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Abstract1

The task of recovering a low-rank matrix from its noisy linear measurements plays2

a central role in computational science. Smooth formulations of the problem often3

exhibit an undesirable phenomenon: the condition number, classically defined, scales4

poorly with the dimension of the ambient space. In contrast, we here show that in5

a variety of concrete circumstances, nonsmooth penalty formulations do not suffer6

from the same type of ill-conditioning. Consequently, standard algorithms for nons- 17

mooth optimization, such as subgradient and prox-linear methods, converge at a rapid8

dimension-independent rate when initialized within constant relative error of the solu-9

tion. Moreover, nonsmooth formulations are naturally robust against outliers. Our 210

framework subsumes such important computational tasks as phase retrieval, blind11

deconvolution, quadratic sensing, matrix completion, and robust PCA. Numerical12

experiments on these problems illustrate the benefits of the proposed approach.13

Keywords Restricted isometry property ·Matrix sensing ·Matrix completion ·14

Low-rank matrix recovery · Subgradient · Prox-linear algorithms15

Mathematics Subject Classification 65K10 · 90C0616

1 Introduction17

Recovering a low-rank matrix from noisy linear measurements has become an increas-18

ingly central task in data science. Important and well-studied examples include phase19

retrieval [12,61,76], blind deconvolution [1,56,60,78], matrix completion [16,29],20
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covariance matrix estimation [24,58], and robust principal component analysis [15,18].21

Optimization-based approaches for low-rank matrix recovery naturally lead to non-22

convex formulations, which are NP hard in general. To overcome this issue, in the last23

two decades researchers have developed convex relaxations that succeed with high24

probability under appropriate statistical assumptions. Convex techniques, however,25

have a well-documented limitation: the parameter space describing the relaxations is26

usually much larger than that of the target problem. Consequently, standard algorithms27

applied on convex relaxations may not scale well to the large problems. Consequently,28

there has been a renewed interest in directly optimizing nonconvex formulations with29

iterative methods within the original parameter space of the problem. Aside from a few30

notable exceptions on specific problems [5,42,43], most algorithms of this type proceed31

in two-stages. The first stage—initialization—yields a rough estimate of an optimal32

solution, often using spectral techniques. The second stage—local refinement—uses a33

local search algorithm that rapidly converges to an optimal solution, when initialized34

at the output of the initialization stage.35

This work focuses on developing provable low-rank matrix recovery algorithms36

based on nonconvex problem formulations. We focus primarily on local refinement37

and describe a set of unifying sufficient conditions leading to rapid local convergence38

of iterative methods. In contrast to the current literature on the topic, which typi-39

cally relies on smooth problem formulations and gradient-based methods, our primary40

focus is on nonsmooth formulations that exhibit sharp growth away from the solution41

set. Such formulations are well-known in the nonlinear programming community to42

be amenable to rapidly convergent local-search algorithms. Along the way, we will43

observe an apparent benefit of nonsmooth formulations over their smooth counterparts.44

All nonsmooth formulations analyzed in this paper are “well-conditioned,” resulting in45

fast “out-of-the-box” convergence guarantees. In contrast, standard smooth formula-46

tions for the same recovery tasks can be poorly conditioned, in the sense that classical47

convergence guarantees of nonlinear programming are overly pessimistic. Overcom-48

ing the poor conditioning typically requires nuanced problem and algorithmic specific49

analysis (e.g., [21,23,61,65,78]), which nonsmooth formulations manage to avoid for50

the problems considered here.51

Setting the stage, consider a rank r matrix M� ∈ Rd1×d2 and a linear map52

A : Rd1×d2 → Rm from the space of matrices to the space of measurements. The53

goal of low-rank matrix recovery is to recover M� from the image vector b = A(M�),54

possibly corrupted by noise. Typical nonconvex approaches proceed by choosing some55

penalty function h(·) with which to measure the residual A(M)−b for a trial solution56

M . Then, in the case that M� is symmetric and positive semidefinite, one may focus57

on the formulation58

min
X∈Rd×r

f (X) := h
(
A(X X�)− b

)
subject to X ∈ D, (1.1)59

or when M� is rectangular, one may instead use the formulation60

min
X∈Rd1×r , Y∈Rr×d2

f (X , Y ) := h (A(XY )− b) subject to (X , Y ) ∈ D. (1.2)61
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Here, D is a convex set that incorporates prior knowledge about M� and is often62

used to enforce favorable structure on the decision variables. The penalty h is chosen63

specifically to penalize measurement misfit and/or enforce structure on the residual64

errors.65

Algorithms and Conditioning for Smooth Formulations66

Most widely used penalties h(·) are smooth and convex. Indeed, the squared �2-norm67

h(z) = 1
2‖z‖22 is ubiquitous in this context. With such penalties, problems (1.1) and68

(1.2) are smooth and thus are amenable to gradient-based methods. The linear rate of69

convergence of gradient descent is governed by the “local condition number” of f .70

Indeed, if the estimate, μI � ∇2 f (X) � L I , holds for all X in a neighborhood of71

the solution set, then gradient descent converges to the solution set at the linear rate72

1−μ/L . It is known that for several widely studied problems including phase retrieval,73

blind deconvolution, and matrix completion, the ratio μ/L scales inversely with the74

problem dimension. Consequently, generic nonlinear programming guarantees yield75

efficiency estimates that are far too pessimistic. Instead, near-dimension independent76

guarantees can be obtained by arguing that ∇2 f is well-conditioned along the “rele-77

vant” directions or that∇2 f is well-conditioned within a restricted region of space that78

the iterates never escape (e.g., [61,65,78]). Techniques of this type have been elegantly79

and successfully used over the past few years to obtain algorithms with near-optimal80

sample complexity. One by-product of such techniques, however, is that the underly-81

ing arguments are finely tailored to each particular problem and algorithm at hand.82

We refer the reader to the recent surveys [22,28] for details.83

Algorithms and Conditioning for Nonsmooth Formulations84

The goal of our work is to justify the following principle:85

Statistical conditions for common recovery problems guarantee that (1.1) and86

(1.2) are well-conditioned when h is an appropriate nonsmooth convex penalty.87

To explain what we mean by “good conditioning,” let us treat (1.1) and (1.2) within88

the broader convex composite problem class:89

min
x∈X

f (x) := h(F(x)), (1.3)90

where F(·) is a smooth map on the space of matrices and X is a closed convex set.91

Indeed, in the symmetric and positive semidefinite case, we identify x with matrices92

X and define F(X) = A(X X�)−b, while in the asymmetric case, we identify x with93

pairs of matrices (X , Y ) and define F(X , Y ) = A(XY ) − b. Though compositional94

problems (1.3) have been well-studied in nonlinear programming [8,9,41], their com-95

putational promise in data science has only begun recently to emerge. For example, the96

papers [30,36,38] discuss stochastic and inexact algorithms on composite problems,97

while the papers [32,37], [19,33], and [57] investigate applications to phase retrieval,98

blind deconvolution, and matrix sensing, respectively.99
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A number of algorithms are available for problems of the form (1.3), and hence for100

(1.1) and (1.2). Two most notable ones are the projected subgradient1 method [31,44]101

xt+1 = projX (xt − αtvt ) with vt ∈ ∂ f (xt ),102

and the prox-linear algorithm [8,35,54]103

xt+1 = argmin
x∈X

h
(

F(xt )+ ∇F(xt )(x − xt )
)
+ β

2
‖x − xt‖22.104

Notice that each iteration of the subgradient method is relatively cheap, requiring105

access only to the subgradients of f and the nearest-point projection onto X . The106

prox-linear method in contrast requires solving a strongly convex problem in each107

iteration. That being said, the prox-linear method has much stronger convergence108

guarantees than the subgradient method, as we will review shortly.109

The local convergence guarantees of both methods are straightforward to describe,110

and underlie what we mean by “good conditioning.” Define X ∗ := argmin
X

f , and for111

any x ∈ X define the convex model fx (y) = h(F(x) + ∇F(x)(y − x)). Suppose112

there exist constants ρ,μ > 0 satisfying the two properties:113

– (approximation) | f (y)− fx (y)| ≤ ρ
2 ‖y − x‖22 for all x, y ∈ X ,114

– (sharpness) f (x)− inf f ≥ μ · dist(x,X ∗) for all x ∈ X .115

The approximation and sharpness properties have intuitive meanings. The former says116

that the nonconvex function f (y) is well approximated by the convex model fx (y),117

with quality that degrades quadratically as y deviates from x . In particular, this property118

guarantees that the quadratically perturbed function x �→ f (x) + ρ
2 ‖x‖22 is convex119

on X . Yet another consequence of the approximation property is that the epigraph120

of f admits a supporting concave quadratic with amplitude ρ at each of its points.121

Sharpness, in turn, asserts that f must grow at least linearly as x moves away from the122

solution set. In other words, the function values should robustly distinguish between123

optimal and suboptimal solutions. In statistical contexts, one can interpret sharpness124

as strong identifiability of the statistical model. The three figures below illustrate the125

approximation and sharpness properties for idealized objectives in phase retrieval,126

blind deconvolution, and robust PCA problems.127

1 Here, the subdifferential is formally obtained through the chain rule ∂ f (x) = ∇F(x)∗∂h(F(x)), where
∂h(·) is the subdifferential in the sense of convex analysis.
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128

Approximation and sharpness, taken together, guarantee rapid convergence of129

numerical methods when initialized within the tube:130

T =
{

x ∈ X : dist(x,X ∗) ≤ μ

ρ

}
.131

For common low-rank recovery problems, T has an intuitive interpretation: it con-132

sists of those matrices that are within constant relative error of the solution. We note133

that standard spectral initialization techniques, in turn, can generate such matrices134

with nearly optimal sample complexity. We refer the reader to the survey [28], and135

references therein, for details.136

137

Guiding strategy The following algorithmic principle guides this work:138

When initialized at x0 ∈ T , the prox-linear algorithm converges quadratically139

to the solution set X ∗; the subgradient method, in turn, converges linearly with140

a rate governed by ratio μ
L ∈ (0, 1), where L is the Lipschitz constant of f on141

T .2142

In light of this observation, our strategy can be succinctly summarized as follows. We143

will show that for a variety of low-rank recovery problems, the parameters μ, L, ρ > 0144

(or variants) are dimension independent under standard statistical conditions. Conse-145

quently, the formulations (1.1) and (1.2) are “well-conditioned,” and subgradient and146

prox-linear methods converge rapidly when initialized within constant relative error147

of the optimal solution.148

2 Both the parameters αt and β must be properly chosen for these guarantees to take hold.
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Approximation and Sharpness Via the Restricted Isometry Property149

We begin verifying our thesis by showing that the composite problems, (1.1) and150

(1.2), are well-conditioned under the following restricted isometry property (RIP):151

there exists a norm |||·||| and numerical constants κ1, κ2 > 0 so that152

κ1‖W‖F ≤ |||A(W )||| ≤ κ2‖W‖F , (1.4)153

for all matrices W ∈ Rd1×d2 of rank at most 2r . We argue that under RIP,154

the nonsmooth norm h = |||·||| is a natural penalty function to use.155

Indeed, as we will show, the composite loss h(F(x)) in the symmetric setting admits156

constants μ, ρ, L that depend only on the RIP parameters and the extremal singular157

values of M�:158

μ = 0.9κ1
√

σr (M�), ρ = κ2, L = 0.9κ1
√

σr (M�)+ 2κ2
√

σ1(M�).159

In particular, the initialization ratio scales as μ
ρ
� κ1

κ2

√
σr (M�) and the condition160

number scales as L
μ
� 1 + κ2

κ1

√
σ1(M�)

σr (M�)
. Consequently, the rapid local convergence161

guarantees previously described immediately take-hold. The asymmetric setting is162

slightly more nuanced since the objective function is sharp only on bounded sets.163

Nonetheless, it can be analyzed in a similar way leading to analogous rapid conver-164

gence guarantees. Incidentally, we show that the prox-linear method converges rapidly165

without any modification; this is in contrast to smooth methods, which typically require166

incorporating an auxiliary regularization term into the objective (e.g., [78]). We note167

that similar results in the symmetric setting were independently obtained in the com-168

plimentary work [57], albeit with a looser estimate of L; the two treatments of the169

asymmetric setting are distinct, however.3170

After establishing basic properties of the composite loss, we turn our attention to171

verifying RIP in several concrete scenarios. We note that the seminal works [13,71]172

showed that if A(·) arises from a Gaussian ensemble, then in the regime m � r(d1+d2)173

RIP holds with high probability for the scaled �2 norm |||z||| = m−1/2‖z‖2. More174

generally when A is highly structured, RIP may be most naturally measured in a non-175

Euclidean norm. For example, RIP with respect to the scaled �1 norm |||z||| = m−1‖z‖1176

holds for phase retrieval [37,39], blind deconvolution [19], and quadratic sensing177

[24]; in contrast, RIP relative to the scaled �2 norm fails for all three problems. In178

particular, specializing our results to the aforementioned recovery tasks yields solution179

methodologies with best known sample and computational complexity guarantees.180

Notice that while one may “smooth-out” the �2 norm by squaring it, we argue that181

it may be more natural to optimize the �1 norm directly as a nonsmooth penalty.182

Moreover, we show that �1 penalization enables exact recovery even if a constant183

fraction of measurements is corrupted by outliers.184

3 The authors of [57] provide a bound on L that scales with the Frobenius norm
√‖M�‖F . We instead

derive a sharper bound that scales as
√‖M�‖op. As a by-product, the linear rate of convergence for the

subgradient method scales only with the condition number σ1(M�)/σr (M�) instead of ‖M�‖F /σr (M�).
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The concurrent work [57], which focuses on the �1/�2-restricted isometry and185

the subgradient method for low-rank recovery problems, obtained guarantees similar186

to some of our results in Sects. 4 and 5. In contrast to [57], we: (i) provide a uni-187

fied treatment of the symmetric and the non-symmetric setting, for which previously188

very different approaches with additional regularization terms had been proposed; (ii)189

obtain better bounds on the norm of subgradients; (iii) also analyze the prox-linear190

algorithm which has a better iteration complexity than the subgradient method; (iv)191

lastly, provide analysis that covers a variety of application scenarios with and without192

the restricted isometry property, including the highly relevant benchmark problems of193

matrix completion and robust PCA discussed in the next section that were not covered194

by the previous analysis.195

Beyond RIP: Matrix Completion and Robust PCA196

The RIP assumption provides a nice vantage point for analyzing the problem param-197

eters μ, ρ, L > 0. There are, however, a number of important problems, which do198

not satisfy RIP. Nonetheless, the general paradigm based on the interplay of sharpness199

and approximation is still powerful. We consider two such settings, matrix completion200

and robust principal component analysis (PCA), leveraging some intermediate results201

from [27].202

The goal of the matrix completion problem [16] is to recover a low-rank matrix M�203

from its partially observed entries. We focus on the formulation204

argmin
X∈X

f (X) = ‖ΠΩ(X X�)−ΠΩ(M�)‖2,205

where ΠΩ is the projection onto the index set of observed entries Ω and206

X =
{

X ∈ R
d×r : ‖X‖2,∞ ≤

√
νr‖M�‖op

d

}
207

is the set of incoherent matrices. To analyze the conditioning of this formulation, we208

assume that the indices in Ω are chosen as i.i.d. Bernoulli with parameter p ∈ (0, 1)209

and that all nonzero singular values of M� are equal to one. Using results of [27], we210

quickly deduce sharpness with high probability. The error in approximation, however,211

takes the following nonstandard form. In the regime p ≥ c
ε2 ( ν2r2

d + log d
d ) for some212

constants c > 0 and ε ∈ (0, 1), the estimate holds with high probability:213

| f (Y )− fX (Y )| ≤
√

1+ ε‖Y − X‖22 +
√

ε‖X − Y‖F for all X , Y ∈ X .214

The following modification of the prox-linear method therefore arises naturally:215

Xk+1 = argmin
X∈X

fXk (X)+
√

1+ ε‖X − Xk‖2F +
√

ε‖X − Xk‖F .216
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We show that subgradient methods and the prox-linear method, thus modified, both217

converge at a dimension-independent linear rate when initialized near the solution.218

Namely, as long as ε and dist(X0,X
∗) are below some constant thresholds, both219

the subgradient and the modified prox-linear methods converge linearly with high220

probability:221

dist(Xk,X
∗) �

{(
1− c

νr

)k/2 subgradient

2−k prox-linear
.222

Here, c > 0 is a numerical constant. Notice that the prox-linear method enjoys a much223

faster rate of convergence that is independent of any unknown constants or problem224

parameters—an observation fully supported by our numerical experiments.225

As the final example, we consider the problem of robust PCA [15,18], which aims226

to decompose a given matrix W into a sum of a low-rank and a sparse matrix. We227

consider two different problem formulations:228

min
(X ,S)∈D1

F((X , S)) = ‖X X� + S −W‖F , (1.5)229

and230

min
X∈D2

f (X) = ‖X X� −W‖1, (1.6)231

where D1 and D2 are appropriately defined convex regions. Under standard inco-232

herence assumptions, we show that the formulation (1.5) is well-conditioned, and233

therefore subgradient and prox-linear methods are applicable. Still, formulation (1.5)234

has a major drawback in that one must know properties of the optimal sparse matrix235

S� in order to define the constraint set D1, in order to ensure good conditioning.236

Consequently, we analyze formulation (1.6) as a more practical alternative.237

The analysis of (1.6) is more challenging than that of (1.5). Indeed, it appears that238

we must replace the Frobenius norm ‖X‖F in the approximation/sharpness condi-239

tions with the sum of the row norms ‖X‖2,1. With this setup, we verify the convex240

approximation property in general:241

| f (Y )− fX (Y )| ≤ ‖Y − X‖22,1 for all X , Y242

and sharpness only when r = 1. We conjecture, however, that an analogous sharpness243

bound holds for all r . It is easy to see that the quadratic convergence guarantees for the244

prox-linear method do not rely on the Euclidean nature of the norm, and the algorithm245

becomes applicable. To the best of our knowledge, it is not yet known how to adapt246

linearly convergent subgradient methods to the non-Euclidean setting.247

Robust Recovery with Sparse Outliers and Dense Noise248

The aforementioned guarantees lead to exact recovery of M� under noiseless or249

sparsely corrupted measurements b. A more realistic noise model allows for further250
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corruption by a dense noise vector e of small norm. Exact recovery is no longer pos-251

sible with such errors. Instead, we should only expect to recover M� up to a tolerance252

proportional to the size of e. Indeed, we show that appropriately modified subgradient253

and prox-linear algorithms converge linearly and quadratically, respectively, up to the254

tolerance δ = O(|||e|||/μ) for an appropriate norm |||·|||. Finally, we discuss in detail255

the case of recovering a low-rank PSD matrix M� from the corrupted measurements256

A(M�)+Δ+e, where Δ represents sparse outliers and e represents small dense noise.257

To the best of our knowledge, theoretical guarantees for this error model have not been258

previously established in the nonconvex low-rank recovery literature. Surprisingly, we259

show it is possible to recover the matrix M� up to a tolerance independent of the norm260

or location of the outliers Δ.261

Numerical Experiments262

We conclude with an experimental evaluation of our theoretical findings on quadratic263

and bilinear matrix sensing, matrix completion, and robust PCA problems. In the first264

set of experiments, we test the robustness of the proposed methods against varying265

combinations of rank/corruption level by reporting the empirical recovery rate across266

independent runs of synthetic problem instances. All the aforementioned model prob-267

lems exhibit sharp phase transitions, yet our methods succeed for more than moderate268

levels of corruption (or unobserved entries in the case of matrix completion). For269

example, in the case of matrix sensing, we can corrupt almost half of the measure-270

ments Ai (M) and still retain perfect recovery rates. Interestingly, our experimental271

findings indicate that the prox-linear method can tolerate slightly higher levels of272

corruption compared to the subgradient method, making it the method of choice for273

small-to-moderate dimensions.274

We then demonstrate that the convergence rate analysis is fully supported by empiri-275

cal evidence. In particular, we test the subgradient and prox-linear methods for different276

rank/corruption configurations. In the case of quadratic and bilinear sensing and robust277

PCA, we observe that the subgradient method converges linearly and the prox-linear278

method converges quadratically, as expected. In particular, our numerical experiments279

appear to support our sharpness conjecture for the robust PCA problem. In the case280

of matrix completion, both algorithms converge linearly. The prox-linear method in281

particular, converges extremely quickly, reaching high accuracy solutions in under 25282

iterations for reasonable values of p.283

In the noiseless setting, we compare against gradient descent with constant step-284

size on smooth formulations of each problem (except for robust PCA). We notice that285

the Polyak subgradient method outperforms gradient descent in all cases. That being286

said, one can heuristically equip gradient descent with the Polyak step-size as well.287

To the best of our knowledge, the gradient method with Polyak step-size has not been288

investigated on smooth problem formulations we consider here. Experimentally, we289

see that the Polyak (sub)gradient methods on smooth and nonsmooth formulations290

perform comparably in the noiseless setting.291

123

Journal: 10208 Article No.: 9490 TYPESET DISK LE CP Disp.:2020/12/22 Pages: 89 Layout: Small-Ex

A
u

th
o

r
 P

r
o

o
f



un
co

rr
ec

te
d

pr
oo

f

Foundations of Computational Mathematics

Outline of the Paper292

The outline of the paper is as follows. Section 2 records some basic notation we will293

use. Section 3 informally discusses the sharpness and approximation properties, and294

their impact on convergence of the subgradient and prox-linear methods. Section 4295

analyzes the parameters μ, ρ, L under RIP. Section 5 rigorously discusses conver-296

gence guarantees of numerical methods under regularity conditions. Section 6 reviews297

examples of problems satisfying RIP and deduces convergence guarantees for sub-298

gradient and prox-linear algorithms. Sections 7 and 8 discuss the matrix completion299

and robust PCA problems, respectively. Section 9 discusses robust recovery up to a300

noise tolerance. The final Sect. 10 illustrates the developed theory and algorithms with301

numerical experiments on quadratic/bi-linear sensing, matrix completion, and robust302

PCA problems.303

2 Preliminaries304

In this section, we summarize the basic notation we will use throughout the paper.305

Henceforth, the symbol E will denote a Euclidean space with inner product 〈·, ·〉 and306

the induced norm ‖x‖2 =
√〈x, x〉. The closed unit ball in E will be denoted by B,307

while a closed ball of radius ε > 0 around a point x will be written as Bε(x). For any308

point x ∈ E and a set Q ⊂ E, the distance and the nearest-point projection in �2-norm309

are defined by310

dist(x; Q) = inf
y∈Q
‖x − y‖2 and projQ(x) = argmin

y∈Q
‖x − y‖2,311

respectively. For any pair of functions f and g on E, the notation f � g will mean312

that there exists a numerical constant C such that f (x) ≤ Cg(x) for all x ∈ E. Given313

a linear map between Euclidean spaces, A : E→ Y, the adjoint map will be written as314

A∗ : Y→ E. We will use Id for the d-dimensional identity matrix and 0 for the zero315

matrix with variable sizes. The symbol [m] will be shorthand for the set {1, . . . , m}.316

We will always endow the Euclidean space of vectors Rd with the usual dot-product317

〈x, y〉 = x�y and the induced �2-norm. More generally, the �p norm of a vector x318

will be denoted by ‖x‖p = (
∑

i |xi |p)1/p. Similarly, we will equip the space of rect-319

angular matrices Rd1×d2 with the trace product 〈X , Y 〉 = Tr(X�Y ) and the induced320

Frobenius norm ‖X‖F =
√

Tr(X�X). The operator norm of a matrix X ∈ Rd1×d2
321

will be written as ‖X‖op. The symbol σ(X) will denote the vector of singular val-322

ues of a matrix X in nonincreasing order. We also define the row-wise matrix norms323

‖X‖b,a = ‖(‖X1·‖b, ‖X2·‖b . . . , ‖Xd1·‖b)‖a . The symbols Sd , Sd+, O(d), and GL(d)324

will denote the sets of symmetric, positive semidefinite (PSD), orthogonal, and invert-325

ible matrices, respectively.326

Nonsmooth functions will play a central role in this work. Consequently, we will327

require some basic constructions of generalized differentiation, as described for exam-328

ple in the monographs [6,64,73]. Consider a function f : E→ R∪ {+∞} and a point329

x , with f (x) finite. The subdifferential of f at x , denoted by ∂ f (x), is the set of all330
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Foundations of Computational Mathematics

vectors ξ ∈ E satisfying331

f (y) ≥ f (x)+ 〈ξ, y − x〉 + o(‖y − x‖2) as y → x . (2.1)332

Here, o(r) denotes any function satisfying o(r)/r → 0 as r → 0. Thus, a vec-333

tor ξ lies in the subdifferential ∂ f (x) precisely when the linear function y �→334

f (x) + 〈ξ, y − x〉 lower bounds f up to first-order around x . Standard results show335

that for a convex function f the subdifferential ∂ f (x) reduces to the subdifferential336

in the sense of convex analysis, while for a differentiable function it consists only337

of the gradient: ∂ f (x) = {∇ f (x)}. For any closed convex functions h : Y → R338

and g : E → R ∪ {+∞} and C1-smooth map F : E → Y, the chain rule holds339

[73, Theorem 10.6]:340

∂(h ◦ F + g)(x) = ∇F(x)∗∂h(F(x))+ ∂g(x).341

We say that a point x is stationary for f whenever the inclusion 0 ∈ ∂ f (x)342

holds. Equivalently, stationary points are precisely those that satisfy first-order nec-343

essary conditions for minimality: the directional derivative is nonnegative in every344

direction.345

We say a that a random vector X in Rd isη-sub-Gaussian whenever E exp
( 〈u,X〉2

η2

)
≤346

2 for all unit vectors u ∈ Rd . The sub-Gaussian norm of a real-valued random variable347

X is defined to be ‖X‖ψ2 = inf{t > 0 : E exp
(

X2

t2

)
≤ 2}, while the sub-exponential348

norm is defined by ‖X‖ψ1 = inf{t > 0 : E exp
( |X |

t

)
≤ 2}.349

3 Regularity Assumptions and Algorithms (Informal)350

As outlined in Sect. 1, we consider the low-rank matrix recovery problem within the351

framework of compositional optimization:352

min
x∈X

f (x) := h(F(x)), (3.1)353

where X ⊂ E is a closed convex set, h : Y → R is a finite convex function and354

F : E→ Y is a C1-smooth map. We depart from previous work on low-rank matrix355

recovery by allowing h to be nonsmooth. We primary focus on those algorithms356

for (3.1) that converge rapidly (linearly or faster) when initialized sufficiently close to357

the solution set.358

Such rapid convergence guarantees rely on some regularity of the optimization prob-359

lem. In the compositional setting, regularity assumptions take the following appealing360

form.361

Assumption A Suppose that the following properties hold for the composite optimiza-362

tion problem (3.1) for some real numbers μ, ρ, L > 0.363

123

Journal: 10208 Article No.: 9490 TYPESET DISK LE CP Disp.:2020/12/22 Pages: 89 Layout: Small-Ex

A
u

th
o

r
 P

r
o

o
f



un
co

rr
ec

te
d

pr
oo

f

Foundations of Computational Mathematics

1. (Approximation accuracy) The models fx (y) := h(F(x)+∇F(x)(y−x)) satisfy364

the estimate365

| f (y)− fx (y)| ≤ ρ

2
‖y − x‖22 ∀x, y ∈ X .366

2. (Sharpness) The set of minimizers X ∗ := argmin
x∈X

f (x) is nonempty and we have367

f (x)− inf
X

f ≥ μ · dist
(
x,X ∗

) ∀x ∈ X .368

3. (Subgradient bound) The bound, supζ∈∂ f (x) ‖ζ‖2 ≤ L, holds for any x in the369

tube370

T :=
{

x ∈ X : dist(x,X ) ≤ μ

ρ

}
.371

Remark 3.1 While the regularity conditions in Assumption A underly all of our results,372

small variations of these properties appear throughout the paper. For example, sharp-373

ness sometimes holds in different norms and sometimes it only holds in a neighborhood374

around solutions. These small variations necessitate slightly different algorithmic con-375

vergence proofs (which we include in the appendix). For clarity, we remark at the start376

of each application section the norm in which sharpness holds and the convergence377

theorem used to recover the ground truth.378

As pointed out in the introduction, these three properties are quite intuitive: The379

approximation accuracy guarantees that the objective function f is well approximated380

by the convex model fx , up to a quadratic error relative to the basepoint x . Sharpness381

stipulates that the objective function should grow at least linearly as one moves away382

from the solution set. The subgradient bound, in turn, asserts that the subgradients of383

f are bounded in norm by L on the tube T . In particular, this property is implied by384

Lipschitz continuity on T .385

Lemma 3.2 (Subgradient bound [73, Theorem 9.13]) Suppose a function f : E→ R386

is L-Lipschitz on an open set U ⊂ E. Then, the estimate supζ∈∂ f (x) ‖ζ‖2 ≤ L holds387

for all x ∈ U.388

The definition of the tube T might look unintuitive at first. Some thought, how-389

ever, shows that it arises naturally since it provably contains no extraneous stationary390

points of the problem. In particular, T will serve as a basin of attraction of numerical391

methods; see the forthcoming Sect. 5 for details. The following general principle has392

recently emerged [19,31,32,37]. Under Assumption A, basic numerical methods con-393

verge rapidly when initialized within the tube T . Let us consider three such procedures394

and briefly describe their convergence properties. Detailed convergence guarantees are395

deferred to Sect. 5.396
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Foundations of Computational Mathematics

Algorithm 1: Polyak Subgradient Method

Data: x0 ∈ Rd

Step k: (k ≥ 0)
Choose ζk ∈ ∂ f (xk). If ζk = 0, then exit algorithm.

Set xk+1 = projX

(
xk −

f (xk)−minX f

‖ζk‖22
ζk

)
.

397

Algorithm 2: Subgradient method with geometrically decreasing stepsize

Data: Real λ > 0 and q ∈ (0, 1).
Step k: (k ≥ 0)

Choose ζk ∈ ∂ f (xk). If ζk = 0, then exit algorithm.
Set stepsize αk = λ · qk .

Update iterate xk+1 = projX
(

xk − αk
ζk
‖ζk‖2

)
.

398

Algorithm 3: Prox-linear algorithm

Data: Initial point x0 ∈ Rd , proximal parameter β > 0.
Step k: (k ≥ 0)

Set xk+1 ← argmin
x∈X

{
h (F(xk)+∇F(xk)(x − xk))+

β

2
‖x − xk‖22

}
.

399

Algorithm 1 is the so-called Polyak subgradient method. In each iteration k, the400

method travels in the negative direction of a subgradient ζk ∈ ∂ f (xk), followed by a401

nearest-point projection onto X . The step-length is governed by the current functional402

gap f (xk)−minX f . In particular, one must have the value minX f explicitly available403

to implement the procedure. This value is sometimes known; case in point, the minimal404

value of the penalty formulations (1.1) and (1.2) for low-rank recovery is zero when the405

linear measurements are exact. When the minimal value minX f is not known, one can406

instead use Algorithm 2, which replaces the step-length ( f (xk)−minX f )/‖ζk‖2 with407

a preset geometrically decaying sequence. Notice that the per iteration cost of both408

subgradient methods is dominated by a single subgradient evaluation and a projection409

onto X . Under appropriate parameter settings, Assumption A guarantees that both410

methods converge at a linear rate governed by the ratio μ
L , when initialized within T .411

The prox-linear algorithm (Algorithm 2), in contrast, converges quadratically to the412

optimal solution, when initialized within T . The caveat is that each iteration of the413

prox-linear method requires solving a strongly convex subproblem. Note that for low-414

rank recovery problems (1.1) and (1.2), the size of the subproblems is proportional to415

the size of the factors and not the size of the matrices.416

In the subsequent sections, we show that Assumption A (or a close variant) holds417

with favorable parameters ρ,μ, L > 0 for common low-rank matrix recovery prob-418

lems.419
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4 Regularity Under RIP420

In this section, we consider the low-rank recovery problems (1.1) and (1.2), and show421

that restricted isometry properties of the map A(·) naturally yield well-conditioned422

compositional formulations.4 The arguments are short and elementary, and yet apply423

to such important problems as phase retrieval, blind deconvolution, and covariance424

matrix estimation.425

Setting the stage, consider a linear map A : Rd1×d2 → Rm , an arbitrary rank426

r matrix M� ∈ Rd1×d2 , and a vector b ∈ Rm modeling a corrupted estimate of the427

measurements A(M�). Recall that the goal of low-rank matrix recovery is to determine428

M� given A and b. By the term symmetric setting, we mean that M� is symmetric and429

positive semidefinite, whereas by asymmetric setting we mean that M� is an arbitrary430

rank r matrix. We will treat the two settings in parallel. In the symmetric setting, we431

use X� to denote any fixed d × r matrix for which the factorization M� = X� X��432

holds. Similarly, in the asymmetric case, X� and Y� denote any fixed d1× r and r ×d2433

matrices, respectively, satisfying M� = X�Y�.434

We are interested in the set of all possible factorization of M�. Consequently, we435

will often appeal to the following representations:436

{X ∈ Rd1×r : X X� = M�} = {X� R : R ∈ O(r)}, (4.1)437

{(X , Y ) ∈ Rd1×r × Rr×d2 : XY = M�} = {(X� A, A−1Y�) : A ∈ GL(r)}. (4.2)438

Throughout, we will let D∗(M�) refer to the set (4.1) in the symmetric case and to439

(4.2) in the asymmetric setting.440

Henceforth, fix an arbitrary norm |||·||| on Rm . The following property, widely used441

in the literature on low-rank recovery, will play a central role in this section.442

Condition A (Restricted Isometry Property (RIP)) There exist constants κ1, κ2 > 0443

such that for all matrices W ∈ Rd1×d2 of rank at most 2r the following bound holds:444

κ1‖W‖F ≤ |||A(W )||| ≤ κ2‖W‖F .445

Remark 4.1 We use the word “Assumption” for regularity conditions directly related446

to an optimization problem, e.g., Assumption A. We reserve the word “Condition” for447

conditions directly related to the measurements or our model, e.g., Condition A.448

Condition A is classical and is satisfied in various important problems with the449

rescaled �2-norm |||·||| = 1√
m
‖ ·‖2 and �1-norm |||·||| = 1

m ‖ ·‖1.5 In Sect. 6, we discuss450

a number of such examples including matrix sensing under (sub-)Gaussian design,451

phase retrieval, blind deconvolution, and quadratic/bilinear sensing. We summarize452

4 The guarantees we develop in the symmetric setting are similar to those in the recent preprint [57], albeit
we obtain a sharper bound on L; the two sets of results were obtained independently. The guarantees for
the asymmetric setting are different and are complementary to each other: we analyze the conditioning of
the basic problem formulation (1.2), while [57] introduces a regularization term ‖X�X − Y Y�‖F that
improves the basin of attraction for the subgradient method by a factor of the condition number of M�.
5 In the latter case, RIP is also called restricted uniform boundedness (RUB) [10].
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Table 1 Common problems satisfying �1/�2 RIP in Condition A

Problem Measurement A(M)i (κ1, κ2) Regime

(sub-)Gaussian 〈Pi , M〉 (c, C) m � rd
(1−2pfail)

2 ln(1+ 1
1−2pfail

)

Quadratic I p�i Mpi (c, C
√

r) m � r2d
(1−2pfail)

2 ln(1+
√

r
1−2pfail

)

Quadratic II p�i Mpi − p̃�i M p̃i (c, C) m � rd
(1−2pfail)

2 ln
(

1+ 1
1−2pfail

)
Bilinear p�i Mqi (c, C) m � rd

(1−2pfail)
2 ln
(

1+ 1
1−2pfail

)
The table summarizes the �1/�2 RIP for (sub-)Gaussian sensing, quadratic sensing (e.g., phase retrieval),
and bilinear sensing (e.g., blind deconvolution) under standard (sub-)Gaussian assumptions on the data
generating mechanism. In all cases, we set |||·||| = 1

m ‖ · ‖1 and assume for simplicity d1 = d2 = d. The
symbols c and C refer to numerical constants, pfail refers to the proportion of corrupted measurements, κ3
is a constant multiple of (1− 2pfail). See Sect. 6 for details

the RIP properties for these examples in Table 1 and refer the reader to Sect. 6 for the453

precise statements.454

In light of Condition A, it natural to take the norm |||·||| as the penalty h(·) in (1.1)455

and (1.2) . Then, the symmetric problem (1.1) becomes456

min
X∈Rd×r

f (X) := |||A(X X�)− b|||, (4.3)457

while the asymmetric formulation (1.2) becomes458

min
X∈Rd1×r , Y∈Rr×d2

f (X , Y ) := |||A(XY )− b|||. (4.4)459

Our immediate goal is to show that under Condition A, the problems (4.3) and460

(4.4) are well-conditioned in the sense of Assumption A. We note that the asymmetric461

setting is more nuanced that its symmetric counterpart because Assumption A can462

only be guaranteed to hold on bounded sets. Nonetheless, as we discuss in Sect. 5, a463

localized version of Assumption A suffices to guarantee rapid local convergence of464

subgradient and prox-linear methods. In particular, our analysis of the local sharpness465

in the asymmetric setting is new and illuminating; it shows that the regularization466

technique suggested in [57] is not needed at all for the prox-linear method. This con-467

clusion contrasts with known techniques in the smooth setting, where regularization468

is often used.469

4.1 Approximation and Lipschitz Continuity470

We begin with the following elementary proposition, which estimates the subgradient471

bound L and the approximation modulus ρ in the symmetric setting. In what follows,472

we will use the expressions473

fX (Z) = |||A(X X� + X(Z − X)� + (Z − X)X�)− b|||,474
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f(X ,Y )(X̂ , Ŷ ) = |||A(XY + X(Ŷ − Y )+ (X̂ − X)Y )− b|||.475

Proposition 4.2 (Approximation and Lipschitzness (symmetric)) Suppose Condi-476

tion A holds. Then, for all X , Z ∈ Rd×r the following estimates hold:477

| f (Z)− fX (Z)| ≤ κ2‖Z − X‖2F ,478

| f (X)− f (Z)| ≤ κ2‖X + Z‖op‖X − Z‖F .479

Thus, the first and last items of Assumption A hold with ρ = 2κ2 and480

L = κ2 sup
X ,Z∈T

‖X + Z‖op.481

Proof To see the first estimate, observe that482

| f (Z)− fX (Z)| =
∣∣∣ |||A(Z Z�)− b||| (4.5)483

484 − |||A(X X� + X(Z − X)� + (Z − X)X�)− b|||
∣∣∣ (4.6)485

≤ |||A(Z Z� − X X� − X(Z − X)� − (Z − X)X�)|||486

487 = |||A((Z − X)(Z − X)�
)||| (4.7)488

≤ κ2

∥∥∥(Z − X)(Z − X)�
∥∥∥

F
489

≤ κ2‖Z − X‖2F ,490

where (4.6) follows from the reverse triangle inequality and (4.7) uses Condition A.491

Next, for any X , Z ∈ X we successively compute:492

| f (X)− f (Z)| =
∣∣∣|||A(X X�)− b||| − |||A(Z Z�)− b|||

∣∣∣ (4.8)493

≤
∣∣∣∣∣∣A(X X� − Z Z�)

∣∣∣∣∣∣
494

495 ≤ κ2‖X X� − Z Z�‖F (4.9)496

= κ2

2
‖(X + Z)(X − Z)� + (X − Z)(X + Z)�‖F497

≤ κ2‖(X + Z)(X − Z)‖F498

≤ κ2‖X + Z‖op‖X − Z‖F ,499

where (4.8) follows from the reverse triangle inequality and (4.9) uses Condition A.500

The final conclusion of the lemma follows immediately from Lemma 3.2. The proof501

is complete. ��502

The estimates of L and ρ in the asymmetric setting are completely analogous; we503

record them in the following proposition.504
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Proposition 4.3 (Approximation and Lipschitzness (asymmetric)) Suppose Condi-505

tion A holds. Then, for all X , X̂ ∈ Rd1×r and Y , Ŷ ∈ Rr×d2 the following estimates506

hold:507

| f (X̂ , Ŷ )− f(X ,Y )(X̂ , Ŷ )| ≤ κ2

2
· ‖(X , Y )− (X̂ , Ŷ )‖2F ,508

| f (X , Y )− f (X̂ , Ŷ )| ≤ κ2 max{‖X+X̂‖op,‖Y+Ŷ‖op}√
2

· ‖(X , Y )− (X̂ , Ŷ )‖F .509

Thus, the first and last items of Assumption A hold with ρ = 2κ2 and510

L = sup
X ,Z∈T

κ2 max{‖X+X̂‖op,‖Y+Ŷ‖op}√
2

.511

Proof To see the first estimate, observe that512

| f (X̂ , Ŷ )− f(X ,Y )(X̂ , Ŷ )| =
∣∣∣ |||A(X̂ Ŷ )− b|||513

− |||A(XY + X(Ŷ − Y )+ (X̂ − X)Y )− b|||
∣∣∣514

≤ |||A(X̂ Ŷ − XY − X(Ŷ − Y )− (X̂ − X)Y )|||515

= |||A((X − X̂)(Y − Ŷ )
)|||516

≤ κ2
∥∥(X − X̂)(Y − Ŷ )

∥∥
F517

≤ κ2

2

(
‖X − X̂‖2F + ‖Y − Ŷ‖2F

)
,518

where the last estimate follows from Young’s inequality 2ab ≤ a2 + b2. Next, we519

successively compute:520

| f (X , Y )− f (X̂ , Ŷ )| ≤ |||A(XY − X̂ Ŷ )||| ≤ κ2‖XY − X̂ Ŷ‖F521

= κ2

2
‖(X + X̂)(Y − Ŷ )� + (X − X̂)(Y + Ŷ )�‖F522

≤ κ2 max{‖X+X̂‖op,‖Y+Ŷ‖op}
2 (‖Y − Ŷ‖F + ‖X − X̂‖F ).523

The result follows by noting that a + b ≤
√

2(a2 + b2) for all a, b ∈ R. ��524

4.2 Sharpness525

We next move on to estimates of the sharpness constant μ. We first deal with the526

noiseless setting b = A(M�) in Sect. 4.2.1, and then move on to the general case527

when the measurements are corrupted by outliers in Sect. 4.2.2.528
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4.2.1 Sharpness in the Noiseless Regime529

We begin with the symmetric setting in the noiseless case b = A(M�). By Condition A,530

we have the estimate531

f (X) = |||A(X X�)−b||| = |||A(X X�− X� X�� )||| ≥ κ1‖X X�− X� X�� ‖F . (4.10)532

It follows that the set of minimizers argmin
X∈Rd×r

f (X) coincides with the set of minimizers533

of the function X �→ ‖X X� − X� X�� ‖F , namely534

D∗(M�) := {X� R : R ∈ O(r)}.535

Thus, to argue sharpness of f , it suffices to estimate the sharpness constant of the536

function X �→ ‖X X� − X� X�� ‖F . Fortunately, this calculation was already done in537

[78, Lemma 5.4].538

Proposition 4.4 ([78, Lemma 5.4]) For any matrices X , Z ∈ Rd×r , we have the bound539

‖X X� − Z Z�‖F ≥
√

2(
√

2− 1)σr (Z) · min
R∈O(r)

‖X − Z R‖F .540

Consequently, if Condition A holds in the noiseless setting b = A(M�), then the bound541

holds:542

f (X) ≥ κ1

√
2(
√

2− 1)σr (M�) · dist(X ,D∗(M�)) for all X ∈ Rd×r .543

We next consider the asymmetric case. By exactly the same reasoning as before,544

the set of minimizers of f (X , Y ) coincides with the set of minimizers of the function545

(X , Y ) �→ ‖XY − X�Y�‖F , namely546

D∗(M�) := {(X� A, A−1Y�) : A ∈ GL(r)}.547

Thus, to argue sharpness of f , it suffices to estimate the sharpness constant of the548

function (X , Y ) �→ ‖XY − X�Y�‖F . Such a sharpness guarantee in the rank one case549

was recently shown in [19, Proposition 4.2].550

Proposition 4.5 ([19, Proposition 4.2]) Fix a rank 1 matrix M� ∈ Rd1×d2 and a con-551

stant ν ≥ 1. Then, for any x ∈ Rd1 and w ∈ Rd2 satisfying552

‖w‖2, ‖x‖2 ≤ ν
√

σ1(M�),553

the following estimate holds:554

‖xw� − M�‖F ≥
√

σ1(M�)

2
√

2(ν + 1)
· dist
(
(x, w),D∗(M�)

)
.555
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Notice that in contrast to the symmetric setting, the sharpness estimate is only valid556

on bounded sets. Indeed, this is unavoidable even in the setting d1 = d2 = 2. To see557

this, define M� = e2e�2 and for any α > 0 set x = αe1 and w = 1
α

e1. It is routine to558

compute559

‖xw� − M�‖F

dist((x, w),D∗(M�))
=
√

2

2+ α2 + 1
α2

.560

Therefore, letting α tend to zero (or infinity) the quotient tends to zero.561

The following corollary is a higher rank extension of Proposition 4.5.562

Theorem 4.6 (Sharpness (asymmetric and noiseless)) Fix a constant ν > 0 and define563

X� := U
√

Λ and Y� =
√

ΛV�, where M� = UΛV� is any compact singular value564

decomposition of M�. Then, for all X ∈ Rd1×r and Y ∈ Rr×d2 satisfying565

max{‖X − X�‖F , ‖Y − Y�‖F } ≤ ν
√

σr (M�)566

dist((X , Y ),D∗(M�)) ≤
√

σr (M�)

1+ 2(1+√2)ν
, (4.11)567

the estimate holds:568

‖XY − M�‖F ≥
√

σr (M�)

2+ 4(1+√2)ν
· dist((X , Y ),D∗(M�)).569

Proof Define δ := 1
1+2(1+√2)ν

and consider a pair of matrices X and Y satisfying570

(4.11). Let A ∈ GL(r) be an invertible matrix satisfying571

A ∈ argmin
A∈GL(r)

{
‖X − X� A‖2F + ‖Y − A−1Y�‖2F

}
. (4.12)572

As a first step, we successively compute573

‖XY − X�Y�‖F574

= ‖(X − X� A)(A−1Y�)+ X� A(Y − A−1Y�)+ (X − X� A)(Y − A−1Y�)‖F575

≥ ‖(X − X� A)(A−1Y�)+ X� A(Y − A−1Y�)‖F − ‖(X − X� A)(Y − A−1Y�)‖F576

≥ ‖(X − X� A)(A−1Y�)+ X� A(Y − A−1Y�)‖F − ‖X − X� A‖F · ‖Y − A−1Y�‖F577

≥ ‖(X − X� A)(A−1Y�)+ X� A(Y − A−1Y�)‖F − 1
2 (‖X − X� A‖2F + ‖Y − A−1Y�‖2F )578

= ‖(X − X� A)(A−1Y�)+ X� A(Y − A−1Y�)‖F − 1
2 dist2((X , Y ), D∗(M�))579

≥ ‖(X − X� A)(A−1Y�)+ X� A(Y − A−1Y�)‖F − δ
√

σr (M�)

2 · dist((X , Y ), D∗(M�)).

(4.13)
580

We next aim to lower bound the first term on the right. To this end, observe581

‖(X − X� A)(A−1Y�)+ X� A(Y − A−1Y�)‖2F582
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= ‖(X − X� A)(A−1Y�)‖2F + ‖X� A(Y − A−1Y�)‖2F583

+ 2Tr((X − X� A)(A−1Y�)(Y − A−1Y�)
�(X� A)�). (4.14)584

We claim that the cross-term is nonnegative. To see this, observe that first-order opti-585

mality conditions in (4.12) directly imply that A satisfies the equality586

A�X�� (X − X� A) = (Y − A−1Y�)Y
�
� A−�.587

Thus, we obtain588

Tr((X − X� A)(A−1Y�)(Y − A−1Y�)
�(X� A)�)589

= Tr(A�X�� (X − X� A)(A−1Y�)(Y − A−1Y�)
�)590

= Tr((Y − A−1Y�)Y
�
� A−T (A−1Y�)(Y − A−1Y�)

�)591

= ‖(A−1Y�)(Y − A−1Y�)‖2F .592

Therefore, returning to (4.14) we conclude that593

‖(X − X� A)(A−1Y�)+ X� A(Y − A−1Y�)‖F594

≥
√
‖(X − X� A)(A−1Y�)‖2F + ‖X� A(Y − A−1Y�)‖2F595

≥
√

σr (M�) ·min{σr (A−1), σr (A)} · dist((X , Y ),D∗(M�)). (4.15)596

Combining (4.13) and (4.15), we obtain597

‖XY − M�‖F ≥
√

σr (M�) ·
(

min{σr (A−1), σr (A)} − δ

2

)
· dist((X , Y ),D∗(M�)).

(4.16)598

Finally, we estimate min{σr (A−1), σr (A)}. To this end, first note that599

‖X� − X� A‖F + ‖Y� − A−1Y�‖F ≤ ‖X� − X‖F + ‖Y� − Y‖F600

+
√

2 · dist((X , Y ),D∗(M�))601

≤ 2ν
√

σr (M�) · (1+
√

2). (4.17)602

We now aim to lower bound the left-hand side in terms of min{σr (A−1), σr (A)}.603

Observe604

‖X� − X� A‖F ≥ ‖X� − X� A‖op ≥
√

σr (M�) · ‖I − A‖op ≥
√

σr (M�) · (σ1(A)− 1).605

Similarly, we have606

‖Y� − A−1Y�‖F ≥ ‖Y� − A−1Y�‖op ≥
√

σr (M�) · ‖I − A−1‖op607

≥
√

σr (M�) · (σ1(A−1)− 1).608
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Hence, using (4.17), we obtain the estimate609

min{σr (A−1), σr (A)} ≥
(

1+ 2ν · (1+
√

2)
)−1
= δ.610

Using this estimate in (4.16) completes the proof. ��611

4.2.2 Sharpness in Presence of Outliers612

The most important example of the norm |||·||| for us is the scaled �1-norm |||·||| =613

1
m ‖ · ‖1. Indeed, all the examples in the forthcoming Sect. 6 will satisfy RIP relative614

to this norm. In this section, we will show that the �1-norm has an added advantage.615

Under reasonable RIP-type conditions, sharpness will hold even if up to a half of the616

measurements are grossly corrupted.617

Henceforth, for any set I, define the restricted map AI := (Ai (X))i∈I . We interpret618

the set I as corresponding to (arbitrarily) outlying measurements, while its comple-619

ment corresponds to exact measurements. Motivated by the work [37] on robust phase620

retrieval, we make the following assumption.621

Condition B (I-outlier bounds) There exists a set I ⊂ {1, . . . , m} and a constant622

κ3 > 0 such that the following hold.623

(2a) Equality holds bi = A(M�)i for all i /∈ I.624

(2b) For all matrices W of rank at most 2r , we have625

κ3‖W‖F ≤
1

m
‖AIc (W )‖1 −

1

m
‖AI(W )‖1. (4.18)626

The condition is simple to interpret. To elucidate the bound (4.18), let us suppose627

that the restricted maps AI and AIc satisfy Condition A (RIP) with constants κ̂1, κ̂2628

and κ1, κ2, respectively. Then, for any rank 2r matrix X we immediately deduce the629

estimate630

1

m
‖AIc (W )‖1 −

1

m
‖AI(W )‖1 ≥

(
(1− pfail)κ1 − pfailκ̂2

) ‖W‖F ,631

where pfail = |I|m denotes the corruption frequency. In particular, the right-hand side632

is positive as long as the corruption frequency is below the threshold pfail < κ1
κ1+κ̂2

.633

Combining Condition B with Proposition 4.4 quickly yields sharpness of the objec-634

tive even in the noisy setting.635

Proposition 4.7 (Sharpness with outliers (symmetric)) Suppose that Condition B636

holds. Then,637

f (X)− f (X�) ≥ κ3

(√
2(
√

2− 1)σr (X�)

)
dist
(
X ,D∗(M�)

)
for all X ∈ Rd×r .638
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Proof Defining Δ := A(X� X�� )− b, we have the following bound:639

m · ( f (X)− f (X�))640

= ‖A
(

X X� − X� X��
)
+Δ‖1 − ‖Δ‖1641

= ‖AIc (X X� − X� X�� )‖1 +
∑
i∈I

(
|
(
A(X X� − X� X�� )

)
i
+Δi | − |Δi |

)
642

≥ ‖AIc (X X� − X� X�� )‖1 − ‖AI(X X� − X� X�� )‖1643

≥ κ3m‖X X� − X� X�� ‖F ≥ κ3m

(√
2(
√

2− 1)σr (X�)

)
dist
(
X ,D∗(M�)

)
,644

where the first inequality follows by the reverse triangle inequality, the second inequal-645

ity follows by Assumption (2b), and the final inequality follows from Proposition 4.4.646

The proof is complete. ��647

The argument in the asymmetric setting is completely analogous.648

Proposition 4.8 (Sharpness with outliers (asymmetric)) Suppose that Assumption B649

holds. Fix a constant ν > 0 and define X� := U
√

Λ and Y� =
√

ΛV�, where650

M� = UΛV� is any compact singular value decomposition of M�. Then, for all651

X ∈ Rd1×r and Y ∈ Rr×d2 satisfying652

max{‖X − X�‖F , ‖Y − Y�‖F } ≤ ν
√

σr (M�)653

dist((X , Y ),D∗(M�)) ≤
√

σr (M�)

1+ 2(1+√2)ν
654

The estimate holds:655

f (X , Y )− f (X�, Y�) ≥
κ3
√

σr (M�)

2+ 4(1+√2)ν
· dist((X , Y ),D∗(M�)).656

5 General Convergence Guarantees for Subgradient & Prox-linear657

Methods658

In this section, we formally develop convergence guarantees for Algorithms 1, 2, and659

3 under Assumption A, and deduce performance guarantees in the RIP setting. To this660

end, it will be useful to first consider a broader class than the compositional problems661

(3.1). We say that a function f : E→ R∪{+∞} is ρ-weakly convex6 if the perturbed662

function x �→ f (x)+ ρ
2 ‖x‖22 is convex. In particular, a composite function f = h ◦ F663

satisfying the approximation guarantee664

| fx (y)− f (y)| ≤ ρ

2
‖y − x‖22 ∀x, y665

6 Weakly convex functions also go by other names such as lower-C2, uniformly prox-regularity, paraconvex,
and semiconvex. We refer the reader to the seminal works on the topic [2,67,69,72,74].
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is automatically ρ-weakly convex [36, Lemma 4.2]. Subgradients of weakly convex666

functions are very well-behaved. Indeed, notice that in general the little-o term in the667

expression (2.1) may depend on the basepoint x , and may therefore be nonuniform.668

The subgradients of weakly convex functions, on the other hand, automatically sat-669

isfy a uniform type of lower-approximation property. Indeed, a lower-semicontinuous670

function f is ρ-weakly convex if and only if it satisfies:671

f (y) ≥ f (x)+ 〈ξ, y − x〉 − ρ

2
‖y − x‖22 ∀x, y ∈ E, ξ ∈ ∂ f (x).672

Setting the stage, we introduce the following assumption.673

Assumption B Consider the optimization problem,674

min
x∈X

f (x). (5.1)675

Suppose that the following properties hold for some real numbers μ, ρ > 0.676

1. (Weak convexity) The set X is closed and convex, while the function f : E→ R677

is ρ-weakly convex.678

2. (Sharpness) The set of minimizers X ∗ := argmin
x∈X

f (x) is nonempty and the fol-679

lowing inequality holds:680

f (x)− inf
X

f ≥ μ · dist
(
x,X ∗

) ∀x ∈ X .681

In particular, notice that Assumption A implies Assumption B. Taken together,682

weak convexity and sharpness provide an appealing framework for deriving local683

rapid convergence guarantees for numerical methods. In this section, we specifically684

focus on two such procedures: the subgradient and prox-linear algorithms. We aim685

to estimate both the radius of rapid converge around the solution set and the rate686

of convergence. Note that both of the algorithms, when initialized at a stationary687

point could stay there for all subsequent iterations. Since we are interested in finding688

global minima, we therefore estimate the neighborhood of the solution set that has no689

extraneous stationary points. This is the content of the following simple lemma.690

Lemma 5.1 ([31, Lemma 3.1]) Suppose that Assumption B holds. Then, the problem691

(5.1) has no stationary points x satisfying692

0 < dist(x;X ∗) <
2μ

ρ
.693

It is worthwhile to note that the estimate 2μ
ρ

of the radius in Lemma 5.1 is tight [19,694

Section 3]. Hence, let us define for any γ > 0 the tube695

Tγ :=
{

z ∈ X : dist(z,X ∗) ≤ γ · μ
ρ

}
. (5.2)696
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Thus, we would like to search for algorithms whose basin of attraction is a tube Tγ697

for some numerical constant γ > 0. Such a basin of attraction is in essence optimal.698

The rate of convergence of the subgradient methods (Algorithms 1 and 2) relies on699

the subgradient bound and the condition measure:700

L := sup{‖ζ‖2 : ζ ∈ ∂ f (x), x ∈ T1} and τ := μ

L
.701

A straightforward argument [31, Lemma 3.2] shows τ ∈ [0, 1]. The following theorem702

appears as [31, Theorem 4.1], while its application to phase retrieval was investigated703

in [32].704

Theorem 5.2 (Polyak subgradient method) Suppose that Assumption B holds and fix705

a real number γ ∈ (0, 1). Then, Algorithm 1 initialized at any point x0 ∈ Tγ produces706

iterates that converge linearly to X ∗, that is707

dist2(xk+1,X
∗) ≤

(
1− (1− γ )τ 2

)
dist2(xk,X

∗) ∀k ≥ 0.708

The following theorem appears as [31, Theorem 6.1]. The convex version of the result709

dates back to Goffin [44].710

Theorem 5.3 (Geometrically decaying subgradient method) Suppose that Assump-711

tion B holds, fix a real number γ ∈ (0, 1), and suppose τ ≤
√

1
2−γ

. Set λ :=712

γμ2

ρL and q :=
√

1− (1− γ )τ 2 in Algorithm 2. Then, the iterates xk generated by713

Algorithm 2, initialized at any point x0 ∈ Tγ , satisfy:714

dist2(xk;X ∗) ≤
γ 2μ2

ρ2

(
1− (1− γ )τ 2

)k
∀k ≥ 0.715

Let us now specialize to the composite setting under Assumption A. Since Assump-716

tion A implies Assumption B, both subgradient Algorithms 1 and 2 will enjoy a linear717

rate of convergence when initialized sufficiently close the solution set. The following718

theorem, on the other hand, shows that the prox-linear method will enjoy a quadratic719

rate of convergence (at the price of a higher per-iteration cost). Guarantees of this type720

have appeared, for example, in [9,35,37].721

Theorem 5.4 (Prox-linear algorithm) Suppose Assumption A holds. Choose anyβ ≥ ρ722

in Algorithm 3 and set γ := ρ/β. Then, Algorithm 3 initialized at any point x0 ∈ Tγ723

converges quadratically:724

dist(xk+1,X
∗) ≤ β

μ
· dist2(xk,X

∗) ∀k ≥ 0.725

We now apply the results above to the low-rank matrix factorization problem under726

RIP, whose regularity properties were verified in Sect. 4. In particular, we have the727

following efficiency guarantees of the subgradient and prox-linear methods applied to728

this problem.729
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Corollary 5.5 (Convergence guarantees under RIP (symmetric)) Suppose Conditions A730

and B are valid with |||·||| = 1
m ‖ · ‖1 and consider the optimization problem731

min
X∈Rd×r

f (X) = 1

m
‖A(X X�)− b‖1.732

Choose any matrix X0 satisfying733

dist(X0,D∗(M�))√
σr (M�)

≤ 0.2 · κ3

κ2
.734

Define the condition number χ := σ1(M�)/σr (M�). Then, the following are true.735

1. (Polyak subgradient) Algorithm 1 initialized at X0 produces iterates that converge736

linearly to D∗(M�), that is737

dist2(Xk,D
∗(M�))

σr (M�)
≤

⎛⎜⎝1− 0.2

1+ 4κ2
2 χ

κ2
3

⎞⎟⎠
k

· κ2
3

100κ2
2

∀k ≥ 0.738

2. (geometric subgradient) Algorithm 2 with λ= 0.81κ2
3

√
σr (M�)

2κ2(κ3+2κ2
√

χ)
, q=
√

1− 0.2
1+4κ2

2 χ/κ2
3

739

and initialized at X0 converges linearly:740

dist2(Xk,D
∗(M�))

σr (M�)
≤

⎛⎜⎝1− 0.2

1+ 4κ2
2 χ

κ2
3

⎞⎟⎠
k

· κ2
3

100κ2
2

∀k ≥ 0.741

3. (prox-linear) Algorithm 3 with β=ρ and initialized at X0 converges quadratically:742

dist(Xk,D
∗(M�)))√

σr (M�)
≤ 2−2k · 0.45κ3

κ2
∀k ≥ 0.743

5.1 Guarantees Under Local Regularity744

As explained in Sect. 4, Assumptions A and B are reasonable in the symmetric set-745

ting under RIP. The asymmetric setting is more nuanced. Indeed, the solution set is746

unbounded, while uniform bounds on the sharpness and subgradient norms are only747

valid on bounded sets. One remedy, discussed in [57], is to modify the optimization748

formulation by introducing a form of regularization:749

min
X ,Y
|||A(XY )− y||| + λ‖X�X − Y Y�‖F .750

In this section, we take a different approach that requires no modification to the opti-751

mization problem nor the algorithms. The key idea is to show that if the problem is752
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well-conditioned only on a neighborhood of a particular solution, then the iterates753

will remain in the neighborhood provided the initial point is sufficiently close to the754

solution. In fact, we will see that the iterates themselves must converge. The proofs of755

the results in this section (Theorems 5.6, 5.7, and 5.8) are deferred to Appendix A.756

We begin with the following localized version of Assumption B.757

Assumption C Consider the optimization problem,758

min
x∈X

f (x). (5.3)759

Fix an arbitrary point x̄ ∈ X ∗ and suppose that the following properties hold for some760

real numbers ε, μ, ρ > 0.761

1. (Local weak convexity) The set X is closed and convex, and the bound holds:762

f (y) ≥ f (x)+ 〈ζ, y − x〉 − ρ

2
‖y − x‖22 ∀x, y ∈ X ∩ Bε(x̄), ζ ∈ ∂ f (x).763

2. (Local sharpness) The inequality holds:764

f (x)− inf
X

f ≥ μ · dist
(
x,X ∗

) ∀x ∈ X ∩ Bε(x̄).765

The following two theorems establish convergence guarantees of the two subgra-766

dient methods under Assumption C. Abusing notation slightly, we define the local767

quantities:768

L := sup
ζ∈∂ f (x)

{‖ζ‖2 : x ∈ X ∩ Bε(x̄)} and τ := μ

L
.769

Theorem 5.6 (Polyak subgradient method (local regularity)) Suppose Assumption C770

holds and fix an arbitrary point x0 ∈ Bε/4(x̄) satisfying771

dist(x0,X
∗) ≤ min

{
3εμ2

64L2 ,
μ

2ρ

}
.772

Then, Algorithm 1 initialized at x0 produces iterates xk that always lie in Bε(x̄) and773

satisfy774

dist2(xk+1,X
∗) ≤

(
1− 1

2τ 2
)

dist2(xk,X
∗), for all k ≥ 0. (5.4)775

Moreover, the iterates converge to some point x∞ ∈ X ∗ at the linear rate776

‖xk − x∞‖2 ≤
16L3 · dist(x0,X

∗)
3μ3 ·

(
1− 1

2τ 2
) k

2
for all k ≥ 0.777

Theorem 5.7 (Geometrically decaying subgradient method (local regularity)) Suppose778

that Assumption C holds and that τ ≤ 1√
2

. Define γ = ερ
4L+ερ

, λ = γμ2

ρL , and779
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q =
√

1− (1− γ )τ 2. Then, Algorithm 2 initialized at any point x0 ∈ Bε/4(x̄) ∩ Tγ780

generates iterates xk that always lie in Bε(x̄) and satisfy781

dist2(xk;X ∗) ≤
γ 2μ2

ρ2

(
1− (1− γ )τ 2

)k
for all k ≥ 0. (5.5)782

Moreover, the iterates converge to some point x∞ ∈ X ∗ at the linear rate783

‖xk − x∞‖2 ≤ λ
1−q · qk for all k ≥ 0.784

We end the section by specializing to the composite setting and analyzing the prox-785

linear method. The following is the localized version of Assumption A.786

Assumption D Consider the optimization problem,787

min
x∈X

f (x) := h(F(x)),788

where the function h(·) and the set X are convex and F(·) is differentiable. Fix a789

point x̄ ∈ X ∗ and suppose that the following properties holds for some real numbers790

ε, μ, ρ > 0.791

1. (Approximation accuracy) The models fx (y) := h(F(x)+∇F(x)(y−x)) satisfy792

the estimate:793

| f (y)− fx (y)| ≤ ρ

2
‖y − x‖22 ∀x ∈ X ∩ Bε(x̄), y ∈ X .794

2. (Sharpness) The inequality holds:795

f (x)− inf
X

f ≥ μ · dist
(
x,X ∗

) ∀x ∈ X ∩ Bε(x̄).796

The following theorem provides convergence guarantees for the prox-linear method797

under Assumption D.798

Theorem 5.8 (Prox-linear (local)) Suppose Assumption D holds, choose any β ≥ ρ,799

and fix an arbitrary point x0 ∈ Bε/2(x̄) satisfying800

f (x0)−min
X

f ≤ min

{
βε2

25
,
μ2

2β

}
.801

Then, Algorithm 3 initialized at x0 generates iterates xk that always lie in Bε(x̄) and802

satisfy803

dist(xk+1,X
∗) ≤ β

μ
· dist2(xk,X

∗),804

f (xk+1)−min
X

f ≤ β

μ2

(
f (xk)−min

X
f

)2

.805
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Moreover, the iterates converge to some point x∞ ∈ X ∗ at the quadratic rate806

‖xk − x∞‖2 ≤
2
√

2μ

β
·
(

1

2

)2k−1

for all k ≥ 0.807

With the above generic results in hand, we can now derive the convergence guar-808

antees for the subgradient and prox-linear methods for asymmetric low-rank matrix809

recovery problems. To summarize, the prox-linear method converges quadratically, as810

long as it is initialized within constant relative error of the solution. The guarantees811

for the subgradient methods are less satisfactory: the size of the region of the linear812

convergence scales with the condition number of M�. The reason is that the proof813

estimates the region of convergence using the length of the iterate path, which scales814

with the condition number. The dependence on the condition number in general can be815

eliminated by introducing regularization ‖X�X − Y Y�‖F , as suggested in the work816

[57]. Still the results we present here are notable even for the subgradient method. For817

example, we see that for rank r = 1 instances satisfying RIP (e.g., blind deconvolu-818

tion), the condition number of M� is always one and therefore regularization is not819

required at all for subgradient and prox-linear methods.820

Corollary 5.9 (Convergence guarantees under RIP (asymmetric)) Suppose Assump-821

tions A and B are valid7 and consider the optimization problem822

min
X∈Rd1×r , Y∈Rr×d2

f (X) = 1

m
‖A(XY )− b‖1.823

Define X� := U
√

Λ and Y� =
√

ΛV�, where M� = UΛV� is any compact singular824

value decomposition of M�. Define also the condition number χ := σ1(M�)/σr (M�).825

Then, there exists η > 0 depending only on κ2, κ3, and σ(M�) such that the following826

are true.827

1. (Polyak subgradient) Algorithm 1 initialized at (X0, Y0) satisfying828

‖(X0, Y0)− (X�, Y�)‖F√
σr (M�)

� min{1,
κ2

3

κ2
2 χ

,
κ3

κ2
},829

will generate an iterate sequence that converges at the linear rate:830

dist((Xk, Yk),D
∗(M�))√

σr (M�)
≤ δ after k �

κ2
2 χ2

κ2
3

· ln
(η

δ

)
iterations.831

2. (geometric subgradient) Algorithm 2 initialized at (X0, Y0) satisfying832

‖(X0, Y0)− (X�, Y�)‖F√
σr (M�)

� min{1,
κ3

κ2χ
},833

7 with |||·||| = 1
m ‖ · ‖1
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will generate an iterate sequence that converges at the linear rate:834

dist((Xk, Yk),D
∗(M�))√

σr (M�)
≤ δ after k �

κ2
2 χ2

κ2
3

· ln
(η

δ

)
iterations.835

3. (prox-linear) Algorithm 3 initialized at (X0, Y0) satisfying836

f (x0)−minX f

σr (M�)
� min{κ2, κ

2
3 /κ2} and

‖(X0, Y0)− (X�, Y�)‖F√
σr (M�)

� 1,837

will generate an iterate sequence that converges at the quadratic rate:838

dist((Xk, Yk),D∗(M�))√
σr (M�)

�
κ3

κ2
· 2−2k

for all k ≥ 0.839

6 Examples of �1/�2 RIP840

In this section, we survey three matrix recovery problems from different fields, includ-841

ing physics, signal processing, control theory, wireless communications, and machine842

learning, among others. In all cases, the problems satisfy �1/�2 RIP and the I-outlier843

bounds and consequently, the convergence results in Corollaries 5.5 and 5.9 immedi-844

ately apply. Most of the RIP results in this section were previously known (albeit under845

more restrictive assumptions); we provide self-contained arguments in Appendix B846

for the sake of completeness. On the other hand, using nonsmooth optimization in847

these problems and the corresponding convergence guarantees based on RIP are, for848

the most part, new. All the examples in this section either satisfy Assumption A (in849

the symmetric case), or its local version Assumption D (in the asymmetric case). In850

particular, sharpness holds with respect to the Frobenius norm (up to appropriate sym-851

metries). The �1/�2 and I-outlier guarantees are summarized in Theorem 6.4 at the852

end of the section.853

For the rest of this section, we will assume the following data-generating mecha-854

nism.855

Definition 6.1 (Data-generating mechanism) A random linear mapping A :856

Rd1×d2 → Rm and a random index set I ⊂ [m] are drawn independently of each other.857

We assume moreover that the outlier frequency pfail := |I|/m satisfies pfail ∈ [0, 1/2)858

almost surely. We then observe the corrupted measurements859

bi =
{

A(M�) if i /∈ I, and

ηi if i ∈ I,
(6.1)860

where η is an arbitrary vector. In particular, η could be correlated with A.861

Throughout this section, we consider four distinct linear operators A.862

863
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Matrix Sensing In this scenario, measurements are generated as follows:864

A(M�)i := 〈Pi , M�〉 for i = 1, . . . , m (6.2)865

where Pi ∈ Rd1×d2 are fixed matrices.866

867

Quadratic Sensing I In this scenario, M� ∈ Rd×d is assumed to be a PSD rank r868

matrix with factorization M� = X� X�� and measurements are generated as follows:869

A(M�)i = p�i M� pi = ‖X�� pi‖22 for i = 1, . . . , m, (6.3)870

where pi ∈ Rd are fixed vectors.871

872

Quadratic Sensing II In this scenario, M� ∈ Rd×d is assumed to be a PSD rank r873

matrix with factorization M� = X� X�� and measurements are generated as follows:874

A(M�)i = p�i M� pi− p̃�i M� p̃i = ‖X�� pi‖22−‖X�� p̃i‖22 for i = 1, . . . , m, (6.4)875

where pi , p̃i ∈ Rd are fixed vectors.876

877

Bilinear Sensing In this scenario, M� ∈ Rd1×d2 is assumed to be a r matrix with878

factorization M� = XY and measurements are generated as follows:879

A(M�)i = p�i M�qi for i = 1, . . . , m, (6.5)880

where pi ∈ Rd1 and qi ∈ Rd2 are fixed vectors.881

The matrix, quadratic, and bilinear sensing problems have been considered in a num-882

ber of papers and in a variety of applications. The first theoretical properties for matrix883

sensing were discussed in [13,40,71]. Quadratic sensing in its full generality appeared884

in [24] and is a higher-rank generalization of the much older (real) phase retrieval885

problem [11,14,45]. Besides phase retrieval, quadratic sensing has applications to886

covariance sketching, shallow neural networks, and quantum state tomography; see887

for example [58] for a discussion. Bilinear sensing is a natural modification of quadratic888

sensing and is a higher-rank generalization of the blind deconvolution problem [1]; it889

was first proposed and studied in [10].890

The reader is reminded that once �1/�2 RIP guarantees, in particular Conditions A891

and B, are established for the above four operators, the convergence guarantees of892

Corollaries 5.5 and 5.9 immediately take hold for the problems893

min
X∈Rd×r

f (X) = 1

m
‖A(X X�)− b‖1894
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and895

min
X∈Rd1×r , Y∈Rr×d2

f (X) = 1

m
‖A(XY )− b‖1,896

respectively. Such guarantees explain the empirical success of the subgradient method897

on these objectives as shown in [59]. Let us now turn our attention to establishing such898

guarantees.899

6.1 Warm-Up: �2/�2 RIP for Matrix Sensing with Gaussian Design900

In this section, we are primarily interested in the �1/�2 RIP for the above four linear901

operators. However, as a warm-up, we first consider the �2/�2-RIP property for matrix902

sensing with Gaussian Pi . The following result appears in [13,71].903

Theorem 6.2 (�2/�2-RIP for matrix sensing) For any δ ∈ (0, 1) there exist constants904

c, C > 0 depending only on δ such that if the entries of Pi are i.i.d. standard Gaussian905

and m ≥ cr(d1 + d2) log(d1d2), then with probability at least 1 − exp (−Cm), the906

estimate907

(1− δ)‖M‖F ≤
1√
m
‖A(M)‖2 ≤ (1+ δ)‖M‖F ,908

holds simultaneously for all M ∈ Rd1×d2 of rank at most 2r . Consequently, Condi-909

tion A is satisfied.910

Following the general recipe of the paper, we see that the nonsmooth formulation911

min
X∈Rd1×r , Y∈Rr×d2

1√
m
‖A(XY )− b‖2 =

√√√√ 1

m

m∑
i=1

(
Tr(Y P�i X)− bi

)2
(6.6)912

is immediately amenable to subgradient and prox-linear algorithms in the noiseless913

setting I = ∅. In particular, a direct analogue of Corollary 5.9, which was stated for914

the penalty function h = 1
m ‖ · ‖1, holds; we omit the straightforward details.915

6.2 The �1/�2 RIP andI-Outlier Bounds: Quadratic and Bilinear Sensing916

We now turn our attention to the �1/�2 RIP for more general classes of linear maps than917

the i.i.d. Gaussian matrices considered in Theorem 6.2. To establish such guarantees,918

one must ensure that the linear maps A have light tails and are robustly injective on919

certain spaces of matrices. The first property leads to tight concentration results, while920

the second yields the existence of a lower RIP constant κ1.921

Condition C (Matrix Sensing) The matrices {Pi } are i.i.d. realizations of an η-sub-922

Gaussian random matrix8 P ∈ Rd1×d2 . Furthermore, there exists a numerical constant923

8 By this we mean that the vectorized matrix vec(P) is a η-sub-Gaussian random vector.
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α > 0 such that924

inf
M : Rank M≤2r
‖M‖F=1

E|〈P, M〉| ≥ α. (6.7)925

Condition D (Quadratic Sensing I) The vectors {pi } are i.i.d. realizations of a η-sub-926

Gaussian random variable p ∈ Rd . Furthermore, there exists a numerical constant927

α > 0 such that928

inf
M∈Sd : Rank M≤2r

‖M‖F=1

E|p�Mp| ≥ α. (6.8)929

Condition E (Quadratic Sensing II) The vectors {pi }, { p̃i } are i.i.d. realizations of930

a η-sub-Gaussian random variable p ∈ Rd . Furthermore, there exists a numerical931

constant α > 0 such that932

inf
M∈Sd : Rank M≤2r

‖M‖F=1

E|p�Mp − p̃�M p̃| ≥ α. (6.9)933

Condition F (Bilinear Sensing) The vectors {pi } and {qi } are i.i.d. realizations of η-934

sub-Gaussian random vectors p ∈ Rd1 and q ∈ Rd2 , respectively. Furthermore, there935

exists a numerical constant α > 0 such that936

inf
M : Rank M≤2r
‖M‖F=1

E|p�Mq| ≥ α. (6.10)937

The Conditions C-F are all valid for i.i.d. Gaussian realizations with independent938

identity covariance, as the following lemma shows. We defer its proof to Appendix B.1.939

Lemma 6.3 Condition C holds for matrices P with i.i.d. standard Gaussian entries.940

Conditions D and E hold for vectors p, p̃ with i.i.d. standard Gaussian entries. Con-941

dition F holds for vectors p and q with i.i.d. standard Gaussian entries.942

We can now state the main RIP guarantees under the above conditions. Throughout943

all the results, we fix the data generating mechanism as in Definition 6.1. Then, we944

wish to establish the inequalities945

κ1‖M‖F ≤
1

m
‖A(M)‖1 ≤ κ2‖M‖F (6.11)946

and947

κ3‖M‖F ≤
1

m

(‖AIc (M)‖1 − ‖AI(M)‖1
)
, (6.12)948

and, hence, Conditions A and B, respectively, for certain constants κ1, κ2, and κ3. We949

defer the proof of this theorem to Appendix B.2.950

Theorem 6.4 (�1/�2 RIP and I-outlier bounds) There exist numerical constants951

c1, . . . , c6 > 0 depending only on α, η such that the following hold for the cor-952

responding measurement operators described in Eqs. (6.2), (6.3), (6.4), and (6.5),953

respectively954
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1. (Matrix sensing) Suppose Condition C holds. Then, provided955

m ≥ c1

(1− 2pfail)2 r(d1 + d2 + 1) ln

(
c2 +

c2

1− 2pfail

)
,956

we have with probability at least 1− 4 exp
(−c3(1− 2pfail)

2m
)

that every matrix957

M ∈ Rd1×d2 of rank at most 2r satisfies (6.11) and (6.12) with constants κ1 =958

c4, κ2 = c5 and κ3 = c6(1− 2pfail).959

2. (Quadratic sensing I) Suppose Condition D holds. Then, provided960

m ≥ c1

(1− 2pfail)2 r2(2d + 1) ln

(
c2 +

c2

1− 2pfail

√
r

)
,961

we have with probability at least 1−4 exp
(−c3(1− 2pfail)

2m/r
)

that every matrix962

M ∈ Rd×d of rank at most 2r satisfies (6.11) and (6.12) with constants κ1 =963

c4, κ2 = c5 ·
√

r and κ3 = c6(1− 2pfail).964

3. (Quadratic sensing II) Suppose Condition E holds. Then, provided965

m ≥ c1

(1− 2pfail)2 r(2d + 1) ln

(
c2 +

c2

1− 2pfail

)
,966

we have with probability at least 1− 4 exp
(−c3(1− 2pfail)

2m
)

that every matrix967

M ∈ Rd×d of rank at most 2r satisfies (6.11) and (6.12) with constants κ1 =968

c4, κ2 = c5 and κ3 = c6(1− 2pfail).969

4. (Bilinear sensing) Suppose Condition F holds. Then, provided970

m ≥ c1

(1− 2pfail)2 r(d1 + d2 + 1) ln

(
c2 +

c2

1− 2pfail

)
,971

we have with probability at least 1− 4 exp
(−c3(1− 2pfail)

2m
)

that every matrix972

M ∈ Rd1×d2 of rank at most 2r satisfies (6.11) and (6.12) with constants κ1 =973

c4, κ2 = c5 and κ3 = c6(1− 2pfail).974

The guarantees of Theorem 6.4 were previously known under stronger assumptions.975

In particular, item (1) generalizes the results in [57] for the pure Gaussian setting. The976

case r = 1 of item (2) can be found, in a slightly different form, in [37,39]. Item (3)977

sharpens slightly the analogous guarantee in [24] by weakening the assumptions on978

the moments of the measuring vectors to the uniform lower bound (6.9). Special979

cases of item (4) were established in [19], for the case r = 1, and [10], for Gaussian980

measurement vectors.981

We note that all linear mappings require the same number of measurements in order982

to satisfy RIP and I outlier bounds, except for quadratic sensing I operator, which983

incurs an extra r -factor. This reveals the utility of the quadratic sensing II operator,984

which achieves optimal sample complexity. For larger scale problems, a shortcoming985

of matrix sensing operator (6.2) is that md1d2 scalars are required to represent the986

map A. In contrast, all other measurement operators may be represented with only987

m(d1 + d2) scalars.988
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7 Matrix Completion989

In the previous sections, we saw that low-rank recovery problems satisfying RIP lead990

to well-conditioned nonsmooth formulations. We argue, however, that the general991

framework of sharpness and approximation is applicable even for problems without992

RIP. We consider two such problems, namely matrix completion in this section and993

robust PCA in Sect. 8, to follow. Both problems will be considered in the symmetric994

setting. We will show that symmetric matrix completion satisfies local sharpness with995

respect to the Frobenius norm, although it satisfies a slightly different approximation996

bound than Assumption A (cf. Lemma 7.4). Corollaries 7.5 and 7.7 show that the997

Polyak and (modified) prox-linear algorithms exhibit local linear convergence.998

The goal of matrix completion problem is to recover a PSD rank r matrix M� ∈ Sd
999

given access only to a subset of its entries. Henceforth, let X� ∈ Rd×r be a matrix1000

satisfying M� = X� X�� . Throughout, we assume incoherence condition, ‖X�‖2,∞ ≤1001 √
νr
d , for some ν > 0. We also make the fairly strong assumption that the singular1002

values of X� are all equal σ1(X�) = σ2(X�) = . . . = σr (X�) = 1. This assumption1003

simplifies the presentation of our theoretical results. We believe this condition could1004

be relaxed at the expense of increasing the sample complexity by a polynomial factor1005

of the condition number. We decided against this more general setting, as it would1006

require us to extend some of the key inequalities from [27], which is out of the scope1007

of this paper. We let Ω ⊆ [d] × [d] be an index set generated by the Bernoulli model,1008

that is, P((i, j), ( j, i) ∈ Ω) = p independently for all 1 ≤ i ≤ j ≤ d. Since the1009

matrices we consider are symmetric, so is Ω , i.e., if (i, j) ∈ Ω then ( j, i) ∈ Ω. Let1010

ΠΩ : Sd → R|Ω| be the projection onto the entries indexed by Ω . We consider the1011

following optimization formulation of the problem1012

min
X∈X

f (X) = ‖ΠΩ(X X�)−ΠΩ(M�)‖2,1013

where1014

X =
{

X ∈ Rd×r : ‖X‖2,∞ ≤
√

νr

d

}
.1015

We will show that both the Polyak subgradient method and an appropriately modified1016

prox-linear algorithm converge linearly to the solution set under reasonable initial-1017

ization. Moreover, we will see that the linear rate of convergence for the prox-linear1018

method is much better than that for the subgradient method.1019

To simplify notation, we set1020

D∗ := D∗(M�) = {X ∈ Rd1×r : X X� = M�}.1021

We begin by estimating the sharpness constant μ of the objective function. Fortu-1022

nately, this estimate follows directly from inequalities (58) and (59a) in [27].1023

123

Journal: 10208 Article No.: 9490 TYPESET DISK LE CP Disp.:2020/12/22 Pages: 89 Layout: Small-Ex

A
u

th
o

r
 P

r
o

o
f



un
co

rr
ec

te
d

pr
oo

f

Foundations of Computational Mathematics

Lemma 7.1 (Sharpness [27]) There are numerical constant c1, c2 > 0 such that the1024

following holds. If p ≥ c2(
ν2r2

d + log d
d ), then with probability 1−c1d−2, the estimate1025

1

p
‖ΠΩ(X X� − X� X�� )‖2F ≥ c1‖X X� − X� X�� ‖2F1026

holds uniformly for all X ∈ X with dist(X ,D∗) ≤ c1.1027

Let us next estimate the approximation accuracy | f (Z)− fX (Z)|, where1028

fX (Z) = ‖ΠΩ(X X − M� + X(Z − X)� + (Z − X)X�)‖F .1029

To this end, we will require the following result.1030

Lemma 7.2 (Lemma 5 in [27]) There is a numerical constant c > 0 such that the1031

following holds. If p ≥ c
ε2 ( ν2r2

d + log d
d ) for some ε ∈ (0, 1), then with probability at1032

least 1− 2d−4, the estimates1033

1. 1√
p‖ΠΩ(X X�)‖F ≤

√
(1+ ε)‖X‖2F +

√
ε‖X‖F ; and1034

2. 1√
p‖ΠΩ(Y X�)‖F ≤

√
νr‖Y‖F1035

hold uniformly for all matrices X with ‖X‖2,∞ ≤ 6
√

νr
d and Y ∈ Rd×r .1036

An estimate of the approximation error | f (Z)− fX (Z)| is now immediate.1037

Lemma 7.3 (Approximation accuracy and Lipschitz continuity) There is a numerical1038

constant c > 0 such that the following holds. If p ≥ c
ε2 ( ν2r2

d + log d
d ) for some1039

ε ∈ (0, 1), then with probability at least 1− 2d−4, the estimates1040

1√
p
| f (X)− fY (X)| ≤

√
(1+ ε)‖X − Y‖2F +

√
ε‖X − Y‖F ,1041

| f (X)− f (Y )| ≤ √pνr‖X − Y‖F ,1042

holds uniformly for all X , Y ∈ X .1043

Proof The first inequality follows immediately by observing the estimate1044

| f (X)− fY (X)| ≤ ‖ΠΩ((X − Y )(X − Y )�)‖F ,1045

and using Lemma 7.2. To see the second inequality, observe1046

| f (X)− f (Y )| ≤ ‖ΠΩ(X X� − Y Y�)‖F1047

= 1

2
‖ΠΩ((X − Y )(X + Y )� − (X + Y )(X − Y )�)‖F1048

≤ ‖ΠΩ((X − Y )(X + Y )�)‖F1049

≤ √pνr‖X − Y‖F ,1050

where the last inequality follows by Part 2 of Lemma 7.2. ��1051
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Note that the approximation bound in Lemma 7.3 is not in terms of the square1052

Euclidean norm. Therefore, the results in Sect. 5 do not apply directly. Nonetheless,1053

it is straightforward to modify the prox-linear method to take into account the new1054

approximation bound. The proof of the following lemma appears in the appendix.1055

Lemma 7.4 Suppose that Assumption A holds with the approximation property1056

replaced by1057

| f (y)− fx (y)| ≤ a‖y − x‖22 + b‖y − x‖2 ∀x, y ∈ X ,1058

for some real a, b ≥ 0. Consider the iterates generated by the process:1059

xk+1 = argmin
x∈X

{
fxk (x)+ a‖x − xk‖22 + b‖x − xk‖2

}
.1060

Then, as long as x0 satisfies dist(x0,X
∗) ≤ μ−2b

2a , the iterates converge linearly:1061

dist(xk+1,X
∗) ≤ 2(b + adist(x,X ∗))

μ
· dist(xk,X

∗) ∀k ≥ 0.1062

Combining Lemma 7.4 with our estimates of the sharpness and approximation1063

accuracy, we deduce the following convergence guarantee for matrix completion.1064

Corollary 7.5 (Prox-linear method for matrix completion) There are numerical con-1065

stants c0, c, C > 0 such that the following holds. If p ≥ c
ε2 ( ν2r2

d + log d
d ) for some1066

ε ∈ (0, 1), then with probability at least 1 − c0d−2, the iterates generated by the1067

modified prox-linear algorithm1068

Xk+1 = argmin
X∈X

{
fXk (X)+

√
p(1+ ε) · ‖X − Xk‖22 +

√
pε‖X − Xk‖2

}
(7.1)1069

satisfy1070

dist(Xk+1,D
∗) ≤

√
ε +√1+ ε · dist(Xk,D

∗)
C

· dist(Xk,D
∗) ∀k ≥ 0.1071

In particular, the iterates converge linearly as long as dist(X0,D
∗) <

C−2
√

ε

2
√

(1+ε)
.1072

Proof By invoking Proposition 4.4 and Lemmas 7.1 and 7.3, we may appeal to1073

Lemma 7.4 with a = √p(1+ ε), b = √pε, and μ =
√

2c1 p(
√

2− 1). The result1074

follows immediately. ��1075

To summarize, there exist numerical constants c0, c1, c2, c3 > 0 such that the1076

following is true with probability at least 1− c0d−2. In the regime1077

p ≥ c2

ε2

(
ν2r2

d
+ log d

d

)
for some ε ∈ (0, c1),1078
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the prox-linear method will converge at the rapid linear rate,1079

dist(Xk,D
∗) ≤ c2

2k
,1080

when initialized at X0 ∈ X satisfying dist(X0,D
∗) < c2.1081

As for the prox-linear method, the results of Sect. 5 do not immediately yield1082

convergence guarantees for the Polyak subgradient method. Nonetheless, it straight-1083

forward to show that the standard Polyak subgradient method still enjoys local linear1084

convergence guarantees. The proof is a straightforward modification of the argument1085

in [31, Theorem 3.1], and appears in the appendix.1086

Theorem 7.6 Suppose that Assumption A holds with the approximation property1087

replaced by1088

| f (y)− fx (y)| ≤ a‖y − x‖22 + b‖y − x‖2 ∀x, y ∈ X ,1089

for some real a, b ≥ 0. Consider the iterates {xk} generated by the Polyak subgradient1090

method in Algorithm 1. Then, as long as the sharpness constant satisfies μ > 2b and1091

x0 satisfies dist(x0,X
∗) ≤ γ · μ−2b

2a for some γ < 1, the iterates converge linearly1092

dist2(xk+1,X
∗) ≤

(
1− (1− γ )μ(μ− 2b)

L2

)
· dist2(xk,X

∗) ∀k ≥ 0.1093

Finally, combining Theorem 7.6 with our estimates of the sharpness and approxima-1094

tion accuracy, we deduce the following convergence guarantee for matrix completion.1095

Corollary 7.7 (Subgradient method for matrix completion) There are numerical con-1096

stants c0, c, C > 0 such that the following holds. If p ≥ c
ε2 ( ν2r2

d + log d
d ) for some1097

ε ∈ (0, 1), then with probability at least 1 − c0d−2, the iterates generated by the1098

iterates {Xk} generated by the Polyak Subgradient method in Algorithm 1 satisfy1099

dist(Xk+1,D
∗)2 ≤

(
1− C(C − 2

√
ε)

2νr

)
· dist2(Xk,D

∗) ∀k ≥ 0.1100

In particular, the iterates converge linearly as long as dist(X0,D∗) <
C−2
√

ε

4
√

(1+ε)
.1101

Proof First, observe that we have the bound L ≤ √pνr by Lemma 7.3. By invoking1102

Proposition 4.4 and Lemmas 7.1 and 7.3 we may appeal to Theorem 7.6 with γ =1103

1/2, a = √p(1+ ε), b = √pε, and μ =
√

2c1 p(
√

2− 1). The result follows1104

immediately. ��1105

To summarize, there exist numerical constants c0, c1, c2, c3 > 0 such that the1106

following is true with probability at least 1− c0d−2. In the regime1107

p ≥ c2

ε2

(
ν2r2

d
+ log d

d

)
for some ε ∈ (0, c1),1108
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the Polyak subgradient method will converge at the linear rate,1109

dist(Xk,D
∗) ≤

(
1− c3

νr

) k
2

c2,1110

when initialized at X0 ∈ X satisfying dist(X0,D
∗) < c2. Notice that the prox-linear1111

method enjoys a much faster linear rate of convergence than the subgradient method—1112

an observation fully supported by numerical experiments in Sect. 10. The caveat is1113

that the per iteration cost of the prox-linear method is significantly higher than that of1114

the subgradient method.1115

1116

Literature review and sample complexity comparison There is a rich literature1117

on low-rank matrix completion using both convex and nonconvex formulations. The1118

seminal work in [16,17,70] analyzes a convex relaxation based on nuclear norm min-1119

imization. One of the earliest two-stage algorithms for matrix completion is studied1120

in [51,52], which shows that truncated SVD with trimming provides a sufficiently1121

accurate initial estimate, which can be refined using an iterative manifold optimization1122

algorithm. Several algorithms operating on the factor space — leading to (smooth) non-1123

convex formulations and two-stage algorithms — have also been proposed and shown1124

to enjoy local linear convergence. In particular, the authors of [47,48,50] consider1125

alternative minimization over the two factors, but their analysis relies on sample split-1126

ting and hence suffers from suboptimal sample complexity. A more recent paper [4]1127

considers alternating minimization using a slightly overparameterized formulation,1128

which achieves better dependency of the sample complexity on the matrix condition1129

number.1130

(Projected) gradient descent is another widely studied approach in the nonconvex1131

matrix completion literature. The work of [27] provides a general framework for1132

establishing local linear convergence of projected gradient descent for low-rank matrix1133

recovery problems including matrix completion. The rectangular matrix setting is1134

studied in the work in [81]. The authors of [77] study the landscape geometry of a1135

regularized nonconvex formulation for matrix completion, and show that there is no1136

spurious local minima near the global minimum. It has been further shown in [43] that1137

the standard smooth nonconvex loss used in positive-semidefinite matrix completion1138

in fact has no spurious local minima anywhere; consequently, gradient descent with1139

random initialization converges to the global minimizers.1140

In the work [3], it is shown that a certain class of regularized nonconvex formulations1141

satisfy strong duality, hence solving the (convex) bi-dual problem can be used to1142

recover a globally optimal solution. The work in [34] shows that projected gradient1143

descent applied a rank-constrained formulation converges entrywise and linearly to1144

the ground truth, without sample splitting.1145

Sample complexity bounds for exact matrix completion have been obtained and1146

improved in a sequence of work [17,20,46,70]. The best result to date is given in the1147

work [34], which shows that the standard nuclear norm relaxation approach attains1148

near-optimal sample complexity p �
rν log(νr) log d

d , with no dependence on the condi-1149

tion number. In comparison, Corollaries 7.5 and 7.7 in this paper require the condition1150
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p ≥ c
ε2 ( ν2r2

d + log d
d ). Our results hence match that in [34] up to a factor νr

log νr . We1151

note that other work on factorization-based approaches (e.g., [51,77,81]) also have a1152

similar suboptimality in terms of the rank.1153

8 Robust PCA1154

The goal of robust PCA is to decompose a given matrix W into a sum of a low-rank1155

matrix M� and a sparse matrix S�, where M� represents the principal components, S� the1156

sparse corruption, and W the observed data [15,18,80]. We only consider the symmetric1157

version of the problem. In this section, we explore methods of nonsmooth optimization1158

for recovering such a decomposition, focusing on two different problem formulations.1159

The Euclidean formulation satisfies sharpness with respect to the Frobenius norm. For1160

the non-Euclidean formulation we require a sharpness condition with respect to the1161

matrix �2,1-norm to avoid dimension-dependent rates. Corollary 8.3 and Theorem 8.101162

summarize the convergence guarantees of the subgradient and prox-linear methods for1163

the two formulations.1164

8.1 The Euclidean Formulation1165

Setting the stage, we assume that the matrix W ∈ Rd×d admits a decomposition1166

W = M�+S�, where the matrices M� and S� satisfy the following for some parameters1167

ν > 0 and k ∈ N:1168

1. The matrix M� ∈ Rd×d has rank r and can be factored as M� = X� X�� for some1169

matrix X� ∈ Rd×r satisfying ‖X�‖op ≤ 1 and ‖X�‖2,∞ ≤
√

νr
d .91170

2. The matrix S� is sparse in the sense that it has at most k nonzero entries per1171

column/row.1172

The goal is to recover M� and S� given W . The first formulation we consider is the1173

following:1174

min
X∈X ,S∈S

F
(
(X , S)

) = ‖X X� + S −W‖F , (8.1)1175

where the constraint sets are defined by1176

S :=
{

S ∈ R
d×d : ‖Sei‖1 ≤ ‖S�ei‖1 ∀i

}
, X =

{
X ∈ R

d×r : ‖X‖2,∞ ≤
√

νr

d

}
.1177

Note that the problem formulation requires knowing the �1 norms of the rows of S�.1178

The same condition was also made in [27,42]. While admittedly unrealistic, this for-1179

mulation provides a nice illustration of the paradigm we advocate here. The following1180

technical lemma will be useful in proving the regularity conditions needed for rapid1181

convergence. The proof is given in Appendix D.1.1182

9 Recall that ‖X‖2,∞ = maxi∈[d] ‖Xi ·‖2 is the maximum row norm.
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Lemma 8.1 For all X ∈ X and S ∈ S, the estimate holds:1183

|〈S − S�, X X� − X� X�� 〉| ≤ 10

√
νrk

d
· ‖S − S�‖F · ‖X − X�‖F .1184

Equipped with the above lemma, we can estimate the sharpness and approximation1185

parameters μ, ρ for the formulation (8.1).1186

Lemma 8.2 (Regularity constants) For all X ∈ X and S ∈ S, the estimates hold:1187

F((X , S))2 ≥
(

1
2σ 2

r (X�)− 10
√

νrk
d

)
·
(

dist(X ,D∗(M�))
2 + ‖S − S�‖2F

)
(8.2)1188

and1189

|F((X , S))− FY ((X , S))| ≤ ‖X − Y‖2F . (8.3)1190

Moreover, for any X1, X2 ∈ X and S1, S2 ∈ S, the Lipschitz bounds holds:1191

|F((X1, S1))− F((X2, S2))| ≤ 2
√

νr‖X1 − X2‖F + ‖S1 − S2‖F .1192

Proof Let X� ∈ projD∗(M�)
(X). To establish the bound (8.2), we observe that1193

‖X X� + S −W‖2
F = ‖X X� − M�‖2F + 2〈S − S�, X X� − M�〉 + ‖S − S�‖2F1194

≥ 1

2
σ 2

r (X�)‖X − X�‖2F1195

− 20

√
νrk

d
‖S − S�‖F‖X − X�‖F + ‖S − S�‖2F ,1196

where the first inequality follows from Proposition 4.4 and Lemma 8.1. Now set1197

a := 10

√
νrk

d
, b := ‖X − X�‖F , c := ‖S − S�‖F ,1198

and s := 1
2σ 2

r (X�). With this notation, we apply the Fenchel–Young inequality to1199

show that for any ε > 0, we have1200

2abc ≤ aεb2 + (a/ε)c2.1201

Thus, for any ε > 0, we have1202

‖X X� + S −W‖2
F ≥ sb2 − 2abc + c2 ≥ (s − aε)b2 + (1− a/ε)c2.1203

Now, choose ε > 0 so that s − aε = 1− a/ε. Namely set ε = −(1−s)+
√

(1−s)2+4a2

2a .1204

With this choice of ε and the bound s − aε ≥ 1
2σ 2

r (X�) − 10
√

νrk/d, the claimed1205
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bound (8.2) follows immediately. The bound (8.3) follows from the reverse triangle1206

inequality:1207

|F((X , S))− FY ((X , S))| ≤ ‖X X� − Y Y� − (X − Y )Y� − Y�(X − Y )‖F1208

= ‖X X� − XY� − Y X� + Y Y�‖F1209

= ‖(X − Y )(X − Y )�‖F1210

≤ ‖X − Y‖2F .1211

Finally, observe1212

|F((X1, S1))− F((X2, S2))| ≤ ‖X1 X�1 − X2 X�2 ‖F + ‖S1 − S2‖F1213

≤ ‖X1 + X2‖op‖X1 − X2‖F + ‖S1 − S2‖F1214

≤ 2
√

νr‖X1 − X2‖F + ‖S1 − S2‖F ,1215

where we use the bound ‖Xi‖op ≤
√

d‖Xi‖2,∞ ≤
√

νr in the final inequality. The1216

proof is complete. ��1217

Corollary 8.3 There exist numerical constants c0, c1, c2 > 0 such that the following is1218

true: in the regime
√

νrk
d ≤ c0σ

2
r (X�), the iterates generated by Algorithm 1 applied1219

to solve 8.1 converge linearly and satisfy1220

dist(Xk,D
∗(M�)) ≤

(
1− c1σ

2
r (X�)

νr

) k
2

· c2μ, (8.4)1221

while the iterates generated by Algorithm 3 will converge quadratically when initial-1222

ized at X0 ∈ X , as long as1223

dist(X0,D
∗(M�)) < c2σr (X�). (8.5)1224

8.2 The Non-Euclidean Formulation1225

We next turn to a different formulation for robust PCA that does not require knowledge1226

of �1 row norms of S�. In particular, we consider the formulation1227

min
X∈X

f (X) = ‖X X� −W‖1 where X = {X ∈ Rd×r | ‖X‖2,∞ ≤ C‖X�‖2,∞},
(8.6)1228

for a constant C > 1. Unlike Sect. 8.1, here we consider a randomized model for the1229

sparse matrix S�. We assume that there are real ν, τ > 0 such that1230

1. M� ∈ Rd×d can be factored as M� = X� X�� for some matrix X� ∈ Rd×r satisfying1231

‖X�‖2,∞ ≤
√

νr
d ‖X�‖op.1232
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2. We assume the random corruption model1233

(S�)i j = δi j Ŝi j ∀i, j1234

where δi j are i.i.d. Bernoulli random variables with τ = P(δi j = 1) and Ŝ is an1235

arbitrary and fixed d × d symmetric matrix.1236

In this setting, the approximation function at X is given by1237

fX (Z) = ‖X X −W + X(Z − X)� + (Z − X)X�‖1.1238

We begin by computing an estimate of the approximation accuracy | f (Z)− fX (Z)|.1239

Lemma 8.4 (Approximation accuracy) The estimate holds:1240

| f (Z)− fX (Z)| ≤ ‖Z − X‖2
2,1 for all X , Z ∈ Rd×r .1241

Proof As in the proof of Proposition 4.2, we compute1242

| f (Z)− fX (Z)| =
∣∣∣‖Z Z� −W‖1 − ‖X X −W + X(Z − X)� + (Z − X)X�‖1

∣∣∣1243

≤ ‖(Z − X)(Z − X)�‖1 =
∑
i, j

|e�i (Z − X)(e�j (Z − X))�|1244

≤
∑
i, j

‖e�i (Z − X)‖2 · ‖e�j (Z − X)‖2 = ‖Z − X‖22,1,1245

thereby completing the argument. ��1246

Notice that the error | f (Z)− fX (Z)| is bounded in terms of the non-Euclidean norm1247

‖Z − X‖2,1. Thus, although in principle one may apply subgradient methods to the1248

formulation (8.6), their convergence guarantees, which fundamentally relied on the1249

Euclidean norm, would yield potentially overly pessimistic performance predictions.1250

On the other hand, the convergence guarantees for the prox-linear method do not1251

require the norm to be Euclidean. Indeed, the following is true, with a proof that is1252

nearly identical as that of Theorem 5.8.1253

Theorem 8.5 Suppose that Assumption A holds where ‖ ·‖ is replaced by an arbitrary1254

norm |||·|||. Choose any β ≥ ρ and set γ := ρ/β in Algorithm 3. Then, Algorithm 31255

initialized at any point x0 satisfying dist|||·|||(x0,X
∗) <

μ
ρ

converges quadratically:1256

dist|||·|||(xk+1,X
∗) ≤ ρ

μ
· dist2

|||·|||(xk,X
∗) ∀k ≥ 0.1257

To apply the above generic convergence guarantees for the prox-linear method, it1258

remains to show that the objective function f in (8.6) is sharp relative to the norm1259

‖ · ‖1,2. A key step in showing such a result is to prove that1260

‖X X� − X� X�� ‖1 ≥ c · inf
R�R=I

‖X − X� R‖2,11261
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for a quantity c depending only on X�. One may prove this inequality using Propo-1262

sition 4.4 together with the equivalence of the norms ‖ · ‖F and ‖ · ‖1,2. Doing so1263

however leads to a dimension-dependent c, resulting in a poor rate of convergence1264

and region of attraction. We instead seek to directly establish sharpness relative to the1265

norm ‖ · ‖2,1. In the rank one setting, this can be done using the following theorem.1266

Theorem 8.6 (Sharpness (rank one)) Consider two vectors x, x̄ ∈ Rd satisfying1267

dist‖·‖1(x, {±x̄}) ≤ (
√

2− 1)‖x̄‖1.1268

Then, the estimate holds:1269

‖xx� − x̄ x̄�‖1 ≥ (
√

2− 1) · ‖x̄‖1 · dist‖·‖1(x, {±x̄}).1270

The proof of this result appears in Appendix D.2. We leave as an intriguing open1271

question to determine if an analogous result holds in the higher rank setting.1272

Conjecture 8.7 (Sharpness (general rank)) Fix a rank r matrix X� ∈ Rd×r and set1273

D∗ := {X ∈ X : X X� = X� X�� }. Then, there exist constants c, γ > 0 depending1274

only on X� such that the estimate holds:1275

‖X X� − M‖1 ≥ c · dist‖·‖2,1(X ,D∗),1276

for all X ∈ X satisfying dist‖·‖2,1(X ,D∗) ≤ γ .1277

Assuming this conjecture, we can then show that the loss function f is sharp under1278

the randomized corruption model. We first state the following technical lemma, whose1279

proof is deferred to Appendix D.3. In what follows, given a matrix X ∈ Rd×r , the1280

notation Xi always refers to the i th row of X .1281

Lemma 8.8 Assume Conjecture 8.7. Then, there exist constants c1, c2, c3 > 0 so that1282

for all d satisfying d ≥ c1 log d
τ

, we have that with probability 1− d−c2 , the following1283

bound holds:1284

d∑
i, j=1

δi j |〈Xi , X j 〉 − 〈(X�)i , (X�) j 〉| ≤
(
τ + c3C

√
τνr log d
c ‖X�‖op

)
‖X X� − X� X�� ‖11285

for all X ∈ X satisfying dist‖·‖2,1(X ,D∗) ≤ γ .1286

We remark that we expect c to scale with ‖X�‖op in the above bound, yielding a ratio1287

‖X�‖op/c dependent on the conditioning of X�. Given the above lemma, sharpness of1288

f quickly follows.1289

Lemma 8.9 (Sharpness of Non-Euclidean Robust PCA) Assume Conjecture 8.7. Then,1290

there exists a constants c1, c2, c3 > 0 so that for all d satisfying d ≥ c1 log d
τ

, we have1291

that with probability 1− d−c2 , the following bound holds:1292

f (X)− f (X�) ≥ c ·
(

1− 2τ − 2c3C
√

τνr log d

c
‖X�‖op

)
· dist‖·‖2,1(X ,D∗(M�))1293
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for all X ∈ X satisfying and dist‖·‖2,1(X ,D∗(M�)) ≤ γ .1294

Proof The reverse triangle inequality implies that1295

f (X)− f (X�)1296

= ‖X X� −W‖1 − f (X�)1297

= ‖X X� − X� X�� ‖1 − f (X�)1298

+
d∑

i, j=1

δi j
(|〈Xi , X j 〉 − 〈(X�)i , (X�) j 〉 − (S�)i j | − |〈Xi , X j 〉 − 〈(X�)i , (X�) j 〉|

)
1299

= ‖X X� − X� X�� ‖11300

+
d∑

i, j=1

δi j
(|〈Xi , X j 〉 − 〈(X�)i , (X�) j 〉 − (S�)i j |

)
1301

−
d∑

i, j=1

δi j
(|〈Xi , X j 〉 − 〈(X�)i , (X�) j 〉| − |(S�)i j |

)
1302

≥ ‖X X� − X� X�� ‖1 − 2
d∑

i, j=1

δi j |〈Xi , X j 〉 − 〈(X�)i , (X�) j 〉|.1303

The result them follows from the sharpness of the function ‖X X�− X� X�� ‖1 together1304

with Lemma 8.8. ��1305

Combining Lemma 8.9 and Theorem 8.5, we deduce the following convergence1306

guarantee.1307

Theorem 8.10 (Convergence for non-Euclidean Robust PCA) Assume Conjecture 8.7.1308

Then, there exist constants c1, c2, c3 > 0 so that for all τ satisfying 1 − 2τ −1309

2c3C
√

τνr log d‖X�‖op/c > 0 and d satisfying d ≥ c1 log d
τ

, we have that with prob-1310

ability 1− d−c2 , the iterates generated by the prox-linear algorithm1311

Xk+1 = argmin
x∈X

{
fXk (X)+ 1

2γ
‖X − Xk‖22,1

}
(8.7)1312

satisfy1313

dist‖·‖2,1(Xk+1,D
∗(M�)) ≤

2 · dist2
‖·‖2,1

(Xk,D
∗(M�))

c ·
(

1− 2τ − 2c3C
√

τνr log d
c ‖X�‖op

) , ∀k ≥ 0.1314

In particular, the iterates converge quadratically as long as the initial iterate X0 ∈ X1315

satisfies1316

dist‖·‖2,1(X0,D
∗(M�)) < min

{
(1/2)c ·

(
1− 2τ − 2c3C

√
τνr log d

c
‖X�‖op

)
, γ

}
.1317

1318
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Literature review and comparison of results As in matrix sensing/completion, exist-1319

ing work on robust PCA has considered both convex and nonconvex formulations.1320

The seminal work in [15,18] proposes a convex relaxation approach based on mini-1321

mizing an additive combination of the nuclear norm and �1 norm, which are popular1322

convex penalties used in low-rank matrix recovery and compressed sensing. Provable1323

nonconvex approaches appeared shortly thereafter, again in the form of two-stage1324

algorithms. In [66], the proposed algorithm alternates between projecting to the set1325

of low-rank and sparse matrices. In [80], the authors directly apply projected gradient1326

descent to a smooth loss function (similar to that considered in Sect. 8.1 but with a1327

squared Frobenius norm), also addressing the partially observed case where only a1328

fraction of the entries of M� + S� is revealed. A more recent work [25] analyzes an1329

unconstrained convex objective with regularization for solving the robust PCA prob-1330

lem under various noise models; interestingly, they show that analyzing an auxiliary1331

nonconvex program is key to understanding the statistical properties of the minimizers1332

of the convex objective. In addition to the aforementioned approaches, the landscape1333

analysis of [42] showed that—under slightly different assumptions than those in Sect.1334

8.1 — a smooth nonconvex formulation for robust PCA has no spurious local minima.1335

We compare our results with prior work in terms of sufficient condition for recover-1336

ing the low-rank and sparse matrices. Lemma 8.9 requires τ < 1/r for the sharpness1337

condition to hold with a positive number, whereas Corollary 8.3 requires the condition1338

k < d/r . Both conditions mean that we can tolerate a constant fraction of corruptions1339

assuming r = O(1). These results are consistent with the best known condition1340

achieved by the convex relaxation approach [15,26,49,55]. More precisely, for the1341

deterministic setting in Sect. 8.1, the condition k < d/r matches that in [26,49]. For1342

the randomized setting in Sect. 8.2, the condition τ < 1/r matches that in [15,26,55]1343

for constant r .1344

9 Recovery up to a Tolerance1345

Thus far, we have developed exact recovery guarantees under noiseless or sparsely1346

corrupted measurements. We showed that sharpness together with weak convexity1347

imply rapid local convergence of numerical methods under these settings. In practical1348

scenarios, however, it might be unlikely that any, let alone a constant fraction of1349

measurements, are perfectly observed. Instead, a more realistic model incorporates1350

additive errors that are the sum of a sparse, but otherwise arbitrary vector and a dense1351

vector with relatively small norm. Exact recovery is in general not possible under this1352

noise model. Instead, we should only expect to recover the signal up to an error.1353

To develop algorithms for this scenario, we need only observe that the previously1354

developed sharpness results all yield a corresponding “sharpness up to a tolerance”1355

result. Indeed, all problems considered thus far, are convex composite and sharp:1356

min
x∈X

f (x) := h(F(x)) and f (x)− inf
X

f ≥ μ · dist(x,X ∗),1357
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Foundations of Computational Mathematics

where h is convex and η-Lipschitz with respect to some norm |||·|||, F is a smooth map,1358

and μ > 0. Now consider a fixed additive error vector e, and the perturbed problem1359

min
x∈X

f̃ (x) := h(F(x)+ e). (9.1)1360

The triangle inequality immediately implies that the perturbed problem is sharp up to1361

tolerance 2η|||e|||:1362

f̃ (x)− inf
X

f̃ ≥ μ · dist(x,X ∗)− 2η|||e||| ∀x ∈ X .1363

In particular, any minimizer x∗ of f̃ satisfies1364

dist(x∗,X ∗) ≤ (2η/μ)|||e|||, (9.2)1365

where as before we set X ∗ = argmin
X

f . In this section, we show that subgradient and1366

prox-linear algorithms applied to the perturbed problem (9.1) converge rapidly up to1367

a tolerance on the order of η|||e|||/μ. To see the generality of the above approach,1368

we note that even the robust recovery problems considered in Sect. 4.2.2, in which1369

a constant fraction of measurements are already corrupted, may be further corrupted1370

through additive error vector e. We will study this problem in detail in Sect. 9.1.1371

Throughout the rest of the section, let us define the noise level:1372

ε := η|||e|||.1373

Mirroring the discussion in Sect. 5, define the annulus:1374

T̃γ :=
{

z ∈ X : 14ε

μ
< dist(z,X ∗) <

γμ

4ρ

}
, (9.3)1375

for some γ > 0. Note that for the annulus T̃γ to be nonempty, we must ensure ε <
μ2γ
56ρ

.1376

We will see that T̃γ serves as a region of rapid convergence for some numerical constant1377

γ . As before, we also define subgradient bound and the condition measure:1378

L̃ := sup{‖ζ‖2 : ζ ∈ ∂ f̃ (x), x ∈ T̃1} and τ̃ := μ/L̃.1379

In all examples considered in the paper, it is possible to show directly that L̃ ≤ L as1380

defined in Assumption B. A similar result is true in the general case, as well. Indeed,1381

the following Lemma provides a bound for L̃ in terms of the subgradients of f on a1382

slight expansion of the tube T1 from (5.2); the proof appears in the appendix.1383

Lemma 9.1 Suppose ε <
μ2

56ρ
so that T̃1 is nonempty. Then, the following bound holds:1384

L̃ ≤ sup

{
‖ζ‖2 : ζ ∈ ∂ f (x), dist(x,X ∗) ≤ μ

ρ
, dist(x,X ) ≤ 2

√
ε

ρ

}
+ 2
√

8ρε.1385
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We will now design algorithms whose basin of attraction is the annulus T̃γ for1386

some γ . To that end, the following modified sharpness bound will be useful for us.1387

The reader should be careful to note the appearance of infX f , not infX f̃ in the1388

following bound.1389

Lemma 9.2 (Approximate sharpness) We have the following bound:1390

f̃ (x)− inf
X

f ≥ μ · dist(x,X ∗)− ε ∀x ∈ X . (9.4)1391

Proof For any x ∈ X , observe f̃ (x)− inf f ≥ f (x)− inf f −ε ≥ μ ·dist(x,X ∗)−ε,1392

as claimed. ��1393

Next, we show that f̃ satisfies the following approximate subgradient inequality.1394

Lemma 9.3 (Approximate subgradient inequality) The following bound holds:1395

f (y) ≥ f̃ (x)+ 〈ζ, y − x〉 − ρ

2
‖x − y‖2 − 3ε ∀x, y and ζ ∈ ∂ f̃ (x).1396

Proof First notice that | fx (y)− f̃x (y)| ≤ ε for all x, y. Furthermore, we have ∂ f̃ (x) =1397

∇F(x)∗∂h(F(x) + e) = ∂ f̃x (x). Therefore, it follows that for any ζ ∈ ∂ f̃x (x) we1398

have1399

〈ζ, y − x〉 ≤ f̃x (y)− f̃x (x)1400

≤ fx (y)− fx (x)+ 2η|||e|||1401

≤ f (y)− f (x)+ ρ

2
‖x − y‖2 + 2ε1402

≤ f (y)− f̃ (x)+ ρ

2
‖x − y‖2 + 3ε,1403

as desired. ��1404

Now consider the following modified Polyak method. It is important to note that1405

the stepsize assumes knowledge of minX f rather than minX f̃ . This distinction is1406

important because it often happens that minX f = 0, whereas minX f̃ is in general1407

unknown; for example, consider any noiseless problem analyzed thus far. We note1408

that the standard Polyak subgradient method may also be applied to f̃ without any1409

changes and has similar theoretical guarantees. The proof appears in the appendix.1410

Algorithm 4: Modified Polyak Subgradient Method

Data: x0 ∈ Rd

Step k: (k ≥ 0)
Choose ζk ∈ ∂ f̃ (xk). If ζk = 0, then exit algorithm.

Set xk+1 = projX

(
xk −

f̃ (xk)−minX f

‖ζk‖2
ζk

)
.

1411
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Theorem 9.4 (Polyak subgradient method) Suppose that Assumption B holds and sup-1412

pose that ε ≤ μ2/14ρ. Then, Algorithm 4 initialized at any point x0 ∈ T̃1 produces1413

iterates that converge linearly to X ∗ up to tolerance 14ε/μ, that is1414

dist2(xk+1,X
∗) ≤

(
1− 13τ̃ 2

56

)
dist2(xk,X

∗) ∀k ≥ 0 with dist(xk,X
∗) ≥ 14ε

μ
.1415

Next we provide theoretical guarantees for Algorithm 5.3, where one does not know1416

the optimal value minX f . The proof of this result is a straightforward modification1417

of [31, Theorem 6.1] based on Lemmas 9.2 and 9.3, and therefore we omit it.1418

Theorem 9.5 (Geometrically decaying subgradient method) Suppose that Assump-1419

tion B holds, fix a real number γ ∈ (0, 1), and suppose τ̃ ≤ 14
11

√
1

2−γ
. Suppose also1420

ε <
μ2γ
56ρ

so that T̃γ is nonempty. Set λ := γμ2

4ρ L̃
and q :=

√
1− (1− γ )τ̃ 2 in Algo-1421

rithm 2. Then, the iterates xk generated by Algorithm 2 on the perturbed problem1422

(9.1), initialized at a point x0 ∈ T̃γ , satisfy:1423

dist2(xk;X ∗) ≤
γ 2μ2

16ρ2

(
1− (1− γ )τ̃ 2

)k
∀k ≥ 0 with dist(xk,X

∗) ≥ 14ε
μ

.1424

Finally, we analyze the prox-linear algorithm applied to the problem minX f̃ . In1425

contrast to the Polyak method, one does not need to know the optimal value minX f .1426

The proof appears in the appendix.1427

Theorem 9.6 (Prox-linear algorithm) Suppose Assumptions A holds. Choose any β ≥1428

ρ in Algorithm 3 applied to the perturbed problem (9.1) and set γ := ρ/β. Suppose1429

moreover ε <
μ2γ
56ρ

so that T̃γ is nonempty. Then, Algorithm 3 initialized at any point1430

x0 ∈ T̃γ converges quadratically up to tolerance 14ε/μ:1431

dist(xk+1,X
∗) ≤ 7β

6μ
· dist2(xk,X

∗) ∀k ≥ 0 with dist(xk+1,X
∗) ≥ 14ε

μ
.1432

9.1 Example: Sparse Outliers and Dense Noise Under �1/�2 RIP1433

To further illustrate the ideas of this section, we now generalize the results of Sect. 4.2.2,1434

in particular Condition B, to the following observation model.1435

Condition G (I-outlier bounds) There exist vectors e,Δ ∈ Rm, a set I ⊂ {1, . . . , m},1436

and a constant κ3 > 0 such that the following hold.1437

(C1) b = A(M�)+Δ+ e.1438

(C2) Equality holds Δi = 0 for all i /∈ I.1439

(C3) For all matrices W of rank at most 2r , we have1440

κ3‖W‖F ≤
1

m
‖AIc (W )‖1 −

1

m
‖AI(W )‖1.1441
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Given these assumptions, we follow the notation of the previous section and let1442

f (X) := 1

m
‖A(X X� − M�)−Δ‖1 and f̃ (X) = 1

m
‖A(X X� − M�)−Δ− e‖1.1443

Then, we have the following proposition:1444

Proposition 9.7 Suppose Condition A and G are valid. Then, the following hold:1445

1. (Sharpness) We have1446

f (X)− f (X�) ≥ μ · dist
(
X ,D∗(M�)

)
for all X ∈ Rd×r ,1447

where μ := κ3

√
2(
√

2− 1)σr (X�).1448

2. (Weak Convexity) The function f is ρ := 2κ2-weakly convex.1449

3. (Minimizers) All minimizers of f̃ satisfy1450

dist(X∗,X ∗) ≤ 2 1
m ‖e‖1

κ3

√
2(
√

2− 1)σr (X�)

∀X∗ ∈ argmin
X

f̃ .1451

4. (Lipschitz Bound) We have the bound1452

L̃ ≤ 2κ2 ·
⎛⎝κ3

√
2(
√

2− 1)σr (X�)

8κ2
+ σ1(X�)

⎞⎠ .1453

Proof Sharpness follows from Proposition 4.7, while weak convexity follows from1454

Proposition 4.2. The minimizer bound follows from (9.2). Finally, due to Lemma 3.2,1455

the argument given in Proposition (4.2), but applied instead to f̃ , guarantees that1456

L̃ ≤ 2κ2 · sup

⎧⎨⎩‖X‖op : dist(X ,D∗(M�)) ≤
κ3

√
2(
√

2− 1)σr (X�)

8κ2

⎫⎬⎭ .1457

In turn, the supremum may be bounded as follows: Let X� = X� R denote the closest1458

point to X in D∗(M). Then,1459

‖X‖op ≤ ‖X − X� R‖op + ‖X� R‖op ≤
κ3

√
2(
√

2− 1)σr (X�)

8κ2
+ σ1(X�),1460

as desired. ��1461

In particular, combining Proposition 9.7 with the previous results in this section,1462

we deduce the following. As long as the noise satisfies1463

1

m
‖e‖1 ≤

c0κ
2
3 σr (M�)

κ2
1464
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for a sufficiently small constant c0 > 0, the subgradient and prox-linear methods1465

converge rapidly to within tolerance1466

δ ≈
1
m ‖e‖1

κ3σr (X�)
,1467

when initialized at a matrix X0 satisfying1468

dist(X0,D
∗(M�))√

σr (M�)
≤ c1 ·

κ3

κ2
,1469

for some small constant c1. The formal statement is summarized in the following1470

corollary.1471

Corollary 9.8 (Convergence guarantees under RIP with sparse outliers and dense noise1472

(symmetric)) Suppose Conditions A and G are valid with |||·||| = 1
m ‖ · ‖1 and define1473

the condition number χ = σ1(M�)/σr (M�). Then, there exists numerical constants1474

c0, c1, c2, c3, c4, c5, c6 > 0 such that the following hold. Suppose the noise level1475

satisfies1476

1

m
‖e‖1 ≤

2(
√

2− 1)c0κ
2
3 σr (M�)

28κ2
1477

and define the tolerance1478

δ =
14
m ‖e‖1

κ3

√
2(
√

2− 1)σr (M�)

.1479

Then, as long as the matrix X0 satisfies1480

dist(X0,D∗(M�))√
σr (M�)

≤ c1 ·
κ3

κ2
,1481

the following are true.1482

1. (Polyak subgradient) Algorithm 1 initialized at X0 produces iterates that converge1483

linearly to D∗(M�), that is1484

dist2(Xk,D
∗(M�))

σr (M�)
≤

⎛⎜⎝1− c2

1+ c3κ
2
2 χ

κ2
3

⎞⎟⎠
k

· c4κ
2
3

κ2
2

,1485

for all k ≥ 0 with dist(Xk,X
∗) ≥ δ.1486
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2. (geometric subgradient) Algorithm 2 with parameters λ = c5κ
2
3

√
σr (M�)

κ2(κ3+2κ2
√

χ)
and1487

q =
√

1− c2
1+c3κ

2
2 χ/κ2

3
and initialized at X0 converges linearly:1488

dist2(Xk,D
∗(M�))

σr (M�)
≤

⎛⎜⎝1− c2

1+ c3κ
2
2 χ

κ2
3

⎞⎟⎠
k

· c4κ
2
3

κ2
2

,1489

for all k ≥ 0 with dist(Xk,X
∗) ≥ δ.1490

3. (prox-linear) Algorithm 3 with β = ρ and initialized at X0 converges quadrati-1491

cally:1492

dist(Xk,D∗(M�)))√
σr (M�)

≤ 2−2k · c6κ3

κ2
,1493

for all k ≥ 0 with dist(Xk,X
∗) ≥ δ.1494

10 Numerical Experiments1495

In this section, we demonstrate the theory and algorithms developed in the previous1496

sections on a number of low-rank matrix recovery problems, namely quadratic and1497

bilinear sensing, low-rank matrix completion, and robust PCA.1498

10.1 Robustness to Outliers1499

In our first set of experiments, we empirically test the robustness of our optimization1500

methods to outlying measurements. We generate phase transition plots, where each1501

pixel corresponds to the empirical probability of successful recovery over 50 test1502

runs using randomly generated problem instances. Brighter pixels represent higher1503

recovery rates. All generated instances obey the following:1504

1. The initial estimate is specified reasonably close to the ground truth. In particular,1505

given a target symmetric positive semidefinite matrix X�, we set1506

X0 := X� + δ ·
∥∥X�

∥∥
F ·Δ, where Δ = G

‖G‖F
, Gi j ∼i.i.d. N (0, 1).1507

Here, δ is a scalar that controls the quality of initialization and Δ is a random unit1508

“direction.” The asymmetric setting is completely analogous.1509

2. When using the subgradient method with geometrically decreasing step-size, we1510

set λ = 1.0, q = 0.98.1511

3. For the quadratic sensing, bilinear sensing, and matrix completion problems, we1512

mark a test run as a success when the normalized distance ‖M − M�‖F/‖M�‖F is1513

less than 10−5. Here, we set M = X X� in the symmetric setting and M = XY1514
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Fig. 1 Bilinear sensing with d1 = d2 = d = 100 using Algorithm 2

in the asymmetric setting. For the robust PCA problem, we stop when ‖M −1515

M�‖1/‖M�‖1 < 10−5.1516

Moreover, we set the seed of the random number generator at the beginning of each1517

batch of experiments to enable reproducibility.1518

1519 Quadratic and Bilinear sensing Figures 1 and 2 depict the phase transition plots for1520

bilinear (6.5) and symmetrized quadratic (6.4) sensing formulations using Gaussian1521

measurement vectors. In the experiments, we corrupt a fraction of measurements1522

with additive Gaussian noise of unit entrywise variance. Empirically, we observe1523

that increasing the variance of the additive noise does not affect recovery rates. Both1524

problems exhibit a sharp phase transition at very similar scales. Moreover, increasing1525

the rank of the generating signal does not seem to dramatically affect the recovery rate1526

for either problem. Under additive noise, we can recover the true signal (up to natural1527

ambiguity) even if we corrupt as much as half of the measurements.1528

Robust PCA We generate robust PCA instances for d = 80, r ∈ {1, 2, 4, 8, 16}. The1529

corruption matrix S� follows the assumptions in Sect. 8.2, where for simplicity we set1530
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Fig. 2 Quadratic sensing with symmetrized measurements using Algorithm 2

Ŝi j ∼ N(0, σ 2). We observed that increasing or decreasing the variance σ 2 did not1531

affect the probability of successful recovery, so our experiments use σ = 1. We use1532

the subgradient method, Algorithm 3, and the prox-linear algorithm (8.7). Notice that1533

we have not presented any guarantees for the subgradient method on this problem,1534

in contrast to the prox-linear method. The subproblems for the prox-linear method1535

are solved by ADMM with graph splitting as in [68]. We set tolerance εk = 10−4

2k for1536

the proximal subproblems, which we continue solve for at most 500 iterations. We1537

choose γ = 10 in all subproblems. The phase transition plots are shown in Fig. 3.1538

It appears that the prox-linear method is more robust to additive sparse corruption,1539

since the empirical recovery rate for the subgradient method decays faster as the rank1540

increases.1541

Matrix completion We next perform experiments on the low-rank matrix completion1542

problem that test successful recovery against the sampling frequency. We generate1543

random instances of the problem, where we let the probability of observing an entry,1544

P(δi j = 1), range in [0.02, 0.6] with increments of 0.02. Figure 4 depicts the empir-1545

ical recovery rate using the Polyak subgradient method and the modified prox-linear1546

algorithm (7.1). Similarly to the quadratic/bilinear sensing problems, low-rank matrix1547

completion exhibits a sharp phase transition. As predicted in Sect. 7, the ratio r2

d1548
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Fig. 3 Robust PCA using the subgradient method, Algorithm 2, (top) and the modified prox-linear
method (8.7) (bottom)

appears to be driving the required observation probability for successful recovery.1549

Finally, we empirically observe that the prox-linear method can “tolerate” slightly1550

smaller sampling frequencies.1551

10.2 Convergence Behavior1552

We empirically validate the rapid convergence guarantees of the subgradient and prox-1553

linear methods, given a proper initialization. Moreover, we compare the subgradient1554

method with gradient descent, i.e., gradient descent applied to a smooth formulation1555

of each problem, using the same initial estimate in the noiseless setting. In all the1556

cases below, the step sizes for the gradient method were tuned for best performance.1557

Moreover, we noticed that the gradient descent method, equipped with the Polyak1558

step size η := τ
∇ f
‖∇ f ‖2 performed at least as well as gradient descent with constant1559

step size. That being said, we were unable to locate any theoretical guarantees in the1560

literature for gradient descent with the Polyak step-size for the problems we consider1561

here.1562

1563

Quadratic and Bilinear sensing For the quadratic and bilinear sensing problems, we1564

apply gradient descent on the smooth formulations1565

1

m

∥∥∥A(X X�)− b
∥∥∥2

2
and

1

m
‖A(XY )− b‖2

2 .1566
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Fig. 4 Low-rank matrix completion using the subgradient method, Algorithm 1 (top), and the modified
prox-linear method (7.1) (bottom)
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Fig. 5 Quadratic (left) and bilinear (right) matrix sensing with d = 200, m = 8 · rd, using the subgradient
method, Algorithm 2

In Fig. 5, we plot the performance of Algorithm 2 for matrix sensing problems with1567

different rank/corruption levels; remarkably, the level of noise does not significantly1568

affect the rate of convergence. Additionally, the convergence behavior is almost iden-1569

tical for the two problems for similar rank/noise configurations. Figure 6 depicts the1570

behavior of Algorithm 1 versus gradient descent with empirically tuned step sizes. The1571

subgradient method significantly outperforms gradient descent. For completeness, we1572

also depict the convergence rate of Algorithm 3 for both problems in Fig. 7, where we1573

solve the proximal subproblems approximately.1574

1575
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Fig. 6 Algorithm 1 (solid lines) against gradient descent (dashed lines) with step size η. Left: quadratic
sensing, η = 10−4. Right: bilinear sensing, η = 10−3
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Fig. 7 Quadratic (left) and bilinear (right) matrix sensing with d = 100, m = 8 · rd, using the prox-linear
method, Algorithm 3

Matrix completion In our comparison with smooth methods, we apply gradient1576

descent on the following minimization problem:1577

min
X∈Rd×r :‖X‖2,∞≤C

∥∥∥ΠΩ(X X�)−ΠΩ(M)

∥∥∥2

F
. (10.1)1578

Figure 8 depicts the convergence behavior of Algorithm 1 (solid lines) versus gradient1579

descent applied to Problem (10.1) with a tuned step size η = 0.004 (dashed lines),1580

initialized under the same conditions for low-rank matrix completion instances. As1581

the theory suggests, higher sampling frequency implies better convergence rates. The1582

subgradient method outperforms gradient descent in all regimes.1583

Figure 9 depicts the performance of the modified prox-linear method (7.1) in the1584

same setting as Fig. 8. In most cases, the prox-linear algorithm converges within just1585

15 iterations, at what appears to be a rapid linear rate of convergence. Each convex1586

subproblem is solved using a variant of the graph-splitting ADMM algorithm [68].1587
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Fig. 8 Low-rank matrix completion with d = 100. Left: r = 4, right: r = 8. Solid lines use Algorithm 1,
dashed lines use gradient descent with step η = 0.004
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Fig. 9 Low-rank matrix completion with d = 100 using the modified prox-linear Algorithm (7.1). Left:
r = 4, right: r = 8

Robust PCA For the robust PCA problem, we consider different rank/corruption1588

level configurations to better understand how they affect convergence for the subgra-1589

dient and prox-linear methods, using the non-Euclidean formulation of Sect. 8.2. We1590

depict all configurations in the same plot for a fixed optimization algorithm to better1591

demonstrate the effect of each parameter, as shown in Fig. 10. The parameters of the1592

prox-linear method are chosen in the same way reported in Sect. 10.1. In particular,1593

our numerical experiments appear to support our sharpness Conjecture 8.7 for the1594

robust PCA problem.1595

10.2.1 Recovery Up to Tolerance1596

In this last section, we test the performance of the prox-linear method and the mod-1597

ified Polyak subgradient method (Algorithm 4) for the quadratic sensing and matrix1598

completion problems, under a dense noise model of Sect. 9. In the former setting,1599

we set pfail = 0.25, so 1/4th of our measurements is corrupted with large magnitude1600

noise. For matrix completion, we observe p = 25% of the entries. In both settings,1601
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Fig. 10 �1-robust PCA with d = 100 and p := P(δi j = 1). Left: Algorithm 2, right: Algorithm (7.1)
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Fig. 11 Quadratic sensing with r = 5 (left) and matrix completion with r = 8 (right), d = 100, using
Algorithm 4

we add Gaussian noise e which is rescaled to satisfy ‖e‖F = δσr (X�), and test1602

δ := 10−kσr (X�), k ∈ {1, . . . , 4}. The relevant plots can be found in Figs. 11 and 12.1603

The numerical experiments fully support the developed theory, with the iterates con-1604

verging rapidly up to the tolerance that is proportional to the noise level. Incidentally,1605

we observe that the modified prox-linear method (7.1) is more robust to additive noise1606

for the matrix completion problem, with Algorithm 4 exhibiting heavy fluctuations1607

and failing to converge for the highest level of dense noise.1608

A Proofs in Sect. 51609

In this section, we prove rapid local convergence guarantees for the subgradient and1610

prox-linear algorithms under regularity conditions that hold only locally around a1611

particular solution. We will use the Euclidean norm throughout this section; therefore,1612

to simplify the notation, we will drop the subscript two. Thus, ‖ · ‖ denotes the �2 on1613

a Euclidean space E throughout.1614

We will need the following quantitative version of Lemma 5.1.1615
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Fig. 12 Quadratic sensing with r = 5 (left) and matrix completion with r = 8 (right), d = 100, using
Algorithm (7.1)

Lemma A.1 Suppose Assumption C holds and let γ ∈ (0, 2) be arbitrary. Then, for1616

any point x ∈ Bε/2(x̄) ∩ Tγ \X ∗, the estimate holds:1617

dist (0, ∂ f (x)) ≥ (1− γ
2

)
μ.1618

Proof Consider any point x ∈ Bε/2(x̄) satisfying dist(x,X ∗) ≤ γ
μ
ρ

. Let x∗ ∈1619

projX ∗(x) be arbitrary and note x∗ ∈ Bε(x̄). Thus, for any ζ ∈ ∂ f (x) we deduce1620

μ · dist(x,X ∗) ≤ f (x)− f (x∗) ≤ 〈ζ, x − x∗〉 + ρ

2
‖x − x∗‖2 ≤ ‖ζ‖dist(x,X ∗)1621

+ρ

2
dist2(x,X ∗).1622

Therefore, we deduce the lower bound on the subgradients ‖ζ‖ ≥ μ− ρ
2 ·dist(x,X ∗) ≥1623 (

1− γ
2

)
μ, as claimed. ��1624

A.1 Proof of Theorem 5.61625

Let k be the first index (possibly infinite) such that xk /∈ Bε/2(x̄). We claim that (5.4)1626

holds for all i < k. We show this by induction. To this end, suppose (5.4) holds for all1627

indices up to i − 1. In particular, we deduce dist(xi ,X
∗) ≤ dist(x0,X

∗) ≤ μ
2ρ

. Let1628

x∗ ∈ projX ∗(xi ) and note x∗ ∈ Bε(x̄), since1629

‖x∗ − x̄‖ ≤ ‖x∗ − xi‖ + ‖xi − x̄‖ ≤ 2‖xi − x̄‖ ≤ ε.1630

Thus, we deduce1631

‖xi+1 − x∗‖2 =
∥∥∥projX

(
xi − f (xi )−minX f

‖ζi‖2 ζi

)
− projX (x∗)

∥∥∥2
1632

≤
∥∥∥(xi − x∗)− f (xi )−minX f

‖ζi‖2 ζi

∥∥∥2
(A.1)1633
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= ‖xi − x∗‖2 + 2( f (xi )−minX f )

‖ζi‖2
· 〈ζi , x∗ − xi 〉 +

( f (xi )− f (x∗))2

‖ζi‖2
1634

≤ ‖xi − x∗‖2 + 2( f (xi )−min f )

‖ζi‖2
(

f (x∗)− f (xi )+
ρ

2
‖xi − x∗‖2

)
1635

+ ( f (xi )− f (x∗))2

‖ζi‖2
(A.2)1636

= ‖xi − x∗‖2 + f (xi )−min f

‖ζi‖2
(
ρ‖xi − x∗‖2 − ( f (xi )− f (x∗))

)
1637

≤ ‖xi − x∗‖2 + f (xi )−min f

‖ζi‖2
(
ρ‖xi − x∗‖2 − μ‖xi − x∗‖

)
(A.3)1638

= ‖xi − x∗‖2 + ρ( f (xi )−min f )

‖ζi‖2
(
‖xi − x∗‖ − μ

ρ

)
‖xi − x∗‖1639

≤ ‖xi − x∗‖2 − μ( f (xi )−min f )

2‖ζi‖2
· ‖xi − x∗‖ (A.4)1640

≤
(

1− μ2

2‖ζi‖2

)
‖xi − x∗‖2. (A.5)1641

Here, the estimate (A.1) follows from the fact that the projection projQ(·) is nonexpan-1642

sive, (A.2) uses local weak convexity, (A.4) follow from the estimate dist(xi ,X ∗) ≤1643

μ
2ρ

, while (A.3) and (A.5) use local sharpness. We therefore deduce1644

dist2(xi+1;X ∗) ≤ ‖xi+1 − x∗‖2 ≤
(

1− μ2

2L2

)
dist2(xi ,X

∗). (A.6)1645

Thus, (5.4) holds for all indices up to k − 1. We next show that k is infinite. To this1646

end, observe1647

‖xk − x0‖ ≤
k−1∑
i=0

‖xi+1 − xi‖1648

=
k−1∑
i=0

∥∥∥projX
(

xi − f (xi )−minX f
‖ζi‖2 ζi

)
− projX (xi )

∥∥∥1649

≤
k−1∑
i=0

f (xi )−minX f

‖ζi‖
1650

≤
k−1∑
i=0

〈
ζi
‖ζi‖ , xi − projX ∗(xi )

〉
+ ρ

2‖ζi‖
‖xi − projX ∗(xi )‖21651

≤
k−1∑
i=0

dist(xi ,X
∗)+ 2ρ

3μ
dist2(xi ,X

∗) (A.7)1652

≤ 4

3
·

k−1∑
i=0

dist(xi ,X
∗) (A.8)1653
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≤ 4

3
· dist(x0,X

∗) ·
k−1∑
i=0

(
1− μ2

2L2

) i
2

1654

≤ 16L2

3μ2 · dist(x0,X
∗) ≤ ε

4
, (A.9)1655

where (A.7) follows by Lemma A.1 with γ = 1/2, the bound in (A.8) follows by (A.6)1656

and the assumption on dist(x0,X
∗), finally (A.9) holds thanks to (A.6). Thus, applying1657

the triangle inequality we get the contradiction ‖xk − x̄‖ ≤ ε/2. Consequently, all the1658

iterates xk for k = 0, 1, . . . ,∞ lie in Bε/2(x̄) and satisfy (5.4).1659

Finally, let x∞ be any limit point of the sequence {xi }. We then successively compute1660

‖xk − x∞‖ ≤
∞∑

i=k

‖xi+1 − xi‖ ≤
∞∑

i=k

f (xi )−min f

‖ζi‖
1661

≤ 4L

3μ
·
∞∑

i=k

dist(xi ,X
∗)1662

≤ 4L

3μ
· dist(x0,X

∗) ·
∞∑

i=k

(
1− μ2

2L2

) i
2

1663

≤ 16L3

3μ3 · dist(x0,X
∗) ·
(

1− μ2

2L2

) k
2

.1664

This completes the proof.1665

Proof of Theorem 5.71666

Fix an arbitrary index k and observe1667

‖xk+1 − xk‖ =
∥∥∥∥projQ(xk)− projQ

(
xk − αk

ξk

‖ξk‖

)∥∥∥∥ ≤ αk = λ · qk .1668

Hence, we conclude the uniform bound on the iterates:1669

‖xk − x0‖ ≤
∞∑

i=0

‖xi+1 − xi‖ ≤ λ
1−q1670

and the linear rate of convergence1671

‖xk − x∞‖ ≤
∞∑

i=k

‖xi+1 − xi‖ ≤ λ
1−q qk,1672

where x∞ is any limit point of the iterate sequence.1673
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Let us now show that the iterates do not escape Bε/2(x̄). To this end, observe1674

‖xk − x̄‖ ≤ ‖xk − x0‖ + ‖x0 − x̄‖ ≤ λ
1−q + ε

4 .1675

We must therefore verify the estimate λ
1−q≤ ε

4 , or equivalently γ≤ ερL(1−γ )τ 2

4μ2(1+
√

1−(1−γ )τ 2)
.1676

Clearly, it suffices to verify γ ≤ ερ(1−γ )
4L , which holds by the definition of γ . Thus,1677

all the iterates xk lie in Bε/2(x̄). Moreover, τ ≤
√

1
2 ≤
√

1
2−γ

, the rest of the proof is1678

identical to that in [31, Theorem 5.1].1679

A.3 Proof of Theorem 5.81680

Fix any index i such that xi ∈ Bε(x̄) and let x ∈ X be arbitrary. Since the function1681

z �→ fxi (z)+ β
2 ‖z − xi‖2 is β-strongly convex and xi+1 is its minimizer, we deduce1682

(
fxi (xi+1)+

β

2
‖xi+1 − xi‖2

)
+ β

2
‖xi+1 − x‖2 ≤ fxi (x)+ β

2
‖x − xi‖2. (A.10)1683

Setting x = xi and appealing to approximation accuracy, we obtain the descent guar-1684

antee1685

‖xi+1 − xi‖2 ≤
2

β
( f (xi )− f (xi+1)). (A.11)1686

In particular, the function values are decreasing along the iterate sequence. Next choos-1687

ing any x∗ ∈ projX ∗(xi ) and setting x = x∗ in (A.10) yields1688

(
fxi (xi+1)+

β

2
‖xi+1 − xi‖2

)
+ β

2
‖xi+1 − x∗‖2 ≤ fxi (x∗)+ β

2
‖x∗ − xi‖2.1689

Appealing to approximation accuracy and lower-bounding β
2 ‖xi+1 − x∗‖2 by zero,1690

we conclude1691

f (xi+1) ≤ f (x∗)+ β‖x∗ − xi‖2. (A.12)1692

Using sharpness, we deduce the contraction guarantee1693

f (xi+1)− f (x∗) ≤ β · dist2(xi ,X
∗)1694

≤ β

μ2 ( f (xi )− f (x∗))2
1695

≤ β( f (xi )− f (x∗))
μ2 · ( f (xi )− f (x∗)) ≤ 1

2
· ( f (xi )− f (x∗)),

(A.13)

1696
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where the last inequality uses the assumption f (x0) − minX f ≤ μ2

2β
. Let k > 0 be1697

the first index satisfying xk /∈ Bε(x̄). We then deduce1698

‖xk − x0‖ ≤
k−1∑
i=0

‖xi+1 − xi‖ ≤
√

2

β
·

k−1∑
i=0

√
f (xi )− f (xi+1) (A.14)1699

≤
√

2

β
·

k−1∑
i=0

√
f (xi )− f (x∗)1700

≤
√

2

β
·
√

f (x0)− f (x∗) ·
k−1∑
i=0

(
1

2

) i
2

1701

≤ 1√
2− 1

√
f (x0)− f (x∗)

β
≤ ε/2, (A.15)1702

where (A.14) follows from (A.11) and (A.15) follows from (A.13). Thus, we con-1703

clude ‖xk − x̄‖ ≤ ε, which is a contradiction. Therefore, all the iterates xk , for1704

k = 0, 1, . . . ,∞, lie in Bε(x̄). Combining this with (A.12) and sharpness yields the1705

claimed quadratic converge guarantee1706

μ · dist(xk+1,X
∗) ≤ f (xk+1)− f (x̄) ≤ β · dist2(xk,X ).1707

Finally, let x∞ be any limit point of the sequence {xi }. We then deduce1708

‖xk − x∞‖ ≤
∞∑

i=k

‖xi+1 − xi‖ ≤
√

2

β
·
∞∑

i=k

√
f (xi )− f (xi+1)1709

≤
√

2

β
·
∞∑

i=k

√
f (xi )−min

X
f1710

≤ μ
√

2

β
·
∞∑

i=k

(
β

μ2 ( f (x0)−min f )

)2i−1

1711

≤ μ
√

2

β
·
∞∑

i=k

(
1

2

)2i−1

1712

≤ μ
√

2

β

∞∑
j=0

(
1

2

)2k−1+ j

≤ 2
√

2μ

β
·
(

1

2

)2k−1

,

(A.16)

1713

where (A.16) follows from (A.13). The theorem is proved.1714
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B Proofs in Sect. 61715

B.1 Proof of Lemma 6.31716

In order to prove that the assumption in each case, we will prove a stronger “small-1717

ball condition” [62,63], which immediately implies the claimed lower bounds on the1718

expectation by Markov’s inequality. More precisely, we will show that there exist1719

numerical constants μ0, p0 > 0 such that1720

1. (Matrix Sensing)1721

inf
M : Rank M≤2r
‖M‖F=1

P(|〈P, M〉| ≥ μ0) ≥ p0,1722

2. (Quadratic Sensing I)1723

inf
M∈Sd : Rank M≤2r

‖M‖F=1

P(|p�Mp| ≥ μ0) ≥ p0,1724

3. (Quadratic Sensing II)1725

inf
M∈Sd : Rank M≤2r

‖M‖F=1

P
(|p�Mp − p̃�M p̃| ≥ μ0

) ≥ p0,1726

4. (Bilinear Sensing)1727

inf
M : Rank M≤2r
‖M‖F=1

P(|p�Mq| ≥ μ0) ≥ p0.1728

These conditions immediately imply Assumptions C-F. Indeed, by Markov’s1729

inequality, in the case of matrix sensing we deduce1730

E|〈P, M〉| ≥ μ0P (|〈P, M〉| > μ0) ≥ μ0 p0.1731

The same reasoning applies to all the other problems.1732

1733

Matrix sensing Consider any matrix M with ‖M‖F = 1. Then, since g := 〈P, M〉1734

follows a standard normal distribution, we may set μ0 to be the median of |g| and1735

p0 = 1/2 to obtain1736

inf
M : Rank M≤2r
‖M‖F=1

P(|〈P, M〉| ≥ μ0) = P(|g| ≥ μ0) ≥ p0.1737

1738
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Quadratic Sensing I Fix a matrix M with Rank M ≤ 2r and ‖M‖F = 1. Let1739

M = U DU� be an eigenvalue decomposition of M . Using the rotational invariance1740

of the Gaussian distribution, we deduce1741

p�Mp
d= p�Dp =

2r∑
k=1

λk p2
k ,1742

where
d= denotes equality in distribution. Next, let z be a standard normal variable.1743

We will now invoke Proposition F.2. Let C > 0 be the numerical constant appearing1744

in the proposition. Notice that the function φ : R+ → R given by1745

φ(t) = sup
u∈R

P(|z2 − u| ≤ t)1746

is continuous and strictly increasing, and it satisfies φ(0) = 0 and limt→∞ φ(t) = 1.1747

Hence, we may set μ0 = φ−1(min{1/2C, 1/2}). Proposition F.2 then yields1748

P(|p�Mp| ≤ μ0) = P

(∣∣∣∣∣
2r∑

k=1

λk p2
k

∣∣∣∣∣ ≤ μ0

)
≤ sup

u∈R
P

(∣∣∣∣∣
2r∑

k=1

λk p2
k − u

∣∣∣∣∣ ≤ μ0

)
1749

≤ Cφ(μ0) ≤
1

2
.1750

By taking the supremum of both sides of the inequality we conclude that Assumption D1751

holds with μ0 and p0 = 1/2.1752

1753

Quadratic sensing II Let M = U DU� be an eigenvalue decomposition of M . Using1754

the rotational invariance of the Gaussian distribution, we deduce1755

p�Mp − p̃�M p̃
d= p�Dp − p̃�D p̃ =

2r∑
k=1

λk

(
p2

k − p̃2
k

)
d= 2

2r∑
k=1

λk pk p̃k,1756

where the last relation follows since (pk − p̃k) , (pk + p̃k) are independent standard1757

normal random variables with mean zero and variance two. We will now invoke Propo-1758

sition F.2. Let C > 0 be the numerical constant appearing in the proposition. Let z and1759

z̃ be independent standard normal variables. Notice that the function φ : R+ → R1760

given by1761

φ(t) = sup
u∈R

P(|2zz̃ − u| ≤ t)1762

123

Journal: 10208 Article No.: 9490 TYPESET DISK LE CP Disp.:2020/12/22 Pages: 89 Layout: Small-Ex

A
u

th
o

r
 P

r
o

o
f



un
co

rr
ec

te
d

pr
oo

f

Foundations of Computational Mathematics

is continuous, strictly increasing, satisfies φ(0) = 0 and approaches one at infinity.1763

Defining μ0 = φ−1(min{1/2C, 1/2}) and applying Proposition F.2, we get1764

P

(∣∣∣∣∣2
2r∑

k=1

σk pk p̃k

∣∣∣∣∣ ≤ μ0

)
≤ sup

u∈R
P

(∣∣∣∣∣2
2r∑

k=1

σk pk p̃k − u

∣∣∣∣∣ ≤ μ0

)
≤ Cφ(μ0) ≤

1

2
.1765

By taking the supremum of both sides of the inequality we conclude that Condition E1766

holds with μ0 and p0 = 1/2.1767

We omit the details for the bilinear case, which follow by similar arguments.1768

B.2 Proof of Theorem 6.41769

The proofs in this section rely on the following proposition, which shows that that1770

pointwise concentration imply uniform concentration. We defer the proof to Appendix1771

B.3.1772

Proposition B.1 Let A : Rd1×d2 → Rm be a random linear mapping with property1773

that for any fixed matrix M ∈ Rd1×d2 of rank at most 2r with norm ‖M‖F = 1 and1774

any fixed subset of indices I ⊆ {1, . . . , m} satisfying |I| < m/2, the following hold:1775

(1) The measurements A(M)1, . . . ,A(M)m are i.i.d.1776

(2) RIP holds in expected value:1777

α ≤ E|A(M)i | ≤ β(r) for all i ∈ {1, . . . , m} (B.1)1778

where α > 0 is a universal constant and β is a positive-valued function that could1779

potentially depend on the rank of M.1780

(3) There exist a universal constant K > 0 and a positive-valued function c(m, r)1781

such that for any t ∈ [0, K ] the deviation bound1782

1

m

∣∣‖AIc (M)‖1 − ‖AI(M)‖1 − E
[‖AIc (M)‖1 − ‖AI(M)‖1

]∣∣ ≤ t (B.2)1783

holds with probability at least 1− 2 exp(−t2c(m, r)).1784

Then, there exist universal constants c1, . . . , c6 > 0 depending only on α and K such1785

that if I ⊆ {1, . . . , m} is a fixed subset of indices satisfying |I| < m/2 and1786

c(m, r) ≥ c1

(1− 2|I|/m)2 r(d1 + d2 + 1) ln

(
c2 +

c2β(r)

1− 2|I|/m

)
1787

then with probability at least 1−4 exp
(−c3(1− 2|I|/m)2c(m, r)

)
every matrix M ∈1788

Rd1×d2 of rank at most 2r satisfies1789

c4‖M‖F ≤
1

m
‖A(M)‖1 ≤ c5β(r)‖M‖F , (B.3)1790
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and1791

c6

(
1− 2|I|

m

)
‖M‖F ≤

1

m
(‖AIc (M)‖1 − ‖AI M‖1) . (B.4)1792

Due to scale invariance of the above result, we need only verify it in the case that1793

‖M‖F = 1. We implicitly use this observation below.1794

B.2.1 Part 1 of Theorem 6.4 (Matrix sensing)1795

Lemma B.2 The random variable |〈P, M〉| is sub-Gaussian with parameter Cη. Con-1796

sequently,1797

α ≤ E|〈P, M〉| � η. (B.5)1798

Moreover, there exists a universal constant c > 0 such that for any t ∈ [0,∞) the1799

deviation bound1800

1

m

∣∣‖AIc (M)‖1 − ‖AI(M)‖1 − E
[‖AIc (M)‖1 − ‖AI(M)‖1

]∣∣ ≤ t (B.6)1801

holds with probability at least 1− 2 exp
(
− ct2

η2 m
)

.1802

Proof Condition C immediately implies the lower bound in (B.5). To prove the upper1803

bound, first note that by assumption we have1804

‖〈P, M〉‖ψ2 � η.1805

This bound has two consequences, first 〈P, M〉 is a sub-Gaussian random variable1806

with parameter η and second E|〈P, M〉| � η [79, Proposition 2.5.2]. Thus, we have1807

proved (B.5).1808

To prove the deviation bound (B.6), we introduce the random variables1809

Yi =
{
|〈Pi , M〉| − E|〈Pi , M〉| if i /∈ I, and

− (|〈Pi , M〉| − E|〈Pi , M〉|) otherwise.
1810

Since |〈Pi , M〉| is sub-Gaussian, we have ‖Yi‖ψ2 � η for all i, see [79, Lemma 2.6.8].1811

Hence, Hoeffding’s inequality for sub-Gaussian random variables [79, Theorem 2.6.2]1812

gives the desired upper bound on P
( 1

m

∣∣∑m
i=1 Yi

∣∣ ≥ t
)
. ��1813

Applying Proposition B.1 with β(r) � η and c(m, r) � m/η2 now yields the result.1814

��1815

B.2.2 Part 2 of Theorem 6.4 (Quadratic sensing I)1816

Lemma B.3 The random variable |p�Mp| is sub-exponential with parameter
√

2rη2.1817

Consequently,1818

α ≤ E|p�Mp| �
√

2rη2. (B.7)1819

123

Journal: 10208 Article No.: 9490 TYPESET DISK LE CP Disp.:2020/12/22 Pages: 89 Layout: Small-Ex

A
u

th
o

r
 P

r
o

o
f



un
co

rr
ec

te
d

pr
oo

f

Foundations of Computational Mathematics

Moreover, there exists a universal constant c > 0 such that for any t ∈ [0,
√

2rη] the1820

deviation bound1821

1

m

∣∣‖AIc (M)‖1 − ‖AI(M)‖1 − E
[‖AIc (M)‖1 − ‖AI(M)‖1

]∣∣ ≤ t (B.8)1822

holds with probability at least 1− 2 exp
(
− ct2

η4 m/r
)

.1823

Proof Condition D gives the lower bound in (B.7). To prove the upper bound, first1824

note that M =∑2r
k=1 σkuku�k where σk and uk are the kth singular values and vectors1825

of M , respectively. Hence,1826

‖p�Mp‖ψ1 =
∥∥∥∥∥p�

(
2r∑

k=1

σkuku�k

)
p

∥∥∥∥∥
ψ1

=
∥∥∥∥∥

2r∑
k=1

σk〈p, uk〉2
∥∥∥∥∥

ψ1

1827

≤
2r∑

k=1

σk

∥∥∥〈p, uk〉2
∥∥∥

ψ1
≤

2r∑
k=1

σk ‖〈p, uk〉‖2
ψ2
= η2

2r∑
k=1

σk ≤
√

2rη2,1828

where the first inequality follows since ‖ · ‖ψ1 is a norm, the second one follows1829

since ‖XY‖ψ1 ≤ ‖X‖ψ2‖Y‖ψ2 [79, Lemma 2.7.7], and the third inequality holds1830

since ‖σ‖1 ≤
√

2r‖σ‖2. This bound has two consequences, first p�Mp is a sub-1831

exponential random variable with parameter
√

rη2 and second Ep�Mp ≤ √2rη2
1832

[79, Exercise 2.7.2]. Thus, we have proved (B.7).1833

To prove the deviation bound (B.8), we introduce the random variables1834

Yi =
{

p�i Mpi − Ep�i Mpi if i /∈ I, and

− (p�i Mpi − Ep�i Mpi
)

otherwise.
1835

Since p�Mp is sub-exponential, we have ‖Yi‖ψ1 �
√

rη2 for all i, see [79, Exer-1836

cise 2.7.10]. Hence, Bernstein inequality for sub-exponential random variables [79,1837

Theorem 2.8.2] gives the desired upper bound on P
( 1

m

∣∣∑m
i=1 Yi

∣∣ ≥ t
)
. ��1838

Applying Proposition B.1 with β(r) � √rη2 and c(m, r) � m/η4r now yields the1839

result. ��1840

B.2.3 Part 3 of Theorem 6.4 (Quadratic sensing II)1841

Lemma B.4 The random variable |p�Mp − p̃�M p̃| is sub-exponential with param-1842

eter Cη2. Consequently,1843

α ≤ E|p�Mp − p̃�M p̃| � η2. (B.9)1844

Moreover, there exists a universal constant c > 0 such that for any t ∈ [0, η2] the1845

deviation bound1846

1

m

∣∣‖AIc (M)‖1 − ‖AI(M)‖1 − E
[‖AIc (M)‖1 − ‖AI(M)‖1

]∣∣ ≤ t (B.10)1847

123

Journal: 10208 Article No.: 9490 TYPESET DISK LE CP Disp.:2020/12/22 Pages: 89 Layout: Small-Ex

A
u

th
o

r
 P

r
o

o
f



un
co

rr
ec

te
d

pr
oo

f

Foundations of Computational Mathematics

holds with probability at least 1− 2 exp
(
− ct2

η4 m
)

.1848

Proof Condition E implies the lower bound in (B.9). To prove the upper bound, we1849

will show that ‖|p�Mp − p̃�M p̃�|‖ψ1 ≤ η2. By definition of the Orlicz norm1850

‖|X |‖ψ1 = ‖X‖ψ1 for any random variable X , hence without loss of generality we1851

may remove the absolute value. Recall that M =∑2r
k=1 σkuku�k where σk and uk are1852

the kth singular values and vectors of M , respectively. Hence, the random variable of1853

interest can be rewritten as1854

p�Mp − p̃�M p̃� d=
2r∑

k=1

σk

(
〈uk, p〉2 − 〈uk, p̃〉2

)
. (B.11)1855

By assumption the random variables 〈uk, p〉 are η-sub-Gaussian, this implies that1856

〈uk, p〉2 are η2-sub-exponential, since ‖〈uk, p〉2‖ψ1 ≤ ‖〈uk, p〉‖2ψ2
.1857

Recall the following characterization of the Orlicz norm for mean-zero random1858

variables1859

‖X‖ψ1 ≤ Q ⇐⇒ E exp(λX) ≤ exp(Q̃2λ2) for all λ satisfying |λ| ≤ 1/Q̃2

(B.12)1860

where the Q � Q̃, see [79, Proposition 2.7.1]. To prove that the random variable (B.11)1861

is sub-exponential we will exploit this characterization. Since each inner product1862

squared 〈uk, p〉2 is sub-exponential, the equivalence implies the existence of a constant1863

c > 0 for which the uniform bound1864

E exp(λ〈uk, p〉2) ≤ exp
(

cη4λ2
)

for all k ∈ [2r ] and |λ| ≤ 1/cη4 (B.13)1865

holds. Let λ be an arbitrary scalar with |λ| ≤ 1/cη4, then by expanding the moment1866

generating function of (B.11) we get1867

E exp

(
λ

2r∑
k=1

σk

(
〈uk, p〉2 − 〈uk, p̃〉2

))
1868

= E

2r∏
k=1

exp
(
λσk〈uk, p〉2

)
exp
(
−λσk〈uk, p̃〉2

)
1869

=
2r∏

k=1

E exp
(
λσk〈uk, p〉2

)
E exp

(
−λσk〈uk, p̃〉2

)
1870

≤
2r∏

k=1

exp
(
(cη)2λ2σ 2

k

)
exp
(

cη4λ2σ 2
k

)
1871

= exp

(
2cη4λ2

2r∑
k=1

σ 2
k

)
= exp

(
2cη4λ2

)
.1872
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where the inequality follows by (B.13) and the last relation follows since σ is unit1873

norm. Combining this with (B.12) gives1874

‖|p�Mp − p̃�M p̃�|‖ψ1 � η2.1875

This bound has two consequences, first |p�Mp − p̃�M p̃�| is a sub-exponential1876

random variable with parameter Cη2 and second E|p�Mp − p̃�M p̃�| ≤ Cη2 [79,1877

Exercise 2.7.2]. Thus, we have proved (B.9).1878

To prove the deviation bound (B.10) we introduce the random variables1879

Yi =
{

A(M)i − EA(M)i if i /∈ I, and

− (A(M)i − EA(M)i ) otherwise.
1880

The sub-exponentiality of A(M)i implies ‖Yi‖ψ1 � η2 for all i, see [79, Exercise1881

2.7.10]. Hence, Bernstein inequality for sub-exponential random variables [79, The-1882

orem 2.8.2] gives the desired upper bound on P
( 1

m

∣∣∑m
i=1 Yi

∣∣ ≥ t
)
. ��1883

Applying Proposition B.1 with β(r) � η2 and c(m, r) � m/η4 now yields the result.1884

��1885

B.2.4 Part 4 of Theorem 6.4 (Bilinear sensing)1886

Lemma B.5 The random variable |p�Mq| is sub-exponential with parameter Cη2.1887

Consequently,1888

α ≤ E|p�Mq| � η2. (B.14)1889

Moreover, there exists a universal constant c > 0 such that for any t ∈ [0, η2] the1890

deviation bound1891

1

m

∣∣‖AIc (M)‖1 − ‖AI(M)‖1 − E
[‖AIc (M)‖1 − ‖AI(M)‖1

]∣∣ ≤ t (B.15)1892

holds with probability at least 1− 2 exp
(
− ct2

η4 m
)

.1893

Proof As before the lower bound in (B.14) is implied by Condition F. To prove the1894

upper bound, we will show that ‖|p�Mq|‖ψ1 ≤ η2. By definition of the Orlicz norm1895

‖|X |‖ψ1 = ‖X‖ψ1 for any random variable X , hence we may remove the absolute1896

value. Recall that M = ∑2r
k=1 σkukv

�
k where σk and (uk, vk) are the kth singular1897

values and vectors of M , respectively. Hence, the random variable of interest can be1898

rewritten as1899

p�Mq
d=

2r∑
k=1

σk〈p, uk〉〈vk, q〉. (B.16)1900

By assumption the random variables 〈p, uk〉 and 〈vk, q〉 are η-sub-Gaussian, this1901

implies that 〈p, uk〉〈vk, q〉 are η2-sub-exponential.1902
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To prove that the random variable (B.16) is sub-exponential, we will again use1903

(B.12). Since each random variable 〈p, uk〉〈vk, q〉 is sub-exponential, the equivalence1904

implies the existence of a constant c > 0 for which the uniform bound1905

E exp(λ〈p, uk〉〈vk, q〉) ≤ exp
(

cη4λ2
)

for all k ∈ [2r ] and |λ| ≤ 1/cη4 (B.17)1906

holds. Let λ be an arbitrary scalar with |λ| ≤ 1/cη4, then by expanding the moment1907

generating function of (B.16) we get1908

E exp

(
λ

2r∑
k=1

σk〈p, uk〉〈vk, q〉
)
=

2r∏
k=1

E exp (λσk〈p, uk〉〈vk, q〉)1909

≤ exp

(
2cη4λ2

r∑
k=1

σ 2
k

)
= exp

(
2cη4λ2

)
.1910

where the inequality follows by (B.17) and the last relation follows since σ is unitary.1911

Combining this with (B.12) gives1912

‖|p�Mq|‖ψ1 � η2.1913

Thus, we have proved (B.14).1914

Once again, to show the deviation bound (B.15) we introduce the random variables1915

Yi =
{
|p�i Mqi | − E|p�i Mqi | if i /∈ I, and

− (|p�i Mqi | − E|p�i Mqi |
)

otherwise.
1916

and apply Bernstein’s inequality for sub-exponential random variables [79, Theorem1917

2.8.2] to get the stated upper bound on P
( 1

m

∣∣∑m
i=1 Yi

∣∣ ≥ t
)
. ��1918

Applying Proposition B.1 with β(r) � η2 and c(m, r) � m/η4 now yields the result.1919

��1920

B.3 Proof of Proposition B.11921

Choose ε ∈ (0,
√

2) and let N be the (ε/
√

2)-net guaranteed by Lemma F.1. Pick1922

some t ∈ (0, K ] so that (B.2) can hold, we will fix the value of this parameter later in1923

the proof. Let E denote the event that the following two estimates hold for all matrices1924

in M ∈ N :1925

1

m

∣∣∣‖AIc (M)‖1 − ‖AI(M)‖1 − E [‖AIc (M)‖1 − ‖AI(M)‖1]
∣∣∣ ≤ t, (B.18)1926

1

m

∣∣∣‖A(M)‖1 − E [‖A(M)‖1]
∣∣∣ ≤ t . (B.19)1927
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Throughout the proof, we will assume that the event E holds. We will estimate the1928

probability of E at the end of the proof. Meanwhile, seeking to establish RIP, define1929

the quantity1930

c2 := sup
M∈S2r

1

m
‖A(M)‖1.1931

We aim first to provide a high probability bound on c2.1932

Let M ∈ S2r be arbitrary and let M� be the closest point to M in N . Then, we have1933

1

m
‖A(M)‖1 ≤

1

m
‖A(M�)‖1 +

1

m
‖A(M − M�)‖11934

≤ 1

m
E‖A(M�)‖1 + t + 1

m
‖A(M − M�)‖1 (B.20)1935

≤ 1

m
E‖A(M)‖1 + t + 1

m
(E‖A(M − M�)‖1 + ‖A(M − M�)‖1) ,

(B.21)

1936

where (B.20) follows from (B.19) and (B.21) follows from the triangle inequality.1937

To simplify the third term in (B.21), using SVD, we deduce that there exist two1938

orthogonal matrices M1, M2 of rank at most 2r satisfying M−M� = M1+M2. With1939

this decomposition in hand, we compute1940

1

m
‖A(M − M�)‖1 ≤

1

m
‖A(M1)‖1 +

1

m
‖A(M2)‖11941

≤ c2(‖M1‖F + ‖M2‖F ) ≤
√

2c2‖M − M�‖F ≤ c2ε, (B.22)1942

where the second inequality follows from the definition of c2 and the estimate ‖M1‖F+1943

‖M2‖F ≤
√

2‖(M1, M2)‖F =
√

2‖M1 + M2‖F . Thus, we arrive at the bound1944

1

m
‖A(M)‖1 ≤

1

m
E‖A(M)‖1 + t + 2c2ε. (B.23)1945

As M was arbitrary, we may take the supremum of both sides of the inequality, yielding1946

c2 ≤ 1
m supM∈S2r

E‖A(M)‖1 + t + 2c2ε. Rearranging yields the bound1947

c2 ≤
1
m supM∈S2r

E‖A(M)‖1 + t

1− 2ε
.1948

Assuming that ε ≤ 1/4, we further deduce that1949

c2 ≤ σ̄ := 2

m
sup

M∈S2r

E‖A(M)‖1 + 2t ≤ 2β(r)+ 2t, (B.24)1950

establishing that the random variable c2 is bounded by σ̄ in the event E .1951
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Now let Î denote either Î = ∅ or Î = I. We now provide a uniform lower bound1952

on 1
m ‖AÎc (M)‖1 − 1

m ‖AÎ
(M)‖1. Indeed,1953

1

m
‖A

Îc (M)‖1 −
1

m
‖A

Î
(M)‖11954

= 1

m
‖A

Îc (M�)+A
Îc (M − M�)‖1 −

1

m
‖A

Î
(M�)+A

Î
(M − M�)‖11955

≥ 1

m
‖A

Îc (M�)‖1 −
1

m
‖A

Î
(M�)‖1 −

1

m
‖A(M − M�)‖1 (B.25)1956

≥ 1

m
E

[
‖A

Îc (M�)‖1 − ‖AÎ
(M�)‖1

]
− t − 1

m
‖A(M − M�)‖1 (B.26)1957

≥ 1

m
E

[
‖A

Îc (M)‖1 − ‖AÎ
(M)‖1

]
− t − 1

m
(E‖A(M − M�)‖1 + ‖A(M − M�)‖1)

(B.27)

1958

≥ 1

m
E

[
|‖A

Îc (M)‖1 − ‖AÎ
(M)‖1

]
− t − 2σ̄ ε, (B.28)1959

where (B.25) uses the forward and reverse triangle inequalities, (B.26) follows1960

from (B.18), the estimate (B.27) follows from the forward and reverse triangle inequal-1961

ities, and (B.28) follows from (B.22) and (B.24). Switching the roles of I and Ic in1962

the above sequence of inequalities, and choosing ε = t/4σ̄ , we deduce1963

1

m
sup

M∈S2r

∣∣∣‖A
Îc (M)‖1 − ‖AÎ

(M)‖1 − E
[‖A

Îc (M)‖1 − ‖AÎ
(M)‖1

] ∣∣∣ ≤ 3t

2
.1964

In particular, setting Î = ∅, we deduce1965

1

m
sup

M∈S2r

∣∣∣‖A(M)‖1 − E [‖A(M)‖1]
∣∣∣ ≤ 3t

2
1966

and therefore using (B.1), we conclude the RIP property1967

α − 3t

2
≤ 1

m
‖A(M)‖1 � β(r)+ 3t

2
, ∀X ∈ S2r . (B.29)1968

Next, let Î = I and note that1969

1

m
E
[‖A

Îc (M)‖1 − ‖AÎ
(M)‖1

] = |Ic| − |I|
m

· E|A(M)i | ≥
(

1− 2|I|
m

)
α,1970

where the equality follows by assumption (1). Therefore, every M ∈ S2r satisfies1971

1

m

[‖A
Îc (M)‖1 − ‖AÎ

(M)‖1
] ≥ (1− 2|I|

m

)
α − 3t

2
. (B.30)1972
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Setting t = 2
3 min{α, α(1− 2|I|/m)/2} = 1

3α(1− 2|I|/m) in (B.29) and (B.30), we1973

deduce the claimed estimates (B.3) and (B.4). Finally, let us estimate the probability1974

of E . Using the union bound and Lemma F.1 yields1975

P(Ec) ≤
∑

M∈N
P
{
(B.18) or (B.19) fails at M

}
1976

≤ 4|N | exp
(
−t2c(m, r)

)
1977

≤ 4

(
9

ε

)2(d1+d2+1)r

exp
(
−t2c(m, r)

)
1978

= 4 exp
(

2(d1 + d2 + 1)r ln(9/ε)− t2c(m, r)
)

1979

where c(m, r) is the function guaranteed by assumption (3).1980

By (B.1), we get 1/ε = 4σ̄ /t � 2+ β(r)/(1− 2|I|/m). Then, we deduce1981

P(Ec) ≤ 4 exp

(
c1(d2 + d2 + 1)r ln

(
c2 +

c2β(r)

1− 2|I|/m

)
− α2

9
(1− 2|I|

m
)2c(m, r)

)
.1982

Hence, as long as c(m, r) ≥ 9c1(d1+d2+1)r2 ln
(

c2+ c2β(r)

1−2|I|/m

)
α2
(

1− 2|I|
m

)2 , we can be sure1983

P(Ec) ≤ 4 exp

(
−α2

18

(
1− 2|I|

m

)2

c(m, r)

)
.1984

Proving the desired result. ��1985

C Proof in Sect. 71986

C.1 Proof of Lemma 7.41987

Define P(x, y) = a‖y − x‖22 + b‖y − x‖2. Fix an iteration k and choose x∗ ∈1988

projX ∗(xk). Then, the estimate holds:1989

f (xk+1) ≤ fxk (xk+1)+ P(xk+1, xk)1990

≤ fxk (x∗)+ P(x∗, xk) ≤ f (x∗)+ 2P(x∗, xk).1991

Rearranging and using the sharpness and approximation accuracy assumptions, we1992

deduce1993

μ · dist(xk+1,X
∗) ≤ 2(a · dist2(x,X ∗)+ b · dist(x,X ∗))1994

= 2(b + adist(x,X ∗))dist(x,X ∗).1995

The result follows.1996
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C.2 Proof of Theorem 7.61997

First notice that for any y, we have ∂ f (y) = ∂ fy(y). Therefore, since fy is a convex1998

function, we have that for all x, y ∈ X and v ∈ ∂ f (y), the bound1999

f (y)+ 〈v, x − y〉 = fy(y)+ 〈v, x − y〉 ≤ fy(x)2000

≤ f (x)+ a‖x − y‖2
F + b‖x − y‖F . (C.1)2001

Consequently, given that dist(xi ,X
∗) ≤ γ · μ−2b

2a , we have2002

‖xi+1 − x∗‖2 =
∥∥∥projX

(
xi − f (xi )−minX f

‖ζi‖2 ζi

)
− projX (x∗)

∥∥∥2
2003

≤
∥∥∥(xi − x∗)− f (xi )−minX f

‖ζi‖2 ζi

∥∥∥2
(C.2)2004

= ‖xi − x∗‖2 + 2( f (xi )−minX f )

‖ζi‖2
· 〈ζi , x∗ − xi 〉 +

( f (xi )− f (x∗))2

‖ζi‖2
2005

≤ ‖xi − x∗‖2 + 2( f (xi )−min f )

‖ζi‖2
n2006 (

f (x∗)− f (xi )+ a‖xi − x∗‖2 + b‖xi − x∗‖
)

2007

+ ( f (xi )− f (x∗))2

‖ζi‖2
(C.3)2008

= ‖xi − x∗‖2 + f (xi )−min f

‖ζi‖2
2009 (

2a‖xi − x∗‖2 + 2b‖xi − x∗‖ − ( f (xi )− f (x∗))
)

2010

≤ ‖xi − x∗‖2 + f (xi )−min f

‖ζi‖2
(

a‖xi − x∗‖2 − (μ− 2b)‖xi − x∗‖
)
(C.4)

2011

= ‖xi − x∗‖2 + 2a( f (xi )−min f )

‖ζi‖2
(
‖xi − x∗‖ − μ− 2b

2a

)
‖xi − x∗‖2012

≤ ‖xi − x∗‖2 − (1− γ )(μ− 2b)( f (xi )−min f )

‖ζi‖2
· ‖xi − x∗‖ (C.5)2013

≤
(

1− (1− γ )μ(μ− 2b)

‖ζi‖2
)
‖xi − x∗‖2. (C.6)2014

Here, the estimate (C.2) follows from the fact that the projection projX (·) is nonex-2015

pansive, (C.3) uses the bound in (C.1), (C.5) follow from the estimate dist(xi ,X
∗) ≤2016

γ · μ−2b
2a , while (C.4) and (C.6) use local sharpness. The result then follows by the2017

upper bound ‖ζi‖ ≤ L .2018
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D Proofs in Sect. 82019

D.1 Proof of Lemma 8.12020

The inequality can be established using an argument similar to that for bounding the2021

T3 term in [27, Section 6.6]. We provide the proof below for completeness. Define the2022

shorthand ΔS := S− S� and ΔX = X − X�, and let e j ∈ R
d denote the j-th standard2023

basis vector of R
d . Simple algebra gives2024

|〈S − S�, X X� − X� X�� 〉| = |2〈ΔS,ΔX X�� 〉 + 〈ΔS,ΔXΔ�X 〉|2025

≤
(

2‖X�� ΔS‖F + ‖Δ�XΔS‖F

)
· ‖ΔX‖F .2026

We claim that ‖ΔSe j‖1 ≤ 2
√

k‖ΔSe j‖2 for each j ∈ [d]. To see this, fix any j ∈ [d]2027

and let v := Se j , v∗ := S�e j , and T := support(v∗). We have2028

‖v∗T ‖1 = ‖v∗‖1 ≥ ‖v‖1 S ∈ S2029

= ‖vT ‖1 + ‖vT c‖1 decomposability of �1 norm2030

= ‖v∗T + (v − v∗)T ‖1 + ‖(v − v∗)T c‖12031

≥ ‖v∗T ‖1 − ‖(v − v∗)T ‖1 + ‖(v − v∗)T c‖1. reverse triangle inequality2032

Rearranging terms gives ‖(v − v∗)T c‖1 ≤ ‖(v − v∗)T ‖1, whence2033

‖v − v∗‖1 = ‖(v − v∗)T ‖1 + ‖(v − v∗)T c‖1 ≤ 2‖(v − v∗)T ‖12034

≤ 2
√

k‖(v − v∗)T ‖2 ≤ 2
√

k‖v − v∗‖2,2035

where step the second inequality holds because |T | ≤ k by assumption. The claim2036

follows from noting that v − v∗ = ΔSe j .2037

Using the claim, we get that2038

‖X�� ΔS‖F =
√∑

j∈[d]
‖X�� ΔSe j‖22 ≤

√∑
j∈[d]
‖X�‖22,∞‖ΔSe j‖212039

≤ ‖X�‖2,∞
√∑

j∈[d]
4k‖ΔSe j‖22 ≤ 2

√
νrk

d
‖ΔS‖F .2040

Using a similar argument and the fact that ‖ΔX‖2,∞ ≤ ‖X‖2,∞+‖X�‖2,∞ ≤ 3
√

νr
d ,2041

we obtain2042

‖Δ�XΔS‖F ≤ 6

√
νrk

d
‖ΔS‖F .2043
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Putting everything together, we have2044

|〈S − S∗, X X� − X� X�� 〉| ≤
(

2 · 2
√

νrk

d
‖ΔS‖F + 6

√
νrk

d
‖ΔS‖F

)
· ‖ΔX‖F .2045

The claim follows.2046

D.2 Proof of Theorem 8.62047

Without loss of generality, suppose that x is closer to x̄ than to −x̄ . Consider the2048

following expression:2049

‖x̄(x − x̄)� + (x − x̄)x̄�‖12050

= sup
‖V ‖∞=1,V�=V

Tr((x̄(x − x̄)� + (x − x̄)x̄�)V )2051

= sup
‖V ‖∞=1,V�=V

Tr(x̄ x�V + x x̄�V − 2x̄ x̄�V )2052

= sup
‖V ‖∞=1,V�=V

Tr(x�V x̄ + x̄�V x − 2x̄�V x̄)2053

= 2 sup
‖V ‖∞=1,V�=V

Tr(x�V x̄ − x̄�V x̄)2054

= 2 sup
‖V ‖∞=1,V�=V

Tr((x − x̄)�V x̄)2055

= 2 sup
‖V ‖∞=1,V�=V

Tr(x̄(x − x̄)�V ).2056

We now produce a few different lower bounds by testing against different V . In what2057

follows, we set a = √2− 1, i.e., the positive solution of the equation 1− a2 = 2a.2058

2059

Case 1: Suppose that2060

|(x − x̄)�sign(x̄)| ≥ a‖x − x̄‖1.2061

Then, set V̄ = sign((x − x̄)�sign(x̄)) · sign(x̄)sign(x̄)�, to get2062

‖x̄(x − x̄)� + (x − x̄)x̄�‖12063

≥ 2Tr(x̄(x − x̄)�V̄ )2064

= 2sign((x − x̄)�sign(x̄)) · Tr((x − x̄)�sign(x̄)sign(x̄)� x̄)2065

= 2‖x̄‖1sign((x − x̄)�sign(x̄)) · (x − x̄)�sign(x̄)2066

≥ 2a‖x̄‖1‖x − x̄‖12067
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Case 2: Suppose that2068

|sign(x − x̄)� x̄ | ≥ a‖x̄‖1.2069

Then, set V̄ = sign(sign(x − x̄)� x̄) · sign(x − x̄)sign(x − x̄)�, to get2070

‖x̄(x − x̄)� + (x − x̄)x̄�‖12071

≥ 2Tr(x̄(x − x̄)�V̄ )2072

= 2sign(sign(x − x̄)� x̄) · Tr((x − x̄)�sign(x − x̄)sign(x − x̄)� x̄)2073

= 2‖x − x̄‖1sign(sign(x − x̄)� x̄) · sign(x − x̄)� x̄2074

≥ 2a‖x̄‖1‖x − x̄‖12075

Case 3: Suppose that2076

|(x − x̄)�sign(x̄)| ≤ a‖x − x̄‖1 and |sign(x − x̄)� x̄ | ≤ a‖x̄‖12077

Define V̄ = 1
2 (sign(x̄(x − x̄)�)+ sign((x − x̄)x̄�)). Observe that2078

Tr(x̄(x − x̄)�sign(x̄(x − x̄)�)) = (x − x̄)�sign(x̄)sign(x − x̄)� x̄2079

≥ −a2‖x̄‖1‖x − x̄‖12080

and2081

Tr(x̄(x − x̄)�sign((x − x̄)x̄�)) = Tr(x̄(x − x̄)�sign(x − x̄)sign(x̄�))2082

= ‖x̄‖1‖x − x̄‖1.2083

Putting these two bounds together, we find that2084

‖x̄(x − x̄)� + (x − x̄)x̄�‖1 ≥ 2Tr(x̄(x − x̄)�V̄ ) = (1− a2)‖x̄‖1‖x − x̄‖1.2085

Altogether, we find that2086

F(x) = ‖xx� − x̄ x̄�‖12087

= ‖x̄(x − x̄)� + (x − x̄)x̄� + (x − x̄)(x − x̄)�‖12088

≥ ‖x̄(x − x̄)� + (x − x̄)x̄�‖1 − ‖(x − x̄)(x − x̄)�‖12089

≥ 2a‖x̄‖1‖x − x̄‖1 − ‖(x − x̄)‖2
12090

= 2a‖x̄‖1
(

1− ‖x − x̄‖1
2a‖x̄‖1

)
‖x − x̄‖1,2091

as desired.2092
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D.3 Proof of Lemma 8.82093

We start by stating a claim we will use to prove the lemma. Let us introduce some2094

notation. Consider the set2095

S =
{
(Δ+, Δ−) ∈ Rd×r × Rd×r | ‖Δ+‖2,∞ ≤ (1+ C)

√
νr

d
‖X�‖op, ‖Δ−‖2,1 != 0

}
.2096

Define the random variable2097

Z = sup
(Δ+,Δ−)∈S

∣∣∣∣ 1

‖Δ−‖2,1

d∑
i, j=1

δi j |〈Δ−,i ,Δ+, j 〉 + 〈Δ+,i ,Δ−, j 〉|2098

− E
1

‖Δ−‖2,1

d∑
i, j=1

δi j |〈Δ−,i ,Δ+, j 〉 + 〈Δ+,i ,Δ−, j 〉|
∣∣∣∣.2099

Claim There exist constants c2, c3 > 0 such that with probability at least 1 −2100

exp(−c2 log d)2101

Z ≤ c3C
√

τνr log d
∥∥X�

∥∥
op .2102

Before proving this claim, let us show how it implies the theorem. Let2103

R ∈ argmin
R̂� R̂=I

‖X − X� R̂‖2,1.2104

Set Δ− = X − X� R and Δ+ = X + X� R. Notice that2105

‖Δ+‖2,∞ ≤ ‖X‖2,∞ + ‖X�‖2,∞ ≤ (1+ C)‖X�‖2,∞ ≤
√

νr

d
(1+ C)‖X�‖op.2106

Therefore, because (Δ+,Δ−) ∈ S and2107

1

‖Δ−‖2,1

d∑
i, j=1

δi j |〈Xi , X j 〉 − 〈(X�)i , (X�) j 〉| =
1

‖Δ−‖2,1

d∑
i, j=1

δi j |〈Δ−,i ,Δ+, j 〉2108

+〈Δ+,i ,Δ−, j 〉|,2109

we have that2110

d∑
i, j=1

δi j |〈Xi , X j 〉 − 〈(X�)i , (X�) j 〉|2111

≤ τ‖X X� − X� X�� ‖1 + c3C
√

τνr log d‖X�‖op‖X − X� R‖2,12112
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≤
(

τ + c3C
√

τνr log d

c
‖X�‖op

)
‖X X� − X� X�� ‖1,2113

where the last line follows by Conjecture 8.7. This proves the desired result.2114

Proof of the Claim Our goal is to show that the random variable Z is highly concen-2115

trated around its mean. We may apply the standard symmetrization inequality [7,2116

Lemma 11.4] to bound the expectation EZ as follows:2117

EZ ≤ 2E sup
(Δ+,Δ−)∈S

∣∣∣∣∣∣ 1

‖Δ−‖2,1

d∑
i, j=1

εi jδi j |〈Δ−,i ,Δ+, j 〉 + 〈Δ+,i ,Δ−, j 〉|
∣∣∣∣∣∣2118

≤ 2E sup
(Δ+,Δ−)∈S

∣∣∣∣∣∣ 1

‖Δ−‖2,1

d∑
i, j=1

εi jδi j |〈Δ−,i ,Δ+, j 〉|
∣∣∣∣∣∣2119

+ 2E sup
(Δ+,Δ−)∈S

∣∣∣∣∣∣ 1

‖Δ−‖2,1

d∑
i, j=1

εi jδi j |〈Δ+,i ,Δ−, j 〉|
∣∣∣∣∣∣2120

=: T1 + T2.2121

Observing that T1 and T2 can both be bounded by2122

max{T1, T2} ≤ 2 sup
(Δ+,Δ−)∈S

1

‖Δ−‖2,1
‖Δ+Δ�−‖2,∞E max

j

∣∣∣∣∣
d∑

i=1

εi jδi j

∣∣∣∣∣2123

≤ 2 sup
(Δ+,Δ−)∈S

‖Δ+‖2,∞E max
j

∣∣∣∣∣
d∑

i=1

εi jδi j

∣∣∣∣∣2124

≤ 2(1+ C)

√
νr

d
‖X�‖opE max

j

∣∣∣∣∣
d∑

i=1

εi jδi j

∣∣∣∣∣2125

� C

√
νr

d
‖X�‖op(

√
τd log d + log d),2126

where the final inequality follows from Bernstein’s inequality and a union bound, we2127

find that2128

EZ � C

√
νr

d
‖X�‖op(

√
τd log d + log d).2129

To prove that Z is well concentrated around EZ , we apply Theorem F.3. To apply this2130

theorem, we set S = S and define the collection (Zi j,s)i j,s∈S , where s = (Δ+,Δ−)2131

by2132

Zi j,s =
1

‖Δ−‖2,1
δi j |〈Δ−,i ,Δ+, j 〉 + 〈Δ+,i ,Δ−, j 〉|2133
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− E
1

‖Δ−‖2,1
δi j |〈Δ−,i ,Δ+, j 〉 + 〈Δ+,i ,Δ−, j 〉|2134

= (δi j − τ)

‖Δ−‖2,1
|〈Δ−,i ,Δ+, j 〉 + 〈Δ+,i ,Δ−, j 〉|.2135

We also bound2136

b = sup
i j ,s∈S

|Zi j,s | ≤ sup
i j ,(Δ+,Δ−)∈S

∣∣∣∣ (δi j − τ)

‖Δ−‖2,1
(‖Δ−,i‖F‖Δ+, j‖F + ‖Δ+,i‖F‖Δ−, j‖F )

∣∣∣∣2137

≤ (1+ C)

√
νr

d
‖X�‖op sup

i j,(Δ+,Δ−)∈S

∣∣∣∣ 1

‖Δ−‖2,1
(‖Δ−,i‖F + ‖Δ−, j‖F )

∣∣∣∣2138

≤ 2C

√
νr

d
‖X�‖op2139

and2140

σ 2 = sup
(Δ+,Δ−)∈S

E
1

‖Δ−‖22,1

d∑
i j=1

(δi j − τ)2|〈Δ−,i ,Δ+, j 〉 + 〈Δ+,i ,Δ−, j 〉|22141

≤ τ sup
(Δ+,Δ−)∈S

1

‖Δ−‖22,1

d∑
i j=1

(‖Δ−,i‖F‖Δ+, j‖F + ‖Δ+,i‖F‖Δ−, j‖F )2
2142

≤ τ sup
(Δ+,Δ−)∈S

4

‖Δ−‖22,1

d∑
i j=1

‖Δ−,i‖2F‖Δ+, j‖2F2143

≤ τ
4(1+ C)2νr

d
‖X�‖2op sup

(Δ+,Δ−)∈S

2

‖Δ−‖22,1

d∑
i j=1

‖Δ−,i‖2F2144

≤ τ
4(1+ C)2νr

d
‖X�‖2op sup

(Δ+,Δ−)∈S

2d‖Δ−‖2F
‖Δ−‖22,1

2145

≤ 16τC2νr‖X�‖2op.2146

Therefore, due to Theorem F.3 there exists a constant c1, c2, c3 > 0 so that with2147

t = c2 log d , we have that with probability 1− e−c2 log d that Z is upped bounded by2148

EZ +
√

8
(
2bEZ + σ 2

)
t + 8bt2149

≤ c1C

√
νr

d
‖X�‖op(

√
τd log d + log d)2150

+
√√√√8c2

(
c2

1C2νr

d
‖X�‖2

op(
√

τd log d + log d)+ 16τC2νr‖X�‖2
op

)
log d2151

+ 16c2C

√
νr

d
‖X�‖op log(d)2152
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≤ C
√

νr log d‖X�‖op

⎛⎝c1
√

τ + c1

√
log d

d +
√

8c2

√√
c4

1τ log d
d + c2

1 log d
d + 16τ + 16c2

√
log d

d

⎞⎠2153

≤ c3C
√

τνr log d‖X�‖op.2154

where the last line follows since by assumption log d/d � τ. ��2155

E Proofs in Sect. 92156

E.1 Proof of Lemma 9.12157

The proof follows the same strategy as [32, Theorem 6.1]. Fix x ∈ T̃1 and let ζ ∈2158

∂ f̃ (x). Then, for all y, we have, from Lemma 9.3, that2159

f (y) ≥ f̃ (x)+ 〈ζ, y − x〉 − ρ

2
‖x − y‖22 − 3ε.2160

Therefore, the function2161

g(y) := f (y)− 〈ζ, y − x〉 + ρ

2
‖x − y‖22 + 3ε2162

satisfies2163

g(x)− inf g ≤ f (x)− f̃ (x)+ 3ε ≤ 4ε.2164

Now, for some γ > 0 to be determined momentarily, define2165

x̂ = argmin

{
g(x)+ ε

γ 2 ‖x − y‖22
}

.2166

First-order optimality conditions and the sum rule immediately imply that2167

2ε

γ 2 (x − x̂) ∈ ∂g(x̂) = ∂ f (x̂)− ζ + ρ(x̂ − x).2168

Thus,2169

dist(ζ, ∂ f (x̂)) ≤
(

2ε

γ 2 + ρ

)
‖x − x̂‖2.2170

Now we estimate ‖x − x̂‖2. Indeed, from the definition of x̂ we have2171

ε

γ 2 ‖x̂ − x‖2 ≤ g(x)− g(x̂) ≤ g(x)− inf g ≤ 4ε.2172
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Consequently, we have ‖x − x̂‖ ≤ 2γ . Thus, setting γ = √2ε/ρ and recalling that2173

ε ≤ μ2/56ρ we find that2174

dist(x̂,X ∗) ≤ ‖x − x̂‖ + dist(x,X ∗) ≤ 2

√
2ε

ρ
+ μ

4ρ
≤ μ

ρ
.2175

Likewise, we have2176

dist(x̂,X ) ≤ ‖x − x̂‖ ≤ 2

√
2ε

ρ
.2177

Therefore, setting L = sup
{
‖ζ‖2 : ζ ∈ ∂ f (x), dist(x,X ∗) ≤ μ

ρ
, dist(x,X ) ≤ 2

√
ε
ρ

}
,2178

we find that2179

‖ζ‖ ≤ L + dist(ζ, ∂ f (x̂)) ≤ L + 4ε

γ
+ 2ργ = L + 2

√
8ρε,2180

as desired.2181

E.2 Proof of Theorem 9.42182

Let i ≥ 0, suppose xi ∈ T̃1, and let x∗ ∈ projX ∗(xi ). Notice that Lemma 9.2 implies2183

f̃ (xi )−minX f > 0. We successively compute2184

‖xi+1 − x∗‖2 =
∥∥∥projX

(
xi − f̃ (xi )−minX f

‖ζi ‖2 ζi

)
− projX (x∗)

∥∥∥2
2185

≤
∥∥∥(xi − x∗)− f̃ (xi )−minX f

‖ζi ‖2 ζi

∥∥∥2
(E.1)2186

= ‖xi − x∗‖2 + 2( f̃ (xi )−minX f )

‖ζi‖2
· 〈ζi , x∗ − xi 〉 +

( f̃ (xi )−minX f )2

‖ζi‖2
2187

≤ ‖xi − x∗‖2 + 2( f̃ (xi )−minX f )

‖ζi‖2
(

min
X

f − f̃ (xi )+
ρ

2
‖xi − x∗‖2 + 3ε

)
2188

+ ( f̃ (xi )−minX f )2

‖ζi‖2
(E.2)2189

= ‖xi − x∗‖2 + f̃ (xi )−minX f

‖ζi‖2
(

ρ‖xi − x∗‖2 − ( f̃ (xi )−min
X

f )+ 6ε

)
2190

≤ ‖xi − x∗‖2 + f̃ (xi )−minX f

‖ζi‖2
(
ρ‖xi − x∗‖2 − μ‖xi − x∗‖ + 7ε

)
(E.3)2191

≤ ‖xi − x∗‖2 + ρ( f̃ (xi )−minX f )

‖ζi‖2
(
‖xi − x∗‖ − μ

2ρ

)
‖xi − x∗‖ (E.4)2192

≤ ‖xi − x∗‖2 − μ( f̃ (xi )−minX f )

4‖ζi‖2
· ‖xi − x∗‖ (E.5)2193

≤ ‖xi − x∗‖2 − μ(μ‖xi − x∗‖ − ε)

4‖ζi‖2
· ‖xi − x∗‖2194
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≤
(

1− 13μ2

56‖ζi‖2
)
‖xi − x∗‖2. (E.6)2195

Here, the estimate (E.1) follows from the fact that the projection projQ(·) is non-2196

expansive, (E.2) uses Lemma 9.3, the estimate (E.4) follows from the assumption2197

ε <
μ
14‖xk − x∗‖, the estimate (E.5) follows from the estimate ‖xi − x∗‖ ≤ μ

4ρ
, while2198

(E.3) and (E.6) use Lemma 9.2. We therefore deduce2199

dist2(xi+1;X ∗) ≤ ‖xi+1 − x∗‖2 ≤
(

1− 13μ2

56L2

)
dist2(xi ,X

∗).2200

Consequently, either we have dist(xi+1,X
∗) < 14ε

μ
or xi+1 ∈ T̃1. Therefore, by2201

induction, the proof is complete.2202

E.3 Proof of Theorem 9.62203

Let i ≥ 0, suppose xi ∈ Tγ , and let x∗ ∈ projX ∗(xi ). Then,2204

μdist(xi+1,X
∗) ≤ f (xi+1)− inf

X
f ≤ fx (xi+1)− inf

X
f + ρ

2
‖xi+1 − xi‖22205

≤ f̃x (xi+1)− inf
X

f + ρ

2
‖xi+1 − xi‖2 + ε2206

≤ f̃x (x∗)− inf
X

f + β

2
‖xi − x∗‖2 + ε2207

≤ fx (x∗)− inf
X

f + β

2
‖xi − x∗‖2 + 2ε2208

≤ f (x∗)− inf
X

f + β‖xi − x∗‖2 + 2ε2209

= βdist2(xi ,X
∗)+ 2ε.2210

Rearranging yields the result.2211

F Auxiliary Lemmas2212

Lemma F.1 (Lemma 3.1 in [13]) Let Sr :=
{

X ∈ Rd1×d2 | Rank (X) ≤ r , ‖X‖F = 1
}
.2213

There exists an ε-net N (with respect to ‖ · ‖F ) of Sr obeying2214

|N | ≤
(

9

ε

)(d1+d2+1)r

.2215

Proposition F.2 (Corollary 1.4 in [75]) Consider X1, . . . , Xd real-valued random2216

variables and let σ ∈ S
d−1 be a unit vector. Let t, p > 0 such that2217

sup
u∈R

P (|Xi − u| ≤ t) ≤ p for all i = 1, . . . , d.2218
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Then, the following holds2219

sup
u∈R

P

(∣∣∣∣∣∑
k

σk Xk − u

∣∣∣∣∣ ≤ t

)
≤ Cp,2220

where C > 0 is a universal constant.2221

Theorem F.3 (Talagrand’s Functional Bernstein for non-identically distributed vari-2222

ables [53, Theorem 1.1(c)]) Let S be a countable index set. Let Z1, . . . , Zn be2223

independent vector-valued random variables of the form Zi = (Zi,s)s∈S . Let2224

Z := sups∈S
∑n

i=1 Zi,s . Assume that for all i ∈ [n] and s ∈ S, EZi,s = 0 and2225 ∣∣Zi,s
∣∣ ≤ b. Let2226

σ 2 = sup
s∈S

n∑
i=1

EZ2
i,s .2227

Then, for each t > 0, we have the tail bound2228

P

(
Z − EZ ≥

√
8
(
2bEZ + σ 2

)
t + 8bt

)
≤ e−t .2229
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