 2 with pg,;; = 0.45. Third row is using Algorithm 1 with pgj = 0.
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Convergence of prox-linear method
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FiG. 3. Dimensions are (d,dp) = (400, 500) in the first column and (d1, dp) = (1000, 500) in the second column. We plot the
error ||wkx;|€— —wx ! IlF/ ||v_w'c—r || vs. iteration count for an application of Algorithm 3 in the two settings: pg,j; = 0.25 (top row)
and pyyi1 = 0.45 (bottom row).

region of quadratic convergence. Another possibility is that the levels of accuracy set for solving the
proximal subproblems, ¢, := 27!, t=1,...,T, are not ‘fine’ enough for the first few iterations.

6.1.1 Number of matrix-vector multiplications. Each iteration of the prox-linear method requires
the numerical resolution of a convex optimization problem. We solve this subproblem using the graph
splitting ADMM algorithm, as described in [49], the cost of which is dominated by the number of
matrix-vector products required to reach the target accuracy. The number of ‘inner iterations’ of the
prox-linear method and thus the number of matrix-vector products is not determined a priori. The cost
of each iteration of the subgradient method, on the other hand, is on the order of four matrix vector
products. In the subsequent plots, we solve a sequence of synthetic problems for d; = d, = 100 and
keep track of the total number of matrix-vector multiplications performed. We run both methods until
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Number of matrix-vector multiplications
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FiG. 4. Matrix-vector multiplications to reach rel. accuracy of 1075.

Sensitivity to decay factor ¢
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Fi1G. 5. Final normalized error ||wkx];r — x| F/ [wx T F for Algorithm 2 with different choices of g, in the settings pgj; = 0
(left) and pg,j = 0.25 (right).

[T x|

we obtain < 1073, Additionally, we keep track of the same statistics for the subgradient

[wxT
method. We present the results in Fig. 4. We observe that the number of matrix-vector multiplications
required by the prox-linear method can be much greater than those required by the subgradient method.

Additionally, they seem to be much more sensitive to the ratio ——2—.
di+dy

6.1.2  Choice of stepsize decay. Due to the sensitivity of Algorithm 2 to the stepsize decay g, we
experiment with different choices of ¢ in order to find an empirical range of values that yield acceptable
performance. To that end, we generate synthetic problems of dimension 100 x 100 and choose g €
{0.90,0.905, ...,0.995} and record the average error of the final iterate after 1000 iterations of the
subgradient method for different choices of m = ¢ - (d; + d,). The average is taken over 50 test runs
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Robustness to noise
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FiG. 6. Empirical recovery probabilities for matrix model M and noise models N1 (top) and N2 (bottom) across 100 independent
runs using Algorithm 2. Lighter cells imply higher recovery probability.

with A = 1.0. We test both noisy and noiseless instances to see if corruption of entries significantly
changes the effective range of g. Results are shown in Fig. 5.

6.1.3 Robustness to noise. We now empirically validate the robustness of the prox-linear and
subgradients algorithms to noise. In a setup familiar from other recent works [5,30], we generate
phase transition plots, where the x-axis varies with the level of corruption py,,;, the y-axis varies as
the ratio ﬁ changes and the shade of each pixel represents the percentage of problem instances
solved successfully. For every configuration (pg,;, m/(d, + d,)), we run 100 experiments.

NOISE MODEL NI - INDEPENDENT NOISE.

Initially, we experiment with Gaussian random matrices and (d;, d,) € {(100, 100), (200, 200)}, the
results for which can be found in the top row of Fig. 6.

The phase transition plots are similar for both dimensionality choices, revealing that in the moderate
independent noise regime (pg,; < 25%), setting m > 4(d; + d,) suffices. On the other hand, for exact
recovery in high noise regimes (py,;; > 45%), one may need to choose m as large as 8 - (d; + d,).

NOISE MODEL N2 - ARBITRARY NOISE. We now repeat the previous experiments, but switch to noise
model N2. In particular, we now adversarially hide a different signal in a subset of measurements, i.e.
we set

(gi»w>()_€» ri)7 l ¢ jin’

(El" V_Vlmp) <Ximp’ ri> i€ j

Yi =

out’
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F1G. 7. Digits 5, 6 (top) and 9, 6 (bottom). Original images are shown on the left, estimates from spectral initialization on the right.
Parameters: pg,j) = 0.45,m = 16 - 784.

o T T - — T T — T
10 —m— Fig. 7 (top) —s— Fig. 7 (top)
—A— Fig. 7 (bottom) 1071 |- —s— Fig. 7 (bottom) |
5 .l | ¢
[E 10 [E ]074 [ |
108 ! ! ! [ 1077 & ! ! [
0 200 400 600 800 0 5 10 15
k k

FiG. 8. Relative error vs. iteration count on mnist digits for subgradient method (left) and prox-linear method (right).

where in the above (Wi, Xijm,) € R% x R® is an arbitrary pair of signals. Intuitively, this is a more
challenging noise model than N1, since it allows an adversary try to trick the algorithm into recovering
an entirely different signal. Our experiments confirm that this regime is indeed more difficult for the
proposed algorithms, which is why we only depict the range py,; € [0, 0.38] in the bottom row of Fig. 6

below.

6.2 Performance of initialization on real data

We now demonstrate the proposed initialization strategy on real world images. Specifically, we set w
and x to be two random digits from the training subset of the MNIST data set [38]. In this experiment,
the measurement matrices L, R € RUO789x784 haye i j.d. Gaussian entries, and the noise follows model
N1 with pg,;; = 0.45. We apply the initialization method and plot the resulting images (initial estimates)
in Fig. 7. Evidently, the initial estimates of the images are visually similar to the true digits, up to sign;
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Fi. 9. Tterates wyg;, i = 1,...,9. (m,k,d,n) = (222,16,2!8,512).

in other examples, the foreground appears to be switched with the background, which corresponds to the
natural sign ambiguity. Finally, we plot the normalized error for the two recovery methods (subgradient
and prox-linear) in Fig. 8.

6.3  Experiments on big data

We apply the subgradient method for recovering large-scale real color images W, X € R™*3 _In this
setting, pg,;; = 0.0 so using Algorithm 1 is applicable with min »-f = 0. We ‘flatten’ the matrices W, X
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F1G. 10. Normalized error for different channels in image recovery.

into 3n” dimensional vectors w, x. In contrast to the previous experiments, our sensing matrices are of
the following form:

HS, HS,
HS, HS,

where H e {—1,1}%*¢ /+/d is the d x d symmetric normalized Hadamard matrix and S, =
diag(&;,...,§,), where & ~;, 4 {—1, 1}, is a diagonal random sign matrix. The same holds for S;. Notice
that we can perform the operations w — Lw, x + Rx in O(kdlogd) time: we first form the element-
wise product between the signal and the random signs, and then take its Hadamard transform, which
can be performed in @(dlogd) flops. We can efficiently compute p +— L'p, ¢ — R'gq, required
for the subgradient method, in a similar fashion. We recover each channel separately, which means we
essentially have to solve three similar minimization problems. Notice that this results in dimensionality
d, = d, = n?, m = kn?® for each channel.

We observed that our initialization procedure (Algorithm 4) is extremely accurate in this setting.
Therefore to better illustrate the performance of the local search algorithms, we perform the following
heuristic initialization. For each channel, we first sample w,x ~ S9!, rescale by the true magnitude of
the signal and run Algorithm 1 for one step to obtain our initial estimates w, x.

An example where we recover a pair of 512 x 512 color images using the Polyak subgradient
method (Algorithm 1) is shown below; Fig. 9 shows the progression of the estimates wy, up until the
90-th iteration, while Fig.10 depicts the normalized error at each iteration for the different channels of
the images.

6.4 Experiments on blind deconvolution

In this section, we experiment on a realistic instance of the blind deconvolution problem, following
[5,41]. Throughout, the measurement vectors £; and r; are complex and the vectors ¢; are moreover
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deterministic. Note that this setting is outside the scope of our guarantees, which require all the vectors
¢; and r; to be stochastic; nonetheless, we will see that the proposed methods work well even in this
setting.

Recall that the complex vector space C" is endowed with the Hermitian inner product (x,y) :=
Xy = >, X;y;, which satisfies (x,y) = (y,x). In the space of matrices C"*", the inner product is
defined in an analogous fashion, with (A, B) := Tr(A”B), with AH denoting the Hermitian transpose of
A. Additionally, we write 9(z), J(z) for the real and imaginary parts of z, understood to hold elementwise
if z is a vector.

In the blind deconvolution problem, we observe the circular convolution of two signals u and v, so
that the measurements are

m
Y= Z UiV(i—i+1) mod m* (6.2)
i=1

In (6.2), we assume that there is no observation noise for the sake of simplicity. A standard assumption
is that u, v lie in known low-dimensional subspaces of R” of dimensions d, d, respectively, so that

u= Bwﬁ, V= Cxﬁ.

To recast this problem as a bilinear sensing problem, we may pass to the Fourier domain. Denote by F,,
the m x m DFT matrix, with elements

(Fm)ij 1= exp (—L27T w) R

m
where we set t = +/—1, and also define

L=F,BeC™", R=F,CeC™®,
Then following standard arguments (see e.g. [5]) the equivalent model to (6.2) in the Fourier domain is

}A)i = (€l~,wt> : <x]:’ri>'

A common choice for B is the matrix I(‘;l [5,41,45], which leads to the partial DFT matrix L € Rmxdi

formed by taking the first d; columns of F,, and used in the experiments below. On the other hand, C
is often assumed to have i.i.d. Gaussian entries, so that the entries of R are also i.i.d. and follow the
complex Gaussian distribution. For simplicity, we relabel y to y in the sequel.

We therefore consider the nonsmooth formulation of the problem

min l z |(£i,w) (x,r;) =y

Iwll Xl <vv/M M 57

, 6.3)

where |x| denotes the magnitude of the complex number x. With the help of Wirtinger calculus [35], we
describe the extension of the subgradient method in the complex domain. The Wirtinger derivatives of
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a complex function f(z) with z = x + iy, (x,y) € R" x R" are given by
of 1 fof of
- ;2
3z 2 \ox ay

f f of
FEa (8x +’a_y)’

where x — X denotes complex conjugation. The chain rule of Wirtinger calculus, summarized below, is
useful in formally defining a subgradient of the nonsmooth objective:

0fog) (o \dg , (o oz
a—z—(a—z°8)a—z+(a—z°g)a—z ©
o) _ (o g (3 0%
8—2_(8z g) 8Z+(8z g) 7 (6)

We now compute the Wirtinger derivative of the real-valued function
1 < 1 <
fmn) = = 3" [(awnr) = yi| = — 3 awath); ).
i=1 i=1

with AX) = {KH Xr} the corresponding operator for the complex case. By the definition of the
Wirtinger derivatives, it 1s easy to see that

L]

PE (6.6)

<k otherwise
2|z |

_[0’ Zk:0+0-]
I=Zk

In this way, the linearization around z;, based on the Wirtinger gradient (see [35, pp. 20-21]) satisfies
|Zk| + 2% ((g(zk),z - Zk>), glz) = %l, after elementary calculations, much like its R”"-
counterpart.

With this in hand, the application of the chain rule from Equation (6.5) gives us that

of
| w ((Kl-,w)(xk,ri)—y,-)(ri,xk)ﬁi
S Z I Z,,wk) ) =] [«wk,fz,-)(r,-,xk) —yi><£i,wk>r,-]

In the above, we make the convention that when z = 0, we set é =0, as in (6.6).

ExPERIMENTS. To avoid confusion due to the conjugate notation, in this section we will denote the

ground truth signals by w, and x,, respectively. We repeat the synthetic experiment under noise model

N1 for the case of complex measurements. Specifically, we form the left measurement matrix L € C"*¢

by taking the first d columns of the (unnormalized) m x m DFT matrix, with L"L = mlI ;- For the right
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Convergence of subgradient method for blind deconvolution
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FiG. 11. Convergence plot for synthetic instances in the complex domain, using m = ¢ - d. Left: d = 250. Right: d = 500. Top 2
rows: Algorithm 2 with pgj € {0.25,0.45}. Bottom row: Algorithm 1 with pg,;; = 0.
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Convergence of subgradient vs. gradient method as a function of incoherence
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FiG. 12. Convergence behavior of Algorithm 1 for minimizing (1.3) vs. gradient descent for minimizing its smooth counterpart
for d = 100 and incoherences ;1,% € {12,23, 89, 100} (clockwise, starting from top left).

measurement matrix R € C"™*¢, we set all entries equal to i.i.d. complex Gaussian random variables:

1 )
Ry = \/; (Xix +JYi) s Xigo Yip ~ N, 1). (6.7)

These are precisely the measurement matrices used in [41], the authors of which also provide a spectral
initialization to find an e-close initial estimate. However, this initialization requires m < dlogd, so we
opt for an artificial initialization as shown in (6.8), with § := 0.25:

wo =Wy +68,,  Xo =X, +88  8n8g, ~ Unif(STT). (6.8)
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Iteration complexity vs. signal incoherence
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FiG. 13. Average number of iterations to reach normalized distance 1073 for Algorithm 1 applied to (1.3) vs. gradient descent with
Polyak stepsize applied to objective (6.10). Dashed lines are average over 25 independent realizations with error bars indicating
one standard deviation.

We apply the subgradient methods from Algorithms 1 and 2, with the subgradient now calculated using
Wirtinger calculus, as illustrated above. In Fig. 11, we generate synthetic instances with [[w,[| = [lx, || =
1 and py,;; € {0,0.25,0.45} and evaluate the performance of our methods over a variety of measurement
ratios ¢ := 7. We verify the linear rate of convergence of the projected subgradient method, as well as
the effect of py,;; on the number of measurements required to converge to a minimizer. We observe that
the partial DFT setting requires us to set m as big as 10 - d for the highest corruption levels.

ROBUSTNESS TO SIGNAL INCOHERENCE. For completeness, we evaluate the sensitivity of the nonsmooth
formulation (1.3) to the incoherence between w, and the rows of L, given by

.y (6.9)

Intuitively, ,ui captures the maximal correlation between rows of L and w; in [41] the authors argue that
signals with high ,u% are the hardest to recover for smooth formulations. We generate noiseless instances
where L is the partial m x d DFT matrix and R is a complex Gaussian matrix following (6.7), for a range
of values of pL]%; for each such value, we set x; ~ Unif(S4~1) and w; equal to a vector with Mi nonzero
elements equal to 1 and all else equal to O (followed by normalization so that w, € S=1), which attains
incoherence exactly ,u% for this choice of L, following [41]. For simplicity, we set w, X, ~ Unif(Sd’1 ),
d =100 and m = 8 - 2d and compare:

(i) the performance of Algorithm 1 applied to the objective (1.3),
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Robustness to signal incoherence
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FiG. 14. Empirical recovery probabilities for various values of (%, p_%) over 50 independent trials. Lighter cells imply higher
recovery probability. Left: Algorithm 1. Right: gradient descent with Polyak stepsize minimizing (6.10).

(i) the performance of gradient descent (using the Wirtinger gradient) with Polyak stepsize on the
smooth counterpart of (1.3), where we replace the £,-norm with the squared £, loss as:

l m
Fomoom (¥, = — ; (€ w0 =i, (6.10)

(iii) the performance of gradient descent applied to (6.10) with a fixed stepsize 7 chosen among
27, iel,...,15 so that the final iterate distance is minimized.

Figure 12 illustrates that the nonsmooth objective is much more robust to variations on the incoher-
ence of u% As additional empirical evidence, Fig. 13 shows the average 4 one standard deviation of the
number of iterations required to reach normalized distance 1073 for the two formulations, minimized
using the Polyak stepsize. Perhaps surprisingly, the nonsmooth version remains practically constant over
all choices of ,u%.
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Finally, we generate a few transition plots for d € {100, 200} that illustrate the effects of incoherence
on the nonsmooth and smooth flavors of the recovery objective. Following the setting of [41], we choose
10 equispaced values for u% € [1, d] and plot the empirical probability of recovery over 50 independent

el —wen] |

runs for various ratios % We consider the result of a run successful if it satisfies F <1073

-
e |
after at most 1000 iterations. Figure 14 shows that the nonsmooth objective is far more robust to signal
incoherence, but it also reveals that it is not entirely unaffected by it; in particular, we can see that we
need a higher threshold 75 to recover signals with higher incoherence after fixing the dimension d.
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A. Proofs of Section 4.1

A.1  Proof of Proposition 4.1

To see the first estimate, observe

A A 1 A 1 . A
lg(w, X) —g(w,x)(w,x)| = ‘;’[ Hszf(wx—'—) —y”] — E HJZ/(WXT —}-W()C—)c)—r + w—= W)XT) _yHl‘

N

m Hﬂf(fwf —wxl —wE—x0T - (- W”‘T)Hl

ol o= mre—m],

N

N —

N

) 112 2112
Z (=13 + I — 213)

where the last estimate follows from Young’s inequality 2ab < a® + b*. Now suppose w, w € KB and
x,x € KB. We then successively compute:

1
PN T _onT T _ ~aT
80v.0) = g D] < — [/ (exT = AF D)1y < epllwa” — i3 Tp
ANT oA N
=ollw—wx +wkx =X g
< o llxllpllw = wlly + e IWlis llx — Xl
The proof is complete.

A.2  Proof of Theorem 4.2

Without loss of generality, we assume that M = 1 (by rescaling) and that w = ¢; € R4 and ¥ = e €
R% (by rotation invariance). Recall that the distance to & may be written succinctly as

it (e = a3+ e = (/)% 13},

dist((w, x), 7) = /

Before we establish the general result, we first consider the simpler case, d; = d, = 1.
The following bound holds:

1 2 2
e =11 > ﬁ . \/(l/v)<\a|<u{|w_a| = (/e }

for all w,x € [—v, v].
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\\‘
NN

F1G. A15. The regions K1, K; correspond to cases 1 and 2 of the proof of Claim A.1, respectively.

Proof of Claim. Consider a pair (w,x) € R? with |w]|, |x| < v. It is easy to see that without loss of
generality, we may assume w > |x|. We then separate the proof into two cases, which are graphically
depicted in Fig. A.15.

2 . . . .
CASE A:15w—x < L — L In this case, we will traverse from (w, x) to the .}, in the direction (1, 1). See

Fig. A.15. First, consider the equation

wx — ﬁ(w +x)t+ t2/2 =1,
in the variable ¢ and note the equality
wx — V2w + X1+ 122 = (w — t/v/2) (x — 1/3/2).

Using the quadratic formula to solve for 7, we get

t =2 +x) — V2w + 12 —2(wx — 1).

Note that the discriminant is non-negative since (w + 0P —wx—D=w>+x>+xw+1>1.
Set @ = (w — 1/+/2) and note the identity 1/a = (x — t/+/2). Therefore,

wx — 1| = [(1/a)(w —a) +alx — 1/a) + (W —a)(x — 1/a)]
= |(x — t/N2)(t/N2) + (w — t/N2)(t/V2) + 2 )2]

= %|(W+X)—l/\/§| = |—;|\/2(W+X)2—2(wx— 1> ﬂ

S

Observe now the equality
1
V22
Hence it remains to bound «. First, we note that @ > 0, 1/a > 0, since

a+1/a=w—1/v2)+ x—1/V2)

(w=al® +x = 1/aH/2.

=W+ +2VWw+x2— (wx—1) > 0.
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In addition, since w > x, we have ¢ = w — t/ﬁ >x— t/\/i = 1/«. Since o and 1/« are positive, we
must therefore have o« > 1 > 1/v. Thus, it remains to verify the bound & < v. To that end, notice that

v2—1 vz —1
= —

1/a:x—t/«/§>w—t/«/_—

Vv

2 2.1 . . 2.1 . . .
Therefore, ~ > 1 > "‘Tl Since the function ¢t — % is increasing, we deduce o < v.

2 . . .
CASE2: W —x > % In this case, we will simply set @« = v. Define

t=((w—v)2+(x—1/v)2)l/2, a=2"" and b:x_l/v.

Notice that proving the desired bound amounts to showing [wx — 1| > —=. Observe the following

S

estimates:

1 2
ab<0, b<a d+b=1 and 1<— VY
at+b \ v

where the first inequality follows from the bounds w < vand v > w > x + v — 1 /v, second inequality
follows from the bound w — x > (v? — 1)/v, the equality follows from algebraic manipulations and the
third inequality follows from the estimate w + x > 0. Observe

lwx — 1] = |(v + ta)(1/v + tb) — 1| = |ab + tvb + ta/v|.

Thus, by dividing through by #, we need only show that

[tab 4+ vb 4+ a/v| > (A1)

1
N
To prove this bound, note that since 26 > a* + b* = 1, we have the —vb — a/lv 2z —vb > l/ﬁ.

Therefore, in the particular case when ab = 0 the estimate A.1 follows immediately. Define the linear
function p(s) := —(ab)s — vb — a/v. Hence, assume ab # 0. Notice p(0) > 1/\/5. Thus, it suffices to
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show that the solution s* of the equation p(s) = 1/ /2 satisfies s* > t. To see this, we compute:

* ! vb+a/v+ !
S = —— a —_—
ab V2

— (+b)(3+i+L)
N (a—i—b)a a bv . 2ab

B 1 AW 1 (1 1
——a5 (D)5 (0+5)+5(G+3))
> — 1 (v+l(1+g+é+L+L))
~ (a+b) v b a 2b J2a

1 1 V2 (a® + b%) — (lal + |b])
=— —{1

(a+b)(”+v( " J2ab

1 1 V2 = (lal + 1b])
= — —1 _—_—

(a+b)("+v(+ N ))
> ! ! >
/_(a—f—b)(v_‘_;)/t’

where the first inequality follows since v > 1 and the second inequality follows since a® 4+ b*> = 1 and
V2l|(@.b)lly > II(a.b)l,. as desired. -

Now we prove the general case. First, suppose that ||wx" —wx " Il = 1/2.Since [w—w|, < (v+1)
and |lx — x|, < (v + 1), we have

dist((w,x),.7) < V2 + 1) < 2V2(00 + D)lwx " =ik |,

which proves the desired bound.
On the other hand, suppose that ||wx" — wx || r < 1/2. Define the two vectors:

W=w,0,....0T eR" and ¥=(x,0,...,0)" € R%,

With this notation, we find that by Claim A.1, there exists an « satisfying (1/v) < |a| < v, such that
the following holds:

Jwx" —wx" 12 = [wx" —wx" +wx" —wx' |2
= wx" —wx" |7+ Iwx" —wx "7
> o~ T+ 5 (10— @I+ 15— (1 e013)
We now turn our attention to lower bounding the first term. Observe since [wyx; — wix;| < ||wa —

wx! || < 1/2, we have

wix;| = %] — [wix, —wi %] = (/2% ] = 1/2.
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44 V. CHARISOPOULOS ET AL.

Moreover, note the estimates, v|w,| = |x;[[lw;| = 1/2 and v|x;| > |x;|Iw;| = 1/2, which imply that
[wy| = 1/2v and |x;| = 1/2v. Thus, we obtain the lower bound
Iwx" =% 2 = [w —0F +0ax -5 +w - - IF
= by Plw = W + lwy Pllx = %13+ v — e =D 717

2 ~ 02 2 ~112
Z ey [7llw = wilz + [wy 7llx — xII3

1 2
> 2v ( _~2 _~2)'
(ZU) Iw = w13 + llx — %13

Finally, we obtain the bound

__ - [ - - -
T = W7 > T = W5 1E + 5 (15 — el + 15 - (/05

2
>i a2 a2 Ly 9 5 — (1/a)El2
|3 lw—wl5 + llx—xl5) + 2 w—oawl5 + X — (1/a)x|l3

2
>li a2 =2 SRR % — (1/a)xI2
Zminj o, | 5o lw—wll5 + llx — x[I5 + [[Ww — aw|5 + [IXx — (1/a)x|l5

1\2
= (—) -dist?((w, x), 5.
2v

By recalling that 1/2v > 1/2+/2(v 4 1), the proof is complete.

B. RIP proofs

B.1  Proof of Theorem 4.6

Due to scale invariance, in the proof we only concern ourselves with matrices X of rank at most two
satisfying || X||p = 1. Let us fix such a matrix X and an arbitrary index set .# C {1,...,m} with
|.7] < m/2. We begin with the following lemma.

LEMMA B.1 (Pointwise concentration). The random variable ¢ Xr| is sub-exponential with parameter
V2%, Consequently, the estimate holds:

wopo < ElETXr| < . (B.1)

Moreover, there exists a numerical constant ¢ > 0 such that for any r € (0, \/§n2], we have with
- 2 .
probability at least 1 — 2 exp(—%m) the estimate:

1
- I Oy = 177 XNy = E[Il5c Xl = 175 (O] ‘ <t (B.2)
Proof. Markov’s inequality along with (4.3) implies

EIETXr| > po - PO Xr| = pg) = pop,
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which is the lower bound in (B.1). Now we address the upper bound. To that end, suppose that X has a
singular value decomposition X = oy U, V|| + o,U,V, . We then deduce

e Xrilly, = e’ (al UV, + UZUZVZT) Ty, = o (€U V1) + 058, Uy)(Va, 1)l
< o6 UV Ly, + 0l (€, Up)(Va, 1)Ly,
< o6 UD Ny, KV ) Ly, + 0216 Uy, 1KV, 1)y,

< (oy + on* < V21,

where the second inequality follows since || - ”1#1 is a norm and ||XY||¢1 < ||X||¢2 ||Y||1//2 [60, Lemma

2.7.7]. This bound has two consequences: first, |¢'Xr| is a sub-exponential random variable with
parameter «/Enz and second E|¢T Xr| < \/5772, see [60, Exercise 2.7.2]. The first bound will be useful
momentarily, while the second completes the proof of (B.1).

Next define the sub-exponential random variable

e xn Bl X ifig s
T =0 X —EigT X)) ifie s

Standard results (e.g. [60, Exercise 2.7.10]) imply |||, < V/2n? for all i. Using Bernstein inequality
for sub-exponential random variables, Theorem D.4, to upper bound P (% \Zf’: 1 Yi| > t) completes
the proof. O

Proof of Theorem 4.6 Choose ¢ € (0, V/2) and let .4 be the (¢ / V2)-net guaranteed by Lemma D.2.
Let &denote the event that the following two estimates hold for all matrices in X € 4"

1
- 17 7 « XNy = 17 GOy = E[ll7 7 <Ol — 175 O ] ‘ < (B.3)

1

— IOl —E[1001,] | <. (B.4)
Throughout the proof, we will assume that the event & holds. We will estimate the probability of & at
the end of the proof. Meanwhile, seeking to establish RIP, define the quantity

1
¢y = sup — |l AX)|;.
XeSy m

We aim first to provide a high probability bound on c,.
Let X € S, be arbitrary, and let X, be the closest point to X in .4, Then we have

1 1 1
— AN < —NAX)I + —[lAX = X))l
m m m
1 1
< —EAX)I; + 1+ —[AX = XD, (B.5)
m m
1 1
< n—iEllszf(X)lh trt o (EllAX = X))y + 14X = X)), (B.6)

where (B.5) follows from (B.2) and (B.6) follows from the triangle inequality. To simplify the third term
in (B.6), using singular value decompostion, we deduce that there exist two orthogonal matrices X, X,
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of rank at most two satisfying X — X, = X, + X,. With this decomposition in hand, we compute
1 1 1
— [ AX = XDl < Il AXDI, + — 1A,
m m m

<o UX Il + 1Xllp) < V261X — X, Il < ¢y, B.7)

where the second inequality follows from the definition of ¢, and the estimate || X, ||z + X, <
V2(1(X;, X) || = 211X} + X, | . Thus, we arrive at the bound

1 1
;||~‘27(X)||1 < ;EHW(X)Hl + 1+ 2c,8. (B.8)

As X was arbitrary, we may take the supremum of both sides of the inequality, yielding ¢, <
% SUPxcs, E|lAX)|l; 4+ t + 2c,e. Rearranging yields the bound

L supyes, Bl /X)), +¢

) X n
1—2¢
Assuming that ¢ < 1/4, we further deduce that
2
¢, <0 :=— sup E|lAX)|; + 2¢, (B.9)
m XeS,

establishing that the random variable c, is bounded by & in the event &
Now let.# denote either.# = ¥ or .# = .£. We now provide a uniform lower bound on % ||szj;c Xl —
Lll7;(X) ||, . Indeed,

L egp0], - peggenl,
= % |5t + et = x| - % | 5%, + X = X,)],
> g, - el - - fex - xl, (B.10)
> %]E[Hg/jc(X*) ], - - % |eAx - x,)], (B.11)
> m[|wp00] ~ 00, ] - @ o - x0], + X -X01)  B12)
> %E[IIW;C(X)Ih — 175001, | = 1= 25, (B.13)

where (B.10) uses the forward and reverse triangle inequalities, (B.11) follows from (B.3), the estimate
(B.12) follows from the forward and reverse triangle inequalities and (B.13) follows from (B.7) and
(B.9). Switching the roles of .# and .#¢ in the above sequence of inequalities, and choosing ¢ = t/45,
we deduce

1 3
sup |17 (Ol = 175001, = B [1173- 001, = 13001, ] | < 5

m xes,
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In particular, setting .# = (J, we deduce

1
— sup [0, — E[I 001 ] | <
m xes,

and therefore using (B.1), we conclude the RIP property

3t 1 3t
Hopy = 5 < — [0l S n* + 3. VKeS, (B.14)

Next, let 7 = . and note that

217 |

|7 — |7 |
L EBETXA > pep (1 -
m m

1
—E IOl = 13001, ] =

Therefore, every X € §, satisfies

2|7 |

1 3t
— 7 Ol = 15001 | > oo (1 - 7) -5 (B.15)

Setting # = 2 min{11opy/2, wopo(l — 21.91/m)/2} = Luepy(l — 2|.4/m) in (B.14) and (B.15), we
deduce the claimed estimates (4.4) and (4.5). Finally, let us estimate the probability of & Using Lemma
B.1 and the union bound yields

P(&°) < Z ]P’{(B.3) or (B.4) fails at X}
Xe N

2
< 4| Mexp (—im)

9 2(di+dy+1) o2
<4 - exp | ——m
& n
ct?
=4exp (Z(dl +d, +1)In(9/e) — —4m) ,
n

where the second inequality follows from Lemma D.2 and c is a constant.
Then we deduce since 1/e = 45/t < 24 n*/(1 = 2|.7|/m).

den2p2(1 — 2|7 [\2
P(&°) < 4exp(cl(d1+d2+1)ln(cz+ @ )— a1 o "),
- n

2|9 |/m 9
18n*ci (di+dy+1) In(cr+ 7= 2 4eudpp 1222
Hence aslongas m > poR gﬂ); A ),we can be sure P(&€) <4 exp|— Wop"l(gn ) mj.
ChoPoU =

The result follows immediately. O

LZ0Z dUNp 20 U0 Josn ZoN uuy Aq 6E09E6G/.Z0CBRYIBIEWI/EE0L 0 L/I0P/SI0IE-80UBAPE/IEIEW/WO0"dNO"oIWSPEdE//:SAY WOl Papeojumod



48 V. CHARISOPOULOS ET AL.
C. Initialization

C.1  Proof of Proposition 5.1

As stated in Section 5, we first verify that L™ and R™" are nearby matrices with minimal eigenvectors
equal to w, and X,. Then we apply the Davis—Kahan sin6 theorem [23] to prove that the minimal
eigenvectors of L' and R'™' must also be close to the optimal directions.
Throughout the rest of the proof, we define the sets of ‘selected’ inliers and outliers:
1 1 1 1
I =I,NI* and I = g NI

out — out

We record the relative size of these parameters as well, since they appear in the bounds that follow:

1
S, ‘Jﬂel and Sy = |5
m

out| *

THEOREM C.1 There exist numerical constants ¢y, ¢,, ¢3,¢4,¢5 > 0, so that for any pg,;; € [0,1/10]
and ¢ € [0, 1], with probability at least 1 — ¢ (exp (—c,mt) the following hold:

1. Under noise model N1
LM = (Sin + Soudla, — Vlv_"ﬂ_Vj +4, R™ = (Sin + Soua, — Vz)_‘*)_cj +4,,

where y; > ¢; and y, > ¢, and

max{d,,d,}
max{[| A llops 142 l0p) < €5 (/? N t).

2. Under noise model N2
L™ =S Iy —yiw,w) + 4, R™=S,1, —nii + 4,

where y; > ¢3 and y, > ¢, and

max{d;,d,}
max {4y llop [ A2llop} S Prait + €5\ \f —— —— 1]

Proof. Without loss of generality, we only prove the result for L"; the result for R™! follows by a
symmetric argument.

Define the projection operators Py, := w,w/] and let Pé;i := 1 —w,w,. Then decompose L™ into
the sums of four matrices Y, Y;, Y,, Y3, as follows:

Liﬂit=%( S Pt P+ > (P 00TPE + PL ol ) > Pp gt P+ > o]

ic sl ifl ic s i“nC] ic sl i“nC] ic s gﬁl

m-Yy m-Yq m-Yp m-Y3

(ChH

We will now study the properties of these four matrices under both noise models.
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First, note that in either case we may write Y, = yow w/, where

* ok
1 T2
Yo = Z € w) .
ies &

In addition, we will present a series of Lemmas showing the following high probability deviation

bounds:
dl - =T dl
n=SaoZ L Ml 50 and ry =8, (1, —wil)| <7k

Finally, our bounds on the term Y5 as well as the definition of A; depend on the noise model under
consideration. Thus, we separate this bound into two cases:

Noise MODEL N1. Under this noise model, we have

dl
||Y3 - Sout[dl ”op 5 \ Z

Thus, we set A} = Y} + (Y, — Si,(Iy, — w,w)) + (Y3 — Soudy, ) -

Noise MODEL N2. Under this noise model, we have

/d
1Y3llop < Prail + P

Thus, we set Ay = Y, + (Y5 — S, Iy, — w,w,))) + Y.
Therefore, under either noise model, the result will follow immediately from the following four
lemmas. We defer the proofs for the moment.

LemMA C.1 There exist constants ¢, ¢y, ¢, > 0 such that for any p;, € [0, 1/10] the following holds:
P (Sin — Yy = c) > 1—cjexp (—czm) .

LeEMMA C.2 Fort > 0, we have

[d —1 2
IP’(“ Y, ||0p =2 le + t) < exp (—%) + exp (_%) .

LeEMmmA C.3 There exist numerical constants C, ¢ > 0 such that for any # > 0, we have
T d
(|72 - Sty - w50 =5 +1) < 2exp(-cm).
op m

LEmMA C.4 There exist constants C;, Cy, ¢, ¢, > 0 such that for any ¢ > 0, the following hold. Under
the noise model N1, we have the estimate

Id
P(H Y3 - Soutldl ”op > ] E] + t) < Zexp(—c4mt),
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50 V. CHARISOPOULOS ET AL.

while under the noise model N2, we have

d
P(” Y ”()p Z Prail T €13/ Zl + t) < 2exp(—cymt).

The proof of the the theorem is complete. 0

We now apply the Davis—Kahan sin 8 theorem [23] as stated in Lemma D.1. Throughout we assume
that we are in the event described in Claim. C.1.

Proof of Proposition 5.1. 'We will use the notation from Theorem C.1. We only prove the result under
N1, since the proof under N2 is completely analogous. Define matrices V; = y;w, W] — (Sin + Souy,
and V, = X, X, — (Sjp + Sou)ly,- Matrix V; has spectral gap y; and top eigenvector w,, while matrix
V, has spectral gap y, and top eigenvector X, . Therefore, since —[init — Vi —A; and —Rnt — Vo, —A4,,
Lemma D.1 implies that

V2 ]ail,, V2[4,

m1n w—sw,ll, < ———— and min_ |[X — sx, ||, <
se{£ Y1 se{£1} V2
We will use these two inequalities to bound mingg, 1, [Wx" — sw,x] || 7. To do so, we need to analyze
s) = argming(y 1y [[W — sw, || and s, = argmingc, 1, [[¥ — sx,[|. We split the argument into two cases.
Suppose first s; = s,. Then

R = 0,5 M = W@ = 50%,) T = (0, — sy | < [T = 555,11, + 19, — 5,9,
_ 2V2max(l| 4, gy, 142 o)
= min{yl’ Vz} ’
as desired.
Suppose instead s; = —s,. Then

W% 4+ w,%,] [l = W& — 5,%,) " + (0, + 5,05 |5 < |8 = 5,5, [, + [, — 5,3,
_ 2v2max{[| A, llgp 1421l op}

- min{y,, y,}

as desired. Bounding max{|| A, ||Op, 1A, ||0p} using Theorem C.1 completes the proof. O

i

The next sections present the proof of Lemmas C.1-C.4. We next set up the notation. For any
sequence of vectors {w;}/" | in R4, we will use the symbol W; 2.4 to denote the vector in R4~! consisting
of the last d — 1 coordinates of w;.

We will use the following two observations throughout. First, by rotation invariance we will assume,
without loss of generality, that w, = e; and x, = e,. Second, and crucially, this assumption implies that
fiﬁfl depends on {¢;}7" | only through the first component. In particular, we have that {¢;,., }i; and

3! are independent. Similarly, {r;.,,}" | and .7 are independent as well.
C.1.1 Proof of Lemma C.I  Our goal is to lower bound the quantity

1
Sin = Yo =~ > a=ep.
ie.s 5
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To prove a lower bound, we need to control the random variables £7 i1 on the set S flel.
Before proving the key claim, we first introduce some notation. ‘First, define

Grn 1= S — iy
fail - 8(1 _ptml)’

which is strictly less than one since pg;; < 1/2. Leta, b ~ N(0, 1) and define Qg to be the gg,;-quantile
of the random variable |ab|. In particular, the following relationship holds

g = P (1ab] < Qpyy) -
Additionally, define the conditional expected value

g = E [02 | labl < Qfail] .

Rather than analyzing J;f’l directly, we introduce the following set .# Q

n’

| < O] -

which is simpler to analyze:

Jig = {ieﬂinl

Then we prove the following claim.
There exist numerical constants ¢, K > 0 such that for all # > 0 the following inequalities hold true:

sel
1. |7 | > 1=2ppait
m

9

2 P22 A4) > 1 —exp (~2052m0m)
0 6251
3. ]P’(lfinl > ﬁ) < exp (—2_’1’#) .

2 1—2pgai 3(1—2prai
4. P (_IJ;»QI Ziefig 51'2,1 > wgy + t) < exp( ¢ min {’—2 %} (1 =2ppait) = ])) + exp (——( e 1)m) )

Before we prove the claim, we show it leads to the conclusion of the lemma. Assuming we are in the
event

=1 7925 gl |jQ| <

6251m 1 , 101
in = in in 10000’ |f,g| Z
i€

< —— W s
l,l = 100 fail
in

it follows that:

S_y0=%z(1_52) __ZZ”/ 2pfa11 Q S 2

ie.s 3 ies £ ‘j ies £

f sel

mn

2 1000000

where the first three inequalities follow by the definition of the event &. The fourth inequality follows by
the definition of &€and Lemma D.5, which implies w,; < 0.56 when pg,; = 0.1 and that the difference
is minimized over pg; € [0,0.1] at the endpoint pg,;; = 0.1. To get the claimed probabilities, we note
that by Lemma D.5, we have wg,;; > 0.5 for any setting of py;.

Now we prove the claim.

> 0.04644344,
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Proof. of the Claim We separate the proof into four parts.
Part 1. By definition, we have

|jsel| |ﬂ mysel| |V¢sel| _ |ﬂ mjsd' m __ |ﬂ
in — > 2

= =
m m m m m 2

out

Part 2. By the definitions of fisel and #2, the result will follow once we show that

mn’

3(1 — 2pgip)
P (med({[y;}") = QM) < exp ( ———— T8 ) .
160
To that end, first note that
“ m
med({ly1}) = min { |y :j € [m], D Uiyl < Iyl = 5]

. m |jin|
s 1 i < j 2 21 — pei)
|| 1 j € m] ; thil < byl = 57 —pfail)]

|7 il
Sminq [yl :j € Iy, zlﬂyl |yj|}>2(1——11:fm1)}
i=1

. . BN
<min{lyl:je i D Uyl < lyl} > —2—

e 2(1 = peain)
= quant s ),
a - ({yilticr,,)
|Finl  _ (I=pgipm

where the first equality follows since W —pr) = 20 —pr) = m/?2, the first inequality follows since the
. . . at . al . . .

minimum is taken over a smaller set and the second inequality follows since the sum is taken over a

smaller set of indices. Therefore, we find that

P (med({|yl~|}lm) > Qfai]M) <P (quant 1 ({|yi|}j€jin) > QfaﬂM)

2(1—prait)

=P (quant 1 (il MYie s ) = Qfail) ,

2(1—prai1)

and our remaining task is to bound this probability.

To bound this probability, we apply Lemma D.3 to the i.i.d. sample {|y,|/M: i € .#,}, which is
sampled from the distribution of Z of |ab| where a,b ~ N(0, 1) and a, b are independent. Therefore,
using the identities (for i € .%;,)

5= 2pe

=P (Iyil/M < Opyit) = dpait = 8(1 — prp)
al

sel m
out NI o 2 " "Pril _ 1 2P
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and choosing p := (2(1 — pfail))_l < g, we find that

m(q — p)* )
2(q—p)/3+29(1 —¢q)

. (m(q p))
P\23+ 6q
( 2pfall)m )
pfall)(2 + 18@)

3(1 — 2pygy
<exp(— ( 160pfa11)m)’

P (quant_l ({|yi|/M}ieJin) > Qfail) < exp
2(1—ptai1)

I
¢

1—2pail
8(1—ptail)

bound and implies that ﬂiQ D I sl with high probability, as desired.
Part 3. Since {|y;|/M: i € %, } is an i.i.d. sample from the distribution of |ab| where a,b ~ N(0, 1)
are independent, we have for each i € S, that

where we have used the identity ¢ — p = = (1 — ¢)/3 in the first equality. This completes the

P (i € jig) P (Iyil/M < Qpyt) = P (labl < Qpyit) = Gait-

Therefore, E [|f£|] = gplFinl < 85(1*_22;:3)(1 — Praidm < %m Finally, we apply Hoeffding’s

inequality (Lemma D.1) to the i.i.d. Bernoulli random variables 1{i € fi?]} —E [l{i € fg]}] (ie A
to deduce that

6251 5
P _m\| o) =p M <ol g]}»(igmﬁ_mf%)
10000 10000 m 8 10000 mn mn

< exp (_(1/10000)2m) < exp (_ m )
h 201 = pe) ) 2-108/°

as desired.
Part 4. First write

1 2
P —Q| Z by 2 wpgy + 1

|f‘“ ied ig
=P Q > g +trand| 7L 2 S| +P Ze > wpy +tand 7L 2 73
lj | i€ed if | m i€d, Q
1 — 2pey —2pe
<P Q Z E wfa1]+tand|fig| 2% +exp(—%m),
|j | i€d, Q
where first inequality follows from Part 2 and the bound —2— l l 1_22’7 Gl Thus, we focus on bounding

the first term.
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To that end, notice that

m(l — 2pp)

z ezl Z Wraj) + tand |j]g| = 2

|JQ|

m(l — 2pep) m(l —2pg,y))
ZE wfdll+t|jig|>ftaﬂ P("ﬂing% :

Observe that for any index i € .%,, and t > 0, we have P (52 tlie Jlg) =P (a® >t |ab| < Qgy))-

where a, b ~ N(0, 1) are independent. In addition, we have gy,;; = P(|lab| < Q) = 85(1_2—% >5/8 >

1/2, where we have used the fact that g;,;; is an increasing function of py,;. Therefore, applying Lemma
D.4, we have the following bound:

mn’

P(z,%l >tlie fiff) < 2exp(—1/2K,)  forallt > Oandi€ .7,

where K; is a numerical constant. In particular, by Theorem D.5 and the identity wg; =
E[a® >t | lab| < Qg . we have the following bound:

1 — 2p¢,s 2 ¢ 1 —2p..
Z @ wfall + t‘|j w < exp (—cmin [ﬁ’ E] —m( 2 pﬁm))
| m ies 2

for numerical constants ¢ and K, as desired. O
The proof is complete.
C.1.2  Proof of Lemma C.2 Our goal is to bound the operator norm of the following matrix:
1
Tpl 1L, ,7 T T
Y, = Z (Pw*eizi P, + Py L Pv‘v,) = Z iy (elei,Z:d + 0.4 ) .
ie.s 5 ie.s 5

Simplifying, we find that

0 A 0
Y, = Zid) i| for A= 1 e R,
! [ Ayg, O m zieyisncl irtina,

Evidently, [|Y} o, < ||)»2: d | »» 80 our focus will be to bound this quantity. We will bound this quantity
through the following claim, which is based on Gaussian concentration for Lipschitz functions.
Consider the (random) function F : R™*(@1~=D _ R given by

|
F(ay,...,a,) = - Z £;qa;

ieﬂfne] 2
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Then Fis 7 = % /2 sl Z%l Lipschitz continuous and
[dy —1 - sel mt?
P(F(gl,Z:d""’em,Zid) 22 m +t n< T {611 i— l’j gexp —? .

Moreover, the following bound holds:

P> 2) <o (-2)

Proof of Claim. Forany A= [a; ... a,] € R™@=DandB=[b, ... b,] € R™ @D e have

1
|F(A) — FB)| < —[I(A = B)(¢; i € 57D, Il

HS

< = A =B)llgpll €1 1i € I 5D 1y < TIA = Bllg,

§

which proves that F is 7)-Lipschitz. Therefore, since for all i the variables ¢, ; and ¢; ,.;, are independent,
standard results on Gaussian concentration for Lipschitz functions (applied conditionally), Theorem
D.6, imply that

2
P(F(gl,2:d""’£m,2:d) _E|:F(£l,2:d""’£m,2:d) < Al 1afsel]
R 2
Z1|n < T {e e 1»f§1€1,)

Thus, the first part of the claim is a consequence of the following bound:

2
E[F(el,sz""7zm,2:d) < Al wﬁsel}
< \/E |:F(Zl,2:a’""*€m,2:a’)2 T e 1’jselj|
1 , .2 4 —1
- | L 2 (d, — |« :
—SE| D Gid - | i< 7| < —

We now turn our attention to the high probability bound on 7.
To that end, notice that the (random) function £: R™ — R given by

E(a) = — —||(a Hie 7SN,
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is m_l-LipschitZ continuous. Moreover, we have that E [E(El,i,...,(il,d)] < %E[H(ZLI»);":] ||2] <
—-1/2
m .

Therefore, by Gaussian concentration, we have

P72 -2) 5B (E€ ...t —E[EC . ..,0] > =) <exp(=2).
NG NG 2
as desired. O

To complete the proof, observe that

d, — 1
(el > 2% 40)

1 d —1
ie]ﬁfl 5
1 d, —1 2 2 2
<P||—- 0l =2, < —|P(o<—=)+P(7>—=
m Z B12d) m T n<«/ﬁ (n<\/ﬁ)+ (77 m)

. sel
i€t 2

d —1 2 m
]P F(£1,2:d""’em,2:d)>2 T+t 7]<T +6Xp( 2),

where the second inequality is due to Claim C.3. Finally, by Claim C.3, the conditional probability is
bounded as follows:

Pl Fe ¢ )>2,/d1_1+t e 2
s ey ) = < —
1,2:d m2:d " n N
dy—1
= E'fisnel’{ei,l};il ]P F(£1,2:d’ e ,Em’zd) 2 2 T +t

’77 _{Ell ,jsel
\/— 1 1

which completes the proof.
C.1.3  Proof of Lemma C.3 Observe the equality
1 0 } T
Y, =— 04¢,, 1.
= 2 [, 10 ]
it

Therefore, we seek to bound the following operator norm:

1
T T
H Y, =S, (Id| —epe; )Hop =l z i bin:ay — Loy —1)

: 1
i€ *
op
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Using the tower rule for expectations and appealing to Corollary D.1, we therefore deduce

d

IE”(HYZ—Sin (14 —ere]) . C‘/Zl—}—t)

<E PlY, —S. (1 T >C a 7 <2

RS ‘]iid 2 —9in g, — €€ op = E +t = < eXp(—cmt),

as desired.

C.1.4  Proof of Lemma C.4

Noise MODEL N1. Under this noise model, we write

1
” Y3 — Soutldl ”op =15, Z Z'EiT - Soutldl
lefgﬁl op

The proof follows by repeating the conditioning argument as in the proof of Lemma C.3.

Noise MODEL N2. Observe that

1 1 1
T T
D DICTH IR EAD DT B D DECTIES /0] B D!
lE/;ﬁl op i€t out op i€t out op i€ out op

= Z €ty —1g)| =+ Prair-

te A out

op

Appealing to Corollary D.1, the result follows immediately.

C.2  Proof of Proposition 5.2

We will assume that [wal —w.x] | r < lwx T+ w x| - We will show that with hlgh probablhty,
|M —M| < 8M and moreover in th1s eventif§ < 1, we have M > 0. The other setting || wxT —W,X || F2
T + WX, Tl F can treated similarly.

We will use the guarantees of Proposition 4.6. In particular, there exist numerical constants

alditdt (c2 + m), then with probability at least

¢i,...,¢cq > 0 so that as long as m > -2 ‘)2

1 —4exp (—03(1 — %ﬂ)zm), we have
1
el Xllp < = 14X, <cslX|p  forall rank < 2 matrices X € R¥*%2,
m

and

¢ (1 = 2pg) I1X Iy < Z |KTXr|—— > 1¢f x| forallrank < 2 matrices X € R*%.

l€ I in te,ﬂom
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Throughout the remainder of the proof, suppose we are in this event. Define the two univariate functions

2a) : — (1 +a)Mt] w3 r,

— (1 +a)Mt] wx'r,

gla) = %Z
i=1

By construction, if a* minimizes g(-) then (1 4+ a*)M minimizes G. Thus, to prove the claim we need
only show that any minimizer a* of g satisfies —§ < a* < 6.
To that end, first note that g(0) and g(0) are close:

- MG Tt To =T T - T
[3(0) — g(0)] < Zzwi W — 0 w3 | < esM ”wx —w x| (2)

Therefore, setting i3 = ¢ (1 — 2py,;), we obtain

g@) = —Z (y, — (1 + M w3,

swx o — (1 + a)MZwa r; Z —(1+ a)MEwa r;

i€f in zefom

1 P, — PO
> ; v‘w‘cTri —(1+ a)MEwaTr — Z swx o —(1+ a)MEwaTr
mn ies in i€ed out
1
+ — —¢fwx"
LS e
i€ out

> g(0) + p5ll(1 + @MwE" —wx' ||y

> 30) + w3l (1 + OMAET — 35 | — esM 77T — 5]

F

> 30) + slalM — (1M + esM) 75T — 5]

where the second inequality follows from Theorem 4.6, the third inequality follows from Equation (C.2)
and the fourth follows from the reverse triangle inequality. Thus, any minimizer a* of g must satisfy

c T - =
la*| < (1 + M_S) ‘wa —w,x]
3

as desired. Finally, suppose § < 1. Then we deduce M= (1 +|a*)M > (1 — §)M > 0. The proof is
complete.

=4,
F
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D. Auxiliary lemmas

D.1  Technical results

This subsection presents technical lemmas we employed in our proofs. The first result we need is a
special case of the celebrated Davis—Kahan sin§ theorem (see [23]). For any two unit vectors u,v; €
S9!, define 6 (uy,v,) = cos™!(|(uy, v;)).

LemMMA D.1 Consider symmetric matrices X, A,Z € R™" where Z = X + A. Define § to be the
eigengap A;(X) — A, (X) and denote the first eigenvectors of X, Z by u,, v, respectively. Then
1Al

5

I .
—min {[lu— v, llu+ vy} <1 = (u,v)?=[sinf,v)| <

/2

Additionally, we need the following fact about e-nets over low-rank matrices, which we employ
frequently to prove uniform concentration inequalities.

LemMMA D.2 (Lemma 3.1 in [17]). Let S, := {X € R4 xd | rank(X) < 7, | X|lp = 1}. There exists an
g-net .4 (with respect to || - ||z) of S, obeying

9 (di+dy+Dr
[A < (g) .

D.2 Concentration inequalities

In this subsection, we first provide a few well-known concentration inequalities about sub-Gaussian and
sub-exponential random variables.

THEOREM D.1 (Hoeffding’s inequality—Theorem 2.2.2 in [60]). Let X;,...,X, be independent
symmetric Bernoulli random variables. Then for any # > 0, we have

N 2
t
]P)( E Xi 2 t) < exp (—5\,) .
i=1

THeOREM D.2 (Bernstein’s inequality—Theorem 2.8.4 in [60]). Let X, ..., X, be independent mean-
zero random variables, such that for |X;| < K for all i. Then for any # > 0, we have

t2

N
2.
i=1
here o2 = Zi E[Xl.z] is the variance of the sum.

THEOREM D.3 (Sub-gaussian concentration—Theorem 2.6.3 in [60]). Let X, ..., X, be independent,
mean zero, sub-Gaussian random variables and (a, ..., ay) € RY . Then, for every t > 0, we have

2

ct
P >t)<2exp|l — ),
(» ) ( K2||a||§)

N
D aiX;
i=1

where K = max; || X;]|,,.-
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THEOREM D.4 (Sub-exponential concentration—Theorem 2.8.2 in [60]). Let Z|, ..., Z, be an indepen-
dent, mean zero, sub-exponential random variables and let ¢ € R be a fixed vector. Then, for any

t > 0, we have that
P aZ < —t)<exp| —cminy —,—— s
(2; o ) ( {Kﬂmﬁ Kmmw])

where K := max; ||Zi||w , and ¢ > 0 is a numerical constant.

THEOREM D.5 (Corollary 2.8.3 in [60]). Let X|,...,X,, be independent, mean zero, sub-exponential
random variables. Then, for every ¢ > 0, we have

(Pt
d>t)<2exp|—cmmin|{ —, =) |,
K2’ K

where ¢ > 0 is a numerical constant and K := max; I1Xilly, -

THEOREM D.6 (Theorem 5.6 in [10]). Let X = (X;,...,X,,) be a vector of n independent standard
normal random variables. Let f : R” — R denote an Lf-Lipschitz function. Then, for every t > 0, we
have

2
t
PF&X) —EfX) =20 <expl —=5 )
2Lf
The following concentration inequalities deal with quantiles of distributions:

LEmma D3 LetX,,...,X,, be an i.i.d. sample with distribution 2, choose Q, to be the ¢ population

quantile of the distribution &, that is ¢ = P (Xl < Qq), and let p € (0, 1) be any probability with p < g.
Then,

m(q — p)* )
2q-p/3+29(1-q))"
) denotes the p-th quantile of the sample {X;}.

P (quane, (11 > 0,) < exp (

m

where quant, ({X;}i2,

Proof. 1Tt is easy to see that the following holds, quantp({Xi};") > Q, if, and only if, % > X,
Qq} < p. Notice that 1{X; < Qq} ~ B(g) are i.i.d. Bernoulli random variables and thus Var(1{X;
0, = q(1 — g). Then, the result follows by applying Bernstein’s inequality (Theorem D.4)

LY1X, <0 —q

LEMMA D4 Let a,b be ii.d. sub-Gaussian random variables. For any Q@ > 0 such that g :=
P (Jab] < Q) > 1/2, consider the random variable ¢ defined as a* conditioned on the event |ab| < O,
namely for all ¢

SI/AW/AN

O

P(czgt) =P(a2<r| |ab| gQ).
Then, c2 is a sub-exponential random variable, in other words for all # > 0, we have that
P (02 > t) < 2exp(—1/2K),

where K is the minimum scalar such that P (a2 > t) < 2exp(—t/K).
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Proof. Let us consider two cases. Suppose first # < 2K log 2. Then we have that 1 < 2 exp(—t/2K) and
therefore the stated inequality is trivial.
Suppose now ¢t > 2K log 2. Then we have that

t
IK > log2 <= exp(t/K —t/2K) > 2 = exp(—t/2K) > 2exp(—t/K).

With this, we can bound the probability
1 1 2
P (c2 > t) __p (a21{|ab| <O} > t) < -P (a2 > t) < Zexp(—t/K)
q q q
< 4exp(—t/K) < 2exp(—t/2K),

as claimed. O

The following theorem from [59] is especially useful in bounding the operator norm of random
matrices:

THEOREM D.7 (Operator norm of random matrices). Consider an m x n matrix A whose rows A; are
independent, sub-Gaussian, isotropic random vectors in R". Then, for every ¢ > 0, one has

1 T n
Pl |—4A" —1, <C/—+t)=1—-2exp(—cmip),
m m

where C depends only on K := max; ”Ai”wz'

op

Proof. The theorem is a direct corollary of [59, Theorem 5.39]. Specifically, the concavity of the square
root gives us /a 4+ v/b < V24/a + b, implying that

t t
c/l+ Lo/t L.
m m m m

Additionally, [59, Theorem 5.39] gives us that

1 | n 4 2
P(HI’;AAT_In <C E-Fﬁ)}l_zexp(_a)-

Setting ¥/ = C+/mt and a bit of relabeling, along with the square root inequality, gives us the desired
inequality. (]

op

Let us record the following elementary consequence.

CoroLrLary D.1 Letay,...,a, € R? be independent, sub-Gaussian, isotropic random vectors in R”,
and let # C {1, ...,m} be an arbitrary set. Then, for every ¢ > 0, one has

1 d
P H_Z(aiaj_ld) <C—+t|>1—2exp(—cmit),
m m
icd op

where C depends only on K := max; ||Al|| "
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Proof. Consider the matrix A € RI“1%4 whose rows are the vectors a; for i € .#. Then we deduce

1 . 711 . AN
P Z(aiai )| = “m 17 Z aa; =1l = o WAA —1y
ies op i€ op

op

Appealing to Theorem D.7, we therefore deduce for any y > 0 the estimate

1 T 71 | d dJs|  yls?
;;(a,ﬂi 1| < e W‘FV <C " + T
[ASH

op

d
holds with probablhty 1- 2 exp( c|-#]y). Now for any ¢t > 0, choose y such that, IJI 2 =44y

namely y = Ifl [ 1- ) + 1]. Noting

m [d |7 |
=m. — | — 1__ + >m,
1y |ﬂ|[ ( m) ti| !

completes the proof. g

5—2ptail
8(1=prail)
of |ab|, where a, b are i.i.d. standard normal. Furthermore, we defined w,; = E[a? | ab| < Q]

Recall that we defined the functions g (Pgi) = and Oy, (gg,;1) given as the gp,;-quantile

LeEmmA D.5 The function w : [0,1] — R, given by

Pea > Eld® | |ab| < Qg

is non-decreasing. In particular, there exist numerical constants ¢;, ¢, > 0 such that for any 0 < pgy <
0.1, we have

€] S Wpyiy S €5
where the tightest constants are given by ¢; = @ (0) > 0.5 and ¢, = w(0.1) < 0.56.

Proof. The bulk of this result is contained in the following claim.
Let 0 < Q < Q' be arbitrary numbers, then

P@®>1]labl < Q) <P@>1labl<Q) VieR

We defer the proof of the claim and show how it implies the lemma. Observe that the functions pg,; —
gyt a0d Gp, > Oy are non-decreasing, thus it suffices to show that the function Q > E[a? | |ab| <
Q] is non-decreasing. Let 0 < O < Q'

o0 o0
E[ | |ab] < Q] = / P > 1 | |abl < Q)df < / P > 1 | |abl < Q)di = E[d | |ab| < Q']
0 0

where the inequality follows from the claim and the equalities follow from the identity E[X] =
fooo P(X > r)dt for non-negative random variables X. Hence, w is a non-decreasing function.

The above implies that for any pg;; € [0,0.1], we have w(0) < wg; < @(0.1). Note that (0) is
positive since it is defined by a positive integrand on a set of non-negligible measure. The bounds on
w(0) and w(0.1) follow by a numerical computation. In particular, we obtain that with Q = 0.6 the
probability P(Jab| < Q) = 0.6679 > 2/3 = g;,;(0.1). Then computing numerically (with precision set
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to 32 digits), we obtain w(0.1) < E[a? | |ab| < Q] < 0.56. Similarly, we find that if we set Q = 0.5 we
get P(lab] < Q) < 0.5903 < 5/8 = g4,;;(0). Then evaluating we find w(0) > E[d? | |ab] < Q] > 0.5.

Proof of the claim. The statement of the claim is equivalent to having that for any € R, the function
h, : R, — R given by
P(@® < 1;]ab| < Q)

2 T hw < 0)

is non-increasing. Our goal is to show that 4, < 0. In order to prove this result, we proceed as follows.
Define

P o r0/x 5 )
2@ =3Pl <0 = [ [ ep(—t + 52 ay,
and
T, ViorQ/x 5,
1@ = 3@ <rlabl <@ = [ [T et 402 dya.
Observe h, = f,/g. Thus, it suffices to show f;g — f,¢’ < 0. Invoking Leibniz rule, we get

9 [Vt O/ 5
£ =L / / exp(— (2 +y%)/2) dy dx
90 Jo Jo

Viig o O/ ,
- / D7 exp(— (2 +3%)/2) dydx
o 90 Jo

Ji
_ /0 %exp<_(x2+gz/x2>/2)dx.

Repeating the same procedure, we get g'(Q) = OOO )1—6 exp(—(x? + 0?/x%)/2) dx. Some algebra reveals
we want to show

(5" fowCw + P (J57 e+ 0%x2)

(B 2 exp(=02 321 dvax) (5 7" (=02 4 32)/2) dvae).

§(n) =
It is enough to show that the function &£ () is monotonically increasing. Define
v 2 2,2 ol 2.2
£o0) = /O (-2 + 0D and () = /0 /O exp(— (2 +%)/2) dydr.
Thus, we have

I 1 2 I 1 o/ 2
) = 5=+ /D)2 and - Yp() = S /O exp(—(t +y%)/2)dy.
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Again, (1) = §y(1)/ ¥ (1), hence we need to show {’QWQ > ZQ'ﬁ/Q- After some algebra, this amounts to
proving

JiorQ/x
( / / exp(—(2 +37)/2) dy dx)
0 0

i o/t
2(/0 Lesp- @2 =G [ et 475/ dx)'

X
The inequality is true if in particular the same holds for the integrands, i.e.

Q/x 2 2 [N
[ enrmars Yoo (- (S - L) ) [T ewirian

t
Since x < /7, the previous inequality holds if
2
1 exp (— 2Q?)
X [ exp(—=y?/2)dy

is increasing. By taking derivatives and reordering terms, we see that this is equivalent to

X =

—x2 r9/nx
X
S / exp(—y*/2)dy + exp(—Q*/2x) > 0.
Ox Jo
Since exp(—y?/2) is decreasing, we have
Q- (O 0-xQ
/ exp(—y*/2)dy > = exp(—07/2¢%) > —exp(—0?/2:%)
qx 0 X
proving the claim. d
Thus, the proof is complete. g
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