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Abstract

The task of recovering a low-rank matrix from its noisy linear measurements plays
a central role in computational science. Smooth formulations of the problem often
exhibit an undesirable phenomenon: the condition number, classically defined, scales
poorly with the dimension of the ambient space. In contrast, we here show that in
a variety of concrete circumstances, nonsmooth penalty formulations do not suffer
from the same type of ill-conditioning. Consequently, standard algorithms for nons-
mooth optimization, such as subgradient and prox-linear methods, converge at a rapid
dimension-independent rate when initialized within constant relative error of the solu-
tion. Moreover, nonsmooth formulations are naturally robust against outliers. Our
framework subsumes such important computational tasks as phase retrieval, blind
deconvolution, quadratic sensing, matrix completion, and robust PCA. Numerical
experiments on these problems illustrate the benefits of the proposed approach.

Keywords Restricted isometry property - Matrix sensing - Matrix completion -
Low-rank matrix recovery - Subgradient - Prox-linear algorithms

Mathematics Subject Classification 65K10 - 90C06

1 Introduction

Recovering a low-rank matrix from noisy linear measurements has become an increas-
ingly central task in data science. Important and well-studied examples include phase
retrieval [12,61,76], blind deconvolution [1,56,60,78], matrix completion [16,29],
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covariance matrix estimation [24,58], and robust principal component analysis [15,18].
Optimization-based approaches for low-rank matrix recovery naturally lead to non-
convex formulations, which are NP hard in general. To overcome this issue, in the last
two decades researchers have developed convex relaxations that succeed with high
probability under appropriate statistical assumptions. Convex techniques, however,
have a well-documented limitation: the parameter space describing the relaxations is
usually much larger than that of the target problem. Consequently, standard algorithms
applied on convex relaxations may not scale well to the large problems. Consequently,
there has been a renewed interest in directly optimizing nonconvex formulations with
iterative methods within the original parameter space of the problem. Aside from a few
notable exceptions on specific problems [5,42,43], most algorithms of this type proceed
in two-stages. The first stage—initialization—yields a rough estimate of an optimal
solution, often using spectral techniques. The second stage—I/ocal refinement—uses a
local search algorithm that rapidly converges to an optimal solution, when initialized
at the output of the initialization stage.

This work focuses on developing provable low-rank matrix recovery algorithms
based on nonconvex problem formulations. We focus primarily on local refinement
and describe a set of unifying sufficient conditions leading to rapid local convergence
of iterative methods. In contrast to the current literature on the topic, which typi-
cally relies on smooth problem formulations and gradient-based methods, our primary
focus is on nonsmooth formulations that exhibit sharp growth away from the solution
set. Such formulations are well-known in the nonlinear programming community to
be amenable to rapidly convergent local-search algorithms. Along the way, we will
observe an apparent benefit of nonsmooth formulations over their smooth counterparts.
All nonsmooth formulations analyzed in this paper are “well-conditioned,” resulting in
fast “out-of-the-box” convergence guarantees. In contrast, standard smooth formula-
tions for the same recovery tasks can be poorly conditioned, in the sense that classical
convergence guarantees of nonlinear programming are overly pessimistic. Overcom-
ing the poor conditioning typically requires nuanced problem and algorithmic specific
analysis (e.g., [21,23,61,65,78]), which nonsmooth formulations manage to avoid for
the problems considered here.

Setting the stage, consider a rank r matrix My € R%*% and a linear map
A: RU1*4 5 R™ from the space of matrices to the space of measurements. The
goal of low-rank matrix recovery is to recover M; from the image vector b = A(M}y),
possibly corrupted by noise. Typical nonconvex approaches proceed by choosing some
penalty function /(-) with which to measure the residual .A(M) — b for a trial solution
M. Then, in the case that My is symmetric and positive semidefinite, one may focus
on the formulation

mi,r,l f(X):=h (A(XXT) — b) subjectto X € D, (1.1)
XeRdxr

or when My is rectangular, one may instead use the formulation

min fX,Y):=h(AXY)—b) subjectto (X, Y) e D. (1.2)
XERdlxr, YERrxdz
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Foundations of Computational Mathematics

Here, D is a convex set that incorporates prior knowledge about My and is often
used to enforce favorable structure on the decision variables. The penalty 4 is chosen
specifically to penalize measurement misfit and/or enforce structure on the residual
errors.

Algorithms and Conditioning for Smooth Formulations

Most widely used penalties /(-) are smooth and convex. Indeed, the squared £,-norm
h(z) = %I|z||% is ubiquitous in this context. With such penalties, problems (1.1) and
(1.2) are smooth and thus are amenable to gradient-based methods. The linear rate of
convergence of gradient descent is governed by the “local condition number” of f.
Indeed, if the estimate, ul < V2 f(X) < LI, holds for all X in a neighborhood of
the solution set, then gradient descent converges to the solution set at the linear rate
1 — /L. Ttis known that for several widely studied problems including phase retrieval,
blind deconvolution, and matrix completion, the ratio ©/L scales inversely with the
problem dimension. Consequently, generic nonlinear programming guarantees yield
efficiency estimates that are far too pessimistic. Instead, near-dimension independent
guarantees can be obtained by arguing that V? f is well-conditioned along the “rele-
vant” directions or that V2 f is well-conditioned within a restricted region of space that
the iterates never escape (e.g., [61,65,78]). Techniques of this type have been elegantly
and successfully used over the past few years to obtain algorithms with near-optimal
sample complexity. One by-product of such techniques, however, is that the underly-
ing arguments are finely tailored to each particular problem and algorithm at hand.
We refer the reader to the recent surveys [22,28] for details.

Algorithms and Conditioning for Nonsmooth Formulations

The goal of our work is to justify the following principle:

Statistical conditions for common recovery problems guarantee that (1.1) and
(1.2) are well-conditioned when h is an appropriate nonsmooth convex penalty.

To explain what we mean by “good conditioning,” let us treat (1.1) and (1.2) within
the broader convex composite problem class:

min f(x) := h(F(x)), (1.3)

where F(-) is a smooth map on the space of matrices and A’ is a closed convex set.
Indeed, in the symmetric and positive semidefinite case, we identify x with matrices
X and define F(X) = A(XX T) — b, while in the asymmetric case, we identify x with
pairs of matrices (X, Y) and define F(X,Y) = A(XY) — b. Though compositional
problems (1.3) have been well-studied in nonlinear programming [8,9,41], their com-
putational promise in data science has only begun recently to emerge. For example, the
papers [30,36,38] discuss stochastic and inexact algorithms on composite problems,
while the papers [32,37], [19,33], and [57] investigate applications to phase retrieval,
blind deconvolution, and matrix sensing, respectively.
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A number of algorithms are available for problems of the form (1.3), and hence for
(1.1) and (1.2). Two most notable ones are the projected subgradient' method [31,44]

Xi41 = projy (xs —orv,)  with v € 9f(xy),

and the prox-linear algorithm [8,35,54]

Xe41 = argmin h(F(x,) FVF()(x — xt)) e %13,
xeX 2

Notice that each iteration of the subgradient method is relatively cheap, requiring
access only to the subgradients of f and the nearest-point projection onto X’. The
prox-linear method in contrast requires solving a strongly convex problem in each
iteration. That being said, the prox-linear method has much stronger convergence
guarantees than the subgradient method, as we will review shortly.

The local convergence guarantees of both methods are straightforward to describe,
and underlie what we mean by “good conditioning.” Define X* := argmin f, and for

X
any x € X define the convex model f,(y) = h(F(x) + VF(x)(y — x)). Suppose
there exist constants p, > 0 satisfying the two properties:

— (approximation) | f(y) — fx()| < §lly — x5 forall x, y € X,
— (sharpness) f(x) —inf f > p - dist(x, X*) forall x € X.

The approximation and sharpness properties have intuitive meanings. The former says
that the nonconvex function f(y) is well approximated by the convex model f,(y),
with quality that degrades quadratically as y deviates from x. In particular, this property
guarantees that the quadratically perturbed function x — f(x) + §||x||% is convex
on X. Yet another consequence of the approximation property is that the epigraph
of f admits a supporting concave quadratic with amplitude p at each of its points.
Sharpness, in turn, asserts that f must grow at least linearly as x moves away from the
solution set. In other words, the function values should robustly distinguish between
optimal and suboptimal solutions. In statistical contexts, one can interpret sharpness
as strong identifiability of the statistical model. The three figures below illustrate the
approximation and sharpness properties for idealized objectives in phase retrieval,
blind deconvolution, and robust PCA problems.

1 Here, the subdifferential is formally obtained through the chain rule 3 f (x) = VF(x)*dh(F(x)), where
dh(-) is the subdifferential in the sense of convex analysis.
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(a) B -2 -1 0 1 z ) -2 -1 o
f(z) =El(aT2)?> = (a"1)?|  (b) f(z,y) = Elazyb —ab|  (€) f(z) = [lzxT — 11T}
(phase retrieval) (blind deconvolution) (robust PCA)

Approximation and sharpness, taken together, guarantee rapid convergence of
numerical methods when initialized within the tube:

T = {x € X - dist(x, X") < %]

For common low-rank recovery problems, 7 has an intuitive interpretation: it con-
sists of those matrices that are within constant relative error of the solution. We note
that standard spectral initialization techniques, in turn, can generate such matrices
with nearly optimal sample complexity. We refer the reader to the survey [28], and
references therein, for details.

Guiding strategy  The following algorithmic principle guides this work:

When initialized at xo € 7, the prox-linear algorithm converges quadratically
to the solution set X'*; the subgradient method, in turn, converges linearly with
a rate governed by ratio % € (0, 1), where L is the Lipschitz constant of f on
T2

In light of this observation, our strategy can be succinctly summarized as follows. We
will show that for a variety of low-rank recovery problems, the parameters i, L, p > 0
(or variants) are dimension independent under standard statistical conditions. Conse-
quently, the formulations (1.1) and (1.2) are “well-conditioned,” and subgradient and
prox-linear methods converge rapidly when initialized within constant relative error
of the optimal solution.

2 Both the parameters «; and 8 must be properly chosen for these guarantees to take hold.
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Approximation and Sharpness Via the Restricted Isometry Property

We begin verifying our thesis by showing that the composite problems, (1.1) and
(1.2), are well-conditioned under the following restricted isometry property (RIP):
there exists a norm |||-||| and numerical constants «1, k2 > 0 so that

<iWilr < AWl < k2lWll £, (1.4)

for all matrices W € R91*2 of rank at most 2r. We argue that under RIP,
the nonsmooth norm h = |||-||| is a natural penalty function to use.

Indeed, as we will show, the composite loss 4 (F (x)) in the symmetric setting admits
constants u, p, L that depend only on the RIP parameters and the extremal singular
values of My:

u = 0.9k1\/o,(My), p = K3, L = 0.9k1\/0or(My) + 2k2+/01(Mp).

In particular, the initialization ratio scales as % = %,/or (M3) and the condition
o1(My)
or(My) "
guarantees previously described immediately take-hold. The asymmetric setting is
slightly more nuanced since the objective function is sharp only on bounded sets.
Nonetheless, it can be analyzed in a similar way leading to analogous rapid conver-
gence guarantees. Incidentally, we show that the prox-linear method converges rapidly
without any modification; this is in contrast to smooth methods, which typically require
incorporating an auxiliary regularization term into the objective (e.g., [78]). We note
that similar results in the symmetric setting were independently obtained in the com-
plimentary work [57], albeit with a looser estimate of L; the two treatments of the
asymmetric setting are distinct, however.”

After establishing basic properties of the composite loss, we turn our attention to
verifying RIP in several concrete scenarios. We note that the seminal works [13,71]
showed that if A(-) arises from a Gaussian ensemble, then in the regime m 2 r(d;+d>)
RIP holds with high probability for the scaled £> norm |||z]|| = m~'/?||z||». More
generally when A is highly structured, RIP may be most naturally measured in a non-
Euclidean norm. For example, RIP with respect to the scaled £1 norm |||z]|| = m ||z
holds for phase retrieval [37,39], blind deconvolution [19], and quadratic sensing
[24]; in contrast, RIP relative to the scaled ¢, norm fails for all three problems. In
particular, specializing our results to the aforementioned recovery tasks yields solution
methodologies with best known sample and computational complexity guarantees.
Notice that while one may “smooth-out” the £, norm by squaring it, we argue that
it may be more natural to optimize the ¢; norm directly as a nonsmooth penalty.
Moreover, we show that ¢ penalization enables exact recovery even if a constant
fraction of measurements is corrupted by outliers.

number scales as % =< 1+ % Consequently, the rapid local convergence

3 The authors of [57] provide a bound on L that scales with the Frobenius norm /|| My|| . We instead

derive a sharper bound that scales as ,/|[M3|lop- As a by-product, the linear rate of convergence for the
subgradient method scales only with the condition number o1 (My) /o (My) instead of || My g /oy (My).
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The concurrent work [57], which focuses on the £1/¢;-restricted isometry and
the subgradient method for low-rank recovery problems, obtained guarantees similar
to some of our results in Sects. 4 and 5. In contrast to [57], we: (i) provide a uni-
fied treatment of the symmetric and the non-symmetric setting, for which previously
very different approaches with additional regularization terms had been proposed; (ii)
obtain better bounds on the norm of subgradients; (iii) also analyze the prox-linear
algorithm which has a better iteration complexity than the subgradient method; (iv)
lastly, provide analysis that covers a variety of application scenarios with and without
the restricted isometry property, including the highly relevant benchmark problems of
matrix completion and robust PCA discussed in the next section that were not covered
by the previous analysis.

Beyond RIP: Matrix Completion and Robust PCA

The RIP assumption provides a nice vantage point for analyzing the problem param-
eters u, p, L > 0. There are, however, a number of important problems, which do
not satisfy RIP. Nonetheless, the general paradigm based on the interplay of sharpness
and approximation is still powerful. We consider two such settings, matrix completion
and robust principal component analysis (PCA), leveraging some intermediate results
from [27].

The goal of the matrix completion problem [16] is to recover a low-rank matrix My
from its partially observed entries. We focus on the formulation

argmin f(X) = [ (XX ") — Mo (My)ll2,
XeX

where I1g; is the projection onto the index set of observed entries £2 and

M.
X = XeW”wmmmst%#@}

is the set of incoherent matrices. To analyze the conditioning of this formulation, we
assume that the indices in £2 are chosen as i.i.d. Bernoulli with parameter p € (0, 1)
and that all nonzero singular values of My are equal to one. Using results of [27], we
quickly deduce sharpness with high probability. The error in approximation, however,
takes the following nonstandard form. In the regime p > 6‘—'2(”261’2 + logd) for some
constants ¢ > 0 and € € (0, 1), the estimate holds with high probability:

1F(V) = x| < VT+elY = X3+ Vel X — Y| forall X,Y € X.
The following modification of the prox-linear method therefore arises naturally:

Xip1 = argmin fx, (X) + 1+ €| X — Xp||% + Vel X — Xill .
XeX
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We show that subgradient methods and the prox-linear method, thus modified, both
converge at a dimension-independent linear rate when initialized near the solution.
Namely, as long as € and dist(Xp, X'*) are below some constant thresholds, both
the subgradient and the modified prox-linear methods converge linearly with high
probability:

(1- i)k/ 2 subgradient

dist(Xy, X*) < o

prox-linear

Here, ¢ > 0 is a numerical constant. Notice that the prox-linear method enjoys a much
faster rate of convergence that is independent of any unknown constants or problem
parameters—an observation fully supported by our numerical experiments.

As the final example, we consider the problem of robust PCA [15,18], which aims
to decompose a given matrix W into a sum of a low-rank and a sparse matrix. We
consider two different problem formulations:

min_ F((X,$) = XX +S~W|r, (1.5)
(X,8)eD,

and
min X)=|XX —W , 1.6
1 Zf( ) ” ”1 ( )

where D; and D, are appropriately defined convex regions. Under standard inco-
herence assumptions, we show that the formulation (1.5) is well-conditioned, and
therefore subgradient and prox-linear methods are applicable. Still, formulation (1.5)
has a major drawback in that one must know properties of the optimal sparse matrix
S4 in order to define the constraint set Dy, in order to ensure good conditioning.
Consequently, we analyze formulation (1.6) as a more practical alternative.

The analysis of (1.6) is more challenging than that of (1.5). Indeed, it appears that
we must replace the Frobenius norm || X || r in the approximation/sharpness condi-
tions with the sum of the row norms || X |2, 1. With this setup, we verify the convex
approximation property in general:

fO) = fxMI <Y =X|5; forall X, Y

and sharpness only when r = 1. We conjecture, however, that an analogous sharpness
bound holds for all r. It is easy to see that the quadratic convergence guarantees for the
prox-linear method do not rely on the Euclidean nature of the norm, and the algorithm
becomes applicable. To the best of our knowledge, it is not yet known how to adapt
linearly convergent subgradient methods to the non-Euclidean setting.

Robust Recovery with Sparse Outliers and Dense Noise

The aforementioned guarantees lead to exact recovery of My under noiseless or
sparsely corrupted measurements b. A more realistic noise model allows for further
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corruption by a dense noise vector e of small norm. Exact recovery is no longer pos-
sible with such errors. Instead, we should only expect to recover My up to a tolerance
proportional to the size of e. Indeed, we show that appropriately modified subgradient
and prox-linear algorithms converge linearly and quadratically, respectively, up to the
tolerance § = O(|||e|l|/w) for an appropriate norm |||-]||. Finally, we discuss in detail
the case of recovering a low-rank PSD matrix M; from the corrupted measurements
A(My)+ A+ e, where A represents sparse outliers and e represents small dense noise.
To the best of our knowledge, theoretical guarantees for this error model have not been
previously established in the nonconvex low-rank recovery literature. Surprisingly, we
show it is possible to recover the matrix M; up to a tolerance independent of the norm
or location of the outliers A.

Numerical Experiments

We conclude with an experimental evaluation of our theoretical findings on quadratic
and bilinear matrix sensing, matrix completion, and robust PCA problems. In the first
set of experiments, we test the robustness of the proposed methods against varying
combinations of rank/corruption level by reporting the empirical recovery rate across
independent runs of synthetic problem instances. All the aforementioned model prob-
lems exhibit sharp phase transitions, yet our methods succeed for more than moderate
levels of corruption (or unobserved entries in the case of matrix completion). For
example, in the case of matrix sensing, we can corrupt almost half of the measure-
ments A; (M) and still retain perfect recovery rates. Interestingly, our experimental
findings indicate that the prox-linear method can tolerate slightly higher levels of
corruption compared to the subgradient method, making it the method of choice for
small-to-moderate dimensions.

We then demonstrate that the convergence rate analysis is fully supported by empiri-
cal evidence. In particular, we test the subgradient and prox-linear methods for different
rank/corruption configurations. In the case of quadratic and bilinear sensing and robust
PCA, we observe that the subgradient method converges linearly and the prox-linear
method converges quadratically, as expected. In particular, our numerical experiments
appear to support our sharpness conjecture for the robust PCA problem. In the case
of matrix completion, both algorithms converge linearly. The prox-linear method in
particular, converges extremely quickly, reaching high accuracy solutions in under 25
iterations for reasonable values of p.

In the noiseless setting, we compare against gradient descent with constant step-
size on smooth formulations of each problem (except for robust PCA). We notice that
the Polyak subgradient method outperforms gradient descent in all cases. That being
said, one can heuristically equip gradient descent with the Polyak step-size as well.
To the best of our knowledge, the gradient method with Polyak step-size has not been
investigated on smooth problem formulations we consider here. Experimentally, we
see that the Polyak (sub)gradient methods on smooth and nonsmooth formulations
perform comparably in the noiseless setting.
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Outline of the Paper

The outline of the paper is as follows. Section 2 records some basic notation we will
use. Section 3 informally discusses the sharpness and approximation properties, and
their impact on convergence of the subgradient and prox-linear methods. Section 4
analyzes the parameters u, o, L under RIP. Section 5 rigorously discusses conver-
gence guarantees of numerical methods under regularity conditions. Section 6 reviews
examples of problems satisfying RIP and deduces convergence guarantees for sub-
gradient and prox-linear algorithms. Sections 7 and 8 discuss the matrix completion
and robust PCA problems, respectively. Section 9 discusses robust recovery up to a
noise tolerance. The final Sect. 10 illustrates the developed theory and algorithms with
numerical experiments on quadratic/bi-linear sensing, matrix completion, and robust
PCA problems.

2 Preliminaries

In this section, we summarize the basic notation we will use throughout the paper.
Henceforth, the symbol E will denote a Euclidean space with inner product (-, -) and
the induced norm ||x|2 = +/{x, x). The closed unit ball in E will be denoted by B,
while a closed ball of radius € > 0 around a point x will be written as B, (x). For any
pointx € E and aset Q C E, the distance and the nearest-point projection in £>-norm
are defined by

dist(x; Q) = inf [lx —yll2  and = projy(x) = argmin|x — yll2,
yeQ yeQ

respectively. For any pair of functions f and g on E, the notation f < g will mean
that there exists a numerical constant C such that f(x) < Cg(x) for all x € E. Given
a linear map between Euclidean spaces, A: E — Y, the adjoint map will be written as
A*:' Y — E. We will use /; for the d-dimensional identity matrix and 0 for the zero
matrix with variable sizes. The symbol [m] will be shorthand for the set {1, ..., m}.

We will always endow the Euclidean space of vectors R¢ with the usual dot-product
(x,y) = x "y and the induced £5-norm. More generally, the ¢ p norm of a vector x
will be denoted by [|x[l, = (3, |xi|” yip, Similarly, we will equip the space of rect-
angular matrices R%1*% with the trace product (X, Y) = Tr(X TY) and the induced
Frobenius norm || X || = /Tr(X T X). The operator norm of a matrix X € R41*®
will be written as || X||op. The symbol o (X) will denote the vector of singular val-
ues of a matrix X in nonincreasing order. We also define the row-wise matrix norms
1X1lp.a = X106, 1X2 016 - -5 1 Xay-15) lla- The symbols S¢, 8¢, O(d), and G L(d)
will denote the sets of symmetric, positive semidefinite (PSD), orthogonal, and invert-
ible matrices, respectively.

Nonsmooth functions will play a central role in this work. Consequently, we will
require some basic constructions of generalized differentiation, as described for exam-
ple in the monographs [6,64,73]. Consider a function f: E — R U {+o00} and a point
x, with f(x) finite. The subdifferential of f at x, denoted by 9 f (x), is the set of all
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vectors & € E satisfying

JFOM = fx)+E y—x)+olly —xl2) asy— x. 2.1

Here, o(r) denotes any function satisfying o(r)/r — 0 as r — 0. Thus, a vec-
tor £ lies in the subdifferential d f(x) precisely when the linear function y —
f(x) + (¢, y — x) lower bounds f up to first-order around x. Standard results show
that for a convex function f the subdifferential d f (x) reduces to the subdifferential
in the sense of convex analysis, while for a differentiable function it consists only
of the gradient: 0 f(x) = {Vf(x)}. For any closed convex functions 2: Y — R
and g: E — R U {400} and C'-smooth map F: E — Y, the chain rule holds
[73, Theorem 10.6]:

dho F 4+ g)(x) = VF(x)*0h(F (x)) + 0g(x).

We say that a point x is stationary for f whenever the inclusion 0 € 9 f(x)
holds. Equivalently, stationary points are precisely those that satisfy first-order nec-
essary conditions for minimality: the directional derivative is nonnegative in every
direction. 5

We say a that arandom vector X in R is n-sub-Gaussian whenever E exp (%) <

2 for all unit vectors u € R?. The sub-Gaussian norm of areal-valued random variable

X is defined to be || X[y, = inf{r > 0 : Eexp (X—z) < 2}, while the sub-exponential
t

norm is defined by [| X |y, = inf{r > 0 : Eexp (M) <2

t

3 Regularity Assumptions and Algorithms (Informal)

As outlined in Sect. 1, we consider the low-rank matrix recovery problem within the
framework of compositional optimization:

min f(x) 1= h(F(x)), 3.1)
xeX

where X C E is a closed convex set, #: Y — R is a finite convex function and
F:E — Y isa C!-smooth map. We depart from previous work on low-rank matrix
recovery by allowing & to be nonsmooth. We primary focus on those algorithms
for (3.1) that converge rapidly (linearly or faster) when initialized sufficiently close to
the solution set.

Suchrapid convergence guarantees rely on some regularity of the optimization prob-
lem. In the compositional setting, regularity assumptions take the following appealing
form.

Assumption A Suppose that the following properties hold for the composite optimiza-
tion problem (3.1) for some real numbers (, p, L > 0.
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1. (Approximation accuracy) The models fy(y) := h(F (x)+V F (x)(y —x)) satisfy
the estimate

£ — £ < guy X2 VayedX.

2. (Sharpness) The set of minimizers X* := argmin f (x) is nonempty and we have
xeX

f) —inf f = p-dist(x, X7)  Vxe X,

3. (Subgradient bound) The bound, sup,cy sy I¢ll2 < L, holds for any x in the
tube

T .= {xe)(:dist(x,zogﬁ}.
0

Remark 3.1 While the regularity conditions in Assumption A underly all of our results,
small variations of these properties appear throughout the paper. For example, sharp-
ness sometimes holds in different norms and sometimes it only holds in a neighborhood
around solutions. These small variations necessitate slightly different algorithmic con-
vergence proofs (which we include in the appendix). For clarity, we remark at the start
of each application section the norm in which sharpness holds and the convergence
theorem used to recover the ground truth.

As pointed out in the introduction, these three properties are quite intuitive: The
approximation accuracy guarantees that the objective function f is well approximated
by the convex model fy, up to a quadratic error relative to the basepoint x. Sharpness
stipulates that the objective function should grow at least linearly as one moves away
from the solution set. The subgradient bound, in turn, asserts that the subgradients of
f are bounded in norm by L on the tube 7. In particular, this property is implied by
Lipschitz continuity on 7.

Lemma 3.2 (Subgradient bound [73, Theorem 9.13]) Suppose a function f: E — R
is L-Lipschitz on an open set U C E. Then, the estimate SUPrey ) IS1l2 = L holds
forallx € U.

The definition of the tube 7" might look unintuitive at first. Some thought, how-
ever, shows that it arises naturally since it provably contains no extraneous stationary
points of the problem. In particular, 7 will serve as a basin of attraction of numerical
methods; see the forthcoming Sect. 5 for details. The following general principle has
recently emerged [19,31,32,37]. Under Assumption A, basic numerical methods con-
verge rapidly when initialized within the tube 7 . Let us consider three such procedures
and briefly describe their convergence properties. Detailed convergence guarantees are
deferred to Sect. 5.
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Algorithm 1: Polyak Subgradient Method

Data: xy € R¢
Step k: (k > 0)

Choose ¢ € 9 f (xx). If ¢ = 0, then exit algorithm.
fx) = miny f )
— 0 |-

Set xk+1 = projy | xx —
2
5k ll3

Algorithm 2: Subgradient method with geometrically decreasing stepsize
Data: Real A > O and g € (0, 1).
Step k: (k > 0)
Choose ¢ € 9 f (xx). If ¢ = 0, then exit algorithm.
Set stepsize ax = A - g.

Update iterate xx41 = projy (xk — o ”fk—ku)

Algorithm 3: Prox-linear algorithm

Data: Initial point xo € R?, proximal parameter 8 > 0.
Step k: (k > 0)

Set xg41 < argmin { h (F(xx) + VF (xp)(x — xx)) + gllx — xk||%} .
xeX

Algorithm 1 is the so-called Polyak subgradient method. In each iteration k, the
method travels in the negative direction of a subgradient ¢, € 9 f (xx), followed by a
nearest-point projection onto X'. The step-length is governed by the current functional
gap f (xx)—miny f.Inparticular, one must have the value miny f explicitly available
to implement the procedure. This value is sometimes known; case in point, the minimal
value of the penalty formulations (1.1) and (1.2) for low-rank recovery is zero when the
linear measurements are exact. When the minimal value miny f is not known, one can
instead use Algorithm 2, which replaces the step-length ( f (xx) —mingy f)/I|¢k |2 with
a preset geometrically decaying sequence. Notice that the per iteration cost of both
subgradient methods is dominated by a single subgradient evaluation and a projection
onto X. Under appropriate parameter settings, Assumption A guarantees that both
methods converge at a linear rate governed by the ratio %, when initialized within 7 .
The prox-linear algorithm (Algorithm 2), in contrast, converges quadratically to the
optimal solution, when initialized within 7. The caveat is that each iteration of the
prox-linear method requires solving a strongly convex subproblem. Note that for low-
rank recovery problems (1.1) and (1.2), the size of the subproblems is proportional to
the size of the factors and not the size of the matrices.

In the subsequent sections, we show that Assumption A (or a close variant) holds
with favorable parameters p, u, L > 0 for common low-rank matrix recovery prob-
lems.
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4 Regularity Under RIP

In this section, we consider the low-rank recovery problems (1.1) and (1.2), and show
that restricted isometry properties of the map A(-) naturally yield well-conditioned
compositional formulations.* The arguments are short and elementary, and yet apply
to such important problems as phase retrieval, blind deconvolution, and covariance
matrix estimation.

Setting the stage, consider a linear map A: RY1*% — R™, an arbitrary rank
r matrix My € R% >4 and a vector b € R™ modeling a corrupted estimate of the
measurements A(M;). Recall that the goal of low-rank matrix recovery is to determine
M; given A and b. By the term symmetric setting, we mean that My is symmetric and
positive semidefinite, whereas by asymmetric setting we mean that M; is an arbitrary
rank 7 matrix. We will treat the two settings in parallel. In the symmetric setting, we
use Xy to denote any fixed d x r matrix for which the factorization My = X txg
holds. Similarly, in the asymmetric case, X and Y; denote any fixed d| x r and r x d;
matrices, respectively, satisfying My = X Y;.

We are interested in the set of all possible factorization of My. Consequently, we
will often appeal to the following representations:

(X e R XXT = My} = {X;R : R € O(r)}, 4.1)
{(X,Y) e RIT x R7*2 . XY = M) = (XA, A7y : A e GL(n)).  (4.2)

Throughout, we will let D*(M}) refer to the set (4.1) in the symmetric case and to
(4.2) in the asymmetric setting.

Henceforth, fix an arbitrary norm [||-||| on R™. The following property, widely used
in the literature on low-rank recovery, will play a central role in this section.

Condition A (Restricted Isometry Property (RIP)) There exist constants k1, k3 > 0
such that for all matrices W € R4 <% of rank at most 2r the following bound holds:

kiWilp < A < e2IW £

Remark 4.1 We use the word “Assumption” for regularity conditions directly related
to an optimization problem, e.g., Assumption A. We reserve the word “Condition” for
conditions directly related to the measurements or our model, e.g., Condition A.

Condition A is classical and is satisfied in various important problems with the
rescaled £o-norm |||-||| = \/L%H -|l2 and £1-norm |||-||| = %H -|l1.” In Sect. 6, we discuss
a number of such examples including matrix sensing under (sub-)Gaussian design,
phase retrieval, blind deconvolution, and quadratic/bilinear sensing. We summarize

4 The guarantees we develop in the symmetric setting are similar to those in the recent preprint [57], albeit
we obtain a sharper bound on Lj; the two sets of results were obtained independently. The guarantees for
the asymmetric setting are different and are complementary to each other: we analyze the conditioning of
the basic problem formulation (1.2), while [57] introduces a regularization term || X Tx - YYTH F that
improves the basin of attraction for the subgradient method by a factor of the condition number of My.

5 In the latter case, RIP is also called restricted uniform boundedness (RUB) [10].
FolCT
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Table 1 Common problems satisfying £; /¢> RIP in Condition A

Problem Measurement A(M); (k1,K2) Regime
~ . 5 — rd 1
(sub-)Gaussian (P;, M) (c,C) m T2p? In(1 + 1*2Pfail)
i TMp: . — r2d Jr.
Quadratic I p; Mp; (c, CJT) M T apey? In(l + =55—)
. T =T, - rd ( 1 )
Quadratic I1 p; Mp; — p; Mp; (¢, C) m T 2pm? In(1+ T=2pmi
- T - rd ( 1 )
Bilinear p; Mg; (c,C) m T2p? In(1+ T=2pm

The table summarizes the £ /£, RIP for (sub-)Gaussian sensing, quadratic sensing (e.g., phase retrieval),
and bilinear sensing (e.g., blind deconvolution) under standard (sub-)Gaussian assumptions on the data
generating mechanism. In all cases, we set |||-||| = % |l - II1 and assume for simplicity d; = dp = d. The
symbols ¢ and C refer to numerical constants, pp,jj refers to the proportion of corrupted measurements, k3
is a constant multiple of (1 — 2pp,i1). See Sect. 6 for details

the RIP properties for these examples in Table 1 and refer the reader to Sect. 6 for the
precise statements.

In light of Condition A, it natural to take the norm |[||-||| as the penalty %(-) in (1.1)
and (1.2) . Then, the symmetric problem (1.1) becomes

min f(X) = [IAXXT) = b]|, 4.3)
XecRAxr

while the asymmetric formulation (1.2) becomes

min f(X,Y) = JAXY) — b]. 4.4
XERdl xr YeRrxdz

Our immediate goal is to show that under Condition A, the problems (4.3) and
(4.4) are well-conditioned in the sense of Assumption A. We note that the asymmetric
setting is more nuanced that its symmetric counterpart because Assumption A can
only be guaranteed to hold on bounded sets. Nonetheless, as we discuss in Sect. 5, a
localized version of Assumption A suffices to guarantee rapid local convergence of
subgradient and prox-linear methods. In particular, our analysis of the local sharpness
in the asymmetric setting is new and illuminating; it shows that the regularization
technique suggested in [57] is not needed at all for the prox-linear method. This con-
clusion contrasts with known techniques in the smooth setting, where regularization
is often used.

4.1 Approximation and Lipschitz Continuity

We begin with the following elementary proposition, which estimates the subgradient
bound L and the approximation modulus p in the symmetric setting. In what follows,
we will use the expressions

X2 =IAXXT+X(Z-X)" +(Z-X)X") - b,
FoCT
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X, Y) = JAXY + X(Y —Y) + (X — X)Y) — b]|.

Proposition 4.2 (Approximation and Lipschitzness (symmetric)) Suppose Condi-
tion A holds. Then, for all X, Z € R?*" the following estimates hold:

1f(Z) = fx(Z)| <Kkl Z = X||3,
1f(X) = F(D)] < k2l X + Zllopll X — Z|| F.

Thus, the first and last items of Assumption A hold with p = 2k, and

L=ky sup [[X+ Zlop.
X,ZeT

Proof To see the first estimate, observe that
1f(Z) = fx(Z)| = | IIAZZT) - bl| “4.5)

—IAXXT +X(Z-X)"+(Z -X)Xx") —b]| (4.6)
<NAZZ" - XX" - X(Z-X)" —(Z-=X)X"|

=[IA((Z = X)(Z - X))l 4.7)
<e|z-0nz-x7|
<i2lZ = X|,
where (4.6) follows from the reverse triangle inequality and (4.7) uses Condition A.
Next, for any X, Z € X we successively compute:
If(X)— f(2D)] = ‘IIIA(XXT) — bl = IAZZT) - bl (4.8)
< [l[AxxT - zz ||

<XX" - 2Z"|F 4.9)
K2 T T
=SIX+ DX =T+ X = DX +2) r

=X +Z)(X - 2| F
<l X + Zllopll X = Zl|F,

where (4.8) follows from the reverse triangle inequality and (4.9) uses Condition A.
The final conclusion of the lemma follows immediately from Lemma 3.2. The proof
is complete. O

The estimates of L and p in the asymmetric setting are completely analogous; we
record them in the following proposition.
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Proposition 4.3 (Approximation and Lipschitzness (asymmetric)) Suppose Condi-
tion A holds. Then, for all X, X e R and Y, Y € R the following estimates
hold:

~~ ~ ~ ~ K2 ~~ ~
[f(X,Y) = faxn(X, V)| < 5 X, Y) — (X, D)7,

S = X+Xllop. 1Y +Y llo S <
[fX, 1) = f(X 7)) = 2B ) x, ) — (R, D)

Thus, the first and last items of Assumption A hold with p = 2k, and

1 max{| X +X llop, 1Y +¥ llop)

L = sup
X, ZeT V2
Proof To see the first estimate, observe that
FXD) = fn X Dl = | IART) = bl

—MAKXY + XX =Y)+ (X — X)Y) — b||
< IIAXY = XY = X¥ —Y) — (X = X)V)]|
= IA((X = X)(¥ = D)l
<X =X =D,

K2 = -
= 2 (1X - RiG+ 1y - 7I7).

where the last estimate follows from Young’s inequality 2ab < a® 4 b%. Next, we
successively compute:

f(X.Y) = f(X. D) < IAXY = XD)|l| < k2l XY — XY | F

%II(X + DT DT+ X -+ D) |r

X+3(\ ops Y+/)> 0 v v

The result follows by noting that @ + b < /2(a? + b2) for all a, b € R. O

4.2 Sharpness

We next move on to estimates of the sharpness constant p. We first deal with the
noiseless setting b = A(M;) in Sect. 4.2.1, and then move on to the general case
when the measurements are corrupted by outliers in Sect. 4.2.2.
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4.2.1 Sharpness in the Noiseless Regime

We begin with the symmetric setting in the noiseless case b = A(M;). By Condition A,
we have the estimate

FXO) = MAXXT) =l = AXX T =X, X DIl = XX T = X, X/ ||£. (4.10)

It follows that the set of minimizers argmin f (X) coincides with the set of minimizers
XeRAxr
of the function X — || XX — XﬁX;—”F, namely

D*(My) :=={X4R: R € O(r)}.
Thus, to argue sharpness of f, it suffices to estimate the sharpness constant of the

function X — | XX — X 1 X ;— || . Fortunately, this calculation was already done in
[78, Lemma 5.4].

Proposition 4.4 ([78, Lemma 5.4]) For any matrices X, Z € R?*" e have the bound

IXXT = ZZT|F = 2(W2 = 1)o,(Z) - min ||X — ZR|F.
ReO(r)

Consequently, if Condition A holds in the noiseless setting b = A(My), then the bound
holds:

f(X) > /q\/2(«/§ — Doy (My) - dist(X, D*(My))  forall X € R4

We next consider the asymmetric case. By exactly the same reasoning as before,
the set of minimizers of f (X, Y) coincides with the set of minimizers of the function
(X,Y) — |IXY — X;Y:| F, namely

D*(My) := {(X3A, A"'Yy) : A € GL(r)).

Thus, to argue sharpness of f, it suffices to estimate the sharpness constant of the
function (X, Y) — || XY — X Y|l r. Such a sharpness guarantee in the rank one case
was recently shown in [19, Proposition 4.2].

Proposition 4.5 ([19, Proposition 4.2]) Fix a rank 1 matrix My € RY*% and a con-
stant v > 1. Then, for any x € R and w € R® satisfying

lwll2, Ixll2 < vy/o1(My),

the following estimate holds:

T_wm —VUI(M’j) . di D*(M)).
= WL TOFRT ist((x, w), D*(My))
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Notice that in contrast to the symmetric setting, the sharpness estimate is only valid
on bounded sets. Indeed, this is unavoidable even in the setting d; = dy = 2. To see
this, define My = eze;r and for any @ > O set x = aej and w = éel. It is routine to
compute

lewT = Mgllr 2
dist((v, w), D*(Mg) |2+ + &

Therefore, letting @ tend to zero (or infinity) the quotient tends to zero.
The following corollary is a higher rank extension of Proposition 4.5.

Theorem 4.6 (Sharpness (asymmetric and noiseless)) Fix a constant v > 0 and define
Xy = U~ A and Yy = VAV, where M;=UA V' T is any compact singular value
decomposition of My. Then, for all X € RY* and Y € R™*% satisfying

max{[|X — XgllF, |Y — YullF} < vi/or (M)

. N v or(My)
dist((X, Y), D*(My)) < —Y T 411
UG, M) = e o @1

the estimate holds:

v Or (M]:I)

XY —M;illp > ——————
= L4 + V2

- dist((X, Y), D*(My)).

L 1 . . . . .
Proof Define § := 2075y and consider a pair of matrices X and Y satisfying

(4.11). Let A € GL(r) be an invertible matrix satisfying

A € argmin {||X—X13A|l%+ ||Y—A—1Yﬁ||%}. (4.12)
AeGL(r)

As a first step, we successively compute

IXY — X4Y3ll F
= I(X = X, (A7) + XA — A7) + (X — X, ) — A7) F
> (X — XgA)ATYy) + X: A — A7) p — (X = X (Y — A7 1Y) | p
> 1(X = XAV ATV + XA — A Y)llp — IX = X:Allp - IIY — A7 Y4 p
> (X — XgA) ATV + Xs A — A7) lp — 2AUIX = X515 + 1Y — A7 013
= (X — Xz A)AT'Y2) + X3A — ATV | — Ldis (X, ¥), D*(My))

_ _ ) (M. .
> (X = Xz A) A~V + XA — A )l — 22 disi(x, vy, D*(My)).

(4.13)
We next aim to lower bound the first term on the right. To this end, observe
I(X — Xz A)A™'Y) + XA — A7 Yl %
FolCT
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= (X — X; A)AT'Y) I3 + I X:AY — AV |13
+2Tr((X — Xz A)(AT' Y)Y — A7) T (X A) D). (4.14)

We claim that the cross-term is nonnegative. To see this, observe that first-order opti-
mality conditions in (4.12) directly imply that A satisfies the equality

ATX] (X=X =¥ —A'vy AT
Thus, we obtain

Tr((X — Xz A) A7)y — A7y T(x: A7)
=Tr(ATX] (X — X A)A 'Y — A7 vy ")
=Tr((Y — A7)y, AT A yy(r — A7y T
= (A7) — AT VI

Therefore, returning to (4.14) we conclude that

ICX = X A)AT'Yp) + X A(Y — A7'Yp)llr

> \/u(X — X; AT IF + 1 X:AY = A7)
> /o, (My) - min{o, (A™Y), 0, (A)} - dist((X, Y), D*(My)). 4.15)

Combining (4.13) and (4.15), we obtain

8
XY — M:||F = /or (M) - (min{ar(A_l), or(A)} — 5) -dist((X, ¥), D*(My)).

(4.16)
Finally, we estimate min{o, (A1), 6, (A)}. To this end, first note that

Xz — XsAlF + 1Y — A" Yellp < I1X; — XlIF + 1Ys — YIF

+ /2 - dist((X, Y), D*(M.))
< 2v/0,(My) - (1 +/2). (4.17)

We now aim to lower bound the left-hand side in terms of min{a,(A*I), o, (A)}.
Observe

Xy — Xz Allr = 1 Xy = Xy Allop = Vor (My) - I — Allop = V/or(My) - (01(A) — 1).

Similarly, we have

1Y — A~ Yallp = 1Y: — A Wellop = Vor (M) - 1T — A |op
> /o, (My) - (o1(A7") = 1).
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Hence, using (4.17), we obtain the estimate

-1
min{o,(A™1), 0, (A)} > (1 +2v-(1 +J§)) =3.
Using this estimate in (4.16) completes the proof. O

4.2.2 Sharpness in Presence of Outliers

The most important example of the norm |[||-||| for us is the scaled £1-norm |||-||| =
%ll - |I1. Indeed, all the examples in the forthcoming Sect. 6 will satisfy RIP relative
to this norm. In this section, we will show that the £;-norm has an added advantage.
Under reasonable RIP-type conditions, sharpness will hold even if up to a half of the
measurements are grossly corrupted.

Henceforth, for any set Z, define the restricted map A7 := (A; (X)); 7. We interpret
the set Z as corresponding to (arbitrarily) outlying measurements, while its comple-
ment corresponds to exact measurements. Motivated by the work [37] on robust phase
retrieval, we make the following assumption.

Condition B (Z-outlier bounds) There exists a set T C {l,...,m} and a constant
k3 > 0 such that the following hold.

s (2a) Equality holds b; = A(My); foralli ¢ T.
& (2b) For all matrices W of rank at most 2r, we have

626

627

628

629

630

631

632

633

634

635

636

637

o
@
3

1 1
K3IWir = — Il Aze(W)lli — — [ AZ(W)]l1. (4.18)
m m

The condition is simple to interpret. To elucidate the bound (4.18), let us suppose
that the restricted maps A7 and Az satisfy Condition A (RIP) with constants £, K3
and k1, k2, respectively. Then, for any rank 27 matrix X we immediately deduce the
estimate

1 1 N
;”-AIC(W)HI - ZIIAI(W)Ill > ((1 = praik1 — prait€2) Wl F,

where pri = %l denotes the corruption frequency. In particular, the right-hand side
is positive as long as the corruption frequency is below the threshold pgi < ,qil@ .

Combining Condition B with Proposition 4.4 quickly yields sharpness of the objec-
tive even in the noisy setting.

Proposition 4.7 (Sharpness with outliers (symmetric)) Suppose that Condition B
holds. Then,

F(X) = f(X3) > k3 <\/2(\/§ — 1)or(xﬁ)) dist(X, D*(My))  forall X € RV,
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Proof Defining A := A(XﬁX;— ) — b, we have the following bound:

m (FO0 = f(Xo)
= A (XX = X:X]) + Al - 14l

= Az (XXT = X XDl + D0 (1 (AXXT = X:XD) + Al = 1431)
iel !
> Az (XX — X: XD — 1AZ(XX T = X:X D)l

> k3m| XX — XX/ |lF > k3m (\/2(«/5 - 1)0,(Xu)> dist(X, D*(M>)),

where the first inequality follows by the reverse triangle inequality, the second inequal-
ity follows by Assumption (2b), and the final inequality follows from Proposition 4.4.
The proof is complete. O

The argument in the asymmetric setting is completely analogous.

Proposition 4.8 (Sharpness with outliers (asymmetric)) Suppose that Assumption B
holds. Fix a constant v > 0 and define Xy = U\/Z and Yy = \/ZVT, where
My =UA VT is any compact singular value decomposition of My. Then, for all
X e RY¥" and Y € R™*% satisfying

max{|X — Xzl 1Y = Yzl ¢} < vifor(M:)
o, (M)

dist((X, Y), D*(My)) < ———— —
ist((X, ¥) (ﬁ))<1+2(1+\/§)v

The estimate holds:

Vo M) kv, D),

X,Y)— f( Xy, Yy) >
S ) — f(Xy ﬁ)>2+4(1+\/§)v

5 General Convergence Guarantees for Subgradient & Prox-linear
Methods

In this section, we formally develop convergence guarantees for Algorithms 1, 2, and
3 under Assumption A, and deduce performance guarantees in the RIP setting. To this
end, it will be useful to first consider a broader class than the compositional problems
(3.1). We say that a function f: E — R U {400} is p-weakly convex® if the perturbed
function x — f(x)+ % lx ||% is convex. In particular, a composite function f = ho F
satisfying the approximation guarantee

1£O) = FO)l < §||y —x}  Vx.y

6 Weakly convex functions also go by other names such as lower-C 2, uniformly prox-regularity, paraconvex,
and semiconvex. We refer the reader to the seminal works on the topic [2,67,69,72,74].
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is automatically p-weakly convex [36, Lemma 4.2]. Subgradients of weakly convex
functions are very well-behaved. Indeed, notice that in general the little-o term in the
expression (2.1) may depend on the basepoint x, and may therefore be nonuniform.
The subgradients of weakly convex functions, on the other hand, automatically sat-
isfy a uniform type of lower-approximation property. Indeed, a lower-semicontinuous
function f is p-weakly convex if and only if it satisfies:

FO) = f) +(Ey—x) — gny — x|} Vx,yeE£edfx).

Setting the stage, we introduce the following assumption.

Assumption B Consider the optimization problem,
min f(x). 5.1
cx Jx) (5.1

Suppose that the following properties hold for some real numbers (, p > 0.

1. (Weak convexity) The set X is closed and convex, while the function f: E — R
is p-weakly convex.

2. (Sharpness) The set of minimizers X* := argmin f(x) is nonempty and the fol-
xeX
lowing inequality holds:

f(x) —iR)ff > p-dist (x, X*)  VxeX.

In particular, notice that Assumption A implies Assumption B. Taken together,
weak convexity and sharpness provide an appealing framework for deriving local
rapid convergence guarantees for numerical methods. In this section, we specifically
focus on two such procedures: the subgradient and prox-linear algorithms. We aim
to estimate both the radius of rapid converge around the solution set and the rate
of convergence. Note that both of the algorithms, when initialized at a stationary
point could stay there for all subsequent iterations. Since we are interested in finding
global minima, we therefore estimate the neighborhood of the solution set that has no
extraneous stationary points. This is the content of the following simple lemma.

Lemma 5.1 ([31, Lemma 3.1]) Suppose that Assumption B holds. Then, the problem
(5.1) has no stationary points x satisfying

2
0 < dist(x: X*) < =2
0

It is worthwhile to note that the estimate 22 of the radius in Lemma 5.1 is tight [19,
Section 3]. Hence, let us define for any y > O the tube

T, = {zeX:dist(z,X*)SV-E}- (5.2)
P
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Thus, we would like to search for algorithms whose basin of attraction is a tube 7,
for some numerical constant ¥ > 0. Such a basin of attraction is in essence optimal.

The rate of convergence of the subgradient methods (Algorithms 1 and 2) relies on
the subgradient bound and the condition measure:

L:=supf{ll¢llz:¢€df(x),x €T} and 7:=—.

A straightforward argument [31, Lemma 3.2] shows t € [0, 1]. The following theorem
appears as [31, Theorem 4.1], while its application to phase retrieval was investigated
in [32].

Theorem 5.2 (Polyak subgradient method) Suppose that Assumption B holds and fix
a real number y € (0, 1). Then, Algorithm 1 initialized at any point xo € T, produces
iterates that converge linearly to X*, that is

dist (rp1, X%) < (1 - y)1:2) dis®(ve, X*) Yk = 0.

The following theorem appears as [31, Theorem 6.1]. The convex version of the result
dates back to Goffin [44].

Theorem 5.3 (Geometrically decaying subgradient method) Suppose that Assump-
tion B holds, fix a real number y € (0, 1), and suppose T < /ﬁ. Set A =

2
% and q = /1 — (1 — y)t? in Algorithm 2. Then, the iterates x; generated by
Algorithm 2, initialized at any point xo € T, satisfy:

2,2
dist? (x; X% < yp’; (1 (1= y)r2)k Vk > 0.

Let us now specialize to the composite setting under Assumption A. Since Assump-
tion A implies Assumption B, both subgradient Algorithms 1 and 2 will enjoy a linear
rate of convergence when initialized sufficiently close the solution set. The following
theorem, on the other hand, shows that the prox-linear method will enjoy a quadratic
rate of convergence (at the price of a higher per-iteration cost). Guarantees of this type
have appeared, for example, in [9,35,37].

Theorem 5.4 (Prox-linear algorithm) Suppose Assumption A holds. Choose any B > p
in Algorithm 3 and set y := p/B. Then, Algorithm 3 initialized at any point xo € T,
converges quadratically:

dist(rey1, &%) < £ - dis?(q, &%) VK > 0.

We now apply the results above to the low-rank matrix factorization problem under
RIP, whose regularity properties were verified in Sect. 4. In particular, we have the
following efficiency guarantees of the subgradient and prox-linear methods applied to
this problem.
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Corollary 5.5 (Convergence guarantees under RIP (symmetric)) Suppose Conditions A
and B are valid with |||-||| = % Il - I1 and consider the optimization problem

1
min  f(X) = —|AXX") = b|;.
XeRdxr m

Choose any matrix X satisfying

dist(Xo. D*(My)) _ ) &3

JorOT) 2

Define the condition number x := o1(My)/o-(My). Then, the following are true.
1. (Polyak subgradient) Algorithm 1 initialized at X produces iterates that converge
linearly to D*(My), that is

k
dist?(Xy, D*(M;)) - 0.2 K3
ar(My) - . # 1003

k3

. . ; . 0.81x3 /o7 (M.
2. (geometric subgradient) Algorithm 2 with A:Ww, q= /l—%
2 3

and initialized at X( converges linearly:

k
dist®(X¢, D*(My)) _ 0.2 K3
M = 42 ' 2
or(My) 1+L2X 100«

k3

3. (prox-linear) Algorithm 3 with B=p and initialized at X converges quadratically:

dist(Xy D*(My)) _ ot 0.45k3

Vk > 0.
Or (Mti) K2

5.1 Guarantees Under Local Regularity

As explained in Sect. 4, Assumptions A and B are reasonable in the symmetric set-
ting under RIP. The asymmetric setting is more nuanced. Indeed, the solution set is
unbounded, while uniform bounds on the sharpness and subgradient norms are only
valid on bounded sets. One remedy, discussed in [57], is to modify the optimization
formulation by introducing a form of regularization:

min [JAXY) = yll + AXTX =YY T p.

In this section, we take a different approach that requires no modification to the opti-
mization problem nor the algorithms. The key idea is to show that if the problem is
FoC !
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well-conditioned only on a neighborhood of a particular solution, then the iterates

will remain in the neighborhood provided the initial point is sufficiently close to the

solution. In fact, we will see that the iterates themselves must converge. The proofs of

the results in this section (Theorems 5.6, 5.7, and 5.8) are deferred to Appendix A.
We begin with the following localized version of Assumption B.

Assumption C Consider the optimization problem,

)121)1} fx). 5.3)

Fix an arbitrary point X € X* and suppose that the following properties hold for some
real numbers €, ., p > O.

1. (Local weak convexity) The set X is closed and convex, and the bound holds:
0 ),
SO = fx)+{&y—x)— Elly —x|3  Vx,y e XN Be(),{ €df(x).

2. (Local sharpness) The inequality holds:

fx) — ig(ff > p-dist (x, X*)  Vx € XN B(X).

The following two theorems establish convergence guarantees of the two subgra-
dient methods under Assumption C. Abusing notation slightly, we define the local
quantities:

L:= sup {ll¢ll2:x € XN Be(x)} and 7 := E.
red f(x) L

Theorem 5.6 (Polyak subgradient method (local regularity)) Suppose Assumption C
holds and fix an arbitrary point xg € Bej4(X) satisfying
3 2
dist(xo, X*) <min | 2 L
64L%" 2p

Then, Algorithm 1 initialized at xo produces iterates xy that always lie in B.(x) and

satisfy
dist (g1, ) < (1 _J %12> dis® (v, X*),  forallk > 0. (5.4)

Moreover, the iterates converge to some point Xoo € X* at the linear rate

16L3 - dist(xg, X* £
lxx — Xooll2 < 315 3(x0 ) . (1 — %rz)z forallk > 0.
"

Theorem 5.7 (Geometrically decaying subgradient method (local regularity)) Suppose

2
that Assumption C holds and that v < \% Define y = 4;'2 o b= %, and
FoCT
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g = /1 — (1 — y)t2. Then, Algorithm 2 initialized at any point xq € Bejs(¥) N7,
generates iterates xi that always lie in B¢ (X) and satisfy

2,,2 k
dist (xg: X*) < Vp’; (1 — - y)r2) forallk > 0. (5.5)

Moreover, the iterates converge to some point Xxoo € X™* at the linear rate

Ik = xosll2 < t25 -¢* forallk = 0.

We end the section by specializing to the composite setting and analyzing the prox-
linear method. The following is the localized version of Assumption A.

Assumption D Consider the optimization problem,
min f(x) := h(F(x)),
xeX

where the function h(-) and the set X are convex and F(-) is differentiable. Fix a
point X € X* and suppose that the following properties holds for some real numbers
€, p>0.

1. (Approximation accuracy) The models f(y) := h(F (x)+V F (x)(y—x)) satisfy
the estimate:

1F ) = )] < gny —x|3 VxeXNB.(i)yexX.

2. (Sharpness) The inequality holds:

f(x)—infqu-dist(x,X*) Vx € X N B (X%).
The following theorem provides convergence guarantees for the prox-linear method
under Assumption D.

Theorem 5.8 (Prox-linear (local)) Suppose Assumption D holds, choose any 8 > p,
and fix an arbitrary point xy € Be/2(x) satisfying

2 2
£ (x0) = min f =< min{%, g—ﬂ}

Then, Algorithm 3 initialized at x( generates iterates xi that always lie in B (x) and

satisfy

dist(rier. X% < 2 dis? (e, %),
I
ﬂ 2
fOe1) m/\lfnf =2 (f(xk) Il’/l%nf)
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Moreover, the iterates converge to some point Xoo € X™* at the quadratic rate

k—1
22 1\?
lxk — xooll2 < % : <§> forall k > 0.

With the above generic results in hand, we can now derive the convergence guar-
antees for the subgradient and prox-linear methods for asymmetric low-rank matrix
recovery problems. To summarize, the prox-linear method converges quadratically, as
long as it is initialized within constant relative error of the solution. The guarantees
for the subgradient methods are less satisfactory: the size of the region of the linear
convergence scales with the condition number of M;. The reason is that the proof
estimates the region of convergence using the length of the iterate path, which scales
with the condition number. The dependence on the condition number in general can be
eliminated by introducing regularization | X "X — YY T ||, as suggested in the work
[57]. Still the results we present here are notable even for the subgradient method. For
example, we see that for rank » = 1 instances satisfying RIP (e.g., blind deconvolu-
tion), the condition number of M; is always one and therefore regularization is not
required at all for subgradient and prox-linear methods.

Corollary 5.9 (Convergence guarantees under RIP (asymmetric)) Suppose Assump-
tions A and B are valid’ and consider the optimization problem

. 1
min fX) = =[AXY) = b|1.
XeR4UXr | yeR <4 m

Define X = U~/A and Yy = VAV, where My =UA V' T is any compact singular
value decomposition of My. Define also the condition number x := o1(My) /o, (My).
Then, there exists n > 0 depending only on k2, k3, and o (My) such that the following
are true.

1. (Polyak subgradient) Algorithm 1 initialized at (X¢, Yo) satisfying

Xo, Yo) — (X, Y, K2
I(Xo, Yo) — (X4, Yl F < min{1, 23 ’K_3},

YV O'r(M]:I) ~ Ky X K2

will generate an iterate sequence that converges at the linear rate:

<§ after k2

dist((Xe, Yi). () Grx oy, (ﬁ) iterations
or(Ms) K32 8

2. (geometric subgradient) Algorithm 2 initialized at (Xo, Yo) satisfying

(X0, Yo) — (X¢, Yl F <

Vor(My) ~

. K3
min{l, —},
K2 X

T with (1l = L0111
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will generate an iterate sequence that converges at the linear rate:

2.2
K5 X

dist((Xg, Yx), D*(M.

ist((Xx, ¥i) (M) <3§ after k2 5—-In (2) iterations.
Ur(Mﬁ) K3 )

3. (prox-linear) Algorithm 3 initialized at (Xg, Yo) satisfying

f(x0) —miny f
Ur(MIi)

(X0, Yo) — (X3, Yo)llF 1

Vor (M) o

will generate an iterate sequence that converges at the quadratic rate:

< min{«y, K32//<2} and

d.t X 1Y »D* M -
ist((X, Yi), D*( n))g"j.z 2 forallk > 0.
or(My) 2

6 Examples of £1/¢; RIP

In this section, we survey three matrix recovery problems from different fields, includ-
ing physics, signal processing, control theory, wireless communications, and machine
learning, among others. In all cases, the problems satisfy £1/£2 RIP and the Z-outlier
bounds and consequently, the convergence results in Corollaries 5.5 and 5.9 immedi-
ately apply. Most of the RIP results in this section were previously known (albeit under
more restrictive assumptions); we provide self-contained arguments in Appendix B
for the sake of completeness. On the other hand, using nonsmooth optimization in
these problems and the corresponding convergence guarantees based on RIP are, for
the most part, new. All the examples in this section either satisfy Assumption A (in
the symmetric case), or its local version Assumption D (in the asymmetric case). In
particular, sharpness holds with respect to the Frobenius norm (up to appropriate sym-
metries). The €1 /¢> and Z-outlier guarantees are summarized in Theorem 6.4 at the
end of the section.

For the rest of this section, we will assume the following data-generating mecha-
nism.

Definition 6.1 (Data-generating mechanism) A random linear mapping .A:
R41*% _ R™ and arandom index setZ C [m] are drawn independently of each other.
We assume moreover that the outlier frequency pr,i := |Z|/m satisfies prj € [0, 1/2)
almost surely. We then observe the corrupted measurements

M) ifi ¢ 7, and
p = M) TR T an ©.1)
ni ifi e Z,
where 7 is an arbitrary vector. In particular, n could be correlated with A.
Throughout this section, we consider four distinct linear operators A.
FolCT
I_, o
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Matrix Sensing In this scenario, measurements are generated as follows:
A(My); = (P;, M3) fori=1,...,m (6.2)

where P; € R4%4 are fixed matrices.

Quadratic Sensing |  In this scenario, M € R9%4 is assumed to be a PSD rank r
matrix with factorization My = X3 X J and measurements are generated as follows:

AMy); = p! Mypi = | X/ pil;  fori=1,....m, (6.3)

where p; € R are fixed vectors.

Quadratic Sensing Il In this scenario, M; € R¢*¢ is assumed to be a PSD rank r
matrix with factorization My = X3 X ﬁT and measurements are generated as follows:

AMy)i = p] Mspi—p;] Mapi = |X] pil3—11X] pil}  fori=1,....m, (6.4)

where p;, p; € R are fixed vectors.

Bilinear Sensing In this scenario, M; € R4*% ig assumed to be a r matrix with
factorization M; = XY and measurements are generated as follows:

AMy); = p Myqi ~ fori=1,...,m, (6.5)

where p; € R% and ¢; € R® are fixed vectors.

The matrix, quadratic, and bilinear sensing problems have been considered in a num-
ber of papers and in a variety of applications. The first theoretical properties for matrix
sensing were discussed in [13,40,71]. Quadratic sensing in its full generality appeared
in [24] and is a higher-rank generalization of the much older (real) phase retrieval
problem [11,14,45]. Besides phase retrieval, quadratic sensing has applications to
covariance sketching, shallow neural networks, and quantum state tomography; see
for example [58] for adiscussion. Bilinear sensing is a natural modification of quadratic
sensing and is a higher-rank generalization of the blind deconvolution problem [1]; it
was first proposed and studied in [10].

The reader is reminded that once ¢ /¢> RIP guarantees, in particular Conditions A
and B, are established for the above four operators, the convergence guarantees of
Corollaries 5.5 and 5.9 immediately take hold for the problems

. 1
min  f(X) = —[AXX") - bl
XeRdxr m
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and

. 1
min f(X) = —IAXY) = b,
XERdlxr, Y€Rr><d2 m

respectively. Such guarantees explain the empirical success of the subgradient method
on these objectives as shown in [59]. Let us now turn our attention to establishing such
guarantees.

6.1 Warm-Up: £, /£; RIP for Matrix Sensing with Gaussian Design

In this section, we are primarily interested in the £1 /£, RIP for the above four linear
operators. However, as a warm-up, we first consider the £ /¢,-RIP property for matrix
sensing with Gaussian P;. The following result appears in [13,71].

Theorem 6.2 (£, /¢,-RIP for matrix sensing) For any § € (0, 1) there exist constants
¢, C > 0depending only on § such that if the entries of P; are i.i.d. standard Gaussian
and m > cr(dy + d») log(d1d>), then with probability at least 1 — exp (—Cm), the
estimate

1
A =8)IMllF = ﬁIIA(M)IIz =1+ dIMF,

holds simultaneously for all M € R4*% of rank at most 2r. Consequently, Condi-
tion A is satisfied.

Following the general recipe of the paper, we see that the nonsmooth formulation

_ L S Tyy _ p)?
IAXY) — blla = m;(Tr(YPI. X) — b;) (6.6)

. 1
min —
XGRdl xr YERrde /m

is immediately amenable to subgradient and prox-linear algorithms in the noiseless
setting Z = . In particular, a direct analogue of Corollary 5.9, which was stated for
the penalty function & = n—11|| - |l1, holds; we omit the straightforward details.

6.2 The £, /4, RIP and Z-Outlier Bounds: Quadratic and Bilinear Sensing

‘We now turn our attention to the £ /£, RIP for more general classes of linear maps than
the i.i.d. Gaussian matrices considered in Theorem 6.2. To establish such guarantees,
one must ensure that the linear maps A have light tails and are robustly injective on
certain spaces of matrices. The first property leads to tight concentration results, while
the second yields the existence of a lower RIP constant «1.

Condition C (Matrix Sensing) The matrices {P;} are i.i.d. realizations of an n-sub-
Gaussian random matrix3 P € R4 %% Furthermore, there exists a numerical constant

8 By this we mean that the vectorized matrix vec(P) is a n-sub-Gaussian random vector.
FolCTM
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o > 0 such that
inf E(P, M)| > a. 6.7
M: Rank M <2r
1M p=1
Condition D (Quadratic Sensing I) The vectors {p;} are i.i.d. realizations of a n-sub-
Gaussian random variable p € RY. F urthermore, there exists a numerical constant
a > 0 such that
inf Elp'Mp| > a. (6.8)
MeS?: Rank M<2r
M) F=1
Condition E (Quadratic Sensing II) The vectors {p;}, {p;} are i.i.d. realizations of
a n-sub-Gaussian random variable p € R?. Furthermore, there exists a numerical
constant o > 0 such that

inf Elp " Mp—p"Mp| > a. (6.9)
MeS9: Rank M<2r
1M p=1

Condition F (Bilinear Sensing) The vectors {p;} and {q;} are i.i.d. realizations of n-
sub-Gaussian random vectors p € R and q € R%, respectively. Furthermore, there
exists a numerical constant o > 0 such that

inf  E|lp'Mq|>a. 6.10
M: Rail[ll M<2r |P q| - ¢ ( )
IM|lF=1

The Conditions C-F are all valid for i.i.d. Gaussian realizations with independent
identity covariance, as the following lemma shows. We defer its proof to Appendix B.1.

Lemma 6.3 Condition C holds for matrices P with i.i.d. standard Gaussian entries.
Conditions D and E hold for vectors p, p with i.i.d. standard Gaussian entries. Con-
dition F holds for vectors p and q with i.i.d. standard Gaussian entries.

We can now state the main RIP guarantees under the above conditions. Throughout
all the results, we fix the data generating mechanism as in Definition 6.1. Then, we
wish to establish the inequalities

1
KiIMllF < Z”A(M)”] =2lM|F (6.11)

and
1
k3| M|F < Z(IIAzc(M)Ill — | AZ(M)]1), (6.12)

and, hence, Conditions A and B, respectively, for certain constants k1, k2, and k3. We
defer the proof of this theorem to Appendix B.2.

Theorem 6.4 (£1/¢, RIP and Z-outlier bounds) There exist numerical constants
cl,...,c6 > 0 depending only on a,n such that the following hold for the cor-
responding measurement operators described in Egs. (6.2), (6.3), (6.4), and (6.5),
respectively
FolCTM
e
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1. (Matrix sensing) Suppose Condition C holds. Then, provided

c
r(di+dy+1)In <C2 + —2> 4
1 = 2ptait

a1
m> ———
(1 — 2 ptair)
we have with probability at least 1 — 4 exp (—C3(1 — 2pfaﬂ)2m) that every matrix
M € RY*% of rank at most 2r satisfies (6.11) and (6.12) with constants k1 =
¢4, k2 = ¢5 and k3 = c6(1 — 2 pain).
2. (Quadratic sensing I) Suppose Condition D holds. Then, provided

m r22d + 1) In (Cz n C—2ﬁ> :

c1
> -
(1 = 2pgain)? 1 — 2 gyt
we have with probability at least 1 —4 exp (—03 (11— 2pfai1)2m/r) that every matrix
M e Rixd of rank at most 2r satisfies (6.11) and (6.12) with constants k| =
c4, k2 = ¢5 - A/r and k3 = ce(1 — 2 pgai)).
3. (Quadratic sensing II) Suppose Condition E holds. Then, provided

cl
m> ——
(1 = 2prai))? 1 — 2pgait

r@d + 1)In (c2 N — ) :
we have with probability at least 1 — 4 exp (—63(1 - 2Pfai1)2m) that every matrix
M e R4 of rank at most 2r satisfies (6.11) and (6.12) with constants k1 =
¢4, k2 = ¢5 and k3 = ce(1 — 2 paqn).

4. (Bilinear sensing) Suppose Condition F holds. Then, provided

C
r(dy +d> + 1) In <cz + —2) ,
1 — 2 pfail

cl
m>  ——-

(1 = 2pgai)?

we have with probability at least 1 — 4 exp (—03(1 -2 pfaﬂ)zm) that every matrix
M e RIxa of rank at most 2r satisfies (6.11) and (6.12) with constants k1 =

c4, k2 = ¢5 and k3 = c6(1 — 2pgaq). )
The guarantees of Theorem 6.4 were previously known under stronger assumptions.

In particular, item (1) generalizes the results in [57] for the pure Gaussian setting. The
case r = 1 of item (2) can be found, in a slightly different form, in [37,39]. Item (3)
sharpens slightly the analogous guarantee in [24] by weakening the assumptions on
the moments of the measuring vectors to the uniform lower bound (6.9). Special
cases of item (4) were established in [19], for the case r = 1, and [10], for Gaussian
measurement vectors.

We note that all linear mappings require the same number of measurements in order
to satisfy RIP and Z outlier bounds, except for quadratic sensing I operator, which
incurs an extra r-factor. This reveals the utility of the quadratic sensing II operator,
which achieves optimal sample complexity. For larger scale problems, a shortcoming
of matrix sensing operator (6.2) is that md|d, scalars are required to represent the
map A. In contrast, all other measurement operators may be represented with only
m(dy + d») scalars.

FoC Tl
H_n
L

@ Springer |04

'é: Journal: 10208 Article No.: 9490 [ | TYPESET [__]DISK [__]LE [__]CP Disp.:2020/12/22 Pages: 89 Layout: Small-Ex




Author Proof

989

990

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

Foundations of Computational Mathematics

7 Matrix Completion

In the previous sections, we saw that low-rank recovery problems satisfying RIP lead
to well-conditioned nonsmooth formulations. We argue, however, that the general
framework of sharpness and approximation is applicable even for problems without
RIP. We consider two such problems, namely matrix completion in this section and
robust PCA in Sect. 8, to follow. Both problems will be considered in the symmetric
setting. We will show that symmetric matrix completion satisfies local sharpness with
respect to the Frobenius norm, although it satisfies a slightly different approximation
bound than Assumption A (cf. Lemma 7.4). Corollaries 7.5 and 7.7 show that the
Polyak and (modified) prox-linear algorithms exhibit local linear convergence.

The goal of matrix completion problem is to recover a PSD rank r matrix My € S d
given access only to a subset of its entries. Henceforth, let X; € RY*" be a matrix
satisfying My = Xz X g . Throughout, we assume incoherence condition, || X4|l2,00 <

\/"dz, for some v > 0. We also make the fairly strong assumption that the singular
values of Xy are all equal 01(Xz) = 02(X) = ... = 0,(Xy) = 1. This assumption
simplifies the presentation of our theoretical results. We believe this condition could
be relaxed at the expense of increasing the sample complexity by a polynomial factor
of the condition number. We decided against this more general setting, as it would
require us to extend some of the key inequalities from [27], which is out of the scope
of this paper. We let £2 C [d] x [d] be an index set generated by the Bernoulli model,
that is, P((i, j), (j,i) € £2) = p independently forall 1 < i < j < d. Since the
matrices we consider are symmetric, so is £2, i.e., if (i, j) € §2 then (j, i) € £2. Let
Mgo: ST — R!¥! be the projection onto the entries indexed by £2. We consider the
following optimization formulation of the problem

min f(X) = [Te(XX ") — Ho(My)|2,
XeX

where

X = {X e R X200 5,/%}.

We will show that both the Polyak subgradient method and an appropriately modified
prox-linear algorithm converge linearly to the solution set under reasonable initial-
ization. Moreover, we will see that the linear rate of convergence for the prox-linear
method is much better than that for the subgradient method.

To simplify notation, we set

D* .= D*(M;) = {X e R : XX T = M,).

We begin by estimating the sharpness constant p of the objective function. Fortu-
nately, this estimate follows directly from inequalities (58) and (59a) in [27].
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Lemma 7.1 (Sharpness [27]) There are numerical constant cy, c; > 0 such that the
v2r? | logd

ollowing holds. If p > ca( + ), then with probability 1 — cld_z, the estimate
Jf g P 7 v p ty

1
;unmxxT — X XDIF = alXXT — XX 117

holds uniformly for all X € X with dist(X, D*) < c.

Let us next estimate the approximation accuracy | f(Z) — fx(Z)|, where
fx(2) = Mo(XX = My + X(Z—X)" +(Z - X)X D)||r.

To this end, we will require the following result.

Lemma 7.2 (Lemma 5 in [27]) There is a numerical constant ¢ > 0 such that the
following holds. If p > e% % + %).for some € € (0, 1), then with probability at

least 1 — 2d 4, the estimates
1. LA XXk < VTFOIXIE + Vel X lr; and
2. MY XDlr < VorlYlF

hold uniformly for all matrices X with || X ||2,00 < 6 ”d—r and Y € R,

An estimate of the approximation error | f(Z) — fx(Z)| is now immediate.

Lemma 7.3 (Approximation accuracy and Lipschitz continuity) There is a numerical

22 logd

constant ¢ > 0 such that the following holds. If p > e‘—‘z( — + =) for some
€ € (0, 1), then with probability at least 1 — 2d —4  the estimates

1

ﬁlf(X) — X1 < VA+OIX = YIIF + VellX =Yg,

lf(X) = f] = /pvrllX =Y|lF,

holds uniformly forall X, Y € X.

Proof The first inequality follows immediately by observing the estimate
1F QO = fr(X)] < Te((X = V)X = V) D]F,
and using Lemma 7.2. To see the second inequality, observe

If(X)— f(V)] < (XX —YYT)|F

1 N .
Mg (X =X +Y)" = (X + V)X —=Y))lr

<Ho((X -Y)X+1)Dlr
< J/pvrllX =Y,

where the last inequality follows by Part 2 of Lemma 7.2. O
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Note that the approximation bound in Lemma 7.3 is not in terms of the square
Euclidean norm. Therefore, the results in Sect. 5 do not apply directly. Nonetheless,
it is straightforward to modify the prox-linear method to take into account the new
approximation bound. The proof of the following lemma appears in the appendix.

Lemma 7.4 Suppose that Assumption A holds with the approximation property
replaced by

1F) = feO <ally —xI3+bly —xl2 Vx,y €&,

for some real a, b > 0. Consider the iterates generated by the process:

st = argmin { £, (6) +allx = 53+ bllx = xella}
xeX

Then, as long as xo satisfies dist(xg, X*) < ”;—a%, the iterates converge linearly:

2(b + adist(x, X*))

dist(xpq1, X*) < -dist(eg, X*) Yk > 0.

Combining Lemma 7.4 with our estimates of the sharpness and approximation
accuracy, we deduce the following convergence guarantee for matrix completion.

Corollary 7.5 (Prox-linear method for matrix completion) There are numerical con-

stants cg, ¢, C > 0 such that the following holds. If p > 6% % + 105‘1) for some

€ € (0,1), then with probability at least 1 — cod™?, the iterates generated by the
modified prox-linear algorithm

Xir1 = argmin {00+ VpT+ - 1X = Xel3 + Vpel X = Xela) 7.
Xe

satisfy
JE + 1+ e - dist(Xy, D¥)

dist(Xg41, D" < -dist(Xy, D*)  Vk > 0.

C
. . . . o C—2Jc
In particular, the iterates converge linearly as long as dist(Xg, D*) < ENGETE

Proof By invoking Proposition 4.4 and Lemmas 7.1 and 7.3, we may appeal to

Lemma 7.4 witha = /p(l +¢€),b = /pe, and u = ,/2c1p(\/§ — 1). The result
follows immediately. O

To summarize, there exist numerical constants cg, ci, ¢, c3 > 0 such that the
following is true with probability at least 1 — cod 2. In the regime

2.2
c [vor logd
2( , log

S for some € € (0, ¢y),
px G (1l e ) 0, c1)
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the prox-linear method will converge at the rapid linear rate,

dist(Xy, D*) < ;—i
when initialized at X € X satisfying dist(Xo, D*) < c».

As for the prox-linear method, the results of Sect. 5 do not immediately yield
convergence guarantees for the Polyak subgradient method. Nonetheless, it straight-
forward to show that the standard Polyak subgradient method still enjoys local linear
convergence guarantees. The proof is a straightforward modification of the argument
in [31, Theorem 3.1], and appears in the appendix.

Theorem 7.6 Suppose that Assumption A holds with the approximation property
replaced by

IfO) = x| <ally —xI3+blly —x|2  V¥x,y €,

for some real a, b > 0. Consider the iterates {x;} generated by the Polyak subgradient

method in Algorithm 1. Then, as long as the sharpness constant satisfies ;@ > 2b and
. . % w—2b . .

xo satisfies dist(xo, X*) <y - == for some y <1, the iterates converge linearly

1 —y)u(n —2b)
L2

dist® (xpp1, X*) < <1 _ ! ) dist?(xg, X*)  Vk > 0.

Finally, combining Theorem 7.6 with our estimates of the sharpness and approxima-
tion accuracy, we deduce the following convergence guarantee for matrix completion.

Corollary 7.7 (Subgradient method for matrix completion) There are numerical con-

stants cq, ¢, C > 0 such that the following holds. If p > E‘—z % + loid) for some

€ € (0, 1), then with probability at least 1 — cod 2, the iterates generated by the
iterates { X} generated by the Polyak Subgradient method in Algorithm 1 satisfy

_C(C—2f)

dist(Xgr1, D*)* < (1
2vr

> -dist>(Xg, D*)  Vk > 0.

. . . . % C—2./e
In particular, the iterates converge linearly as long as dist(Xo, D*) < N e

Proof First, observe that we have the bound L < ./pvr by Lemma 7.3. By invoking
Proposition 4.4 and Lemmas 7.1 and 7.3 we may appeal to Theorem 7.6 with y =

1/2,a = /p(A+e€),b = /p€, and u = \/20117(«/5— 1). The result follows

immediately. O

To summarize, there exist numerical constants cg, ci, ¢, ¢3 > 0 such that the
following is true with probability at least 1 — cod 2. In the regime

d d

. &) <v2r2 L logd
=2
€

) for some € € (0, cy),
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the Polyak subgradient method will converge at the linear rate,

[STE]

dist(X;. D*) < (1 _ C—3) .
vr

when initialized at Xy € X satisfying dist(Xo, D*) < c,. Notice that the prox-linear
method enjoys a much faster linear rate of convergence than the subgradient method—
an observation fully supported by numerical experiments in Sect. 10. The caveat is
that the per iteration cost of the prox-linear method is significantly higher than that of
the subgradient method.

Literature review and sample complexity comparison  There is a rich literature
on low-rank matrix completion using both convex and nonconvex formulations. The
seminal work in [16,17,70] analyzes a convex relaxation based on nuclear norm min-
imization. One of the earliest two-stage algorithms for matrix completion is studied
in [51,52], which shows that truncated SVD with trimming provides a sufficiently
accurate initial estimate, which can be refined using an iterative manifold optimization
algorithm. Several algorithms operating on the factor space — leading to (smooth) non-
convex formulations and two-stage algorithms — have also been proposed and shown
to enjoy local linear convergence. In particular, the authors of [47,48,50] consider
alternative minimization over the two factors, but their analysis relies on sample split-
ting and hence suffers from suboptimal sample complexity. A more recent paper [4]
considers alternating minimization using a slightly overparameterized formulation,
which achieves better dependency of the sample complexity on the matrix condition
number.

(Projected) gradient descent is another widely studied approach in the nonconvex
matrix completion literature. The work of [27] provides a general framework for
establishing local linear convergence of projected gradient descent for low-rank matrix
recovery problems including matrix completion. The rectangular matrix setting is
studied in the work in [81]. The authors of [77] study the landscape geometry of a
regularized nonconvex formulation for matrix completion, and show that there is no
spurious local minima near the global minimum. It has been further shown in [43] that
the standard smooth nonconvex loss used in positive-semidefinite matrix completion
in fact has no spurious local minima anywhere; consequently, gradient descent with
random initialization converges to the global minimizers.

Inthe work [3], itis shown that a certain class of regularized nonconvex formulations
satisfy strong duality, hence solving the (convex) bi-dual problem can be used to
recover a globally optimal solution. The work in [34] shows that projected gradient
descent applied a rank-constrained formulation converges entrywise and linearly to
the ground truth, without sample splitting.

Sample complexity bounds for exact matrix completion have been obtained and
improved in a sequence of work [17,20,46,70]. The best result to date is given in the
work [34], which shows that the standard nuclear norm relaxation approach attains
near-optimal sample complexity p - w, with no dependence on the condi-
tion number. In comparison, Corollaries 7.5 and 7.7 in this paper require the condition

FoCTl
@ Springer Lg:,o']

;-,-’: Journal: 10208 Article No.: 9490 [ TYPESET [__|DISK [_]LE [_] CP Disp.:2020/12/22 Pages: 89 Layout: Small-Ex




Author Proof

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

n”n

1172

1173

1174

175

1176

177

1178

179

1180

1181

1182

Foundations of Computational Mathematics

2.2 .
p > E% — + lot%d). Our results hence match that in [34] up to a factor logrw. We

note that other work on factorization-based approaches (e.g., [51,77,81]) also have a
similar suboptimality in terms of the rank.

8 Robust PCA

The goal of robust PCA is to decompose a given matrix W into a sum of a low-rank
matrix M3 and a sparse matrix Sy, where My represents the principal components, Sy the
sparse corruption, and W the observed data[15,18,80]. We only consider the symmetric
version of the problem. In this section, we explore methods of nonsmooth optimization
for recovering such a decomposition, focusing on two different problem formulations.
The Euclidean formulation satisfies sharpness with respect to the Frobenius norm. For
the non-Euclidean formulation we require a sharpness condition with respect to the
matrix £2 1-norm to avoid dimension-dependent rates. Corollary 8.3 and Theorem 8.10
summarize the convergence guarantees of the subgradient and prox-linear methods for
the two formulations.

8.1 The Euclidean Formulation

Setting the stage, we assume that the matrix W e R?*? admits a decomposition
W = M;+ Sy, where the matrices My and S; satisfy the following for some parameters
v>0andk e N:

1. The matrix M; € R?*“ has rank r and can be factored as My = X; X, for some

matrix X; € R?" satisfying | Xz [lop < 1 and || Xsll2,00 < /%’

2. The matrix Sy is sparse in the sense that it has at most k nonzero entries per
column/row.

The goal is to recover My and S given W. The first formulation we consider is the
following:

min  F((X,$) =[XX"+5— Wl 8.1

xS (X.9) =1 I (8.1)

where the constraint sets are defined by

Si= {S e R ||Sei ||y < |1Szeil w}, X = {X eRV X200 < ,/%}.

Note that the problem formulation requires knowing the £ norms of the rows of S;.
The same condition was also made in [27,42]. While admittedly unrealistic, this for-
mulation provides a nice illustration of the paradigm we advocate here. The following
technical lemma will be useful in proving the regularity conditions needed for rapid
convergence. The proof is given in Appendix D.1.

9 Recall that 1X1l2,00 = max;e[q) | X;. |2 is the maximum row norm.
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Lemma8.1 Forall X € X and S € S, the estimate holds:

T T vrk
(S — 8 XX — Xp X, ) <10 v IS = SellF - I1X — XgllF-

Equipped with the above lemma, we can estimate the sharpness and approximation
parameters (., p for the formulation (8.1).

Lemma 8.2 (Regularity constants) For all X € X and S € S, the estimates hold:
F((X, $)* > (%arz(xﬁ) ~ 10 Tk> : (dist(X, D*(M2))* + 1S — sﬁu%) 8.2)

and
IF((X,$)) — Fy((X, )] < IX — Y% (8.3)

Moreover, for any X, X, € X and Sy, Sy € S, the Lipschitz bounds holds:
[F((X1,81) — F((X2, S2)| <24/ vr[ X1 — Xollp + 1181 — SallF.
Proof Let X4 Projps( M) (X). To establish the bound (8.2), we observe that

IXXT 48 = Wlp = IXXT = Mll7 +2(5 — S5, XX T — M) + 1S = S:117

1, 2
z 5oy (X)X — XylIF

vrk 2
—20 TIIS— SallFIIX — Xallp + IS — S:ll %,

where the first inequality follows from Proposition 4.4 and Lemma 8.1. Now set

vrk
a:=10 VR b= X - XtlF, c:=S—S:lF,

and s = %orz(Xn). With this notation, we apply the Fenchel-Young inequality to
show that for any ¢ > 0, we have

2abc < ash® + (a/s)cz.
Thus, for any ¢ > 0, we have

IXXT 4+ 8 — W|% > sb® — 2abc + ¢* > (s — ag)b® + (1 —a/e)c?.

/ 2 2
Now, choose ¢ > 0 so that s —ae = 1 — a/e. Namely set ¢ = —(1=9)+ (1 —5)"+4a
With this choice of ¢ and the bound s — ae > 20'2(Xﬁ) — 104/vrk/d, the clalmed
FoE""I
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bound (8.2) follows immediately. The bound (8.3) follows from the reverse triangle
inequality:

IF((X,8) = Fy(X, ) < IXXT —vYT =X -1)Y Y " (X=Y)|r
=XX"T XY —¥vX"4+vY"|F
=|X-V"X-Y)"Fr
<X =Y}

Finally, observe

IF((X1, 1)) — F((X2, )| < IX1X] — X2X5 [lF + 1S1 = Sall
<IX1 4+ X2llopll X1 — Xollr + [|1S1 — S2llF
< 2Jvrl|X1 — Xallp + 181 — SallF,

where we use the bound || X;|lop < Vd|| X; ll2.00 < #/vr in the final inequality. The

proof is complete. O

Corollary 8.3 There exist numerical constants cg, c1, ca > 0 such that the following is

true: in the regime ./ %k < c00r2 (X1), the iterates generated by Algorithm 1 applied
to solve 8.1 converge linearly and satisfy

k
2 X 2
dist(Xg, D*(My)) < <1 A M) e, (8.4)
vr

while the iterates generated by Algorithm 3 will converge quadratically when initial-
ized at Xy € X, as long as

dist(Xo, D*(My)) < c207(Xy). (8.5)

8.2 The Non-Euclidean Formulation

We next turn to a different formulation for robust PCA that does not require knowledge
of ¢1 row norms of S;. In particular, we consider the formulation

min f(X) = IXX" = Wiy where X = {X € R | | X|l2.00 < Cl|Xzll2.00}.
(8.6)
for a constant C > 1. Unlike Sect. 8.1, here we consider a randomized model for the
sparse matrix Sy. We assume that there are real v, T > 0 such that

1. M; € R can be factored as My = Xqu for some matrix X; € RY*" satisfying
1 Xzll2,00 < /%7 1 X5 llop-
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2. We assume the random corruption model
(Sp)ij = 8i;8i; Vi, j
where §;; are i.i.d. Bernoulli random variables with T = P(§;; = 1) and S is an

arbitrary and fixed d x d symmetric matrix.

In this setting, the approximation function at X is given by
X2 =IXX-W+XZ-X)"4+Z-XX"|.

We begin by computing an estimate of the approximation accuracy | f(Z) — fx(2)|.

Lemma 8.4 (Approximation accuracy) The estimate holds:
1f(2) = fxD) < 1Z=X|5, forallX,Z e R

Proof As in the proof of Proposition 4.2, we compute

) = XD = 1227 = Wi = IXX =W+ X(Z = X)T +(Z = 0X |

<SWZ=XNZ =X =) le/(Z—X)(e(Z—X)T|
i,j
<Y el (Z=X)l2-lle] (Z = X)ll2 = 1Z = X113,
i,J

thereby completing the argument. O

Notice that the error | f(Z) — fx(Z)] is bounded in terms of the non-Euclidean norm
|Z — X||2.1. Thus, although in principle one may apply subgradient methods to the
formulation (8.6), their convergence guarantees, which fundamentally relied on the
Euclidean norm, would yield potentially overly pessimistic performance predictions.
On the other hand, the convergence guarantees for the prox-linear method do not
require the norm to be Euclidean. Indeed, the following is true, with a proof that is
nearly identical as that of Theorem 5.8.

Theorem 8.5 Suppose that Assumption A holds where || - || is replaced by an arbitrary
norm |||-|||l. Choose any B > p and set y := p/B in Algorithm 3. Then, Algorithm 3
initialized at any point xo satisfying distj. (xo, X*) < % converges quadratically:

disty. g (g1, X)) < £ distf | (g, XF) Yk > 0.

To apply the above generic convergence guarantees for the prox-linear method, it
remains to show that the objective function f in (8.6) is sharp relative to the norm
Il - II1,2. A key step in showing such a result is to prove that

IXXT = XXz inf X = X;Rl2.
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for a quantity ¢ depending only on X;. One may prove this inequality using Propo-
sition 4.4 together with the equivalence of the norms || - || and | - ||1,2. Doing so
however leads to a dimension-dependent ¢, resulting in a poor rate of convergence
and region of attraction. We instead seek to directly establish sharpness relative to the
norm || - ||2,1. In the rank one setting, this can be done using the following theorem.

Theorem 8.6 (Sharpness (rank one)) Consider two vectors x, x € R¢ satisfying
disty.p, (x, {£x5}) < (V2 = D[]
Then, the estimate holds:
bex T = 22T = (V2= 1) - 1% distyg, Cr, (£5).
The proof of this result appears in Appendix D.2. We leave as an intriguing open

question to determine if an analogous result holds in the higher rank setting.

Conjecture 8.7 (Sharpness (general rank)) Fix a rank r matrix X3 € R?*" and set
Df ={XeX: XX = XjX;}. Then, there exist constants ¢, y > 0 depending
only on X3 such that the estimate holds:

IXX"T — M)y > c-disty.,, (X, D%,

for all X e X satisfying dist|.j, , (X, D*) < y.

Assuming this conjecture, we can then show that the loss function f is sharp under
the randomized corruption model. We first state the following technical lemma, whose
proof is deferred to Appendix D.3. In what follows, given a matrix X € R?*", the
notation X; always refers to the ith row of X.

Lemma 8.8 Assume Conjecture 8.7. Then, there exist constants c1, ¢z, ¢3 > 0 so that
for all d satisfying d > %, we have that with probability 1 — d=2, the following
bound holds:

d
3C/ logd
D8 IXi, X ) — (X, (X9))] < (r + %nxﬁuop) IXXT = XX,/ |
i,j=l1

forall X € X satisfying dist|., , (X, D*) < y.

We remark that we expect ¢ to scale with || X [|op in the above bound, yielding a ratio
| X¢llop/c dependent on the conditioning of Xy. Given the above lemma, sharpness of
f quickly follows.

Lemma 8.9 (Sharpness of Non-Euclidean Robust PCA) Assume Conjecture 8.7. Then,
there exists a constants c1, ¢z, ¢3 > 0 so that for all d satisfying d > %, we have
that with probability 1 — d~<2, the following bound holds:

2¢3C/Tvrlogd .

FX) = f(Xg) = c- (1 -2t — fgnxﬁ”op) -disty. |, (X, D*(Mjy))
FolCT

b
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forall X € X satisfying and dist|. |, , (X, D*(My)) < y.

Proof The reverse triangle inequality implies that
FX) = f(Xp)

= IXXT = Wih - f(X)

= ||XxT — X:X] i — f(Xo)

+ Z 8ij (I(Xi, Xj) = (X (X)) — (S)ij| — [(Xi, Xj) = (Xg)i, (X2))])
i,j=1

=xXx" - X:X/Ih

d
+ Z 8ij (KXi, Xj) — (X, (Xp)j) — (S9)ijl)
ij:l

—Zs,, (Xi, Xj) = (X)i, (Xp) )] — 1(Sp)ij )

i,j=1
d
> IXXT = X X[ —2 ) 81X, Xj) — (Xpi, (X))l
i,j=l

The result them follows from the sharpness of the function || X X T_Xx 1X g I1 together
with Lemma 8.8. O

Combining Lemma 8.9 and Theorem 8.5, we deduce the following convergence
guarantee.

Theorem 8.10 (Convergence for non-Euclidean Robust PCA) Assume Conjecture 8.7.
Then, there exist constants ci,ca,c3 > 0 so that for all T satisfying 1 — 2t —
2¢3C/Tvrlogd|| Xsllop/c > 0 and d satisfying d > %, we have that with prob-
ability 1 — d=2, the iterates generated by the prox-linear algorithm

Xy+1 = argmin {ka(X) + —IIX Xk||2 1 } (8.7)
xeX

satisfy

2-dist?, (Xi, D*(My))
BN Vi > 0
c- <1 27 — ZC3C«/chrlogd ”Xﬁ”op> =

disty.,, (Xgy1, D*(My)) <

In particular, the iterates converge quadratically as long as the initial iterate Xg € X
satisfies

. . 2¢3C4/Tvrlo
dlStH.”Z] (Xo, D*(Mﬁ)) < min {(1/2)6‘ . (1 -2t — e Al 12 ||Xﬁ||0p> }
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Literature review and comparison of results  As in matrix sensing/completion, exist-
ing work on robust PCA has considered both convex and nonconvex formulations.
The seminal work in [15,18] proposes a convex relaxation approach based on mini-
mizing an additive combination of the nuclear norm and £; norm, which are popular
convex penalties used in low-rank matrix recovery and compressed sensing. Provable
nonconvex approaches appeared shortly thereafter, again in the form of two-stage
algorithms. In [66], the proposed algorithm alternates between projecting to the set
of low-rank and sparse matrices. In [80], the authors directly apply projected gradient
descent to a smooth loss function (similar to that considered in Sect. 8.1 but with a
squared Frobenius norm), also addressing the partially observed case where only a
fraction of the entries of My + Sy is revealed. A more recent work [25] analyzes an
unconstrained convex objective with regularization for solving the robust PCA prob-
lem under various noise models; interestingly, they show that analyzing an auxiliary
nonconvex program is key to understanding the statistical properties of the minimizers
of the convex objective. In addition to the aforementioned approaches, the landscape
analysis of [42] showed that—under slightly different assumptions than those in Sect.
8.1 — a smooth nonconvex formulation for robust PCA has no spurious local minima.

We compare our results with prior work in terms of sufficient condition for recover-
ing the low-rank and sparse matrices. Lemma 8.9 requires T < 1/r for the sharpness
condition to hold with a positive number, whereas Corollary 8.3 requires the condition
k < d/r.Both conditions mean that we can tolerate a constant fraction of corruptions
assuming » = ((1). These results are consistent with the best known condition
achieved by the convex relaxation approach [15,26,49,55]. More precisely, for the
deterministic setting in Sect. 8.1, the condition k < d/r matches that in [26,49]. For
the randomized setting in Sect. 8.2, the condition T < 1/r matches that in [15,26,55]
for constant r.

9 Recovery up to a Tolerance

Thus far, we have developed exact recovery guarantees under noiseless or sparsely
corrupted measurements. We showed that sharpness together with weak convexity
imply rapid local convergence of numerical methods under these settings. In practical
scenarios, however, it might be unlikely that any, let alone a constant fraction of
measurements, are perfectly observed. Instead, a more realistic model incorporates
additive errors that are the sum of a sparse, but otherwise arbitrary vector and a dense
vector with relatively small norm. Exact recovery is in general not possible under this
noise model. Instead, we should only expect to recover the signal up to an error.

To develop algorithms for this scenario, we need only observe that the previously
developed sharpness results all yield a corresponding “sharpness up to a tolerance”
result. Indeed, all problems considered thus far, are convex composite and sharp:

min f(x) := h(F(x)) and f(x) —inf f > p - dist(x, X™*),
xeX X
EoEg'l
@ Springer | :,o']

'é: Journal: 10208 Article No.: 9490 [ | TYPESET [__]DISK [__]LE [__]CP Disp.:2020/12/22 Pages: 89 Layout: Small-Ex




Author Proof

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

Foundations of Computational Mathematics

where & is convex and n-Lipschitz with respect to some norm [||-|||, F’ is a smooth map,
and p > 0. Now consider a fixed additive error vector e, and the perturbed problem

min f(x) = h(F(x) +e). 9.1)
xeX

The triangle inequality immediately implies that the perturbed problem is sharp up to
tolerance 2n|||e]||:

fx)— i%ff > w-dist(x, X*) — 2n|llell] Vx € X.

In particular, any minimizer x* of f satisfies
dist(x™, &*) < 2n/wlllelll, 9.2)

where as before we set X* = argmin f. In this section, we show that subgradient and

prox-linear algorithms applied toXthe perturbed problem (9.1) converge rapidly up to

a tolerance on the order of n||le|||/. To see the generality of the above approach,

we note that even the robust recovery problems considered in Sect. 4.2.2, in which

a constant fraction of measurements are already corrupted, may be further corrupted

through additive error vector e. We will study this problem in detail in Sect. 9.1.
Throughout the rest of the section, let us define the noise level:

&= nlllelll.

Mirroring the discussion in Sect. 5, define the annulus:

~ 14¢ M} ©3)

T, = {z € X — < dist(z, X*) <
w 4p

~ 2
forsome y > 0. Note that for the annulus 7, to be nonempty, we must ensure € < %.
We will see that ’7} serves as aregion of rapid convergence for some numerical constant

y. As before, we also define subgradient bound and the condition measure:
L:=sup(li¢lh:¢ €df),xeTi) and T:=p/L.

In all examples considered in the paper, it is possible to show directly that L < L as
defined in Assumption B. A similar result is true in the general case, as well. Indeed,
the following Lemma provides a bound for L in terms of the subgradients of f on a
slight expansion of the tube 7; from (5.2); the proof appears in the appendix.

2 ~
Lemma 9.1 Supposee < 5’2—,) so that Ty is nonempty. Then, the following bound holds:

L< sup {||§||2 (€0 f(x),dist(x, X*) < E,dist(x, X) < 2\/E} + 2./8p¢.
o o
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e,
@ Springer |?o4

;-,-’: Journal: 10208 Article No.: 9490 [ TYPESET [__|DISK [_]LE [_] CP Disp.:2020/12/22 Pages: 89 Layout: Small-Ex




Author Proof

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

141

Foundations of Computational Mathematics

We will now design algorithms whose basin of attraction is the annulus ’f} for
some y. To that end, the following modified sharpness bound will be useful for us.
The reader should be careful to note the appearance of infy f, not infy f in the
following bound.

Lemma 9.2 (Approximate sharpness) We have the following bound:

f(x)—izlvffzu~dist(x,2(*)—8 Vx e X. 9.4)

Proof Forany x € X, observe f(x) —inf f > f(x)—inf f —e > p-dist(x, X*) —e,

as claimed. O
Next, we show that f satisfies the following approximate subgradient inequality.

Lemma 9.3 (Approximate subgradient inequality) The following bound holds:
~ /) ~
fO z f&) + 8y —x) = Zllx = YIP =3¢ Vx,yand¢ €df(x).

Proof Firstnotice that | f (y)~— fx(y)| < eforall x, y. Furthermore, we have Q f (x) =
VF(x)*dh(F(x) 4+ e) = 3 fy(x). Therefore, it follows that for any ¢ € 9 fy(x) we
have

€y —x) < fr) = frx)
< fr () = fe @)+ 2nllell

< fO) — )+ gnx Y242

< fO) - f) + gnx — V12 + 3e,

as desired. ]

Now consider the following modified Polyak method. It is important to note that
the stepsize assumes knowledge of miny f rather than miny f. This distinction is
important because it often happens that miny f = 0, whereas miny f is in general
unknown; for example, consider any noiseless problem analyzed thus far. We note
that the standard Polyak subgradient method may also be applied to f without any
changes and has similar theoretical guarantees. The proof appears in the appendix.

Algorithm 4: Modified Polyak Subgradient Method
Data: xp € RY
Step k: (k > 0) 5
Choose ¢ € 9 f (xx). If ¢ = 0, then exit algorithm.
f () —miny f
T a— O R
Nl Sk

Set xk+1 = projy | xk —
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w2 Theorem 9.4 (Polyak subgradient method) Suppose that Assumption B holds and sup-
wis  pose that & < pu?/14p. Then, Algorithm 4 initialized at any point xo € ’Tl produces
wa  iterates that converge linearly to X* up to tolerance 14¢/u, that is

1372
s dis® (veps, X) < (1 — 5—2) dist? (xge, A%) V= 0 with dist (., X*) > e,

1416 Next we provide theoretical guarantees for Algorithm 5.3, where one does not know
w7 the optimal value miny f. The proof of this result is a straightforward modification
s Of [31, Theorem 6.1] based on Lemmas 9.2 and 9.3, and therefore we omit it.

e Theorem 9.5 (Geometrically decaying subgradient method) Suppose that Assump-
wo  tion B holds, fix a real number y € (0, 1), and suppose T < % /ﬁ. Suppose also

W2y
€ < 56 so that T is nonempty. Set X : 4p~ andq V1= (1 —=y)t% in Algo-

w2 rithm 2. Then, the iterates xi generated by Algorithm 2 on the perturbed problem
ws  (9.1), initialized at a point xo € T, satisfy:

k
e dis (g X ” w (1 — (=) ) Vk = 0 wirh dist(xg, X*) = 1,
602

1425 Finally, we analyze the prox-linear algorithm applied to the problem miny f. In
w6 contrast to the Polyak method, one does not need to know the optimal value miny f.
1427 The proof appears in the appendix.

s Theorem 9.6 (Prox-linear algorithm) Suppose Assumptions A holds. Choose any 8 >
we P in Algorithm 3 applied to the perturbed problem (9.1) and set y := p/B. Suppose

0 Moreover € < 56 so that ’T is nonempty. Then, Algorithm 3 initialized at any point

w1 Xo € ’ZNE, converges quadratically up to tolerance 14¢/1:

dist(xpp, X*) < 22 - dist? (xp, &%) Vk > 0 with dist(xgq1, X¥) > %.

w3 9.1 Example: Sparse Outliers and Dense Noise Under £1/£; RIP

e To furtherillustrate the ideas of this section, we now generalize the results of Sect. 4.2.2,
s in particular Condition B, to the following observation model.

s Condition G (Z-outlier bounds) There exist vectorse, A € R™, asetT C {1,...,m},
w7 and a constant k3 > 0 such that the following hold.

s (Cl) b= A(Mﬁ) + A+e.
30 (C2) Equality holds A; = 0 foralli ¢ T.
140 (C3) For all matrices W of rank at most 2r, we have

1 1
1441 3Wilp < — | Aze(W)lh — — [l AZ(W) 1.
m m
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Given these assumptions, we follow the notation of the previous section and let
1 = 1
FX) = —JAXXT = My) = Allr and f(X) = —JAXXT = My) — A —el.

Then, we have the following proposition:

Proposition 9.7 Suppose Condition A and G are valid. Then, the following hold:
1. (Sharpness) We have

f(X) = f(Xy) > p-dist(X, D*(My))  forall X € R¥,

where |4 := K34/ 2(v2 = 1o, (X3).
2. (Weak Convexity) The function f is p := 2kz-weakly convex.
3. (Minimizers) All minimizers of f satisfy

2L e -
mlelh VX* € argminf.
K31/ 2(v/2 — D)op (Xy) &

4. (Lipschitz Bound) We have the bound

K34/ 2(+/2 = )0y (Xp)

8kp

dist(X*, X*) <

L <2 +01(X3)

Proof Sharpness follows from Proposition 4.7, while weak convexity follows from
Proposition 4.2. The minimizer bound follows from (9.2). Finall~y, due to Lemma 3.2,
the argument given in Proposition (4.2), but applied instead to f, guarantees that

K31/ 2(v/2 — Doy (X3)

L <2 -sup | |X|lop: dist(X, D*(My)) < 2
K2

In turn, the supremum may be bounded as follows: Let X, = X R denote the closest

point to X in D*(M). Then,
K3/ 2(V/2 = 1)o,(X3)

8Ko

[ Xllop < IX = Xy Rllop + I Xz Rllop < + 01(Xp),

as desired. ]

In particular, combining Proposition 9.7 with the previous results in this section,
we deduce the following. As long as the noise satisfies

1 cok2o,(My)
39r UMy
—llell) £ ————
m K2
FoC
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for a sufficiently small constant ¢y > 0, the subgradient and prox-linear methods
converge rapidly to within tolerance

1
hlely
k307 (X4)

when initialized at a matrix X satisfying

dist(Xo, D*(My) _ = k3
C —_—

JVor(My) = KK

for some small constant cj. The formal statement is summarized in the following
corollary.

Corollary 9.8 (Convergence guarantees under RIP with sparse outliers and dense noise
(symmetric)) Suppose Conditions A and G are valid with ||-||| = % |l - It and define
the condition number x = o1(My)/o,(My). Then, there exists numerical constants
co, C1, C2, C3, C4, C5,C6 > 0 such that the following hold. Suppose the noise level
satisfies

2(V2 = Deor3or (My)
28/(2

—llellr <
m

and define the tolerance

14
el

§ = .
3y 2v2 — Do (M)

Then, as long as the matrix X satisfies

dist(Xo, D*(My)) < K3
JorMy) Tk
the following are true.

1. (Polyak subgradient) Algorithm 1 initialized at X produces iterates that converge
linearly to D*(My), that is

k
dist?(Xy, D*(M.)) -, e caks
or(My) c3xd x k2’
r 1+ K32 2

SJor all k > 0 with dist(Xy, X*) > 6.
FeC
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(,‘5/(324/0',(Mn) nd

2. (geometric subgradient) Algorithm 2 with parameters A =

k2 (k3+2K2./X)
B — & NP . )
qg= /1 el and initialized at X converges linearly:
k
dist>(Xy, D*(M:)) -, e caks
M — - -2 sz ’ 27
or(My) 1+ c%% Ky

for all k > 0 with dist(Xy, X*) > 4.
3. (prox-linear) Algorithm 3 with 8 = p and initialized at X converges quadrati-
cally:

dist(Xy, D*(My))) - 2_2k )
or(My) B K2

C6K3

El

Sforall k > 0 with dist(X, X*) > 8.

10 Numerical Experiments

In this section, we demonstrate the theory and algorithms developed in the previous
sections on a number of low-rank matrix recovery problems, namely quadratic and
bilinear sensing, low-rank matrix completion, and robust PCA.

10.1 Robustness to Outliers

In our first set of experiments, we empirically test the robustness of our optimization
methods to outlying measurements. We generate phase transition plots, where each
pixel corresponds to the empirical probability of successful recovery over 50 test
runs using randomly generated problem instances. Brighter pixels represent higher
recovery rates. All generated instances obey the following:

1. The initial estimate is specified reasonably close to the ground truth. In particular,
given a target symmetric positive semidefinite matrix X, we set

G

——, Gjj ~iid. N, 1).
IGIg" Y

Xo:=Xs+6- ”Xﬁ“F - A, where A =

Here, § is a scalar that controls the quality of initialization and A is a random unit
“direction.” The asymmetric setting is completely analogous.

2. When using the subgradient method with geometrically decreasing step-size, we
setA =1.0, g = 0.98.

3. For the quadratic sensing, bilinear sensing, and matrix completion problems, we
mark a test run as a success when the normalized distance || M — M| r/||M¢| F is
less than 107>, Here, we set M = XX | in the symmetric setting and M = XY
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Fig. 1 Bilinear sensing with d| = d» = d = 100 using Algorithm 2

in the asymmetric setting. For the robust PCA problem, we stop when |M —
Mell1/IMglly < 107>,

Moreover, we set the seed of the random number generator at the beginning of each
batch of experiments to enable reproducibility.

Quadratic and Bilinear sensing  Figures 1 and 2 depict the phase transition plots for
bilinear (6.5) and symmetrized quadratic (6.4) sensing formulations using Gaussian
measurement vectors. In the experiments, we corrupt a fraction of measurements
with additive Gaussian noise of unit entrywise variance. Empirically, we observe
that increasing the variance of the additive noise does not affect recovery rates. Both
problems exhibit a sharp phase transition at very similar scales. Moreover, increasing
the rank of the generating signal does not seem to dramatically affect the recovery rate
for either problem. Under additive noise, we can recover the true signal (up to natural
ambiguity) even if we corrupt as much as half of the measurements.

Robust PCA We generate robust PCA instances for d = 80, r € {1, 2,4, 8, 16}. The
corruption matrix Sy follows the assumptions in Sect. 8.2, where for simplicity we set
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Fig.2 Quadratic sensing with symmetrized measurements using Algorithm 2

S; i~ N(O, o2). We observed that increasing or decreasing the variance o> did not
affect the probability of successful recovery, so our experiments use ¢ = 1. We use
the subgradient method, Algorithm 3, and the prox-linear algorithm (8.7). Notice that
we have not presented any guarantees for the subgradient method on this problem,
in contrast to the prox-linear method. The subproblems for the prox-linear method

are solved by ADMM with graph splitting as in [68]. We set tolerance €; = % for
the proximal subproblems, which we continue solve for at most 500 iterations. We
choose y = 10 in all subproblems. The phase transition plots are shown in Fig. 3.
It appears that the prox-linear method is more robust to additive sparse corruption,
since the empirical recovery rate for the subgradient method decays faster as the rank
increases.

Matrix completion We next perform experiments on the low-rank matrix completion
problem that test successful recovery against the sampling frequency. We generate
random instances of the problem, where we let the probability of observing an entry,
P(8;; = 1), range in [0.02, 0.6] with increments of 0.02. Figure 4 depicts the empir-
ical recovery rate using the Polyak subgradient method and the modified prox-linear

algorithm (7.1). Similarly to the quadratic/bilinear sensing problems, low-rank matrix
completion exhibits a sharp phase transition. As predicted in Sect. 7, the ratio §
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Fig. 3 Robust PCA using the subgradient method, Algorithm 2, (top) and the modified prox-linear
method (8.7) (bottom)

appears to be driving the required observation probability for successful recovery.
Finally, we empirically observe that the prox-linear method can “tolerate” slightly
smaller sampling frequencies.

10.2 Convergence Behavior

We empirically validate the rapid convergence guarantees of the subgradient and prox-
linear methods, given a proper initialization. Moreover, we compare the subgradient
method with gradient descent, i.e., gradient descent applied to a smooth formulation
of each problem, using the same initial estimate in the noiseless setting. In all the
cases below, the step sizes for the gradient method were tuned for best performance.
Moreover, we noticed that the gradient descent method, equipped with the Polyak

step size n ;=1 \|VV ]{”2 performed at least as well as gradient descent with constant
step size. That being said, we were unable to locate any theoretical guarantees in the

literature for gradient descent with the Polyak step-size for the problems we consider
here.

Quadratic and Bilinear sensing ~ For the quadratic and bilinear sensing problems, we
apply gradient descent on the smooth formulations

1 2 1
- ”A(XXT) — b” and  — AXY) —b|3.
m 2 m
FeC
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Fig. 4 Low-rank matrix completion using the subgradient method, Algorithm 1 (top), and the modified
prox-linear method (7.1) (bottom)
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Fig.5 Quadratic (left) and bilinear (right) matrix sensing with d = 200, m = 8 - rd, using the subgradient
method, Algorithm 2

In Fig. 5, we plot the performance of Algorithm 2 for matrix sensing problems with
different rank/corruption levels; remarkably, the level of noise does not significantly
affect the rate of convergence. Additionally, the convergence behavior is almost iden-
tical for the two problems for similar rank/noise configurations. Figure 6 depicts the
behavior of Algorithm 1 versus gradient descent with empirically tuned step sizes. The
subgradient method significantly outperforms gradient descent. For completeness, we
also depict the convergence rate of Algorithm 3 for both problems in Fig. 7, where we
solve the proximal subproblems approximately.

FolCT
e,
@ Springer 204

'é: Journal: 10208 Article No.: 9490 [ | TYPESET [__]DISK [__]LE [__]CP Disp.:2020/12/22 Pages: 89 Layout: Small-Ex




Author Proof

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

Foundations of Computational Mathematics

‘77“:5 =10 —r=5 —7r=10
T T T T T
ol i ol i
& 10 & 10
= =~ -
= 1072 1 =10 2r .
& )
= =
= ol 1= w0t i
| |
e =
"% 100 ) . 1= w0k . .
o3 < ~
= : 5 .
1078 I I I I I I ] I U ! L L I I L
0 50 100 150 200 250 300 0 20 40 60 80 100
k k

Fig. 6 Algorithm 1 (solid lines) against gradient descent (dashed lines) with step size n. Left: quadratic
sensing, n = 1074, Right: bilinear sensing, n = 103
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Fig.7 Quadratic (left) and bilinear (right) matrix sensing with d = 100, m = 8 - rd, using the prox-linear
method, Algorithm 3

Matrix completion In our comparison with smooth methods, we apply gradient
descent on the following minimization problem:

2
min Hng (XXT) = Mo (M) H . (10.1)
XeRI<| X |5, 10 <C F

Figure 8 depicts the convergence behavior of Algorithm 1 (solid lines) versus gradient
descent applied to Problem (10.1) with a tuned step size n = 0.004 (dashed lines),
initialized under the same conditions for low-rank matrix completion instances. As
the theory suggests, higher sampling frequency implies better convergence rates. The
subgradient method outperforms gradient descent in all regimes.

Figure 9 depicts the performance of the modified prox-linear method (7.1) in the
same setting as Fig. 8. In most cases, the prox-linear algorithm converges within just
15 iterations, at what appears to be a rapid linear rate of convergence. Each convex
subproblem is solved using a variant of the graph-splitting ADMM algorithm [68].
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Fig.8 Low-rank matrix completion with d = 100. Left: r
dashed lines use gradient descent with step n = 0.004

= 4, right: r = 8. Solid lines use Algorithm 1,
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Fig. 9 Low-rank matrix completion with d = 100 using the modified prox-linear Algorithm (7.1). Left:
r=4,right: r =8

Robust PCA For the robust PCA problem, we consider different rank/corruption
level configurations to better understand how they affect convergence for the subgra-
dient and prox-linear methods, using the non-Euclidean formulation of Sect. 8.2. We
depict all configurations in the same plot for a fixed optimization algorithm to better
demonstrate the effect of each parameter, as shown in Fig. 10. The parameters of the
prox-linear method are chosen in the same way reported in Sect. 10.1. In particular,
our numerical experiments appear to support our sharpness Conjecture 8.7 for the
robust PCA problem.

10.2.1 Recovery Up to Tolerance

In this last section, we test the performance of the prox-linear method and the mod-
ified Polyak subgradient method (Algorithm 4) for the quadratic sensing and matrix
completion problems, under a dense noise model of Sect. 9. In the former setting,
we set prj) = 0.25, so 1/4th of our measurements is corrupted with large magnitude
noise. For matrix completion, we observe p = 25% of the entries. In both settings,
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Fig. 10 £;-robust PCA with d = 100 and p := P(§;; = 1). Left: Algorithm 2, right: Algorithm (7.1)
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Fig. 11 Quadratic sensing with r = 5 (left) and matrix completion with » = 8 (right), d = 100, using
Algorithm 4

we add Gaussian noise e which is rescaled to satisfy |le||r = d0,(Xz), and test
§ = 10"‘0, (Xy), k €{l,...,4}. The relevant plots can be found in Figs. 11 and 12.
The numerical experiments fully support the developed theory, with the iterates con-
verging rapidly up to the tolerance that is proportional to the noise level. Incidentally,
we observe that the modified prox-linear method (7.1) is more robust to additive noise
for the matrix completion problem, with Algorithm 4 exhibiting heavy fluctuations
and failing to converge for the highest level of dense noise.

A Proofs in Sect. 5

In this section, we prove rapid local convergence guarantees for the subgradient and
prox-linear algorithms under regularity conditions that hold only locally around a
particular solution. We will use the Euclidean norm throughout this section; therefore,
to simplify the notation, we will drop the subscript two. Thus, || - || denotes the ¢, on
a Euclidean space E throughout.

We will need the following quantitative version of Lemma 5.1.
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Fig. 12 Quadratic sensing with r = 5 (left) and matrix completion with » = 8 (right), d = 100, using
Algorithm (7.1)

Lemma A.1 Suppose Assumption C holds and let y € (0, 2) be arbitrary. Then, for
any point x € Be2(X) NT,\X*, the estimate holds:

dist (0,8 f(x)) = (1 — %) u.

Proof Consider any point x € B¢y (%) satisfying dist(x, X*) < y%. Let x* €
proj y« (x) be arbitrary and note x* € B, (x). Thus, for any ¢ € 9 f(x) we deduce

- dist(x, X%) < f(x) = f(F) < (¢, x —xF) + gllx — X" < ¢ dist(x, &%)

+§dist2(x, X%,

Therefore, we deduce the lower bound on the subgradients || || > u— % -dist(x, X*) >
(1 — %) 1, as claimed. ]

A.1 Proof of Theorem 5.6

Let k be the first index (possibly infinite) such that x; ¢ Be/2(x). We claim that (5.4)
holds for all i < k. We show this by induction. To this end, suppose (5.4) holds for all
indices up to i — 1. In particular, we deduce dist(x;, X™*) < dist(xg, X'*) < %. Let
x* € proj y« (x;) and note x* € Bc(x), since

Ix* — Xl < lIx* — x| + llx — Xl < 2flx; — x| <.

Thus, we deduce

N mi ) 2
lxip1 —x¥)1? = HPTOJ'X (xi - MQ) - prOJX(x*)H

lli1I?
() — i . 2
< H(xi —x*)— f(xz)llziﬂlﬁn)( f ¢ (A.1)
FeC
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2(f (x;) — miny f)

= lx; — x| + G Xt = x) +

I 1P I 1P
2(f (x;) — mi
<l —x*|2 + W (1 = fe + 5w = x*12)
L UG = fe)?
1P
= Il —x*117 + % (pllxi =512 = () = £™)
<l = x*12 + % (pllxi =17 = il = x*1)

= llx; — 12 + W (nx,- — x| - %) x; — x*]

o2 _ MU G —min )
201117

2
<(1-500 ) =t
211

<llx—x lloc; — x*|

(f(x;) — f(x*))?

(A.2)

(A.3)

(A4)

(A.5)

Here, the estimate (A.1) follows from the fact that the projection proj (+) is nonexpan-
sive, (A.2) uses local weak convexity, (A.4) follow from the estimate dist(x;, X™*) <

%, while (A.3) and (A.5) use local sharpness. We therefore deduce

o

dist? (xja1: X)) < llxier — x> < (1=
iSCCri 13 %) < [lxier — x| _< =

) dist?(x;, X*).

(A.6)

Thus, (5.4) holds for all indices up to k — 1. We next show that & is infinite. To this

end, observe

k—1
ek = xoll < ) i — xill
i=0
k—1 )
= Z HPTOJ'X (xi - %Ci) — proj y (xi)
i=0
S f(x) —ming f
<y fo) s
Sl
k—1 0
< > 21 — proj-(x)) + sy proles G I
i=0 !
k—1 )
< Sdistr, ) + Ldis (i, X
3u
i=0
4 k—1
< 3 dist(x;, X™)
i=0
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- dist(x, X*)

U’I N
»
/\
[\S)
m\‘%
N———"
a

2

(A9)

where (A.7) follows by Lemma A.1 with y = 1/2, the bound in (A.8) follows by (A.6)
and the assumption on dist(xg, X'™*), finally (A.9) holds thanks to (A.6). Thus, applying
the triangle inequality we get the contradiction ||x;x — x|| < €/2. Consequently, all the
iterates x; fork =0, 1, ..., 0o lie in B¢/2(x) and satisfy (5.4).

Finally, let xoo be any limit point of the sequence {x; }. We then successively compute

llxx — xooll < ZHx,-_H — x| < Z f(xj) — min f

<
rart i
4L
< —- dist(x;, X™)
3u ; !
4L N u :
< — -dist(xg, X*) - (1 — —)
3u lz; 212
k
16L 3 2\ 2
< ——— - dist(xg, X™) - _& .
3u3 212

This completes the proof.

Proof of Theorem 5.7

Fix an arbitrary index k and observe

lxk+1 — xkll =

. . &k
proj o (xx) — projo <Xk AT Sak=A-q .

Hence, we conclude the uniform bound on the iterates:

A
llxk — xoll < ||x1+1 xill = =
1—
i=0

and the linear rate of convergence

A
uxk—xoo||<2||xl+1—xl|| Zq",
i=k

where X is any limit point of the iterate sequence.
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Let us now show that the iterates do not escape B> (x). To this end, observe

- < 2
ek = X1l < llg = xoll + llxo = ¥l = 1= +

FNT

e,oL(l—;/)ﬂ:2
42 4/1=(1=y)12)’
Clearly, it suffices to verify y < “9=2) which holds by the definition of . Thus,
all the iterates x; lie in B> (X). Moreover, T < \/g < \/g , the rest of the proof is
identical to that in [31, Theorem 5.1].

. . A .
We must therefore verify the estimate = < %, or equivalently y <

A.3 Proof of Theorem 5.8

Fix any index i such that x; € B.(x) and let x € X be arbitrary. Since the function
2 fy (@) + §||z — x;||? is B-strongly convex and x; 1 is its minimizer, we deduce

(fxi (xit1) + §||xi+l - xil|2> + gllxm —xlI* < fo () + gllx — x| (A.10)

Setting x = x; and appealing to approximation accuracy, we obtain the descent guar-
antee

2
i1 — x> < E(f(xi) — f@it)). (A.11)

In particular, the function values are decreasing along the iterate sequence. Next choos-
ing any x* € proj y« (x;) and setting x = x* in (A.10) yields

B

B B
(fx,. Coip) 1% = xil ) + Tl =371 < fo 6 + Sl = .
Appealing to approximation accuracy and lower-bounding gllx,ur] — x*||? by zero,
we conclude
FOipD) < £ + Bllx* — x| (A.12)

Using sharpness, we deduce the contraction guarantee

Fxig1) — f(x*) < B - dist? (x;, X*)
<L (e - ey
"
A (x,-)M; S () = £,
(A.13)

(f(x) — f(x) <

N =

E’ol:
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where the last inequality uses the assumption f(xg) — miny f < % Letk > O be
the first index satisfying x; ¢ B (x). We then deduce

k—1 5 kol
e = xoll < Y llxir — xill < \/; Vi) = f(xign) (A.14)
=0 i=0

k
Jxi) — f(x%)

-1
i=0

2 AR
< \/; V) = f09)- ) (5>
i=0

1 fxo) — f(x*)
/ 2 Al
< 51 5 <€/2, (A.15)

where (A.14) follows from (A.11) and (A.15) follows from (A.13). Thus, we con-
clude ||xx — x|| < €, which is a contradiction. Therefore, all the iterates xi, for
k=0,1,...,00,lie in Bc(x). Combining this with (A.12) and sharpness yields the
claimed quadratic converge guarantee

- dist(xpp1, X%) < fus1) — FE) < B - dist® (g, X).

Finally, let xoo be any limit point of the sequence {x;}. We then deduce

V&) — fxiv)

WK

o
ek = Xooll < D lxig1 — xill < /= -
i=k

I
~

= f(xi) — min f

IA
ﬁy =
I

i—1
V2 (B RS
= 2k > <—2(f(xo) — min f)
ik
00 9i—1
o2 ) (l
p i=k 2
RSy ()
—= ﬁ; j::o 2 = [3 2 k]
(A.16)
where (A.16) follows from (A.13). The theorem is proved.
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B Proofs in Sect. 6
B.1 Proof of Lemma 6.3

In order to prove that the assumption in each case, we will prove a stronger “small-
ball condition” [62,63], which immediately implies the claimed lower bounds on the
expectation by Markov’s inequality. More precisely, we will show that there exist
numerical constants /o, po > 0 such that

1. (Matrix Sensing)

inf P((P, M)| > . ’
M: Rank M<2r (|( >| = ,LL()) = Po
Ml F=1

2. (Quadratic Sensing I)

g it P(p" Mp| = wo) > po,
S N an fS r
IMlp=1

3. (Quadratic Sensing II)

oge il P(lp"Mp — p"Mp| = 10) = po.
€S Ran <2r
IMllF=1

4. (Bilinear Sensing)

inf P Mal > —
M:Ra;rll M<2r (p gl = o) = po
M| F=1

These conditions immediately imply Assumptions C-F. Indeed, by Markov’s
inequality, in the case of matrix sensing we deduce

E|(P, M)| = uoP (|(P, M)| > o) = popo.

The same reasoning applies to all the other problems.

Matrix sensing Consider any matrix M with |M||r = 1. Then, since g := (P, M)
follows a standard normal distribution, we may set 1 to be the median of |g| and
po = 1/2 to obtain

i f P I), M) > =P > > .
- ﬁaa}]‘% uer (I ) = o) =P(gl = o) = po
M| p=

FoC Tl
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Quadratic Sensing |  Fix a matrix M with Rank M < 2r and |M]|p = 1. Let
M = UDU be an eigenvalue decomposition of M. Using the rotational invariance
of the Gaussian distribution, we deduce

2r
d
p'Mp=p'Dp=7 pp,
k=1

d R .
where = denotes equality in distribution. Next, let z be a standard normal variable.
We will now invoke Proposition F.2. Let C > 0 be the numerical constant appearing
in the proposition. Notice that the function ¢: Ry — R given by

¢(t) = supP(|z* —u| < 1)
ueR

is continuous and strictly increasing, and it satisfies ¢ (0) = 0 and lim;_, 5, ¢ () = 1.
Hence, we may set 1o = ¢~ (min{1/2C, 1/2}). Proposition F.2 then yields

2r 2r
P(lp"Mp| < o) =P ( Zkkpf < /Lo) <suplP ( Zkkpf —u| < MO)
k=1 u€R k=1
1
< Cop(no) < X

By taking the supremum of both sides of the inequality we conclude that Assumption D
holds with pg and pg = 1/2.

Quadraticsensingll Let M = UDU " be an eigenvalue decomposition of M. Using
the rotational invariance of the Gaussian distribution, we deduce

2r 2r
~ ~ d ~ . ~ d ~
p'Mp—p Mp=p'Dp—p Dp=Y i (pf - pi) =2 Mpkpis
k=1 k=1

where the last relation follows since (px — px) , (px + px) are independent standard
normal random variables with mean zero and variance two. We will now invoke Propo-
sition F.2. Let C > 0 be the numerical constant appearing in the proposition. Let z and
Z be independent standard normal variables. Notice that the function ¢ : R4 — R
given by

¢ () =supP(|2zz —u| < 1)

uceR
FoL T
U A
L.

@ Springer |04

'é: Journal: 10208 Article No.: 9490 [ | TYPESET [__]DISK [__]LE [__]CP Disp.:2020/12/22 Pages: 89 Layout: Small-Ex




Author Proof

1763

1764

1765

1766

1767

1768

1769

1770

177

1772

1773

1774

1775

1776

1777

1778

1779

1780

1781

1782

1783

1784

1785

1786

1787

1788

1789

1790

Foundations of Computational Mathematics

is continuous, strictly increasing, satisfies ¢(0) = 0 and approaches one at infinity.
Defining 1o = ¢~ ' (min{1/2C, 1/2}) and applying Proposition F.2, we get

P <wuo)| <supP
ueR

By taking the supremum of both sides of the inequality we conclude that Condition E
holds with g and pg = 1/2.
We omit the details for the bilinear case, which follow by similar arguments.

2r

2ZUkPkﬁk

k=1

2r

2 Z OkPkPk — U
k=1

1
< Mo) < Co(mo) < >

B.2 Proof of Theorem 6.4

The proofs in this section rely on the following proposition, which shows that that
pointwise concentration imply uniform concentration. We defer the proof to Appendix
B.3.

Proposition B.1 Let A : R %% — R™ be a random linear mapping with property
that for any fixed matrix M € R% < of rank at most 2r with norm |M||r = 1 and
any fixed subset of indices T C {1, ..., m} satisfying |Z| < m/2, the following hold:

(1) The measurements A(M)y, ..., A(M),, are i.i.d.
(2) RIP holds in expected value:

a <EJAM);| < B@r) forallief{l,...,m} (B.1)

where o > 0 is a universal constant and B is a positive-valued function that could
potentially depend on the rank of M.

(3) There exist a universal constant K > 0 and a positive-valued function c(m, r)
such that for any t € [0, K] the deviation bound

1
. [IAze (M)l = I AZ(M)Ily — B[l Az M) l1 — IAZ(M) 1] <1 (B2)

holds with probability at least 1 — 2 exp(—t>c(m, r)).

Then, there exist universal constants cy, . .., ce > 0 depending only on o and K such
that if T C {1, ..., m} is a fixed subset of indices satisfying |Z| < m/2 and

cB(r
r(di+dy+1)In <Cz+ 26(r) >

o =g T=2Zi/m

ci
—2|Z|/m)?

then with probability at least 1 — 4 exp (—C3(1 —2|Z|/m)*c(m, r)) every matrix M €
RY*%of rank at most 2r satisfies

1
allM|F =< EIIA(M)IH < cesBIM| F, (B.3)

FoC Tl
H_n
L

@ Springer |04

;-,-’: Journal: 10208 Article No.: 9490 [ TYPESET [__|DISK [_]LE [_] CP Disp.:2020/12/22 Pages: 89 Layout: Small-Ex




Author Proof

1791

1792

1793

1794

1795

1796

1797

1798

1799

1800

1801

1802

1803

1804

1805

1806

1807

1808

1809

1810

1811

1812

1813

1814

1815

1816

1817

1818

1819

Foundations of Computational Mathematics

and

2|17 1
C6 <1 - L) IMllF < — (IAZe(M)]l1 — | AZM 1) . (B.4)
m m

Due to scale invariance of the above result, we need only verify it in the case that
|M| F = 1. We implicitly use this observation below.

B.2.1 Part 1 of Theorem 6.4 (Matrix sensing)

Lemma B.2 The random variable |(P, M)| is sub-Gaussian with parameter Cn. Con-
sequently,
a <E{P,M)| <. (B.5)

Moreover, there exists a universal constant ¢ > 0 such that for any t € [0, 00) the
deviation bound

1
. [l Aze (M) 1 = AZ(M) Iy = E[IlAze (M) |l1 — IAZ(M) ]| < ¢ (B.6)

holds with probability at least 1 — 2 exp (—%m) .

Proof Condition C immediately implies the lower bound in (B.5). To prove the upper
bound, first note that by assumption we have

(P, M)lly, < .

This bound has two consequences, first (P, M) is a sub-Gaussian random variable
with parameter n and second E|(P, M)| < n [79, Proposition 2.5.2]. Thus, we have
proved (B.5).

To prove the deviation bound (B.6), we introduce the random variables

(P, M)| — E[(Pi, M)| ifi ¢ Z,and
| = ((Pi, MY = E|(P;, M)|) otherwise.

i

Since |[(P;, M)| is sub-Gaussian, we have || Y; ||y, < nforalli, see [79, Lemma 2.6.8].
Hence, Hoeffding’s inequality for sub-Gaussian random variables [79, Theorem 2.6.2]
gives the desired upper bound on P (- |37 ¥;| > 1) . O

Applying Proposition B.1 with B(r) =< 5 and c(m, r) =< m/n> now yields the result.
O

B.2.2 Part 2 of Theorem 6.4 (Quadratic sensing I)

Lemma B.3 The random variable |p" Mp| is sub-exponential with parameter /2rn?.
Consequently,

o <Elp"Mp| S V2. (B.7)

FolCT
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Moreover, there exists a universal constant ¢ > 0 such that for any t € [0, ~/2rn] the
deviation bound

1

. [IAze (M) 11 = | AZ(M)[l1 — B[l Az« (M) — | AZ(M)|1]] < ¢ (B.8)
holds with probability at least 1 — 2 exp (—%m/r) .
Proof Condition D gives the lower bound in (B.7). To prove the upper bound, first

note that M = Zirzl akuku,—(r where oy and uy, are the kth singular values and vectors
of M, respectively. Hence,

2r
p' (Z 0k”k”1j> p
k=1 Y1

2r 2r
<o tp.un?| | = P onlip uilly, = * Yoow < V2,
1
k=1 k=1

2r
> onlp,w)’

k=1

Ip" Mplly, =

Vi

where the first inequality follows since || - ||y, is a norm, the second one follows
since | XYy, < I Xlly, 1Y lly, [79, Lemma 2.7.7], and the third inequality holds
since |||l < +/2r|lo|l2. This bound has two consequences, first p' Mp is a sub-
exponential random variable with parameter /77> and second Ep " Mp < V2rn?
[79, Exercise 2.7.2]. Thus, we have proved (B.7).

To prove the deviation bound (B.8), we introduce the random variables

Y, = piTMpi—IEpiTMpi ifi ¢ Z, and
— (p Mp; — Ep] Mp;) otherwise.

Since p " Mp is sub-exponential, we have IYilly, < Jrn? for all i, see [79, Exer-
cise 2.7.10]. Hence, Bernstein inequality for sub-exponential random variables [79,
Theorem 2.8.2] gives the desired upper bound on P (% ‘Z,’-"zl Y; | > t) . O

Applying Proposition B.1 with B(r) =< /rn? and c(m, r) < m/n*r now yields the
result. O

B.2.3 Part 3 of Theorem 6.4 (Quadratic sensing )

Lemma B.4 The random variable |p" Mp — pT M p| is sub-exponential with param-
eter Cn?. Consequently,

a <Elp"Mp—p"Mp| < n’ (B.9)

Moreover, there exists a universal constant ¢ > 0 such that for any t € [0, nz] the
deviation bound

1
o [ Aze M)y = AZ(M) |11 — B[l Aze M)y = AZ(M)|1][ <t (B.10)
FoCT
e
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holds with probability at least 1 — 2 exp (—?—jm) .

Proof Condition E implies the lower bound in (B.9). To prove the upper bound, we
will show that |||[p"Mp — ﬁTMﬁTHW] < n?. By definition of the Orlicz norm
11Xy, = I X|ly, for any random variable X, hence without loss of generality we
may remove the absolute value. Recall that M = ZI%LI okuku,—cr where o} and uy are
the kth singular values and vectors of M, respectively. Hence, the random variable of
interest can be rewritten as

2r

~ ~T d ~
pMp—5TMBT Y o (e, p)? — (uk, 5)?). (B.11)
k=1

By assumption the random variables (uy, p) are n-sub-Gaussian, this implies that
(u, p)? are n?-sub-exponential, since || (ux, p)*[ly, < Il{ux, p)||2wz.

Recall the following characterization of the Orlicz norm for mean-zero random
variables

Xy, < Q0 <= Eexp(AX) < exp(Q*A?) forall A satisfying |A| < 1/0?
(B.12)
where the Q < O, see [79, Proposition 2.7.1]. To prove that the random variable (B.11)
is sub-exponential we will exploit this characterization. Since each inner product
squared (uy, p)? is sub-exponential, the equivalence implies the existence of a constant
¢ > 0 for which the uniform bound

Eexp(r(ug, p)?) < exp (cn4,\2) forall k € [2r] and [A| < 1/cn*  (B.13)

holds. Let A be an arbitrary scalar with |A| < 1/cn*, then by expanding the moment
generating function of (B.11) we get

2r
E exp (A Zok ((uk, )% — (ug, ﬁ)z))
k=1
2r

=E l_[ exp (Aok(uk, p)2) exp (—)»Gk(uk, ﬁ)z)
k=1

= 12_’[ Eexp (Aok(uk, p)z) Eexp (—Kak(ukv 15)2)

k=1
2r
< 1_[ exp ((cn)zkzakz) exp (cn4)\20k2>
k=1
2r
= exp <2cn4A2 Z okz) = exp (267]4)\.2) .
k=1
FoTl
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where the inequality follows by (B.13) and the last relation follows since o is unit
norm. Combining this with (B.12) gives

lp"™Mp—p"Mp" Iy, <n*

This bound has two consequences, first |p' Mp — pTMp| is a sub-exponential
random variable with parameter Cn? and second E|p " Mp — pTMpT| < Cn? [79,
Exercise 2.7.2]. Thus, we have proved (B.9).

To prove the deviation bound (B.10) we introduce the random variables

- JAM); — EAM),; ifi ¢ Z,and
" = (AM); — EA(M);) otherwise.

The sub-exponentiality of A(M); implies [|¥;]ly, < n? for all i, see [79, Exercise
2.7.10]. Hence, Bernstein inequality for sub-exponential random variables [79, The-
orem 2.8.2] gives the desired upper bound on P (% |Zl'-":1 Y; | > t) . O

Applying Proposition B.1 with 8(r) =< n* and c(m, r) < m/n* now yields the result.
]

B.2.4 Part 4 of Theorem 6.4 (Bilinear sensing)

LemmaB.5 The random variable |pT M| is sub-exponential with parameter Cn?.
Consequently,
o« <Elp' Mq| S n*. (B.14)

Moreover; there exists a universal constant ¢ > 0 such that for any t € [0, n*] the
deviation bound

1
p [ Az (M)l = AZ(M) |11 = E[lAze M) = IAZ(M) |1 ][ <t (B.15)

holds with probability at least 1 — 2 exp (—%m) .

Proof As before the lower bound in (B.14) is implied by Condition F. To prove the
upper bound, we will show that |||p " Mg Iy, < n?. By definition of the Orlicz norm
1 X[lly;, = lIXI|ly, for any random variable X, hence we may remove the absolute
value. Recall that M = Zirzl okukv,;r where oy and (ug, vg) are the kth singular
values and vectors of M, respectively. Hence, the random variable of interest can be
rewritten as

2r
d
pIMq =" orp.ur)(ve. q). (B.16)
k=1

By assumption the random variables (p, ux) and (v, g) are n-sub-Gaussian, this
implies that (p, ux)(vk, ¢) are n>-sub-exponential.
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To prove that the random variable (B.16) is sub-exponential, we will again use
(B.12). Since each random variable (p, uy)(vi, q) is sub-exponential, the equivalence
implies the existence of a constant ¢ > 0 for which the uniform bound

Eexp(h{p, ux) (ve, ¢)) < exp (CU4A2) for all k € [2r] and [A| < 1/cn* (B.17)

holds. Let A be an arbitrary scalar with |A| < 1/cn*, then by expanding the moment
generating function of (B.16) we get

2r 2r
Eexp (K > orlp. i) (vr, 61)) = [[Eexp Con(p, ur) (e, 4))

k=1 k=1

,
< exp (2c774k2 Z U,?) = exp <2cn4kz> .

k=1

where the inequality follows by (B.17) and the last relation follows since o is unitary.
Combining this with (B.12) gives

lp" Mqllly, <n*

Thus, we have proved (B.14).
Once again, to show the deviation bound (B.15) we introduce the random variables

, _ |IPTMail ~Elp Mai| ifi ¢ T.and
' —(Ip] Mqi| — E|p] Mg;|) otherwise.

and apply Bernstein’s inequality for sub-exponential random variables [79, Theorem
2.8.2] to get the stated upper bound on P (L |37 v;| > 7). O

Applying Proposition B.1 with 8(r) = * and c¢(m, r) < m/n* now yields the result.
O

B.3 Proof of Proposition B.1

Choose € € (0, \/5) and let NV be the (¢/ ﬁ)-net guaranteed by Lemma F.1. Pick
some ¢ € (0, K] so that (B.2) can hold, we will fix the value of this parameter later in
the proof. Let £ denote the event that the following two estimates hold for all matrices
inMeN:

1
™ [Aze (M1 = [ AZ(M)[l1 — E [l Az (M) 11 — ||-AI(M)||1]‘ =t, (B8

1
—|I 40D —EQAGDI | <. B19)
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Throughout the proof, we will assume that the event £ holds. We will estimate the
probability of £ at the end of the proof. Meanwhile, seeking to establish RIP, define
the quantity

1
c2 = sup —|[AM)];.
MeS,

We aim first to provide a high probability bound on c;.
Let M € Sy, be arbitrary and let M, be the closest point to M in N Then, we have

1 1 1
—[AMII = =AM + — I AM — M)
m m m
1 1
= —EJAMIII + 1+ — | AM — M) (B.20)
m m
1 1
< ZEIIA(M)IH tod e ENAM — M)l + IAM — M),

(B.21)

where (B.20) follows from (B.19) and (B.21) follows from the triangle inequality.
To simplify the third term in (B.21), using SVD, we deduce that there exist two
orthogonal matrices M1, M3 of rank at most 2r satisfying M — M, = M| + M>. With
this decomposition in hand, we compute

1 1 1
—[AM — M)lli = — [ AMDII + — I AM) 1
m m m

< a(IMillF + M2l ) < V2e2|M — M, ||F < c2e, (B.22)

where the second inequality follows from the definition of ¢, and the estimate || M1 || +
IMallF < V2|(My, M2)||F = ~/2IIM1 + M5 || . Thus, we arrive at the bound

1 1
—[AM)1 = —EIAM)I1 + 1 + 2c2e. (B.23)
m m

As M was arbitrary, we may take the supremum of both sides of the inequality, yielding
0 < % SUPyes,, E|A(M)|l1 + t + 2cy€e. Rearranging yields the bound

Lsupycs, EIAM)| +1

<
2= 1—2¢

Assuming that € < 1/4, we further deduce that

2
¢ <0 :=— sup E|AM)| +2t <28(r) + 2t, (B.24)
m pMeS$,,

establishing that the random variable ¢ is bounded by & in the event £.
FolCTM
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Now let Z denote either Z = ¢ or 7 = Z. We now provide a uniform lower bound
on LAz (M)l — LI Az(M)]l1. Indeed,

1 1
— Az (DIt = — Az (M)

1 1
= Az (M) + Ag (M = MOl = — A (M) + Az (M = M)y

1 1 1

= Az (MOl = — [ AZ (M1 = — AM = M)y (B.25)
m m m
1 1

= —E[ I Az (M0l = [Az(M0l1 | =1 = — AW = Moy (B.26)
1 1

= —E[ 1Az (DIl = A DI | = 1 = — EIAM — M)l + IAM — Mo)l)

(B.27)

1

= —E[IIl4z. (D11 = 1Az (D1 | =1 =25, (B.28)

where (B.25) uses the forward and reverse triangle inequalities, (B.26) follows
from (B.18), the estimate (B.27) follows from the forward and reverse triangle inequal-
ities, and (B.28) follows from (B.22) and (B.24). Switching the roles of Z and Z¢ in
the above sequence of inequalities, and choosing € = ¢ /40, we deduce

] 3t
i Az (Ml = 1A M) = E [ Az (M)l — A3 (M)]1] ) =5

In particular, setting 7= #, we deduce

1 3t
— sup [JAGD - BUAGMD)I] | = S
m pes,, 2

and therefore using (B.1), we conclude the RIP property
3t 1 3t
“—= SZIIA(M)Ill Sﬂ(r)+?, VX € Sor. (B.29)

Next, let 7 = 7 and note that

1 AN VA 2|17
LE[As 00— 14;0001] = E B g, = (1 - ﬂ) .
m m m

where the equality follows by assumption (1). Therefore, every M € S, satisfies

3t

1 217
— [z DI = [4;(D1] = (1 - 7) a-. (B.30)
FoCT
o
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Setting t = %min{a, a(l =2|Z|/m)/2} = %a(l —2|Z|/m) in (B.29) and (B.30), we
deduce the claimed estimates (B.3) and (B.4). Finally, let us estimate the probability
of £. Using the union bound and Lemma F.1 yields

P(&C) < Z IP’{(B.18) or (B.19) fails at M}
MeN

< 4N exp (—tzc(m, r))

9 2(dy+d2+1)r
<4 (—) exp (—tzc(m, r))
€

— dexp (2(d1 b+ Drin(/e) — 2c(m, r))

where c(m, r) is the function guaranteed by assumption (3).
By (B.1),we get 1/e =45/t <24 B(r)/(1 — 2|Z|/m). Then, we deduce

2 217
P(ES) < 4exp (cl(dz +d + Drin <C2 n %) _ %(1 - %)%(m, r)) .

9c1(di+dr+1r? In(ea+ 1350 )

2
2 2|7)
«(1-%7)

2 2
P(EC) < 4dexp <_T_8 (1 — %) c(m, r)) .
m

Proving the desired result. O

Hence, as long as c(m, r) > , We can be sure

C Proof in Sect. 7
C.1 Proof of Lemma 7.4

Define P(x,y) = aly — x||% + b|ly — x||2. Fix an iteration k and choose x* €
proj v« (xr). Then, the estimate holds:

FOg1) < fro(eear) + PO, x1)
< fo (X)) + PO*, x) < f(XT)+2P(x™, xp).

Rearranging and using the sharpness and approximation accuracy assumptions, we
deduce

- dist(xesr, &%) < 2(a - dist?(x, X*) + b - dist(x, X))
= 2(b + adist(x, X*))dist(x, X*).

The result follows.
FoCT
I_' o
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197 C.2 Proof of Theorem 7.6

198 First notice that for any y, we have 0 f(y) = 9 fy(y). Therefore, since fy is a convex
1999 function, we have that for all x, y € X and v € 9 f(y), the bound

2000 fO)+w,x—y)= M+, x—y) < fHx)
< fx) +alx —ylI% +blx — yllp- (C.1)

w02 Consequently, given that dist(x;, X*) <y - “Z_—jb, we have

N mi 2
o xigr — 2717 = [proj (i — LO0=mAL ) — projiy ()
2004 < H(x,' —x*) = %Cz g (C2)
2, 2(f () —miny f) R (f i) = f@&*)?
2005 = i — =+ <Gy — X))+
b = 1512 S 1512
2006 <xi — x*||2 + L_zmmf)n
Izl
(£ = F o) +allxy = x*12 + bl — 1))
(f i) = f@&*)?
2008 + C3
1212 €3
w2, fGi) — min f
2009 = s —_ + —_— ¥ ¥
b = FE
(2allx; = x*12 + 26l — ¥l = (F ) = F &™)
<t = 1P + L (a2 = w2l — 271
1
(C.4)
w2 2a(f(x;) —min f) n—2b *
= Il =P+ S (nx,- - - >||x,~ — x|
< Iy —x*2 = 85 y)(“_ﬁ?_(lf;(x") S )
1— —2b
014 < (1 - %) I — x%)2. (C.6)

a5 Here, the estimate (C.2) follows from the fact that the projection proj y (-) is nonex-
a6 pansive, (C.3) uses the bound in (C.1), (C.5) follow from the estimate dist(x;, X™*) <
w7 Y “;;b, while (C.4) and (C.6) use local sharpness. The result then follows by the

28 upper bound ||| < L.
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D Proofs in Sect. 8
D.1 Proof of Lemma 8.1

The inequality can be established using an argument similar to that for bounding the
T; term in [27, Section 6.6]. We provide the proof below for completeness. Define the
shorthand Ag := S —S:and Ay = X — X, and lete; € R4 denote the Jj-th standard
basis vector of R?. Simple algebra gives

(S — S5, XX — X:X.)| = 2(As, Ax X ) + (As, Ax A})|

< (20%] Aslie + 145 Asle) - 1AxI F.

We claim that [|Age; |1 < 2\/E||Agej||2 for each j € [d]. To see this, fix any j € [d]
and let v := Se;, v* := Sge;, and T := support(v*). We have

vzl = vl = lvlh Ses
= |lvrlli + llvrellr decomposability of £ norm
= vy + =07l + I —v")7ely
> vkl = Ilw =07l + II(v — v*)ell;.  reverse triangle inequalit
T g q y

Rearranging terms gives || (v — v*)7c|l; < ||(v — v*)7 |1, whence

lv—v"lli = [v —=v) 7l + II(v — v)7rellt <2/ — V)7l

< 2Vk||(w — v*)7ll2 < 2Vk[v — v* |2,

where step the second inequality holds because |7| < k by assumption. The claim
follows from noting that v — v* = Age;.
Using the claim, we get that

1X] Aslle = [ Y 1X] Asejll3 < | > 1X:113 oI Ase;l}
jeldl jeldl

vrk
< X¢llaoo | D 4kl Ase;l <2/ —=llAsllF.
Jjeld]

Using a similar argument and the fact that [[Ax 12,00 < [ X[12,00 + 1 X#ll2,00 < 3 /%,

vrk
A% AslF < 6,/7||As||p.

we obtain

FoC Tl
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Putting everything together, we have

vrk vrk
(S — %, XXT = X;x])| < (2-2,/7||As||F +6,/7||As||F> NAx .

The claim follows.

D.2 Proof of Theorem 8.6

Without loss of generality, suppose that x is closer to x than to —x. Consider the
following expression:

¥(x — %) 4+ (x —0x" I

= sup Tr((X(x — X)) + (x — X)x V)

IVlleo=1.VT=V
= sup Tr(Gx'V +xx' V. =2xx'V)
IVllo=1VT=V
= sup Tr(x"Vi+x Vx —=2%'VX)
IVlleo=1.VT=V
=2 sup Tr(xTV)E — JETV)E)
IVls=1VT=V
=2 sup Tr((x — )| VX)
IVlloo=1.VT=V
=2 sup  Tr(x(x —x) V).
IVle=1VT=V

We now produce a few different lower bounds by testing against different V. In what
follows, we set a = V2 — 1, i.e., the positive solution of the equation 1 — a’ = 2a.

Case1: Suppose that
|(x — %) sign(¥)| > allx — x|

Then, set V = sign((x — )E)Tsign(i)) . sign(i)sign(i)T, to get

IFx =" + @ =D

> 2Tr(x(x — %) V)

= 2sign((x — %) "sign(¥)) - Tr((x — %) " sign(¥)sign(¥) ' %)
= 2|| %[l sign((x — ) Tsign(¥)) - (x — %) Tsign(¥)

> 2allx|lllx — x|l

FoC Tl
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Case2: Suppose that
|sign(x — %) "% > a|| %]
Then, set V = sign(sign(x — )E)T)E) - sign(x — x)sign(x — o7, to get

X =) 4+ (x —0E" |
> 2Tr(x(x — %) V)
= 2sign(sign(x — %) ' X) - Tr((x — %) "sign(x — X)sign(x — %) ' X)
= 2|lx — X||;sign(sign(x — %) ' %) - sign(x — %) ' x

> 2all x|l llx — x|
Case 3: Suppose that
|(x —X)"sign(®)| <alx — X1 and [sign(x — %) ¥| < a| %[
Define V = 1 (sign(x(x — %)) + sign((x — ¥)x")). Observe that

Tr(x(x — %) "sign(x(x — %) 1)) = (x — %) "'sign(¥)sign(x — %) ' %

2 — -
—a”|lx|[1llx — x|l

v

and

Tr(x(x — %) Tsign((x — )% ")) = Tr(x(x — %) "sign(x — X)sign(x "))

= [lxll1llx = x|l
Putting these two bounds together, we find that
¥ =D + @ —DF | 2 2T G —D'V) = (A = a1 E[hllx = %1
Altogether, we find that

F(x) = llxx" = &% "
=¥ -+ @ —DF -0 -0"h

> ¥ -0+ @ -3 - Ix =D -0

> 2al|% 1 lx — %1 — lI(x — )13
= 24|17 (1 - M) I — 1.
2a%l
as desired.
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D.3 Proof of Lemma 8.8

We start by stating a claim we will use to prove the lemma. Let us introduce some
notation. Consider the set

vr
S = {<A+, AZ) e R S RV | | Agllgioo < (1 4 )/ IXsllop. 1A ll2,1 # 0} .

Define the random variable

1 d
Z= sup | ) 8lAi Ay )+ {Ap, A )]
Ay, A0)es | 1A=]I2,1 /X_:l Y ' ! y !
||A,||2 Z Bijl(A—is Ag )+ (Agis Azl

Claim There exist constants c¢2,c3 > 0 such that with probability at least 1 —
exp(—c; logd)

Z < c3Cy/tvrlogd ||X1¢ Hop .
Before proving this claim, let us show how it implies the theorem. Let

R € argmin|| X — X;R|2.1.
RTR=1

Set A_ =X — XyR and Ay = X + X;R. Notice that

vr
[A+112,00 < 1X112,00 + 1 Xzll2,00 = (1 + O X ll2,00 < ,/7(1 + Ol X¢llop-

Therefore, because (A4, A_) € S and

1
Z 8ij1{Xi, X ) = (X)in (Xp) )| = Z Sijl{A_i, Ay j)
[T ||21l.J | ||A 2,

HALi, Al

s

l]l

we have that

d
D 8 1(Xis X ) — (Xpi (X))

ij=1

< tIXXT = XX [l + e3Cy/rorlogd|| Xz llopll X — X:Rll2.1

FoC T
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IXXT = XX/ |1,

c3Cy/tvrlogd
< (r + fgnxﬁnw

where the last line follows by Conjecture 8.7. This proves the desired result.

Proof of the Claim Our goal is to show that the random variable Z is highly concen-
trated around its mean. We may apply the standard symmetrization inequality [7,
Lemma 11.4] to bound the expectation EZ as follows:

d

1

EZ <2E sup | D> &j8ijl(A_i, Ay ) +(Api, A )]
(Ay, A )es [ I1A-]l2,1 ]

d

1

<2 sup | > edil (A Ap )l
(Ay,a)es [ I1A-1l2,1 ]

d
1
+2E sup |—— Z €ij0ij[{Aqis A j)|

(Ay,a0)es | 1A=]2,1 ymd

=TT+ T
Observing that 71 and 7> can both be bounded by
d

Z&j&‘j

i=1

1
max{Ti, To} <2 sup ————[|A; Al||z oo max
(Ay,A_)es 1A—]l2,1

d

Dby

i=1

d
D e
i=1

<2 sup [[A4]l2.00E max
(Ay,A)eS

[vr
<2(1+0C) 7||Xﬁ||(,pIEmax
i |

[vr
<cC 7||X;||(,,,(\/1:d logd + logd),

where the final inequality follows from Bernstein’s inequality and a union bound, we
find that

EZ < C /]Zl—rllXtH,)p(‘/rdlogd +logd).

To prove that Z is well concentrated around EZ, we apply Theorem F.3. To apply this
theorem, we set S = S and define the collection (Z;; 5);; ses, Where s = (A4, A_)
by

1
Zijs=————0ij{A_i, Ay ;) + (A4, A_ ;)]
1A-ll2,1
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1
E——08;j[(A_i, At j) + (Ayi, A ;)]
1A—1l2,1

_©Gij—1) A
= m“ﬂ—,ia Ay )+ (A4, A j)l.

‘We also bound

©Gij —1)

b= sup |Zjjs| <  sup 14 s

ij,seS ij,(Ay,A)eS

——1A—illFl A+ jlIF + 1Al FIIA- ;I F)

Vr
=A+O T IXlop  sup | (Al + 1410
d ij.(Ar,A0)es | TA-l2,
vr
SZC 7||Xti||0p
and
o’ = sup Z(al, DA Ay )+ (Api AP
(Ay,A_)eS ||A ||21,]_1
1 d
<t sup —Z<||A_,||F||A+,||F+||A+,||F||A_,||F)2

(Ap,A_)eS IIA—||2 17

Z lA—illE AL, 17

sup
(A, A )eS IIA—||2 1

ij=1
4(1 4 C)*vr
<T————— X2, sup Z [
d P (Av.A)es IIA—||2 1=
4(1 + C)%vr 2d||A_|I3
< TR o
d (Ay,A)eS ||A,||2)1

IA

16TC%or| X; |7,

Therefore, due to Theorem E.3 there exists a constant c1, ¢, ¢3 > 0 so that with
t = ¢2 logd, we have that with probability 1 — e~¢21°24 that Z is upped bounded by

EZ + /8 (2bEZ + 02) t + 8bt

fvr
<cC gllxnllgp(\/tdlogd + logd)

202
C?v
+\J8cg <CIT |X;112,(/7d Togd + logd) + 16t C2vr || X; 2 )logd

vr
+ 16C2C\/;‘|Xn||op log(d)

Fo C 'Tl
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4 2
w3 < Cy/urlogd||Xelop (qﬁ+c1,/‘°§d + \/8c2\/‘/‘lf;"8d 4 edlosd 4 yer g 16c2,/1°§,")
2154 < c3Cy/rvrlogd| Xzllop-

nss  where the last line follows since by assumption logd/d < t. O

uss  E Proofs in Sect. 9
257 E.1Proof of Lemma 9.1

25 The proof follows the same strategy as [32, Theorem 6.1]. Fix x € 7, and let ¢ €
ns9 0 f(x). Then, for all y, we have, from Lemma 9.3, that

FO) = @+ gy —x) = Slx—yl3 = 3e.
261 Therefore, the function

80) = fO) = .y —x) + Slx = yl} + 36
nes  satisfies

2164 gx)—infg < f(x) — f(x) + 3¢ < 4e.
2es  Now, for some y > 0 to be determined momentarily, define

2166 X = argmin {g(x) + %Hx — y||%} .

ne7  First-order optimality conditions and the sum rule immediately imply that

2¢e . o ~ N
2168 ﬁ(x—x)eag(x)zaf(x)—g“—i—p(x—x).
2169 ThllS,
. A 2¢ .
2170 dist(g, 9 f (x)) < (P + p) llx — xll2.

a7 Now we estimate ||x — x||». Indeed, from the definition of x we have

& . N .
% —x]* < g(x) — g(&) < g(x) —inf g < de.

2
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Consequently, we have ||x — X|| < 2y. Thus, setting y = +/2¢/p and recalling that
e < u?/56p we find that

[2
dist(R, X*) < |x — & + dist(x, &%) <2 [Z2 4+ H <
0

ol
4p —
. A . 2¢e
dist(x, X) < |lx —x|| <2 | —.
o

Therefore, setting L = sup {||;||2 1¢ e df (), distx, X%) < £, dist(x, X) <2 %},
we find that

fad
0

Likewise, we have

. . de
¢l < L +dist(¢,df (X)) < L+ > +2py = L +2/8pe,
as desired.

E.2 Proof of Theorem 9.4

Leti > 0, suppose x; € T ,and let x* € proj y« (x;). Notice that Lemma 9.2 implies

f(x;) —miny f > 0. We successively compute

~ . 2
i1 = xI2 = [projay (s — L2l ) — proje (x°)
f (x;)—min y/
< H (x; —x*) — W{i (E.1)
Fix:) — mi Fix:) — mi 2
T 2(f (xi) 'n;nnx ) X — i)+ (f &) lm;nx f)
il Izl
2(f(x;) — mi .
< i = x*12 + %“@ (H;gnf — Fo+ 2w —x 1P+ 38)
(f (xi) — miny f)?
M T E2
= g — x| 4 LD min S (pnx,- — 7 = (f(x) — min f) ~|—6s)
i h
< by — x| + f(x’)”;%"f (pllxi — x*I2 — ullxi —x*| + 7€) (E.3)
<l — 7|2 2S00 — minx ) (nxi e ﬁ) b —x*l (E4)
Izl 20
< i = x*|? = “W’;f”} H;HX D ) (E5)
< oy — 2 - L X0 7 0) "Xil&jz” s
FeC
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13/“62 T
= (l_ 56||;i||2) b =l (E6)

Here, the estimate (E.1) follows from the fact that the projection proj,(-) is non-
expansive, (E.2) uses Lemma 9.3, the estimate (E.4) follows from the assumption
€ < 47 llxx — x*||, the estimate (E.5) follows from the estimate ||x; — x*|| < 4%, while
(E.3) and (E.6) use Lemma 9.2. We therefore deduce

132
5612

dMRMH;Xﬂsnnﬂ—xwzs(l— )ma%m¢W>

Consequently, either we have dist(x;41, X*) < % or xjy] € ’f] Therefore, by

induction, the proof is complete.

E.3 Proof of Theorem 9.6

Leti > 0, suppose x; € 7, and let x* € proj y (x;). Then,

. . \ P
ummMmXﬂsfmﬂrﬂgfsﬁmﬂrﬂgf+?mﬂ—mw
~ A Y
sﬁmﬂrﬂgf+;mﬂ—mW+s
<ﬂ@ﬂ4ﬂf+&m—ﬁW+8
- X 2
sﬁuw—yf+§m—ﬁW+%
sﬂﬁyagf+ﬂwrﬂﬂﬂ+%
= Bdist®(x;, X*) + 2.

Rearranging yields the result.

F Auxiliary Lemmas

LemmaF.1 (Lemma3.1in[13])LetS, := {X € R*% | Rank (X) <r, | X|F = 1}.
There exists an e-net N (with respect to || - || ) of S, obeying

9 (d1+d2+1)r

. .

Wi (2

Proposition F.2 (Corollary 1.4 in [75]) Consider X1, ..., X4 real-valued random
variables and let o € S?~! be a unit vector. Let t, p > 0 such that

supP(|X; —u| <t)<p foralli=1,...,d.
uceR
FoCT
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Then, the following holds

sup P Zoka—u <t) <Cp,
ueR &

where C > 0 is a universal constant.

Theorem F.3 (Talagrand’s Functional Bernstein for non-identically distributed vari-
ables [53, Theorem 1.1(c)]) Let S be a countable index set. Let Zi,...,Z, be

independent vector-valued random variables of the form Z;, = (Z;s)ses. Let
Z = Supscs Z?:l Zi . Assume that for alli € [n]land s € S, EZ;; = 0 and
’Zi,s’ <b. Let
n
o’ = supZIEZ[Z’S.
seS 2

Then, for each t > 0, we have the tail bound

IE”(Z—IE)Z > 8(2bIEZ+o2)t+8bt> <e
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