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Abstract1

We introduce a geometrically transparent strict saddle property for nonsmooth func-2

tions. This property guarantees that simple proximal algorithms on weakly convex 13

problems converge only to local minimizers, when randomly initialized. We argue4

that the strict saddle property may be a realistic assumption in applications, since it5

provably holds for generic semi-algebraic optimization problems.6

Keywords Strict saddle · Proximal gradient · Proximal point · Center stable manifold7

theorem · Semi-algebraic8

Mathematics Subject Classification 65K05 · 65K10 · 90C309

1 Introduction10

Nonconvex optimization techniques are increasingly playing a major role in modern11

signal processing, high-dimensional statistics, and machine learning. A driving theme,12

fully supported by empirical evidence, is that simple algorithms often work well in13

highly nonconvex and even nonsmooth settings. Gradient descent, for example, often14
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Foundations of Computational Mathematics

finds points with small objective value, despite existence of many highly suboptimal15

critical points. A growing body of literature provides one compelling explanation for16

this phenomenon. Namely, typical smooth objective functions provably satisfy the17

strict saddle property, meaning each critical point is either a local minimizer or has18

a direction of strictly negative curvature (e.g., [6,28,29,61,62]). For such functions,19

randomly initialized gradient-type methods provably converge to local minimizers,20

escaping all strict saddle points [35,51]. Moreover, stochastically perturbed gradient21

methods escape strict saddles efficiently, indeed, in polynomial time [22,27,33].22

Smoothness of the objective plays a crucial role in the existing literature on sad-23

dle avoidance. Some extensions to constrained optimization do exist. The papers24

[15,27,63] investigate saddle point avoidance for the problem of minimizing a smooth25

functions over a smooth manifold. The works [30,44,49] propose algorithms for min-26

imizing a smooth objective over a closed convex set. At each step of these algorithms,27

one must minimize a nonconvex quadratic over a certain convex set (an NP hard prob-28

lem in general). The work [4] proposes a polynomial time first-order algorithm for29

minimizing a smooth objective over linear inequality constraints.1 At each step of this30

algorithm, one identifies the “active linear constraints” and then attempts to find a31

“second-order stationary point” of the loss in the restricted subspace.32

Though impressive in scope, existing work has yet to answer the following question:33

Do simple algorithms on typical nonsmooth and nonconvex optimization prob-34

lems converge only to local minimizers?35

This question as stated is purposefully vague, since “simple algorithms” and “typical36

optimization problems” can be interpreted in multiple ways. Let us try to formalize both37

ideas. First, if one believes that gradient descent is a canonical first-order method for38

smooth minimization, it is natural to focus on three concrete algorithms for nonsmooth39

and nonconvex problems: the proximal point [42,43,46,55], proximal gradient [5,48],40

and proximal linear [9,20,21,40,47] methods. This is the path we follow in the current41

work.42

The latter issue, identifying a typical optimization problem, is more subtle. To moti-43

vate our approach, let us revisit the following question: why is the strict saddle property44

a reasonable assumption for smooth minimization? A first compelling reason is that45

the property holds in practice for specific problems of interest. There is, however, a46

more classical justification, one rooted in stability to perturbations. Namely, consider47

the task of minimizing a smooth function f on R
d . Then, for a full measure set of per-48

turbations v ∈ R
d , the perturbed function x �→ f (x) − 〈v, x〉 is guaranteed to satisfy49

the strict saddle property—a direct consequence of Sard’s theorem. Consequently, in50

a precise mathematical sense, the strict saddle property holds generically in smooth51

optimization. This justification does not suggest one can omit verification of the strict52

saddle property in concrete circumstances, but it does suggest that the strict saddle53

property is widely prevalent.54

Seeking to identify a similarly reasonable class of nonsmooth objectives on which55

simple algorithms converge to local minimizers, the current paper accomplishes the56

following.57

1 This work appeared concurrently with our manuscript.
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We formulate natural geometric conditions, guaranteeing the proximal point,58

proximal gradient, and proximal linear algorithms escape all saddle points.59

Moreover, the proposed conditions are generic: they hold for almost all linear60

perturbations of weakly convex and semi-algebraic problems.61

The class of optimization problems we consider is broad. A function f is called ρ-62

weakly convex if the assignment x �→ f (x) + ρ
2 ‖x‖2 is convex for some ρ > 0.263

Common examples include pointwise maxima of smooth functions and all compo-64

sitions of Lipschitz convex functions with smooth maps. For detailed contemporary65

examples, we refer the reader to [13,16,17,23,32]. The genericity guarantee applies66

to semi-algebraic functions,3 and more broadly, to those that are definable in an o-67

minimal structure—a virtually exhaustive function class in applications.68

1.1 The Role of Curvature69

To motivate our core geometric conditions, we revisit the role that curvature plays in70

saddle-point avoidance. Setting the stage for the rest of the paper, consider the task71

of minimizing a weakly convex function f on R
d . First-order optimality conditions72

show that any local minimizer x̄ of f satisfies the criticality condition:73

d f (x̄)(v) ≥ 0 for all v ∈ R
d ,74

where d f (x̄)(v) denotes the directional derivative of f at x̄ in direction v (see Defi-75

nition 2.1). Conversely, sufficient conditions for local optimality at a critical point x̄76

require a close look at the second-order variations of f along particular directions,77

namely those where the directional derivative is zero. Mirroring the smooth setting,78

one may naively call a critical point x̄ a strict saddle if there exists a direction v such79

that d f (x̄)(v) = 0 and f decreases quadratically along v. This definition, however, is80

insufficient for saddle avoidance: simple examples show that typical algorithms can81

converge to such saddle points from a positive measure of initial conditions.82

Negative curvature alone does not guarantee escape from saddle points.83

To illustrate what can go wrong, consider the example84

min
(x,y)∈R2

f (x, y) = (|x | + |y|)2 − 2x2, (1.1)85

the graph of which is shown in Fig. 1a. First, observe that the origin meets the con-86

ditions of the candidate “strict saddle” definition. Indeed, f is differentiable at the87

origin and the origin is a critical point. Moreover, f decreases quadratically along all88

directions making a small angle with the x-axis. Next, we turn to algorithm dynam-89

ics. Figure 1b depicts the subgradient flow −γ̇ (t) ∈ ∂ f (γ (t)). From the picture we90

2 Weakly convex functions also go by other names such as lower-C2, uniformly prox-regularity, paraconvex,
and semiconvex. We refer the reader to the seminal works on the topic [2,50,53,56,58].
3 A function is called semi-algebraic if its graph decomposes into a finite union of sets, each defined by
finitely many polynomial inequalities.
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(a) (b)

(d)(c)

Fig. 1 The function f in (1.1), its Moreau envelope, and their subgradient flows. a The function f (x, y) :=
(|x | + |y|)2 − 2x2. b Subgradient flow γ̇ ∈ −∂ f (γ ). c Envelope f̂ (z) := min

z′∈R2

{
f (z′) + 3‖z′ − z‖2

}
. d

Gradient flow γ̇ = −∇ f̂ (γ )

find a positive measure cone, surrounding the y-axis and consisting of origin-attracted91

initial conditions. Moreover, we show in Appendix B that a typical algorithm—the92

proximal point method—initialized anywhere within this cone also converges to the93

origin, illustrating the inadequacy of the definition. While this argument shows that94

negative curvature is insufficient for nonsmooth optimization, it can be made even95

more definitive by smoothing the problem at hand. Namely, an alternative view of96

the proximal point method recognizes that the dynamics of the algorithm coincide97

with the dynamics of gradient descent on a C1 smooth approximation of f , called98

the Moreau envelope (see Sect. 2.3). The smooth envelope, whose graph and gradient99

flow are shown in Fig. 1c, d, has the same cone of directions of second-order negative100

curvature as f , but despite its smoothness and negative curvature, gradient descent101

cannot escape the origin. The problem persists under a variety of different choices of102

the step-size. Note that there is no contradiction with the saddle avoidance property103

of gradient descent on smooth functions, since the envelope is not C2, but merely C1-104
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smooth around the origin. Although this example appears damning at first, it is highly105

unstable, since small linear tilts of the function do not exhibit the same pathological106

behavior around critical points—a direct consequence of the forthcoming results.107

1.2 The Role of the Active Manifold108

We have seen that negative curvature alone is insufficient for saddle avoidance. We109

argue here that in addition to negative curvature, one must make a structural assumption110

on the way nonsmoothness manifests. To illustrate and contrast with example (1.1)111

above, consider:112

min
(x,y)∈R2

g(x, y) = |x | − y2. (1.2)113

The graph of g is shown in Fig. 2a, while its subgradient flow appears in Fig. 2b.114

Looking at the figure, we see that the subgradient flow of g sharply contrasts with115

that of the pathological example (1.1). Indeed, while both functions have directions116

of negative curvature, the set of origin-attracted initial conditions of the flow −∂g is117

simply the x-axis—a measure zero set. This favorable behavior of g arises because its118

nonsmoothness manifests in a structured way: its unique critical point z̄ (the origin)119

lies on a smooth manifold M (the y-axis). The function g then varies smoothly along120

M and sharply normal to M meaning:121

inf{‖v‖ : v ∈ ∂g(z), z ∈ U \ M} > 0,122

where U is some neighborhood of z̄. Such “active manifolds” have classical roots in123

optimization and serve as a far reaching generalization of “active sets” in nonlinear124

programming. Important references include both the original works [1,10–12,24–26]125

and the more recent work on identifiable surfaces [64], U V -decomposition [38], par-126

tial smoothness [39], and cone reducibility [8]. Here, we most closely follow the127

framework developed in [19].128

1.3 Escape from Saddles by the Center Stable Manifold Theorem129

Formalizing the favorable behavior of example (1.2), we will call a critical point x̄ of a130

function g a strict saddle whenever (i) g admits an active manifold containing x̄ , and (ii)131

the function g decreases quadratically along some direction v satisfying dg(x̄)(v) = 0.132

A function g is said to have the strict saddle property if each of its critical points is133

either a local minimizer or a strict saddle.4 Though it may seem that this definition is134

stringent at first, the strict saddle property is in a precise mathematical sense generic.135

Namely, it follows from [18] that given any semi-algebraic weakly convex function136

g, the perturbed function gv(x) = g(x) − 〈v, x〉 has the strict saddle property for137

almost all v ∈ R
d .5 In particular, almost all linear perturbations of the function f in138

4 Perhaps more appropriate would be the terms active strict saddle and the active strict saddle property.
For brevity, we omit the word “active.”
5 Weak convexity is not essential here, provided one modifies the definitions appropriately. Moreover, this
guarantee holds more generally for functions definable in an o-minimal structure.
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(a)

(b)

Fig. 2 The function g(x, y) = |x | − y2 has an active manifold at the origin. a The function g(x, y). b
Subgradient flow γ̇ ∈ −∂g(γ )

Table 1 The three algorithms with the update S(x) = argminy fx (y); we assume h is convex, r is weakly
convex, and both g and F are smooth

Algorithm Objective Update function fx (y)

Prox-point r(x) r(y) + 1
2μ

‖y − x‖2

Prox-gradient g(x) + r(x) g(x) + 〈∇g(x), y − x〉 + r(y) + 1
2μ

‖y − x‖2

Prox-linear h(F(x)) + r(x) h(F(x) + ∇F(x)(y − x)) + r(y) + 1
2μ

‖y − x‖2

(1.1) do have the strict saddle property. That being said, it is important to note that139

under more nuanced perturbations, the strict saddle property may fail. For example,140

the classical NP-complete problem of checking copositivity of a matrix A ∈ R
d×d

141

amounts to verifying if the origin x̄ = 0 locally minimizes the quadratic xT Ax over142

the nonnegative orthant R
d+. It is straightforward to see that this constrained problem143

does not admit an active manifold at x̄ for any matrix A.144

With the definition of a strict saddle at hand, we can now outline the main results145

of the paper. As in the smooth setting, first explored in the seminal paper [35], our146

arguments will be based on the center stable manifold theorem. Namely, we will147

interpret the three simple minimization algorithms as fixed point iterations148

xk+1 = S(xk) for some maps S : R
d → R

d .149

Table 1 lists the maps S(·) for the proximal point, proximal gradient, and proximal150

linear algorithms. In each case, the fixed points of S(·) are precisely the critical points151

of the minimization problem.152

To put our guarantees in context, it will be useful to recall the center stable manifold153

theorem. To this end, suppose that the iteration map S(·) is C1-smooth on a neigh-154

borhood of some fixed point x̄ . Then, x̄ is called an unstable fixed point of S if the155

Jacobian ∇S(x̄) has at least one eigenvalue whose magnitude is strictly greater than156
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one. The center stable-manifold theorem [60, Theorem III.7] guarantees the following:157

if x̄ is an unstable fixed point of S and the Jacobian ∇S(x̄) is invertible, then almost158

all initializers x in a neighborhood U of x̄ generate iterates {Sk(x)}k≥1 that eventually159

escape the neighborhood. More precisely, the theorem guarantees that the set of initial160

conditions161 {
x ∈ U : Sk(x) ∈ U for all k ≥ 1

}
162

has zero Lebesgue measure. All that is needed to globalize this guarantee is to ensure163

that the preimage S−1(V ) of any measure zero set V is itself measure zero. Then, for164

almost all initial conditions x ∈ R
d , the limit limk→∞ Sk(x), when it exists, is not165

an unstable fixed point of S. A straightforward way to ensure that the inverse S−1
166

respects null sets is by introducing the relaxation map:167

T (x) := (1 − α)x + αS(x). (1.3)168

Both T and S have the same fixed points, and any fixed point x̄ at which ∇S(x̄) has a169

real eigenvalue strictly greater than one is an unstable fixed point of T . Moreover, if170

the map S is Lipschitz, then the inverse T −1 preserves null-sets for sufficiently small171

α ∈ (0, 1).172

1.4 TheMain Results173

We can now summarize our main results:174

We show that around each strict saddle of the problem, each of the iterations175

maps S(·) in Table 1 is C1 smooth. Moreover, if x̄ is a strict saddle, then the176

Jacobian ∇S(x̄) has a real eigenvalue strictly greater than one.177

From this result, the center stable manifold theorem guarantees that iteration (1.3)178

locally escapes strict saddles. Seeking to globalize the guarantees, we compute the179

global Lipschitz constants for the proximal point and proximal gradient methods.180

We deduce that, when randomly initialized, the relaxed iterations (1.3) for both the181

proximal point and proximal gradient methods converge to local minimizers of weakly182

convex functions, provided they have the strict saddle property. On the other hand,183

without placing further restrictions on the problem data, we are unable to compute184

the global Lipschitz constant of the map S(·) corresponding to the proximal linear185

algorithm. We leave it as an intriguing open question to determine Lipschitz properties186

of the proximal linear update.187

The outlined results may seem surprising at first: the optimization problem is non-188

smooth and yet we prove the iteration maps S(·) are C1-smooth around any strict189

saddle. The reason is transparent and derives from the interplay between the active190

manifold and weak convexity. Take the proximal point method, for example. The very191

definition of the active manifold guarantees that the fixed point iteration S(·) maps an192

entire neighborhood X around an strict saddle x̄ into the active manifold M. Conse-193

quently, for all x ∈ X , the update S(x) can be realized as a minimizer of a smooth194
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function over the active manifold:195

S(x) = argmin
y∈M

f (y) + 1

2μ
‖y − x‖2. (1.4)196

Weak convexity, in turn, ensures that S(x̄) satisfies a quadratic growth condition for197

the problem (1.4), which by classical perturbation theory guarantees that S(·) is C1-198

smooth on a neighborhood of x̄ . It only remains to argue that the negative curvature of199

the objective function at x̄ implies that the Jacobian ∇S(x̄) has at least one real eigen-200

value greater than one. Though this computation is straightforward for the proximal201

point method, it becomes more interesting (and surprising) for the proximal gradient202

and proximal linear algorithms.203

Roadmap The outline of the paper is as follows. Section 2 is a self-contained pre-204

sentation of the necessary preliminaries for formalizing the ideas of the introduction.205

Then, in Sects. 3, 4, and 5 we directly analyze the iteration maps for the proximal206

point, proximal gradient, and proximal linear algorithms. Section 6 establishes iterate207

convergence of the relaxed schemes (1.3) under the Kurdyka–Łojasiewicz property.208

2 Preliminaries209

Throughout, we follow standard notation in convex and variational analysis, as set210

out, for example, in the monographs [14,45,54,57]. We consider a Euclidean space211

R
d endowed with an inner product 〈·, ·〉 and the induced norm ‖x‖ = √〈x, x〉. The212

unit sphere in R
d will be denoted by S

d−1. For any function f : R
d → R ∪ {∞}, the213

domain and epigraph are the sets214

dom f = {x ∈ R
d : f (x) < ∞}, epi f = {(x, r) ∈ R

d × R : r ≥ f (x)},215

respectively. The function f is called closed if epi f is a closed set. For any set216

M ⊂ R
d , the indicator function δM evaluates to zero on M and to +∞ off it.217

For any function f : R
d → R ∪ {∞} and a set M ⊂ R

d , we define the restriction218

fM := f + δM. Throughout, the symbol o(r) will denote any univariate function219

satisfying o(r)/r → 0 as r ↘ 0.220

Consider a differentiable mapping F(x) = (F1(x), . . . , Fm(x)) from R
d to R

m .221

Throughout, the symbol ∇F(x) ∈ R
m×d will denote the Jacobian matrix, whose i j’th222

entry is given by d
dx j

Fi (x). Thus, row i of ∇F(x) is the gradient of the coordinate223

function Fi (x). In the particular case m = 1, we will treat ∇F(x) either as a column or224

as a row vector, depending on context. For a C2-smooth function g : R
d ×R

n → R
m ,225

we partition the Hessian as follows:226

∇2g(x, y) =
[∇xx g(x, y) ∇xy g(x, y)

∇yx g(x, y) ∇yy g(x, y)

]
227
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2.1 Subdifferentials and Subderivatives228

The following definition records the standard first- and second-order differential con-229

structions, which we will use in the paper. After the definition, we will comment on230

the role of each construction. For further details we refer the reader to [57, Definitions231

8.1, 8.3, 13.59].232

Definition 2.1 (Subdifferential and subderivatives) Consider a function f : R
d →233

R ∪ {∞} and a point x̄ with f (x̄) finite. Then, the subdifferential of f at x̄ , denoted234

∂ f (x̄), consists of all vectors v satisfying235

f (x) ≥ f (x̄) + 〈v, x − x̄〉 + o(‖x − x̄‖) as x → x̄ .236

The subderivative of f at x̄ in direction ū ∈ R
d is237

d f (x̄)(ū) := liminf
t↘0
u→ū

f (x̄ + tu) − f (x̄)

t
.238

The critical cone of f at x̄ for v̄ ∈ R
d is239

C f (x̄, v̄) := {u ∈ R
d : 〈v̄, u〉 = d f (x̄)(u)}.240

The parabolic subderivative of f at x̄ for ū ∈ dom d f (x̄) with respect to w̄ is241

d2 f (x̄)(ū|w̄) = liminf
t↘0

w→w̄

f (x̄ + t ū + 1
2 t2w) − f (x̄) − d f (x̄)(ū)

1
2 t2

.242

We now comment on these definitions, in order. First, a vector v lies in the subdif-243

ferential ∂ f (x̄) precisely when the affine function x �→ f (x̄) + 〈v, x − x̄〉 minorizes244

f up to first order near x̄ . The definition reduces to familiar objects in classical245

circumstances. For example, differentiability of f at x̄ implies the set ∂ f (x̄) is a246

singleton, containing only the gradient ∇ f (x̄). Convexity of f too entails a simplifi-247

cation, wherein ∂ f (x̄) reduces to the subdifferential of convex analysis.248

While the subdifferential encodes the set of approximate affine minorants, the sub-249

derivative measures the maximal instantaneous rate of decrease of f in direction ū.250

Like the subdifferential, the subderivative reduces to familiar objects in classical cir-251

cumstances. For example, if f is locally Lipschitz at x̄ , then one may set u = ū in252

its defining expression. Simplifying further, if f is differentiable at x̄ , we recover the253

directional derivative expression d f (x̄)(ū) = 〈∇ f (x̄), ū〉. Finally, if f is convex, then254

the subderivative reduces to the support function of the subdifferential255

d f (x̄)(ū) = sup{〈ū, v〉 : v ∈ ∂ f (x̄)},256

highlighting the dual roles of the subdifferential and subderivative constructions.257
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For smooth losses, necessary optimality conditions entail vanishing gradients, while258

sufficient optimality conditions follow from second-order growth properties of f . Sim-259

ilar characterizations persist in the nonsmooth setting. In particular, the subderivative260

and the subdifferential feature in first-order necessary optimality conditions, where261

the (dual) criticality condition 0 ∈ ∂ f (x̄) is equivalent to the (primal) nonnegativity262

condition263

d f (x̄)(u) ≥ 0 for all u ∈ R
d . (2.1)264

A point x̄ satisfying these first-order necessary conditions (2.1) is thus called critical265

for f . Sufficient optimality conditions, on the other hand, make use of second-order266

variations of f . Namely, suppose that a point x̄ is critical for f and consider a direction267

ū ∈ R
d . There are two possibilities to consider. On the one hand, if d f (x̄)(ū) > 0,268

then f must locally increase in direction ū. On the other hand, if d f (x̄)(ū) = 0, then269

we must examine second-order variations of f to determine local optimality. Such270

directions of ambiguity for the subderivative make up the critical cone C f (x̄, 0). For271

these directions, we must look to the parabolic derivative d2 f (x̄)(ū|w̄), a measurement272

of the second-order variation of f along a parabolic arc with tangent direction ū and273

second-order variation w̄. This construction too simplifies when f is C2 smooth at x̄ ,274

reducing to the familiar second-order variation:275

d2 f (x̄)(ū|w̄) = 〈∇2 f (x̄)ū, ū〉.276

This relation suggests second-order optimality conditions for nonsmooth problems.277

Although we will not appeal to such conditions directly in this work, we record them278

here for completeness. If x̄ is a local minimizer of f , then d f (x̄)(u) ≥ 0 for all u ∈ R
n ,279

and moreover infw∈Rn d2 f (x̄)(u|w) ≥ 0 for any nonzero u ∈ C f (x̄, 0). Complement-280

ing this necessary condition, a large class of functions, those that are parabolically281

regular, may also be endowed with a sufficient optimality condition. Namely, if282

d f (x̄)(u) ≥ 0 for all u ∈ R
n and infw∈Rn d2 f (x̄)(u|w) > 0 for any nonzero283

u ∈ C f (x̄, 0), then x̄ is a local minimizer of f . We refer the reader to [8] or [57,284

Theorem 13.66] for details.285

2.2 SmoothMinimization on aManifold286

The main results of this work exploit local smooth features of nonsmooth optimization287

problems (c.f. Definition 2.6). In the presence of these features, the constructions of288

Definition 2.1 locally simplify. Before moving to the general setting, we thus interpret289

the various derivative constructions in the classical setting of minimizing a C2-smooth290

function f on a C2-smooth manifold M. To that end, we first recall the definition of291

a manifold.292

Definition 2.2 (Smooth manifold) A subset M ⊂ R
n is a C p manifold of dimension293

r around x̄ ∈ M if there is an open neighborhood U around x̄ and a mapping G from294

R
n to R

n−r such that following hold: G is C p-smooth, the derivative ∇G(x̄) has full295

rank, and equality holds:296

M ∩ U = {x ∈ U : G(x) = 0}.297
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We call G = 0 the local defining equations for M around x̄ . The tangent space to298

M at x̄ is TM(x̄) := ker ∇G(x̄) and the normal space to M at x̄ is NM(x̄) :=299

range ∇G(x̄)∗.300

Turning to the classical setting, consider the optimization problem301

min
y∈Rd

f (y) subject to y ∈ M. (2.2)302

Fix a point ȳ ∈ M and suppose that both the function f is C2-smooth around ȳ and303

M is a C2-smooth manifold around ȳ. Due to local smoothness, the subdifferential304

admits the simple expression:305

∂ fM(ȳ) = ∇ f (ȳ) + NM(ȳ).306

Recall that we use the shorthand fM := f + δM. From this expression, we see that a307

point ȳ ∈ M is first-order critical for the problem (2.2) precisely when the inclusion308

holds:309

0 ∈ ∇ f (ȳ) + NM(ȳ). (2.3)310

This inclusion can be equivalently stated in terms of the Lagrangian function. Namely,311

let G = 0 be the local defining equations for M around ȳ and define the Lagrangian312

function313

L(y, λ) := f (y) + 〈G(y), λ〉.314

Then, (2.3) amounts to existence of a (unique) multiplier vector λ̄ ∈ R
m satisfying315

0 = ∇yL(ȳ, λ̄). Next, assuming ȳ is critical, second-order necessary conditions read316

〈∇2
yyL(ȳ, λ̄)u, u〉 ≥ 0 for all u ∈ TM(ȳ). (2.4)317

Conversely, second-order sufficient conditions read318

〈∇2
yyL(ȳ, λ̄)u, u〉 > 0 for all 0 �= u ∈ TM(ȳ). (2.5)319

It is well known that the sufficient condition (2.5) implies more than just local mini-320

mality; namely, (2.5) holds if and only if there exists α > 0 such that321

f (y) − f (ȳ) ≥ α‖y − ȳ‖2, for all y ∈ M near ȳ. (2.6)322

Any point ȳ satisfying (2.6) is called a strong local minimizer of f on M.323

The Lagrangian conditions (2.4) and (2.5) may be succinctly expressed through324

parabolic subderivatives of fM(y), yielding a form independent of the choice of local325

defining equations G = 0. In particular, a quick computation shows that for any326

u ∈ TM(ȳ), the function w �→ d2 f (ȳ)(u|w) is constant on its domain.6 Dropping327

6 The domain of d2 fM(ȳ)(u|·) consists of w satisfying (〈∇2G1(ȳ)u, u〉, . . . , 〈∇2Gn−r (ȳ)u, u〉) =
−∇G(ȳ)w, where Gi are the coordinate functions of G.
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the dependence on w, the equation then holds:328

d2 fM(ȳ)(u) = 〈∇2
yyL(ȳ, λ̄)u, u〉 for all u ∈ TM(ȳ).329

The use of (2.5) goes far beyond verifying local optimality; indeed, this condition330

plays a fundamental role in certifying solution stability under small perturbations. To331

illustrate, consider the value function of the parametric family332

ϕ(x) = inf
y

{ f (x, y) : y ∈ M}, (Px )333

334

where f is C2-smooth and M ⊂ R
d is a closed set. Let ȳ be a minimizer of Px̄ for a335

fixed parameter x̄ , and suppose that M is a C2-smooth manifold around ȳ. Let G = 0336

be the local defining equations for M around ȳ and define the parametric Lagrangian337

function338

L(x, y, λ) = f (x, y) + 〈G(y), λ〉.339

Since ȳ solves Px̄ , there is a multiplier vector λ̄ satisfying 0 = ∇yL(x̄, ȳ, λ̄).340

The following perturbation result will form the core of our arguments. In short:341

both the value function ϕ(x) and the minimizer of Px vary smoothly with x , provided342

two mild conditions hold (level-boundedness and quadratic growth). Moreover, the343

derivatives of both the value function and the solution maps can be computed explicitly.344

For details and a much more general perturbation result, see [59, Theorem 3.1].345

Theorem 2.3 (Perturbation analysis) Suppose that the following two properties hold.346

1. (Level-boundedness) There exists a number γ > ϕ(x̄) and a neighborhood X of347

x̄ such that the set348

⋃
x∈X

{y ∈ M : f (x, y) ≤ γ } is bounded.349

2. (Quadratic growth) The point ȳ is a strong local minimizer and a unique global350

minimizer of Px̄ .351

Define the partial Hessian matrices352

Hxx = ∇2
xxL(x̄, ȳ, λ̄), Hxy = ∇2

xyL(x̄, ȳ, λ̄), Hyy = ∇2
yyL(x̄, ȳ, λ̄),353

and the quantities354

η(h) = min
v∈TM(ȳ)

〈Hxx h, h〉 + 2〈Hxyv, h〉 + 〈Hyyv, v〉,355


(h) = argmin
v∈TM(ȳ)

〈Hxx h, h〉 + 2〈Hxyv, h〉 + 〈Hyyv, v〉.356

357
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Then, for every x near x̄ , the problem Px admits a unique solution y(x), which varies358

C1-smoothly and admits the first-order expansion359

ȳ(x̄ + h) = ȳ + 
(h) + o(‖h‖) as h → 0.360

Moreover, the function ϕ is C2-smooth around x̄ and admits the second-order expan-361

sion362

ϕ(x̄ + h) = ϕ(x̄) + 〈∇x f (x̄, ȳ), h〉 + 1
2η(h) + o(‖h‖2) as h → 0.363

The two assumptions of the theorem play different roles. The level-boundedness364

property ensures that the solutions of the perturbed problems Px lie in a compact365

set around ȳ. The quadratic growth property in turn ensures smoothness of both the366

solution map and the value function. In what follows, we will apply this result several367

times. Both conditions will follow in all cases from the next simple lemma.368

Lemma 2.4 (Sufficient conditions for level boundedness) Consider a closed function369

ϕ : R
d × R

n → R ∪ {∞} and fix a point x̄ ∈ R
d . Suppose there exists α > 0 such370

that for all x near x̄ , the function ϕ(x, ·) is α-strongly convex and its minimizer y(x)371

varies continuously. Then, y(x) is a strong global minimizer of ϕ(x, ·) for all x near x̄ .372

Moreover, there exists a neighborhood X of x̄ such that for any real γ > ϕ(x̄, y(x̄)),373

the set374

⋃
x∈X

{y ∈ R
n : ϕ(x, y) ≤ γ } is bounded.375

Proof Strong convexity ensures there is a neighborhood X of x̄ such that for any376

x ∈ X , the estimate holds:377

ϕ(x, y(x)) + α

2
‖y − y(x)‖2 ≤ ϕ(x, y) ∀y ∈ R

n, (2.7)378

showing y(x) is a strong global minimizer of ϕ(x, ·). Shrinking X if necessary, we379

may assume that y(·) also varies continuously on X . Choose any δ > 0. Then, by380

shrinking X again and by leveraging both closedness of ϕ and continuity of y, we may381

ensure that382

‖y(x) − y(x̄)‖ ≤ δ and ϕ(x, y(x)) ≥ ϕ(x̄, y(x̄)) − δ for all x ∈ X . (2.8)383

The proof will now follow quickly from the bound (2.8). Indeed, consider any points384

x ∈ X and y ∈ R
d satisfying ϕ(x, y) ≤ γ . Then, (2.7) yields385

‖y − y(x)‖ ≤
√

2(γ − ϕ(x, y(x)))

α
.386

Applying (2.8) then gives the uniform bound387
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‖y − y(x̄)‖ ≤ ‖y(x) − y(x̄)‖ +
√

2(γ − ϕ(x, y(x)))

α
≤ δ +

√
2(γ + δ − ϕ(x̄, y(x̄)))

α
,388

completing the proof. ��389

2.3 Weak Convexity and theMoreau Envelope390

In general, the little-o error term in the definition of ∂ f (x̄) (Definition 2.1) may depend391

both on the base point x̄ and on the subgradient v. In this work, we focus on a particular392

class of functions for which the error in approximation is uniform. Namely, we focus393

on the class of ρ-weakly convex functions f : R
d → R ∪ {∞}, meaning those for394

which the assignment x �→ f (x)+ ρ
2 ‖x‖2 defines a convex function. Subgradients of395

a ρ-weakly convex function f automatically yield a uniform lower bound:396

f (y) ≥ f (x) + 〈v, y − x〉 − ρ

2
‖y − x‖2, ∀x, y ∈ R

d , v ∈ ∂ f (x). (2.9)397

A useful feature of weakly convex functions is that they admit a smooth approxima-398

tion that preserves critical points. Setting the notation, fix a ρ-weakly convex function399

f : R
d → R ∪ {∞} and a parameter μ < ρ−1. Define the Moreau envelope and the400

proximal point map, respectively:401

fμ(x) = inf
y∈Rd

{
f (y) + 1

2μ
‖y − x‖2

}
,402

proxμ f (x) = argmin
y∈Rd

{
f (y) + 1

2μ
‖y − x‖2

}
.403

404

We will use a few basic properties of these two constructions, summarized below.405

Lemma 2.5 (Moreau envelope and the proximal point map) Consider a ρ-weakly406

convex function f : R
d → R∪{∞} and fix a parameter μ < ρ−1. Then, the following407

are true.408

1. The envelope fμ is C1-smooth with its gradient given by409

∇ fμ(x) = μ−1(x − proxμ f (x)). (2.10)410

2. The envelope fμ(·) is μ−1-smooth and ρ
1−μρ

-weakly convex meaning:411

− ρ

2(1 − μρ)
‖x ′ − x‖2 ≤ fμ(x ′) − fμ(x) − 〈∇ fμ(x), x ′ − x〉 ≤ 1

2μ
‖x ′ − x‖2,

(2.11)412

for all x, x ′ ∈ R
d .413

3. The proximal map proxμ f (·) is 1
1−μρ

-Lipschitz continuous and the gradient map414

∇ fμ is Lipschitz continuous with constant max{μ−1,
ρ

1−μρ
}.415
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4. The critical points of f and fμ coincide. In particular, they are exactly the fixed416

points of the proximal map proxμ f .417

Proof Claim 1 follows, for example, from [53, Theorem 4.4]. The left-hand side of418

(2.11) is proved in [53, Theorem 5.2]. To see the right-hand side, observe419

fμ(x ′) ≤ f (proxμ f (x)) + 1

2μ
‖proxμ f (x) − x ′‖2

420

= fμ(x) + 1

2μ

(
‖proxμ f (x) − x ′‖2 − ‖x − proxμ f (x)‖2

)
421

= fμ(x) + 〈μ−1(x − proxμ f (x)), x ′ − x〉 + 1

2μ
‖x − x ′‖2.422

423

Thus, claim 2 holds. The result [53, Theorem 4.4] shows that proxμ f (·) is Lips-424

chitz continuous with constant 1
1−μρ

. Lipschitz continuity of ∇ fμ(·) with constant425

max{μ−1,
ρ

1−μρ
} follows from (2.11) and Alexandrov’s theorem [57, Theorem 13.51].426

Thus, claim 3 holds. Claim 4 is immediate from (2.10) and the observation that the427

function y �→ f (y) + 1
2μ

‖y − x‖2 is strongly convex for any x . ��428

2.4 Active Manifolds429

The nonsmooth behavior of sets and functions arising in applications is typically far430

from pathological and instead manifests in highly structured ways. Formalizing this431

perspective we will assume that nonsmoothness, in a certain localized sense, only432

occurs along an “active manifold.” This notion, introduced in [39] under the name of433

partial smoothness and rooted in the earlier works [1,10–12,24–26,64], extends the434

concept of active sets in nonlinear programming far beyond the classical setting. In435

this work, we will take the related perspective developed in [19], since it will be most436

expedient for our purpose.437

Before giving the formal definition, we provide some intuition. Taking a geometric438

view, we will assume that each critical point of a function f lies on a smooth manifold439

M, and that the objective varies smoothly along the manifold, but sharply off of it.440

For example, consider Fig. 2a: there, the function f (x, y) = |x | − y2 admits the441

active manifold M = {0} × R around its unique critical point (the origin). From an442

algorithmic point of view, active manifolds are the sets that typical algorithms (e.g.,443

proximal point, proximal gradient [31], and dual averaging [37]) identify in finite444

time. Active manifolds also play a central role for sensitively analysis, providing a445

path to reduce such questions to the smooth setting. In particular, reasonable conditions446

guarantee that the active manifold is smoothly traced out by critical points of slight447

perturbations of the problem. We are now ready to state the formal definition.7448

Definition 2.6 (Active manifold) Consider a closed weakly convex function f : R
d →449

R ∪ {∞} and fix a set M ⊆ R
d containing a critical point x̄ of f . Then, M is called450

7 What we call an active manifold here is called an identifiable manifold in [19]—the reference we most
closely follow. The term active is more evocative in the context of the current work.
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an active C p-manifold around x̄ if there exist a neighborhood U around x̄ satisfying451

the following.452

• (smoothness) The set M ∩ U is a C p-smooth manifold and the restriction of f453

to M ∩ U is C p-smooth.454

• (sharpness) The lower bound holds:455

inf{‖v‖ : v ∈ ∂ f (x), x ∈ U \ M} > 0.456

If f admits an active manifold around a critical point x̄ , then it must be locally457

unique: any two active manifolds at x̄ must coincide on a neighborhood of x̄ [19,458

Proposition 2.4, Proposition 10.10].8 Moreover, the critical cone C f (x̄, 0) coincides459

with the tangent space TM(x̄) [19, Proposition 10.8]. With the definition of the active460

manifold in hand, we can now introduce the strict saddle property for nonsmooth461

functions.9462

Definition 2.7 (Strict saddles) Consider a weakly convex function f : R
d → R∪{∞}.463

Then, we say that a critical point x̄ is a strict saddle of f if there exists a C2-active464

manifold M of f at x̄ and the inequality d2 fM(x̄)(u) < 0 holds for some vector465

u ∈ TM(x̄). If every critical point of f is either a local minimizer or a strict saddle,466

then we say that f satisfies the strict saddle property.467

Looking at Fig. 2a, we see that the function f (x, y) = |x |− y2 indeed has the strict468

saddle property: the restriction of f to the axis M = {0}×R, namely fM(0, t) = −t2,469

certainly has directions of negative curvature. Figure 2b depicts the subgradient flow470

generated by this function. Notice that the set of initial conditions attracted to the origin471

has measure zero. This observation suggests that typical algorithms are also unlikely to472

stall at the strict saddle point, an observation made precise by the forthcoming results.473

The curvature condition in the definition of the strict saddle pertains only to negative474

curvature of the restriction of f to M. One may instead ask whether existence of475

directions of negative curvature for f alone suffice. The answer turns out to be yes.476

Theorem 2.8 ([18, Corollary 4.15]) Consider a closed weakly convex function477

f : R
d → R ∪ {∞} that admits a C3-active manifold M around a critical point478

x̄ . Then, it holds:479

d2 f (x̄)(u | w) ≥ d2 fM(x̄)(u) for all u ∈ C f (x̄, 0), w ∈ R
d .480

A natural question is whether we expect the strict saddle property to hold typically.481

One supporting piece of evidence is that the property holds under generic linear per-482

turbations of semialgebraic problems.10 This is almost immediate from guarantees483

8 Note that due to the convention inf∅ = +∞, the entire space M = R
d is the active manifold for a

globally C p-smooth function f around any of its critical points.
9 Better terminology would be the terms active strict saddle and the active strict saddle property. To
streamline the notation, we omit the word active, as it should be clearly understood from context.
10 A function is semi-algebraic if its graph can be written as a finite union of sets each cut out by finitely
many polynomial inequalities.
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in [18, Theorem 4.16], though this conclusion is not explicitly stated in the theorem484

statement. We state this guarantee below and provide a quick proof in Sect. A for485

completeness.486

Theorem 2.9 (Strict saddle property is generic). Consider a closed, weakly convex,487

semi-algebraic function f : R
d → R ∪ {∞}. Then, for a full Lebesgue measure set of488

perturbations v ∈ R
d , the perturbed function x �→ f (x)−〈v, x〉 has the strict saddle489

property.490

2.5 The Center Stable Manifold Theorem491

In this work, we will show that a variety of simple algorithms escape strict saddle492

points. To prove results of this type, we will interpret algorithms as fixed point iterations493

of a nonlinear map T : R
d → R

d , having certain favorable properties. As in the smooth494

setting of [35], the core of our arguments will be based on the center stable manifold495

theorem.496

Theorem 2.10 (The Center Stable Manifold Theorem [60, Theorem III.7]) Let the497

origin be a fixed point of the C1 local diffeomorphism T : U → R
d where U is a498

neighborhood of the origin in R
d . Let Es ⊕ Ec ⊕ Eu be the invariant splitting of R

d
499

into the generalized eigenspaces of the Jacobian ∇T (0) corresponding to eigenvalues500

of absolute value less than one, equal to one, and greater than one. Then, there exists a501

local T invariant C1 embedded disk W cs
loc, tangent to Es ⊕ Ec at 0 and a neighborhood502

B around zero such that T (W cs
loc)∩ B ⊆ W cs

loc. In addition, if T k(x) ∈ B for all k ≥ 0,503

then x ∈ W cs
loc.504

An immediate consequence of this theorem is the following: if ∇T (0) is invertible505

and has at least one eigenvalue of magnitude greater than one, then there exists a506

neighborhood B of the origin such that the set507

{x ∈ B : T k(x) ∈ B for all k ≥ 0},508

has measure zero. This fact motivates the following key definition.509

Definition 2.11 (Unstable fixed points) A fixed point x̄ of a map T : R
d → R

d is510

called unstable if T is C1-smooth around x̄ and the Jacobian ∇T (x̄) has an eigenvalue511

of magnitude strictly greater than one.512

To globalize the guarantees of the center stable manifold theorem, we will need to513

impose global regularity properties on T . In this work, we will require the map T to be514

a lipeomorphism, namely, we require that T is globally Lipschitz and its inverse T −1
515

is a well-defined globally Lipschitz map. The following corollary is now immediate.516

Its proof closely follows the presentation in [34, Theorem 2].517

Corollary 2.12 Let T : R
d → R

d be a lipeomorphism and let UT consist of all unstable518

fixed points x of T at which the Jacobian ∇T (x) is invertible. Then, the set of initial519
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conditions attracted by such fixed points520

W :=
{

x ∈ R
d : lim

k→∞
T k(x) ∈ UT

}
521

has zero Lebesgue measure.522

Proof For every x̄ ∈ UT there exists a neighborhood U of x̄ such that T : U → R
d is523

a local diffeomorphism. Thus, the center stable manifold theorem shows there exists524

an open neighborhood Bx̄ of x̄ so that Sx̄ :=⋂∞
k=0 T −k(Bx̄ ) is contained in a measure525

zero set. In particular, Sx̄ itself is measure zero.526

Now observe that UT ⊆ ⋃
x̄∈UT

Bx̄ is an open cover of UT . Since R
d is second527

countable, this cover has a countable subcover UT ⊆⋃∞
i=1 Bx̄i . Observe the inclusion528

W ⊆ ⋃∞
i=1
⋃∞

j=0 T − j (Sx̄i ). Since T is a lipeomorphism, the right-hand side is a529

countable union of measure zero sets, and therefore, W has measure zero. ��530

To verify that a map T is a lipeomorphism, we will appeal to the following standard531

sufficient condition. We provide a quick proof for completeness.532

Lemma 2.13 Let H : R
d → R

d be a Lipschitz continuous map with constant λ < 1.533

Then, I + H is invertible and (I + H)−1 : R
d → R

d is Lipschitz continuous with534

constant (1 − λ)−1.535

Proof To show that (I + H) is invertible, we must show that for every u ∈ R
d , the536

equation u = H(x)+ x has a unique solution x(u) ∈ R
d . Equivalently, we must show537

that for every u ∈ R
d , the mapping538

ζu(x) := u − H(x)539

has a unique fixed point. This is immediate from Banach’s fixed point theorem since540

ζu(·) is strictly contractive.541

To show that (I + H)−1 is Lipschitz, choose arbitrary u, v ∈ R
d and define x :=542

(I + H)−1(u) and y := (I + H)−1(v). We then compute543

‖u − v‖ = ‖(I + H)(x) − (I + H)(y)‖ ≥ ‖x − y‖ − ‖H(x) − H(y)‖544

≥ (1 − λ)‖x − y‖,545
546

where we have used the reverse triangle inequality and Lipschitz continuity of H .547

Rearranging completes the proof. ��548

While the iteration mappings S of Sect. 1.3 can be Lipschitz, they are usually not549

invertible. Thus, to ensure Lipschitz invertibility, we will consider damped fixed point550

iterations, as summarized in the following elementary lemma. We provide a quick551

proof for completeness.552

Lemma 2.14 (Damped fixed point iterations). Consider a map S : R
d → R

d and fix553

a damping parameter α ∈ (0, 1). Define the map554

T (x) = (1 − α)x + α · S(x).555
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Then, the following are true.556

1. The fixed points of T and S coincide.557

2. If S is differentiable at x̄ and the Jacobian ∇S(x̄) has a real eigenvalue strictly558

greater than one, then x̄ is an unstable fixed point of T .559

3. If the map S is continuous and the iterates generated by the process xk+1 = T (xk)560

converge to some point x̄ , then x̄ must be a fixed point of S.561

4. If the map I − S is L-Lipschitz, then T is a lipeomorphism for any α ∈ (0, L−1).562

Proof Claims 1 and 2 follow directly from algebraic manipulations. Claim 4 follows563

immediately from Lemma 2.13 by writing T = I + H with H = α(S − I ). To see564

claim 3, suppose that T is continuous and that xk converge to some point x̄ . Then, we565

deduce566

T (x̄) = T

(
lim

k→∞
xk

)
= lim

k→∞
T (xk) = lim

k→∞
xk+1 = x̄ .567

Therefore, x̄ is a fixed point of T . Using claim 1, we deduce that x̄ is a fixed point of568

S. ��569

3 The Proximal Point Method570

We now turn to the saddle escape properties of the proximal-point method. Fixing the571

problem at hand, we consider572

min
x∈Rd

f (x),573

where f : R
d → R ∪ {∞} is a ρ-weakly convex function that is bounded from below.574

For a fixed μ < ρ−1, the classical proximal-point method is precisely the fixed point575

iteration576

xt+1 = proxμ f (xt ).577

Key to our analysis is the equivalence between this algorithm and gradient descent on578

the Moreau envelope. This equivalence follows from (2.10), which quickly yields the579

description580

xk+1 = xk − μ · ∇ fμ(xk).581

The saddle escape properties of the proximal point method thus flow from the strict582

saddle properties of the Moreau envelope. Indeed, the following theorem shows that583

when f admits a C2 active manifold around a critical point x̄ , the envelope fμ is584

automatically C2-smooth near x̄ . Moreover, if x̄ is a strict saddle of f , then it is also585

a strict saddle of fμ. Consequently, any strict saddle point of f is an unstable fixed586

point of the proximal map proxμ f (·).587
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Foundations of Computational Mathematics

Theorem 3.1 (Saddle points of the Moreau envelope). Let f : R
d → R ∪ {∞} be a588

closed and ρ-weakly convex function and let x̄ be any critical point of f . Suppose that589

f admits a C2 active manifold M at x̄ . Then, for any μ < ρ−1, the Moreau envelope590

fμ is C2-smooth around x̄ and its Hessian satisfies591

min
h∈Sd−1∩TM(x̄)

〈∇2 fμ(x̄)h, h〉 ≤ min
h∈Sd−1∩TM(x̄)

d2 fM(x̄)(h). (3.1)592

Consequently, if x̄ is a strict saddle point of f , then x̄ is both a strict saddle point of593

fμ and an unstable fixed point of the proximal map proxμ f (·). Moreover, ∇proxμ f (x̄)594

has a real eigenvalue that is strictly greater than one.595

Proof It is well known (for example, from [31]) that for all x near x̄ , the inclusion596

proxμ f (x) ∈ M holds. From this inclusion, we will be able to view the proximal597

subproblem through the lens of the perturbation result in Theorem 2.3. For the sake598

of completeness, however, let us first quickly verify the claim. Consider a sequence599

xi → x̄ and observe the inclusion ∇ fμ(xi ) ∈ ∂ f (proxμ f (xi )). Since the gradient ∇ fμ600

is continuous, we deduce the limits proxμ f (xi ) → x̄ and ∇ fμ(xi ) → 0. Therefore,601

by definition of the active manifold, we have proxμ f (xi ) ∈ M for all sufficiency large602

indices i , proving the claim.603

Turning to the perturbation result, let F : R
d → R be any C2-smooth function604

agreeing with f on a neighborhood of x̄ in M.11 Applying the claim, we find that the605

equality606

fμ(x) = min
y∈M

{
F(y) + 1

2μ
‖y − x‖2

}
,607

holds for all x near x̄ . Our goal is to apply the perturbation result (Theorem 2.3) with608

f (x, y) := F(y) + 1
2μ

‖y − x‖2 and ϕ(x) := fμ(x). To that end, we now verify609

the assumptions of Theorem 2.3. First, we verify the quadratic growth condition:610

since we have chosen μ < ρ−1, it follows that for every x ∈ R
d the function y �→611

f (x) + 1
2μ

‖y − x‖2 is strongly convex with constant μ−1 − ρ. Next, we verify the612

level boundedness condition: since the minimizer y(x) := proxμ f (x) of this function613

varies continuously and satisfies y(x̄) = x̄ , the conditions of Lemma 2.4 are satisfied.614

Therefore, the assumptions of Theorem 2.3 are valid.615

We now apply Theorem 2.3. To that end, let G = 0 be the defining equation of M616

around x̄ and define the parametric Lagrangian function617

L(x, y, λ) := F(y) + 1

2μ
‖y − x‖2 + 〈G(y), λ〉.618

Since x̄ is critical for f , the equality x̄ = proxμ f (x̄) holds. Consequently, y(x̄) =619

x̄ minimizes the function y �→ F(y) + 1
2μ

‖y − x̄‖2 on M. Therefore, first-order620

11 For example, let F be a C2 function defined on a neighborhood U of x̄ that agrees with f on U ∩ M.
Using a partition of unity (e.g., [36, Lemma 2.26]), one can extend F from a slightly smaller neighborhood
to be C2 on all of R

d .
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Foundations of Computational Mathematics

optimality conditions guarantee there exists a multiplier vector λ̄ satisfying621

0 = ∇yL(x̄, x̄, λ̄) = ∇F(x̄) +
∑
i≥1

λ̄i Gi (x̄),622

where Gi (·) are the coordinate functions of G(·). Appealing to Theorem 2.3, we learn623

both that fμ is C2-smooth around x̄ and that its Hessian satisfies624

〈∇2 fμ(x̄)h, h〉 = min
u∈TM(x̄)

〈Hxx h, h〉 + 2〈Hxyu, h〉 + 〈Hyyu, u〉, (3.2)625

where the Hessian matrices are given by626

Hxx = μ−1 I , Hxy = −μ−1 I , Hyy = ∇2 F(x̄) +
m∑

i=1

λ̄i∇2Gi (x̄) + μ−1 I .627

Thus, rearranging (3.2) and setting D := ∇2 F(x̄) +∑m
i=1 λ̄i∇2Gi (x̄), we have628

〈∇2 fμ(x̄)h, h〉 = min
u∈TM(x̄)

{
〈Du, u〉 + μ−1‖h − u‖2

}
.629

Therefore, we arrive at the estimate630

min
h∈Sd−1∩TM(x̄)

〈∇2 fμ(x̄)h, h〉 = min
u∈TM(x̄)

min
h∈Sd−1∩TM(x̄)

{
〈Du, u〉 + μ−1‖h − u‖2

}
631

≤ min
h∈Sd−1∩TM(y0)

〈Dh, h〉 = min
h∈Sd−1∩TM(x̄)

d2 fM(x̄)(h),632

633

thereby verifying (3.1). If x̄ is a strict saddle point of f , then (3.1) implies that ∇2 fμ(x̄)634

has a strictly negative eigenvalue. From the expression proxμ f = I − μ∇ fμ, we635

therefore deduce that the Jacobian of proxμ f at x̄ has at least one real eigenvalue that636

is strictly greater than one. Consequently, x̄ is an unstable fixed point of proxμ f . ��637

Even if the proximal mapping has an unstable fixed-point, it often fails to meet the638

conditions of the center stable manifold theorem (Theorem 2.10). Indeed, the proximal639

mapping is generally not injective, even near critical points. To remedy this issue, we640

instead analyze a slightly damped version of the proximal point method641

xk+1 = (1 − α)xk + α · proxμ f (xk),642

where α ∈ (0, 1) is a fixed constant. Reinterpreting this algorithm in terms of the643

Moreau envelope, we arrive at the recurrence644

xk+1 = xk − (αμ) · ∇ fμ(xk). (3.3)645

Thus, the role of damping is clear: it still induces gradient descent on the Moreau646

envelope, but with a stepsize slightly below the “theoretically optimal” step μ. This is647
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Foundations of Computational Mathematics

entirely in line with the saddle point escape guarantees for gradient descent in smooth648

minimization [35].649

Theorem 3.2 (Proximal point method: global escape). Let f : R
d → R ∪ {∞} be a650

closed and ρ-weakly convex function satisfying the strict saddle property. Choose a651

constant μ < ρ−1 and a damping parameter α ∈ (0, min{1, (μρ)−1 −1}). With these652

choices, consider the algorithm653

xk+1 = (1 − α)xk + α · proxμ f (xk). (3.4)654

Then, for almost all initializers x0, the following holds: if the limit of {xk}k≥0 exists,655

it must be a local minimizer of f .656

Proof Define the map S := proxμ f (xk). Lemma 2.5 guarantees that the map I − S =657

μ∇ fμ is Lipschitz continuous with constant max{1,
μρ

1−μρ
}. Taking into account the658

range of α and applying Lemma 2.14 and Theorem 3.1, we may deduce the following659

three properties: (1) T is a lipeomorphism, (2) the limit of the sequence xk , if it exists,660

must be a critical point of f , and (3) if a critical point of f is not a local minimum,661

then it is an unstable fixed point of T . An application of Corollary 2.12 completes the662

proof. ��663

4 The Proximal Gradient Method664

We now turn to the saddle escape properties of the proximal gradient method. Fixing665

the problem at hand, we consider666

min
x∈Rd

f (x) = g(x) + r(x), (4.1)667

where g : R
d → R is a C2-smooth function with β-Lipschitz gradient and r : R

d →668

R∪{+∞} is a closed and ρ-weakly convex function. We assume throughout that f is669

bounded from below. For this problem, the proximal gradient method takes the form670

xk+1 = proxμr (xk − μ∇g(xk)) .671

Unlike the proximal point algorithm, the proximal gradient algorithm may not corre-672

spond to gradient descent on a smooth envelope of the problem. Still, as the following673

theorem shows, the iteration mapping is C1 smooth near x̄ whenever f admits a C2
674

active manifold around a critical point x̄ . Moreover, if x̄ is a strict saddle point of f ,675

then x̄ is an unstable fixed point of the iteration mapping676

Theorem 4.1 (Unstable fixed points of the prox-gradient map). Consider the optimiza-677

tion problem (4.1) and let x̄ be any critical point of f . Suppose that f admits a C2
678

active manifold M at x̄ . Then, for any μ ∈ (0, ρ−1), the proximal-gradient map679

S(x) := proxμr (x − μ∇g(x))680
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is C1-smooth on a neighborhood of x̄ . Moreover, if x̄ is a strict saddle point of f , then681

∇S(x̄) has a real eigenvalue that is strictly greater than one.682

Proof It is well known (for example, from [31]) that for all x near x̄ , the point S(x) lies683

inM. From this inclusion, we will be able to view the proximal subproblem through the684

lens of the perturbation result in Theorem 2.3. For the sake of completeness, however,685

we provide a quick proof. Indeed, consider a sequence xi → x̄ and set yi = S(xi ).686

Then, by definition of the proximal gradient map, we have 0 ∈ ∇g(xi ) + μ−1(yi −687

xi ) + ∂r(yi ), and therefore688

dist(0, ∂ f (yi )) = dist(−∇g(yi ), ∂r(yi )) ≤ dist(−∇g(xi ), ∂r(yi )) + β‖yi − xi‖689

≤ (μ−1 + β)‖yi − xi‖.690
691

Since S(·) is continuous and S(x̄) = x̄ , we deduce yi → x̄ and therefore692

dist(0, ∂ f (yi )) → 0. Therefore, the points yi lie in M for all sufficiently large indices693

i , proving the claim.694

Turning to the perturbation result, let R : R
d → R be any C2-smooth function695

agreeing with r on a neighborhood of x̄ in M. Applying the claim, we find that for x696

near x̄ , the point S(x) uniquely minimizes problem697

min
y∈M

{
g(x) + 〈∇g(x), y − x〉 + R(y) + 1

2μ
‖y − x‖2

}
. (Px )698

699

Our goal is to apply the perturbation result (Theorem 2.3) with f (x, y) := g(x) +700

〈∇g(x), y − x〉+ R(y)+ 1
2μ

‖y − x‖2. To that end, we now verify the assumptions of701

Theorem 2.3. First, we verify the quadratic growth condition: since we have chosen702

μ < ρ−1, it follows that for every x ∈ R
d the function y �→ f (x, y) is strongly convex703

with the constant μ−1 −ρ. Next, we verify the level-boundedness condition: since the704

minimizer S(x) clearly varies continuously and satisfies S(x̄) = x̄ , the conditions of705

Lemma 2.4 are satisfied. Therefore, the assumptions of Theorem 2.3 are valid.706

We now apply Theorem 2.3. To that end, let G = 0 be the defining equation of M707

around x̄ and define the parametric Lagrangian function708

L(x, y, λ) = g(x) + 〈∇g(x), y − x〉 + R(y) + 1

2μ
‖y − x‖2 +

∑
i≥1

λi Gi (y),709

where Gi (·) are the coordinate functions of G. Clearly y(x̄) = x̄ minimizes f (x̄, ·)710

on M. Therefore, first-order optimality conditions guarantee there exists a multiplier711

vector λ̄ satisfying712

0 = ∇yL(x̄, x̄, λ̄) = ∇g(x̄) + ∇ R(x̄) +
∑
i≥1

λ̄i Gi (x̄).713

Appealing to Theorem 2.3, we learn that the solution map S(·) is C1-smooth around714

x̄ with715

∇S(x̄)h = argmin
v∈TM(x̄)

2〈Hxyv, h〉 + 〈Hyyv, v〉, (4.2)716
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Foundations of Computational Mathematics

where the Hessian matrices are given by717

Hxy = ∇2g(x̄) − μ−1 I , Hyy = ∇2 R(x̄) + μ−1 I +
p∑

i=1

λ̄i∇2Gi (x̄).718

We now simplify the expression (4.2). To that end, let W be the orthogonal projection719

onto TM(x̄) and define the linear maps Hyy : TM(x̄) → TM(x̄) and Hxy : TM(x̄) →720

TM(x̄) by setting Hyy = W Hyy W and Hxy = W Hxy W , respectively. Since x̄ is a721

strong local minimizer of Px̄ , the map Hyy is positive definite, and hence invertible.722

Solving (4.2) then yields the expression723

∇S(x̄)h = −H
−1
yy Hxy

�
h for all h ∈ TM(x̄).724

Note that Hxy
�

is a symmetric matrix, so we drop the “�” throughout.725

Let us now verify that if x̄ is a strict saddle of f , then ∇S(x̄) has a real eigenvalue726

that is greater than one. To this end, observe that γ ∈ R is a real eigenvalue of ∇S(x̄)727

with an associated eigenvector v ∈ TM(x̄) if and only if728

∇S(x̄)v = γ v ⇐⇒ −H
−1
yy Hxyv = γ v ⇐⇒ (γ H yy + Hxy)v = 0.729

In particular, if the matrix γ H yy + Hxy is singular, then γ is an eigenvalue of ∇S(x̄).730

To prove such a γ exists, we will examine the following ray of symmetric matrices731

{γ H yy + Hxy : γ ≥ 1}.732

Beginning with the end point, the strict saddle property shows that733

H yy + Hxy = W

(
∇2g(x̄) + ∇2 R(ȳ) +

∑
i

λ̄i∇2Gi (x̄)

)
W .734

has a strictly negative eigenvalue. On the other hand, the direction of the ray H yy is a735

positive definite matrix. Therefore, by continuity of the minimal eigenvalue function,736

there exists some γ > 1 such that the matrix γ H yy + Hxy is singular, as claimed. ��737

Similar to the proximal point method, the proximal gradient mapping fails to meet738

the conditions of the center stable manifold theorem (Theorem 2.10), since it generally739

lacks invertibility. Therefore, as before we will analyze a slightly damped version of740

the process, and prove the following theorem.741

Theorem 4.2 (Proximal gradient method: global escape). Consider the optimization742

problem (4.1) and suppose that f has the strict saddle property. Choose any constant743

μ ∈ (0, ρ−1) and a damping parameter α ∈ (0, 1) satisfying744

α ·
(
μβ + (1 + μβ) max

{
1,

μρ
1−μρ

})
< 1.745
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Foundations of Computational Mathematics

Consider the algorithm746

xk+1 = (1 − α)xk + α · proxμr (xk − μ∇g(xk)) . (4.3)747

Then, for almost all initializers x0, the following holds: if the limit of {xk}k≥0 exists,748

it must be a local minimizer of f .749

Proof Define the maps S = proxμr (I − μ∇g). We successively rewrite750

I − S = (I − μ∇g) − proxμr (I − μ∇g) + μ∇g751

= μ · ∇rμ ◦ (I − μ∇g) + μ∇g.752
753

Lemma 2.5 implies that the map I −S is Lipschitz continuous with constant μβ+(1+754

μβ) max
{

1,
μρ

1−μρ

}
. Taking into account the range of α and applying Lemma 2.14 and755

Theorem 4.1, we may deduce the following three properties: (1) T is a lipeomorphism,756

(2) the limit of the sequence xk , if it exists, must be a critical point for f , and (3) if a757

critical point of f is not a local minimum, then it is an unstable fixed point of T . An758

application of Corollary 2.12 then completes the proof. ��759

5 The Proximal Linear Method760

We now turn to the saddle escape properties of the proximal linear method, a gen-761

eralization of the proximal point and proximal gradient methods. Setting the stage,762

consider the composite optimization problem763

min
x

f (x) = h(F(x)) + r(x), (5.1)764

where F : R
d → R

m is a C2-smooth map, h : R
d → R is convex, and r : R

d →765

R∪{∞} is ρ-weakly convex. As is standard in the literature, we will assume that there766

exists a constant β > 0 satisfying767

|h(F(y)) − h(F(x) + ∇F(x)(y − x))| ≤ β

2
‖y − x‖2, ∀x, y ∈ R

d . (5.2)768

These assumptions then easily imply that f is weakly convex with constant β + ρ.769

With the stage set, we now slightly refine the notion of a strict saddle, adapting it770

to the compositional nature of the problem. This refinement intuitively asks that the771

active manifold for f at a critical point x̄ is induced by active manifolds of h and r .772

Similar conditions have appeared elsewhere, for example, in [19,39,40]. To describe773

the condition formally, we will also revise the definition of an active manifold, allowing774

us to discuss active manifolds of h(·) and r(·) at noncritical points. The revision is775

intuitive, requiring just a linear tilt of the functions:776

• Consider a set R ⊂ R
d , a point x ∈ R, and a subgradient v ∈ ∂r(x). We will say777

that R is a C2 active manifold of r at x for v if R is a C2 active manifold of the778

tilted function r − 〈v, ·〉 at x in the sense of Definition 2.6.779
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We may likewise define the active manifold of h at z for w ∈ ∂h(z), based on a tilting780

of h by w. Coupling these definitions, we arrive at the active manifold concept for the781

composite problem (5.1).782

Definition 5.1 (Composite active manifold) Consider the compositional problem (5.1)783

and let x̄ be a critical point of f . Fix arbitrary vectors w̄ ∈ ∂h(F(x̄)) and v̄ ∈ ∂r(x̄)784

satisfying785

0 ∈ ∇F(x̄)∗w̄ + v̄. (5.3)786

Suppose the following hold.787

1. There exist C2-smooth manifolds R ⊂ R
d and H ⊂ R

m containing x̄ and F(x̄),788

respectively, and satisfying the transversality condition:789

∇F(x̄) [TR(x̄)] + TH(F(x̄)) = R
m . (5.4)790

2. R is an active manifold of r at x̄ for v̄ and H is an active manifold of h at F(x̄)791

for w̄.792

Then, we will call M := R ∩ F−1(H) a composite C2 active manifold for the793

problem (5.1) at x̄ . If in addition the inequality d2 fM(x̄)(u) < 0 holds for some794

vector u ∈ TM(x̄), then we will call x̄ a composite strict saddle point.795

This definition has several important subtleties. First, the set M := R ∩ F−1(H)796

is indeed a C2-smooth manifold around x̄ , due to the classical transversality condition797

(5.4), a central fact in differential geometry [36, Theorem 6.30]. Next, the vectors v̄798

and w̄ do exist. This follows since x̄ is first-order critical for f :799

0 ∈ ∇F(x̄)∗∂h(F(x̄)) + ∂r(x̄).800

Beyond existence, the vectors v̄ ∈ ∂r(x̄) and w̄ ∈ ∂h(F(x̄)) are in fact the unique801

elements satisfying (5.3), a second consequence of transversality. To see this, we state802

(5.4) in dual terms as803

(∇F(x̄)∗)−1 NR(x̄) ∩ NH (F(x̄)) = {0}. (5.5)804

Considering another pair v ∈ ∂r(x̄) and w ∈ ∂h(F(x̄)) satisfying (5.3), we deduce805

0 = ∇F∗(x̄)(w̄ − w) + (v̄ − v).806

To conclude v = v̄ and w = w̄, we use (5.5) and simply recall that span ∂h(F(x̄)) =807

NH (F(x̄)) and span ∂r(x̄) = NR(x̄), as shown in [19, Proposition 10.12]. Finally,808

collecting these facts together, it follows from the chain rule [19, Proposition 5.1] that809

M is an active manifold of f at x̄ in the sense of Definition 2.7.810

A natural question is whether we expect the composite strict saddle property to hold811

typically. One supporting piece, of evidence, analogous to Theorem 2.9, is that the812

property holds under generic linear perturbations of semialgebraic composite prob-813

lems. This result quickly follows from [18, Theorem 5.2]. We provide a proof sketch814

in Sect. A.815
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Theorem 5.2 (Strict saddle property is generic). Consider the composite problem (5.1),816

where h, r , and F are in addition semi-algebraic. Then, for a full Lebesgue measure817

set of perturbations (y, v) ∈ R
m × R

d , the problem818

min
x

h(F(x) + y) + r(x) − 〈v, x〉819

has the composite strict saddle property.820

Turning to our central task, we aim to analyze the saddle escape properties of the821

proximal linear method:822

xk+1 = argmin
y

h(F(xk) + ∇F(xk)(y − xk)) + r(y) + 1

2μ
‖y − xk‖2.823

To analyze this method, we prove the following theorem, showing that any strict824

saddle point of the composite problem (5.1) is an unstable fixed point of proximal825

linear update.826

Theorem 5.3 (Unstable fixed points of the proximal linear map). Consider the com-827

posite problem (5.1) and let x̄ be any critical point of f . Suppose the problem admits828

a composite C2 active manifold M at x̄ . Then, for any μ ∈ (0, ρ−1), the proximal829

linear map830

S(x) := argmin
y

h(F(x) + ∇F(x)(y − x)) + r(y) + 1

2μ
‖y − x‖2. (5.6)831

is C1-smooth on a neighborhood of x̄ . Moreover, if x̄ is a composite strict saddle point,832

then the Jacobian ∇S(x̄) has a real eigenvalue strictly greater than one.833

In most ways, the proof mirrors that of Theorem 3.2. There is, however, an impor-834

tant complication: we must move beyond the perturbation result of Theorem 2.3 and835

instead analyze a parametric family of optimization problems where both the objective836

and the constraints depend on a perturbation parameter. Therefore, we will rely on837

the following generalization of Theorem 2.3. For details and a much more general838

perturbation result, see [59, Theorem 4.2].839

Theorem 5.4 (Perturbation analysis). Consider the family of optimization problems840

min
y

f (x, y) subject to G(x, y) = 0 (Qx )841

842

Fix a point x̄ and a minimizer ȳ of Qx̄ , and suppose the following hold.843

1. (Nondegeneracy) The function f (·, ·) and the map G(·, ·) are C2-smooth near844

(x̄, ȳ), and the Jacobian ∇yG(x̄, ȳ) is surjective.845

2. (Level-boundedness) There exists a neighborhood X of x̄ and a number γ greater846

than the minimal value of Qx̄ such that the set847

⋃
x∈X

{y ∈ Y (x) : f (x, y) ≤ γ } is bounded,848
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Foundations of Computational Mathematics

where Y (x) := {y : G(x, y) = 0} denotes the set of feasible points for Qx .849

3. (Quadratic growth) The point ȳ is a strong local minimizer and a unique global850

minimizer of Qx̄ .851

Define the parametric Lagrangian function852

L(x, y, λ) = f (x, y) + 〈G(x, y), λ〉.853

Fix the multiplier vector λ̄ satisfying 0 = ∇yL(x̄, ȳ, λ̄) and define the Hessian matri-854

ces855

Hxx = ∇2
xxL(x̄, ȳ, λ̄), Hxy = ∇2

xyL(x̄, ȳ, λ̄), Hyy = ∇2
yyL(x̄, ȳ, λ̄).856

Then, for every x near x̄ , the problem Qx admits a unique solution y(x), which varies857

C1-smoothly. Moreover, its directional derivative in direction h given by858

∇ y(x̄)h = argmin
v

2〈Hxyv, h〉 + 〈Hyyv, v〉

s.t. ∇x G(x̄, ȳ)h + ∇yG(x̄, ȳ)v = 0.
(5.7)859

With these tools in hand, we now prove Theorem 5.3.860

Proof of Theorem 5.3 Let v̄, w̄, H , R, and M be the vectors and manifolds specified in861

Definition 5.1. It is known from [40, Theorem 4.11] that for all x near x̄ , the inclusions862

hold:863

S(x) ∈ M and F(x) + ∇F(x)(S(x) − x) ∈ H.864

From this inclusion, we will be able to view the proximal subproblem through the lens865

of the perturbation result in Theorem 5.4. For the sake of completeness, however, we866

provide a quick proof. Indeed, consider a sequence xi → x̄ and define zi = F(xi ) +867

∇F(xi )(S(xi )−xi ). Then, appealing to the optimality conditions of the proximal linear868

subproblem, we deduce that there exist vectors vi ∈ ∂r(xi ) and wi ∈ ∂h(zi ) satisfying869

1
μ
(xi − S(xi )) = ∇F(xi )

∗wi + vi . Since S(·) is continuous and h is Lipschitz, the870

vectors wi and vi are bounded. Passing to a subsequence, we may assume that wi and871

vi converge to some w ∈ ∂h(F(x̄)) and v ∈ ∂r(x̄), respectively, and moreover, that872

0 ∈ ∇F(x̄)∗w + v.873

We therefore deduce w = w̄ and v = v̄. Taking into account that R is a C2-active874

manifold at x̄ for v̄ and H is a C2-active manifold at F(x̄) for w̄, we deduce S(xi ) ∈ R875

and zi ∈ H for all large indices i , proving the claim.876

Turning to the perturbation result, let ĥ : R
m → R be any C2-smooth function877

agreeing with h on a neighborhood of F(x̄) in H, and let r̂ : R
d → R be any C2-878

smooth function agreeing with r on a neighborhood of x̄ in R. Applying the claim,879

we find that for x near x̄ , we may write880
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Foundations of Computational Mathematics

S(x) = argmin
y

ĥ (F(x) + ∇F(x)(y − x)) + r̂(y) + 1

2μ
‖y − x‖2

s.t. F(x) + ∇F(x)(y − x) ∈ H and y ∈ R

. (5.8)881

Our goal is to apply the perturbation result (Theorem 5.4) to the parametric family882

(5.8). To this end, let ω = 0 be the local defining equations of H around F(x̄) and883

let η = 0 be the local defining equation of R around x̄ . We can now place (5.8) in the884

setting of Theorem 5.4 by setting885

f (x, y) = ĥ (F(x) + ∇F(x)(y − x)) + r̂(y) + 1

2μ
‖y − x‖2

886

and887

G(x, y) := (GH(x, y), GR(x, y)) := (ω(F(x) + ∇F(x)(y − x)), η(y)).888

For these functions, we now verify the assumptions of Theorem 2.3. First, the nonde-889

generacy property follows from the transversality condition (5.4). Second, we verify890

the quadratic growth condition: since we have chosen μ < ρ−1, it follows that for891

every x ∈ R
d the function y �→ f (x, y) is strongly convex with the constant μ−1 −ρ.892

Finally, we verify the level-boundedness condition: since the minimizer S(x) clearly893

varies continuously and satisfies S(x̄) = x̄ , the conditions of Lemma 2.4 are satisfied.894

Therefore, the assumptions of Theorem 2.3 are valid. In particular, we learn that the895

solution map S(·) is C1-smooth around x̄ .896

Computing the Jacobian of the solution mapping will occupy the remainder of the897

proof. To that end, define the parametric Lagrangian898

L(x, y, λ) = f (x, y) + 〈G(x, y), λ〉.899

Localizing, the identification properties then entail that y = x̄ is a minimizer of the900

problem (5.8) corresponding to x = x̄ . We conclude there exists a Lagrange multiplier901

vector λ̄ = (λ̄H , λ̄R) satisfying 0 = ∇yL(x̄, x̄, λ̄), a fact we will return to after a few902

calculations.903

We now compute the first-order variations of f and G. To simplify notation, we904

adopt two conventions. First, we align the notation of gradients and Jacobians, viewing905

every gradient as a row vector. Second, we let the symbol ∇2 F[x; v] denote the m ×d906

matrix whose i th row equals v�∇2 Fi (x). Then, defining the map907

ζ(x, y) = F(x) + ∇F(x)(y − x),908

a quick computation shows909

∇yζ(x, y) = ∇F(x) and ∇xζ(x, y) = ∇2 F[x, y − x].910
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Foundations of Computational Mathematics

Therefore, using the chain rule, we compute the first-order variations911

∇x GH(x, y) = ∇ω (ζ(x, y)) · ∇2 F[x, y − x]912

∇yGH(x, y) = ∇ω(ζ(x, y)) · ∇F(x)913

∇x GR(x, y) = 0914

∇yGR(x, y) = ∇η(y)915

∇x f (x, y) = ∇ ĥ (ζ(x, y)) · ∇2 F[x, y − x] + μ−1(x − y)�916

∇y f (x, y) = ∇ ĥ (ζ(x, y)) · ∇F(x) + ∇r̂(y) + μ−1(y − x)�.917
918

From these variations we deduce ∇x G(x̄, x̄) = 0 and therefore the constraint in (5.7)919

simply amounts to the inclusion920

v ∈ ker ∇yG(x̄, x̄) =
(

ker ∇η(x̄)

)
∩
(

ker(∇ω(F(x̄)) · ∇F(x̄))

)
= TR(x̄) ∩ ∇F(x̄)−1TH (F(x̄)) = TM(x̄).

(5.9)921

In particular, formula (5.7) reduces to922

∇S(x̄)h = argmin
v∈TM(x̄)

2〈Hxyv, h〉 + 〈Hyyv, v〉, (5.10)923

To find an explicit solution, we mirror the analysis of the proximal gradient method.924

We let W be the orthogonal projection onto TM(x̄) and define the linear maps925

Hyy : TM(x̄) → TM(x̄) and Hxy : TM(x̄) → TM(x̄) by setting Hyy = W Hyy W926

and Hxy = W Hxy W , respectively. Since x̄ is a strong local minimizer of (5.7), the927

map Hyy is positive definite and invertible. Solving (5.7) then yields the expression928

∇S(x̄)h = −H
−1
yy Hxy

�
h for all h ∈ TM(x̄).929

Let us now verify that if x̄ is a composite strict saddle of f , then ∇S(x̄) has a real930

eigenvalue that is greater than one. To this end, observe that γ ∈ R is an eigenvalue931

of ∇S(x̄) with an associated eigenvector v ∈ TM(x̄) if and only if932

∇S(x̄)v = γ v ⇐⇒ −H
−1
yy Hxy

�
v = γ v ⇐⇒ (γ H yy + Hxy

�
)v = 0.933

In particular, if the matrix γ H yy + Hxy
�

is singular, then γ is an eigenvalue of ∇S(x̄).934

To prove such a γ ≥ 1 exists, we will show that H xy is self-adjoint, and then, we will935

examine the following ray of symmetric matrices936

{γ H yy + Hxy
� : γ ≥ 1}.937

Beginning with the end point, we will show that the matrix H yy + Hxy
�

has a strictly938

negative eigenvalue. On the other hand, we already know the direction of the ray939
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Foundations of Computational Mathematics

H yy is a positive definite matrix. Therefore, by continuity of the minimal eigenvalue940

function, there will exist some γ > 1 such that the matrix γ H yy + Hxy is singular, as941

claimed.942

To this end, we now compute the second-order variations.943

∇xyGH
i (x, y)v = ∇2 F[x; v]�∇ωi (ζ(x, y))�944

+ ∇2 F[x; y − x]�∇2ωi (ζ(x, y))∇F(x)v945

∇yyGH
i (x, y)v = ∇F(x)�∇2ωi (ζ(x, y))∇F(x)v946

∇xy f (x, y)v = ∇2 F[x; v]�∇ĥ(ζ(x, y))�947

+ ∇2 F[x; y − x]∇2ĥ(ζ(x, y))∇F(x)v − μ−1v948

∇yy f (x, y)v = ∇F(x)�∇2ĥ(ζ(x, y))∇F(x)v + ∇2r̂(y)v + μ−1v.949
950

A quick computation then shows that ∇xy f (x̄, x̄) and ∇xyGH
i (x̄, x̄) are self-adjoint951

operators. Consequently, we obtain Hxy = H�
xy and the expression952

(Hyy + H�
xy)v = ∇F(x̄)�∇2ĥ(F(x̄))∇F(x̄)v + ∇2r̂(x̄)v + ∇2 F[x̄; v]�∇ ĥ(F(x̄))�953

+
∑
i≥1

λ̄H
i

(
∇F(x̄)�∇2ωi (F(x̄))∇F(x̄)v + ∇2 F[x̄; v]�∇ωi (F(x̄))�

)
954

+
∑
i≥1

λ̄R
i ∇2ηi (y)v.955

956

To prove that Hyy + H�
xy has a strictly negative eigenvalue, we will show that it957

coincides with the Hessian of the Lagrangian of the problem:958

min
x

ĥ(F(x)) + r̂(x) subject to ω(F(x)) = 0, η(x) = 0.959

Indeed, define the Lagrangian function960

L0(x, λ) = ĥ(F(x)) + r̂(x) +
∑
i≥1

λH
i ω(F(x)) +

∑
i≥1

λR
i η(x).961

A quick computation shows962

∇2(ĥ ◦ F)(x)v = ∇F(x)�∇2ĥ(F(x))∇F(x)v + ∇2 F[x, v]�∇ĥ(F(x))�963

∇2(ωi ◦ F)(x)v = ∇F(x)�∇2ωi (F(x))∇F(x)v + ∇2 F[x, v]�∇ωi (F(x))�964
965

and therefore the equality966

∇2L0(x̄, λ̄) = Hyy + H�
xy .967

The composite strict saddle property guarantees that the matrix ∇2L0(x̄, λ̄) has a968

strictly negative eigenvalue, completing the proof. ��969
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Foundations of Computational Mathematics

In line with the previous sections, one could ask whether a damped and randomly970

initialized proximal linear method almost surely escapes all composite strict saddle971

points. An immediate obstacle is that the global Lipschitz constant of the proximal972

linear map S(·) defined in (5.6) seems unclear, and therefore, we are unable to find973

an appropriate damping parameter. Instead we will settle for a local escape guarantee974

supplied by the center stable manifold theorem. We leave it as an intriguing open975

question to obtain global escape guarantees for the damped proximal linear algorithm.976

A first difficulty in applying the center stable manifold theorem is that the Jacobian977

∇S(x̄) at the saddle point x̄ may not be invertible. Consequently, we will damp the978

proximal linear method, forcing the update to be a local diffeomorphism. To compute979

an appropriate threshold for the damping parameter, we will need to estimate the980

operator norm of ∇S(x̄). This is the content of the following lemma.981

Lemma 5.5 (The slope at the critical points). Consider the composite optimization982

problem (5.1) and choose any μ ∈ (0, (ρ + 2β)−1). Then, for all points x ∈ R
d and983

all critical points x̄ ∈ R
d , the proximal linear map S(·) defined in (5.6) satisfies984

‖S(x) − x̄‖ ≤
(

1 +
√

2βμ

1 − μβ − μρ

)
· max

{
1,

μρ + μβ

1 − μρ − 2μβ

}
· ‖x − x̄‖.985

Proof To simplify notation, define the map986

ζ(x, y) = F(x) + ∇F(x)(y − x).987

Set γ := μ−1 − β, fix an arbitrary point x ∈ R
d , and define988

x+ := S(x) and x̂ := prox f /γ (x).989
990

Using strong convexity of the prox-linear and proximal subproblems and the estimate991

(5.2), we successively compute992

h(x̂) + r(x̂) + γ

2
‖x̂ − x‖2 ≤ h(x+) + r(x+) + γ

2
‖x+ − x‖2 − γ − ρ − β

2
‖x+ − x̂‖2

993

≤ h(ζ(x, x+)) + r(x+) + γ + β

2
‖x+ − x‖2 − γ − ρ − β

2
‖x+ − x̂‖2

994

≤ h(ζ(x, x̂)) + r(x̂) + γ + β

2
‖x̂ − x‖2 − (γ − ρ)‖x+ − x̂‖2

995

≤ h(x̂) + r(x̂) + γ + 2β

2
‖x̂ − x‖2 − (γ − ρ)‖x+ − x̂‖2.996

997

Rearranging yields the estimate998

(γ − ρ)‖x+ − x̂‖2 ≤ 2β‖x̂ − x‖2 = 2βγ −2‖∇ f1/γ (x)‖2.999
1000
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Foundations of Computational Mathematics

Therefore, using Lipschitz continuity of the gradient ∇ f1/γ (Lemma 2.5) and the1001

triangle inequality yields1002

‖x+ − x̄‖ ≤
⎛
⎝γ −1 +

√
2βγ −2

γ − ρ

⎞
⎠ · max

{
γ,

ρ + β

1 − γ −1(ρ + β)

}
· ‖x − x̄‖1003

=
(

1 +
√

2βμ

1 − μβ − μρ

)
· max

{
1,

μρ + μβ

1 − μρ − 2μβ

}
· ‖x − x̄‖,1004

1005

as claimed. ��1006

We are now ready to deduce that the damped proximal linear method almost locally1007

escapes any composite strict saddle point.1008

Theorem 5.6 (Proximal linear method: local escape). Consider the composite prob-1009

lem (5.1) and let x̄ be any composite strict saddle point. Choose any constant1010

μ ∈ (0, (ρ + 2β)−1) and a damping parameter α ∈ (0, 1) satisfying1011

α ·
(

1 +
((

1 +
√

2βμ

1 − μβ − μρ

)
· max

{
1,

μρ + μβ

1 − μρ − 2μβ

}))
< 1.1012

Define the damped proximal linear update1013

T (x) = (1 − α)x + αS(x),1014

where S(·) is the proximal linear map defined in (5.6). Then, there exists a neighbor-1015

hood U of x̄ such that the set of initial conditions1016

{x ∈ U : Sk(x) ∈ U for all k ≥ 0}1017

has zero Lebesgue measure.1018

Proof First, using Theorem 5.3 and Lemma 2.14, we deduce that x̄ is an unstable fixed1019

point of x̄ . Let us next verify that T is a local diffeomorphism around x̄ . To see this,1020

observe1021

∇T (x̄) = I − α(I − ∇S(x̄)).1022

Using Theorem 5.5, we deduce α‖I − ∇S(x̄)‖op < 1 and therefore T is invertible.1023

An application of the center stable manifold theorem (Theorem 2.10) completes the1024

proof. ��1025
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Foundations of Computational Mathematics

6 Convergence of Relaxed Descent Methods1026

Thus far, all of our escape theorems made an assumption that the iterate sequence1027

generated by the algorithms converges. In this section, we verify this assumption for1028

the damped proximal point, proximal gradient, and proximal linear methods. Taking a1029

general view, we see that the iterative methods of this paper can be understood within1030

a broad family of damped model-based algorithms for minimizing a function f . These1031

algorithms construct iterates x0, x1 . . . by repeatedly minimizing a local model fx (·)1032

of the function and moving in the direction of its minimizer. More specifically, in the1033

section we suppose that there exist constant ρ, η, β > 0 such that the the following1034

properties hold:1035

(A1) The function f : R
d → R ∪ {∞} is closed and ρ-weakly convex.1036

(A2) For all x ∈ R
d there exists a closedη-weakly convex function fx : R

d → R∪{∞}1037

satisfying1038

| f (y) − fx (y)| ≤ β

2
‖y − x‖2 for all y ∈ R

d .1039

Under these assumptions, we will study how the following algorithm behaves: given1040

iterates x0, . . . , xt define1041

yt = argmin
y∈Rd

{
fxt (y) + τ

2
‖y − xt‖2

}
xt+1 = (1 − α)xt + αyt ,

(MBA)1042

1043

where τ > 0 and α > 0 are fixed constants, determined below.1044

To analyze this algorithm, we rely on the seminal paper [3]. There, the authors1045

identified three conditions, guaranteeing global convergence of a sequence {zt } of1046

“algorithm iterates” to a critical point of a closed function g : R
d → R∪{∞}. Namely,1047

they assume there exist a, b > 0 such that the following holds:1048

(B1) (Sufficient Decrease.) For each t ∈ N, we have1049

g(zt+1) + a‖zt+1 − zt‖2 ≤ g(zt )1050

(B2) (Relative Error Conditions.) For each t ∈ N there exists wt+1 ∈ ∂g(zt+1) such1051

that1052

‖wt+1‖ ≤ b‖zt+1 − zt‖1053

(B3) (Continuity Condition.) There exists a subsequence {zt j } and z̃ such that1054

zt j → z̃ and g(zt j ) → g(z̃), as j → ∞.1055

The above assumptions alone may not guarantee that zt converges to a critical1056

point of g. Instead, the authors of [3] restrict their focus to the broad class of functions1057

satisfying the Kurdyka–Łojasiewicz property.1058
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Definition 6.1 (KŁ Function) Let g : R
d → R∪{∞} be a closed function. We say that1059

g has the Kurdyka–Łojasiewicz (KL) property at a point x̄ , where ∂g(x̄) is nonempty,1060

if there exists ε ∈ (0,+∞], a neighborhood U of x̄ , and a continuous convex function1061

ϕ : [0, ε) → R+ satisfying1062

1. ϕ(0) = 0,1063

2. ϕ is C1 on (0, ε) with ϕ′ > 0, and1064

3. the KŁ inequality1065

dist(0, ∂g(x)) ≥ 1

ϕ′(g(x) − g(x̄))
,1066

holds for all x ∈ U satisfying g(x̄) < g(x) < g(x̄) + ε.1067

If g satisfies the KŁ property at each point x , with ∂g(x) �= ∅, then g is called a KŁ1068

function.1069

The class of KŁ functions is broad, containing all closed semialgebraic functions1070

and more broadly any functions definable in an o-minimal structure, as shown in the1071

pioneering work [7]. Under these assumptions we have the following theorem from [3,1072

Theorem 2.9].1073

Theorem 6.2 Let g : R
d → R∪{∞} be a closed function. Consider a sequence xt that1074

satisfies (B1), (B2), and (B3). If g satisfies the KŁ property at some cluster point x̃ ,1075

then x̃ is a critical point of g, the entire sequence xk converges to x̃ , and the sequence1076

xt has finite length1077

∞∑
t=0

‖xt+1 − xt‖ < +∞.1078

In the remainder of this section, we will verify assumption (B1), (B2), and (B3)1079

for the sequence {zt } = {xt } and the Moreau envelope g := f1/ρ̂ , where ρ̂ will be1080

chosen in a moment. Since the critical points of f and f1/ρ̂ agree, the result will imply1081

convergence to critical points of f . To do so, we employ one final assumption.1082

(A3) For every ρ̂ > 0, the Moreau envelope f1/ρ̂ is a KŁ function.1083

Although assumption (A3) may appear hard to verify, it holds whenever f is semi-1084

algebraic since in this case f1/ρ̂ is also semialgebraic. More generally, the analogous1085

statement holds if f is definable in an o-minimal structure. The following is the main1086

result of this section.1087

Theorem 6.3 (Convergence of relaxed model-based methods). Suppose that α ∈1088

(0, 1], that τ > max{η, 2ρ,
4β+ρ+η

2 }, and that assumptions (A1) and (A2) hold. Then,1089

for all T ≥ 0, we have1090

min
t=0,...,T

‖∇ f1/ρ̂(xt )‖ ≤
√√√√ f1/ρ̂(x0) − inf f

α(2ρ̂−ρ−η−β)

2ρ̂(ρ̂+τ−ρ−η)
(T + 1)

.1091
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where ρ̂ = (1/2)τ + (1/4)(ρ +η). Moreover, if (A3) also holds and the sequence {xt }1092

has a cluster point x̄ , then x̄ is critical for f and the entire sequence {xt } converges1093

to x̄ . Moreover, the sequence {xt } has finite length.1094

∞∑
t=0

‖xt+1 − xt‖ < +∞.1095

This result is new and may be of independent interest. In particular, the conclusion1096

of the theorem extends the convergence guarantees for the proximal linear method1097

developed in [52] to all relaxed model-based algorithms.1098

6.1 Proof of Theorem 6.31099

We are free to choose the parameter ρ̂ defining the Moreau envelope. To this end, we1100

will need the existence of a parameter ρ̂, satisfying the following inequalities.1101

Lemma 6.4 Under the assumptions of Theorem 6.3, it holds that ρ̂ > ρ and1102

1. τ − ρ̂ − β > 0,1103

2. 2ρ̂ − ρ − η − β > 0,1104

3. ρ̂ + τ − ρ − η > 0,1105

4. 1 − 2ρ̂−ρ−η−β

ρ̂+τ−ρ−η
> 0.1106

Proof Note that ρ̂ > τ/2 > ρ > 0 and that ρ̂ = τ −β − ε/2 for ε = (2τ − 4β −ρ −1107

η)/2 > 0. To prove the first inequality, notice that τ − ρ̂ − β = ε/2 > 0. To prove1108

the second inequality, notice that1109

2ρ̂ − ρ − η − β = 2τ − 4β − ρ − η − ε = ε > 0.1110

To prove the third inequality, observe1111

ρ̂ + τ − ρ − η > ρ̂ + (ρ̂ + β) − ρ − η ≥ 2ρ̂ − ρ − η − β > 0,1112

where the first and second inequalities follow from items 6.4 and 6.4, respectively. To1113

prove the fourth inequality, we compute1114

1 − 2ρ̂ − ρ − η − β

ρ̂ + τ − ρ − η
= β + τ − ρ̂

ρ̂ + τ − ρ − η
= 2β + ε/2

ρ̂ + τ − ρ − η
> 0,1115

as desired. ��1116

Throughout the rest of this section, we fix a constant ρ̂ satisfying the conditions1117

of Lemma 6.4. Critical to our proof is the following lemma, comparing the proximal1118

point1119

x̂t := prox f /ρ̂(xt )1120
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to the “approximately proximal point” yt . A closely related estimate appeared in [16,1121

Lemma 4.2], driving the convergence analysis of that paper.1122

Lemma 6.5 It holds that1123

‖x̂t − yt‖2 ≤ ‖x̂t − xt‖2 − 2ρ̂ − ρ − η − β

ρ̂ + τ − ρ − η
‖x̂t − xt‖2 − τ − ρ̂ − β

ρ̂ + τ − ρ − η
‖xt − yt‖2.1124

Proof Since the function y �→ f (y) + ρ̂
2 ‖y − xt‖2 is (ρ̂ − ρ)-strongly convex and x̂t1125

is its minimizer, we have1126

ρ̂ − ρ

2
‖x̂t − yt‖2 ≤

(
f (yt ) + ρ̂

2
‖yt − xt‖2

)
−
(

f (x̂t ) + ρ̂

2
‖x̂t − xt‖2

)
.1127

1128

Consequently, using the double-sided model property (A2), we find1129

ρ̂ − ρ

2
‖x̂t − yt‖2 ≤ fxt (yt )− fxt (x̂t )+ ρ̂ + β

2
‖xt − yt‖2 − ρ̂ − β

2
‖x̂t − xt‖2. (6.1)1130

Since the function y �→ fxt (y) + τ
2 ‖y − xt‖2 is (τ − η)-strongly convex and yt is its1131

minimizer, we have1132

fxt (yt ) − fxt (x̂t ) ≤ τ

2
‖x̂t − xt‖2 − τ

2
‖yt − xt‖2 − τ − η

2
‖yt − x̂t‖2.1133

Combining this estimate with (6.1), we compute1134

ρ̂ − ρ

2
‖x̂t − yt‖2 ≤ τ

2
‖x̂t − xt‖2 − τ

2
‖yt − xt‖2 − τ − η

2
‖yt − x̂t‖2

1135

+ ρ̂ + β

2
‖xt − yt‖2 − ρ̂ − β

2
‖x̂t − xt‖2

1136

= β + τ − ρ̂

2
‖x̂t − xt‖2 + ρ̂ + β − τ

2
‖xt − yt‖2 − τ − η

2
‖yt − x̂t‖2.1137

1138

Rearranging, we conclude1139

ρ̂ + τ − ρ − η

2
‖x̂t − yt‖2 ≤ β + τ − ρ̂

2
‖x̂t − xt‖2 + ρ̂ + β − τ

2
‖xt − yt‖2.1140

Dividing both sides by ρ̂+τ−ρ−η
2 , we achieve the result:1141

‖x̂t − yt‖2 ≤ β + τ − ρ̂

ρ̂ + τ − ρ − η
‖x̂t − xt‖2 + ρ̂ + β − τ

ρ̂ + τ − ρ − η
‖xt − yt‖2

1142

= ‖x̂t − xt‖2 −
(

1 − β + τ − ρ̂

ρ̂ + τ − ρ − η

)
‖x̂t − xt‖2 + ρ̂ + β − τ

ρ̂ + τ − ρ − η
‖xt − yt‖2

1143

= ‖x̂t − xt‖2 − 2ρ̂ − ρ − η − β

ρ̂ + τ − ρ − η
‖x̂t − xt‖2 − τ − ρ̂ − β

ρ̂ + τ − ρ − η
‖xt − yt‖2.1144

1145

This completes the proof of the lemma. ��1146
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The following lemma verifies the Assumption (B1).1147

Lemma 6.6 (Sufficient Decrease) We have1148

f1/ρ̂(xt+1) ≤ f1/ρ̂(xt ) − ρ̂(τ − ρ̂ − β)

2α(ρ̂ + τ − ρ − η)
‖xt+1 − xt‖2

1149

−α(2ρ̂ − ρ − η − β)

2ρ̂(ρ̂ + τ − ρ − η)
‖∇ f1/ρ̂(xt )‖2.1150

In particular, f1/ρ̂ and {xt } satisfy (B1). Moreover, for all T ≥ 0, we have1151

min
t=0,...,T

‖∇ f1/ρ̂(xt )‖2 ≤ 1

T + 1

T∑
t=0

‖∇ f1/ρ̂(xt )‖2 ≤ f1/ρ̂(x0) − inf f
α(2ρ̂−ρ−η−β)

2ρ̂(ρ̂+τ−ρ−η)
(T + 1)

1152

Proof We successively compute1153

f1/ρ̂ (xt+1) = f (x̂t+1) + ρ̂

2
‖x̂t+1 − xt+1‖2

1154

≤ f (x̂t ) + ρ̂

2
‖x̂t − xt+1‖2

1155

= f (x̂t ) + ρ̂

2
‖(1 − α)(x̂t − xt ) + α(x̂t − yt )‖2

1156

≤ f (x̂t ) + ρ̂(1 − α)

2
‖x̂t − xt‖2 + ρ̂α

2
‖x̂t − yt‖2

1157

≤ f (x̂t ) + ρ̂

2
‖x̂t − xt‖2

1158

− ρ̂α

2

(
2ρ̂ − ρ − η − β

ρ̂ + τ − ρ − η
‖x̂t − xt‖2 + τ − ρ̂ − β

ρ̂ + τ − ρ − η
‖xt − yt‖2

)
1159

≤ f1/ρ̂ (xt ) − ρ̂α(τ − ρ̂ − β)

2(ρ̂ + τ − ρ − η)
‖xt − yt‖2 − α(2ρ̂ − ρ − η − β)

2ρ̂(ρ̂ + τ − ρ − η)
‖∇ f1/ρ̂ (xt )‖2,

(6.2)

1160

1161

where (6.2) follows from Lemma 6.5, and the final inequality follows since ρ̂(xt−x̂t ) =1162

∇ f1/ρ̂(xt ). To get the descent inequality, it remains to write xt − yt = (xt+1 − xt )/α.1163

Finally, the bound on the average gradient norm follows by induction. ��1164

The following lemma verifies the Assumption (B2).1165

Lemma 6.7 (Relative Error). It holds1166

‖∇ f1/ρ̂(xt+1)‖ ≤

⎛
⎜⎜⎝max

{
ρ̂,

ρ

1 − ρ/ρ̂

}
+ ρ̂

α

1

1 −
√(

1 − 2ρ̂−ρ−η−β

ρ̂+τ−ρ−η

)
⎞
⎟⎟⎠ ‖xt+1 − xt‖.1167

In particular, f1/ρ̂ and {xt } satisfy (B2).1168
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Proof We have1169

‖∇ f1/ρ̂(xt+1)‖ ≤ ‖∇ f1/ρ̂(xt )‖ + max

{
ρ̂,

ρ

1 − ρ/ρ̂

}
‖xt+1 − xt‖.1170

Thus, we want to bound1171

‖∇ f1/ρ̂(xt )‖ = ρ̂‖x̂t − xt‖1172

by a multiple of ‖xt+1 − xt‖. This follows by Lemma 6.5:1173

‖x̂t − xt‖ ≤ ‖x̂t − yt‖ + ‖yt − xt‖ ≤
√(

1 − 2ρ̂ − ρ − η − β

ρ̂ + τ − ρ − η

)
‖xt − x̂t‖ + ‖yt − xt‖1174

Rearranging and using the definition xt − yt = (xt+1 − xt )/α, it holds1175

‖x̂t − xt‖ ≤ 1

1 −
√(

1 − 2ρ̂−ρ−η−β

ρ̂+τ−ρ−η

)‖yt − xt‖1176

= 1

α

1

1 −
√(

1 − 2ρ̂−ρ−η−β

ρ̂+τ−ρ−η

)‖xt+1 − xt‖.1177

The proof is complete. as desired. ��1178

Finally, we can dispense with Assumption (B3), which is a simple consequence of1179

the continuity of fρ̂ .1180

Lemma 6.8 (Continuity Condition). The function fρ̂ and the sequence {xt } sat-1181

isfy (B3).1182

Acknowledgements We thank John Duchi for his insightful comments on an early version of the1183

manuscript. We also thank the anonymous referees for numerous suggestions that have improved the read-1184

ability of the paper.1185

A Proofs of Theorems 2.9 and 5.21186

In this section, we prove Theorem 2.9. We should note that Theorem 2.9, appropriately1187

restated, holds much more broadly beyond the weakly convex function class. To sim-1188

plify the notational overhead, however, we impose the weak convexity assumption,1189

throughout.1190

We will require some basic notation from variational analysis; for details, we refer1191

the reader to [57]. A set-valued map F : R
d

⇒ R
m assigns to each point x ∈ R

d a set1192

F(x) in R
m . The graph of F is defined by1193

gph F := {(x, v) : v ∈ F(x)}.1194
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A map F : R
d

⇒ R
m is called metrically regular at (x̄, v̄) ∈ gph F if there exists a1195

constant κ > 0 such that the estimate holds:1196

dist(x, F−1(v)) ≤ κdist(v, F(x))1197

for all x near x̄ and all v near v̄. If the graph gph F is a C1-smooth manifold around1198

(x̄, v̄), then metric regularity at (x̄, v̄) is equivalent to the condition [57, Theorem1199

9.43(d)]:12
1200

(0, u) ∈ Ngph F (x̄, v̄) !⇒ u = 0. (A.1)1201

We begin with the following lemma.1202

Lemma A.1 (Subdifferential metric regularity in smooth minimization). Consider the1203

optimization problem1204

min
x∈Rd

f (x) subject to x ∈ M,1205

where f : R
d → R is a C2-smooth function and M is a C2-smooth manifold. Let x̄ ∈1206

M satisfy the criticality condition 0 ∈ ∂ fM(x̄) and suppose that the subdifferential1207

map ∂ fM : R
d

⇒ R
d is metrically regular at (x̄, 0). Then, the guarantee holds:1208

inf
u∈Sd−1∩TM(x̄)

d2 fM(x̄)(u) �= 0. (A.2)1209

Proof First, appealing to (A.1), we conclude that the implication holds:1210

(0, u) ∈ Ngph ∂ fM(x̄, 0) !⇒ u = 0. (A.3)1211

Let us now interpret the condition (A.3) in Lagrangian terms. To this end, let G = 01212

be the local defining equations for M around x̄ . Define the Lagrangian function1213

L(x, λ) = f (x) + 〈G(x), λ〉,1214

and let λ̄ be the unique Lagrange multiplier vector satisfying ∇xL(x̄, λ̄) = 0. Accord-1215

ing to [41, Corollary 2.9], we have the following expression:1216

(0, u) ∈ Ngph ∂ fM(x̄, 0) ⇐⇒ u ∈ TM(x̄) and Lu ∈ NM(x̄), (A.4)1217

where L := ∇2
xxL(x̄, λ̄) denotes the Hessian of the Lagrangian. Combining (A.3) and1218

(A.4), we deduce that the only vector u ∈ TM(x̄) satisfying Lu ∈ NM(x̄) is the zero1219

vector u = 0.1220

Now for the sake of contradiction, suppose that (A.2) fails. Then, the quadratic1221

form Q(u) = 〈Lu, u〉 is nonnegative on TM(x̄) and there exists 0 �= ū ∈ TM(x̄)1222

satisfying Q(ū) = 0. We deduce that ū minimizes Q(·) on TM(x̄), and therefore, the1223

inclusion Lū ∈ NM(x̄) holds, a clear contradiction. ��1224

12 We should note that metric regularity of F at (x̄, v̄) is equivalent to (A.1) for an arbitrary set-valued map
F with closed graph, provided we interpret Ngph F (x̄, v̄) as the limiting normal cone [57, Definition 6.3].
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The following corollary for active manifolds will now quickly follow.1225

Corollary A.2 (Subdifferential metric regularity and active manifolds). Consider a1226

closed and weakly convex function f : R
d → R ∪ {∞}. Suppose that f admits a1227

C2-smooth active manifold around a critical point x̄ and that the subdifferential map1228

∂ f : R
d

⇒ R
d is metrically regular at (x̄, 0). Then, x̄ is either a strong local minimizer1229

of f or satisfies the curvature condition d2 fM(x̄)(u) < 0 for some u ∈ TM(x̄).1230

Proof The result [19, Proposition 10.2] implies that gph ∂ f coincides with gph ∂ fM1231

on a neighborhood of (x̄, 0). Therefore, the subdifferential map ∂ fM : R
d

⇒ R
d is1232

metrically regular at (x̄, 0). Using Lemma A.1, we obtain the guarantee:1233

inf
u∈Sd−1∩TM(x̄)

d2 fM(x̄)(u) �= 0.1234

If the infimum is strictly negative, the proof is complete. Otherwise, the infimum is1235

strictly positive. In this case, x̄ is a strong local minimizer of fM, and therefore by1236

[19, Proposition 7.2] a strong local minimizer of f . ��1237

We are now ready for the proofs of Theorems 2.9 and 5.2.1238

Proof of Theorem 2.9 The result [18, Corollary 4.8] shows that for almost all v ∈ R
d ,1239

the function g(x) := f (x)−〈v, x〉 has at most finitely many critical points. Moreover1240

each such critical point x̄ lies on some C2 active manifold M of g and the subdiffer-1241

ential map ∂g : R
d

⇒ R
d is metrically regular at (x̄, 0). Applying Corollary A.2 to g1242

for such generic vectors v, we deduce that every critical point x̄ of g is either a strong1243

local minimizer or a strict saddle of g. The proof is complete. ��1244

Proof of Theorem 5.2 The proof is identical to that of Theorem 2.9 with [18, Theorem1245

5.2] playing the role of [18, Corollary 4.8]. ��1246

B Pathological Example1247

Theorem B.1 Consider the following function1248

f (x, y) = 1

2
(|x | + |y|)2 − ρ

2
x2

1249

Assume that λ > ρ. Define a mapping T : R
d → R by the following formula.1250

S(x, y) =

⎧⎪⎪⎨
⎪⎪⎩

0 if (x, y) = 0;(
0, λ

1+λ
y
)

if |x | ≤ 1
1+λ

|y|;(
λ

1+λ−ρ
x, 0
)

if |y| ≤ 1
1+λ−ρ

|x |,
1251
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and if 1
(1+λ−ρ)

|x | < |y| < (1 + λ)|x |, we have1252

S(x, y) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

λ
(1+λ)(1+λ−ρ)−1

[
(1 + λ) −1

−1 (1 + λ − ρ)

][
x

y

]
if sign(x) = sign(y);

λ
(1+λ)(1+λ−ρ)−1

[
(1 + λ) 1

1 (1 + λ − ρ)

][
x

y

]
if sign(x) �= sign(y).

1253

Then, prox(1/λ) f (x, y) = S(x, y).1254

Proof Let us denote the components of S(x, y) by (x+, y+) = S(x, y). By first-order1255

optimality conditions, we have prox(1/λ) f (x, y) = (x+, y+) if and only if1256

λ(x − (1 − (1/λ)ρ)x+, y − y+) ∈1257 ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

{x+ + sign(x+)|y+|} × {sign(y+)|x+| + y+} if x+ �= 0 and y+ �= 0;
([−1, 1]y+) × {y+} if x+ = 0 and y+ �= 0;
{x+} × ([−1, 1]x+) if x+ �= 0 and y+ = 0;
{0} × {0} if x+ = 0 and y+ = 0.

1258

Let us show that (x+, y+) indeed satisfies this inclusion.1259

1. If (x, y) = 0, then x+ = y+ = 0, and the pair satisfies the inclusion.1260

2. If |x | ≤ 1
1+λ

|y| and y �= 0, then x+ = 0, y+ = λ
1+λ

y, and1261

λ(x − (1 − (1/λ)ρ)x+, y − y+) = λ

(
x,

1

1 + λ
y

)
∈ ([−1, 1]y+) × {y+}.1262

Thus, the pair satisfies the inclusion.1263

3. If |y| ≤ 1
1+λ−ρ

|x | and x �= 0, then x+ = λ
(1+λ−ρ)

x , y+ = 0, and1264

λ(x − (1 − (1/λ)ρ)x+, y − y+)1265

= λ

(
x − λ − ρ

(1 + λ − ρ)
x, y

)
∈ {x+} × ([−1, 1]x+).1266

For the remaining two cases, let us assume that 1
(1+λ−ρ)

|x | < |y| < (1 + λ)|x |.1267

4. If sign(x) = sign(y), let s = sign(x) and note that1268

[
x+
y+

]
= λ

(1 + λ)(1 + λ − ρ) − 1

[
(1 + λ) −1

−1 (1 + λ − ρ)

] [
x
y

]
1269

= sλ

(1 + λ)(1 + λ − ρ) − 1

[
(1 + λ)|x | − |y|

−|x | + (1 + λ − ρ)|y|
]

1270

1271
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From this equation we learn sign(x+) = sign(y+) = s. Inverting the matrix, we1272

also learn1273

λ

[
x
y

]
=
[
(1 + λ − ρ) 1

1 (1 + λ)

] [
x+
y+

]
=
[

x+ + λ(1 − ρ/λ)x+ + y+
x+ + y+ + λy+

]
1274

=
[

x+ + sign(x+)|y+| + λ(1 − ρ/λ)x+
sign(y+)|x+| + y+ + λy+

]
.1275

1276

Thus, the pair satisfies the inclusion.1277

5. If sign(x) �= sign(y), let s = sign(x) and note that1278

[
x+
y+

]
= λ

(1 + λ)(1 + λ − ρ) − 1

[
(1 + λ) 1

1 (1 + λ − ρ)

] [
x
y

]
1279

= sλ

(1 + λ)(1 + λ − ρ) − 1

[
(1 + λ)|x | − |y|

|x | − (1 + λ − ρ)|y|
]

1280

1281

From this equation we learn sign(x+) �= sign(y+). Inverting the matrix we also1282

learn1283

λ

[
x
y

]
=
[
(1 + λ − ρ) −1

−1 (1 + λ)

] [
x+
y+

]
=
[

x+ + λ(1 − ρ/λ)x+ − y+
−x+ + y+ + λy+

]
1284

=
[

x+ + sign(x+)|y+| + λ(1 − ρ/λ)x+
sign(y+)|x+| + y+ + λy+

]
.1285

1286

Thus, the pair satisfies the inclusion.1287

Therefore, the proof is complete. ��1288

Corollary B.2 (Convergence to Saddles). Assume the setting of Theorem B.1. Let α ∈1289

(0, 1] and define the operator T := (1 − α)I + αS on R
2. Then, the cone K =1290

{(x, y) : |x | ≤ (1 + λ)−1 y} satisfies T K ⊆ K. Moreover, for any (x, y) ∈ K, it holds1291

that T k(x, y) = ((1 − α)k x, (1 − α(1 − λ(1 + λ)−1))k y) linearly converges to the1292

origin as k tends to infinity.1293

Proof Since K is convex, it suffices to show that SK ⊆ K. This follows from Theo-1294

rem B.1. ��1295
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