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Abstract

We introduce a geometrically transparent strict saddle property for nonsmooth func-
tions. This property guarantees that simple proximal algorithms on weakly convex
problems converge only to local minimizers, when randomly initialized. We argue
that the strict saddle property may be a realistic assumption in applications, since it
provably holds for generic semi-algebraic optimization problems.
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1 Introduction

Nonconvex optimization techniques are increasingly playing a major role in modern
signal processing, high-dimensional statistics, and machine learning. A driving theme,
fully supported by empirical evidence, is that simple algorithms often work well in
highly nonconvex and even nonsmooth settings. Gradient descent, for example, often
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Foundations of Computational Mathematics

finds points with small objective value, despite existence of many highly suboptimal
critical points. A growing body of literature provides one compelling explanation for
this phenomenon. Namely, typical smooth objective functions provably satisfy the
strict saddle property, meaning each critical point is either a local minimizer or has
a direction of strictly negative curvature (e.g., [6,28,29,61,62]). For such functions,
randomly initialized gradient-type methods provably converge to local minimizers,
escaping all strict saddle points [35,51]. Moreover, stochastically perturbed gradient
methods escape strict saddles efficiently, indeed, in polynomial time [22,27,33].

Smoothness of the objective plays a crucial role in the existing literature on sad-
dle avoidance. Some extensions to constrained optimization do exist. The papers
[15,27,63] investigate saddle point avoidance for the problem of minimizing a smooth
functions over a smooth manifold. The works [30,44,49] propose algorithms for min-
imizing a smooth objective over a closed convex set. At each step of these algorithms,
one must minimize a nonconvex quadratic over a certain convex set (an NP hard prob-
lem in general). The work [4] proposes a polynomial time first-order algorithm for
minimizing a smooth objective over linear inequality constraints.! At each step of this
algorithm, one identifies the “active linear constraints” and then attempts to find a
“second-order stationary point” of the loss in the restricted subspace.

Though impressive in scope, existing work has yet to answer the following question:

Do simple algorithms on typical nonsmooth and nonconvex optimization prob-
lems converge only to local minimizers?

This question as stated is purposefully vague, since “simple algorithms” and “typical
optimization problems” can be interpreted in multiple ways. Let us try to formalize both
ideas. First, if one believes that gradient descent is a canonical first-order method for
smooth minimization, it is natural to focus on three concrete algorithms for nonsmooth
and nonconvex problems: the proximal point [42,43,46,55], proximal gradient [5,48],
and proximal linear [9,20,21,40,47] methods. This is the path we follow in the current
work.

The latter issue, identifying a typical optimization problem, is more subtle. To moti-
vate our approach, let us revisit the following question: why is the strict saddle property
a reasonable assumption for smooth minimization? A first compelling reason is that
the property holds in practice for specific problems of interest. There is, however, a
more classical justification, one rooted in stability to perturbations. Namely, consider
the task of minimizing a smooth function f on R?. Then, for a full measure set of per-
turbations v € R?, the perturbed function x — f(x) — (v, x) is guaranteed to satisfy
the strict saddle property—a direct consequence of Sard’s theorem. Consequently, in
a precise mathematical sense, the strict saddle property holds generically in smooth
optimization. This justification does not suggest one can omit verification of the strict
saddle property in concrete circumstances, but it does suggest that the strict saddle
property is widely prevalent.

Seeking to identify a similarly reasonable class of nonsmooth objectives on which
simple algorithms converge to local minimizers, the current paper accomplishes the
following.

1 This work appeared concurrently with our manuscript.
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Foundations of Computational Mathematics

We formulate natural geometric conditions, guaranteeing the proximal point,
proximal gradient, and proximal linear algorithms escape all saddle points.
Moreover, the proposed conditions are generic: they hold for almost all linear
perturbations of weakly convex and semi-algebraic problems.

The class of optimization problems we consider is broad. A function f is called p-
weakly convex if the assignment x — f(x) + §||x||2 is convex for some p > 0.2
Common examples include pointwise maxima of smooth functions and all compo-
sitions of Lipschitz convex functions with smooth maps. For detailed contemporary
examples, we refer the reader to [13,16,17,23,32]. The genericity guarantee applies
to semi-algebraic functions,® and more broadly, to those that are definable in an o-
minimal structure—a virtually exhaustive function class in applications.

1.1 The Role of Curvature

To motivate our core geometric conditions, we revisit the role that curvature plays in
saddle-point avoidance. Setting the stage for the rest of the paper, consider the task
of minimizing a weakly convex function f on R?. First-order optimality conditions
show that any local minimizer x of f satisfies the criticality condition:

df(x)(v) >0 forallv eR?,

where df (x)(v) denotes the directional derivative of f at x in direction v (see Defi-
nition 2.1). Conversely, sufficient conditions for local optimality at a critical point x
require a close look at the second-order variations of f along particular directions,
namely those where the directional derivative is zero. Mirroring the smooth setting,
one may naively call a critical point x a strict saddle if there exists a direction v such
that df (x)(v) = O and f decreases quadratically along v. This definition, however, is
insufficient for saddle avoidance: simple examples show that typical algorithms can
converge to such saddle points from a positive measure of initial conditions.

Negative curvature alone does not guarantee escape from saddle points.

To illustrate what can go wrong, consider the example

min _ f(x,y) = (x| + [y})? = 2x2, (1.1)
(x,y)eR2

the graph of which is shown in Fig. la. First, observe that the origin meets the con-
ditions of the candidate “strict saddle” definition. Indeed, f is differentiable at the
origin and the origin is a critical point. Moreover, f decreases quadratically along all
directions making a small angle with the x-axis. Next, we turn to algorithm dynam-
ics. Figure 1b depicts the subgradient flow —y () € 9 f(y(¢)). From the picture we

2 Weakly convex functions also go by other names such as lower-C 2, uniformly prox-regularity, paraconvex,
and semiconvex. We refer the reader to the seminal works on the topic [2,50,53,56,58].

3 A function is called semi-algebraic if its graph decomposes into a finite union of sets, each defined by
finitely many polynomial inequalities.
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(c) Envelope f(2) = min { /() + 3]l - 2|} (d) Gradient flow § = —V f(7)

Fig.1 The function f in (1.1), its Moreau envelope, and their subgradient flows. a The function f(x, y) :=
(Ix] + [yD* — 2x2. b Subgradient flow 3 € —3 £ (). ¢ Envelope f(z) := min, {f(z/) +3|l7 — z||2}. d
ZeR

Gradient flow y = —V £ ()

find a positive measure cone, surrounding the y-axis and consisting of origin-attracted
initial conditions. Moreover, we show in Appendix B that a typical algorithm—the
proximal point method—initialized anywhere within this cone also converges to the
origin, illustrating the inadequacy of the definition. While this argument shows that
negative curvature is insufficient for nonsmooth optimization, it can be made even
more definitive by smoothing the problem at hand. Namely, an alternative view of
the proximal point method recognizes that the dynamics of the algorithm coincide
with the dynamics of gradient descent on a C!' smooth approximation of f, called
the Moreau envelope (see Sect. 2.3). The smooth envelope, whose graph and gradient
flow are shown in Fig. Ic, d, has the same cone of directions of second-order negative
curvature as f, but despite its smoothness and negative curvature, gradient descent
cannot escape the origin. The problem persists under a variety of different choices of
the step-size. Note that there is no contradiction with the saddle avoidance property
of gradient descent on smooth functions, since the envelope is not C2, but merely C'-
FoCTl
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Foundations of Computational Mathematics

smooth around the origin. Although this example appears damning at first, it is highly
unstable, since small linear tilts of the function do not exhibit the same pathological
behavior around critical points—a direct consequence of the forthcoming results.

1.2 The Role of the Active Manifold

We have seen that negative curvature alone is insufficient for saddle avoidance. We
argue here that in addition to negative curvature, one must make a structural assumption
on the way nonsmoothness manifests. To illustrate and contrast with example (1.1)
above, consider:

min_ g(x, y) = |x| = y*, (1.2)

(x,y)eR?

The graph of g is shown in Fig. 2a, while its subgradient flow appears in Fig. 2b.
Looking at the figure, we see that the subgradient flow of g sharply contrasts with
that of the pathological example (1.1). Indeed, while both functions have directions
of negative curvature, the set of origin-attracted initial conditions of the flow —dg is
simply the x-axis—a measure zero set. This favorable behavior of g arises because its
nonsmoothness manifests in a structured way: its unique critical point z (the origin)
lies on a smooth manifold M (the y-axis). The function g then varies smoothly along
M and sharply normal to M meaning:

inf{||v]| : v € 9g(2), z€ U\ M} > 0,

where U is some neighborhood of z. Such “active manifolds™ have classical roots in
optimization and serve as a far reaching generalization of “active sets” in nonlinear
programming. Important references include both the original works [1,10-12,24-26]
and the more recent work on identifiable surfaces [64], UV -decomposition [38], par-
tial smoothness [39], and cone reducibility [8]. Here, we most closely follow the
framework developed in [19].

1.3 Escape from Saddles by the Center Stable Manifold Theorem

Formalizing the favorable behavior of example (1.2), we will call a critical point x of a
function g a strict saddle whenever (i) g admits an active manifold containing x, and (ii)
the function g decreases quadratically along some direction v satisfying dg(x)(v) = 0.
A function g is said to have the strict saddle property if each of its critical points is
either a local minimizer or a strict saddle.* Though it may seem that this definition is
stringent at first, the strict saddle property is in a precise mathematical sense generic.
Namely, it follows from [18] that given any semi-algebraic weakly convex function
g, the perturbed function g,(x) = g(x) — (v, x) has the strict saddle property for
almost all v € R?. In particular, almost all linear perturbations of the function f in

4 Perhaps more appropriate would be the terms active strict saddle and the active strict saddle property.
For brevity, we omit the word “active.”

5 Weak convexity is not essential here, provided one modifies the definitions appropriately. Moreover, this
guarantee holds more generally for functions definable in an o-minimal structure.
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(a) The function g(x,vy)

(b) Subgradient flow 4 € —dg(v)

Fig. 2 The function g(x,y) = |x| — y2 has an active manifold at the origin. a The function g(x, y). b
Subgradient flow y € —dg(y)

Table 1 The three algorithms with the update S(x) = argminy fx(y); we assume h is convex, r is weakly
convex, and both g and F are smooth

Algorithm Objective Update function fy (y)

Prox-point r(x) r(y) + %ﬂ Iy = x[1?

Prox-gradient 8() +r(x) g0) + (Vg y = x) +r( + gz ly — xI?
Prox-linear h(F(x)) +r(x) h(F(x)+VFx)(y —x))+rQy) + ﬁ ly — x||2

(1.1) do have the strict saddle property. That being said, it is important to note that
under more nuanced perturbations, the strict saddle property may fail. For example,
the classical NP-complete problem of checking copositivity of a matrix A € R4*?
amounts to verifying if the origin ¥ = 0 locally minimizes the quadratic x” Ax over
the nonnegative orthant Ri. It is straightforward to see that this constrained problem
does not admit an active manifold at x for any matrix A.

With the definition of a strict saddle at hand, we can now outline the main results
of the paper. As in the smooth setting, first explored in the seminal paper [35], our
arguments will be based on the center stable manifold theorem. Namely, we will
interpret the three simple minimization algorithms as fixed point iterations

X1 = S(xx) for some maps S: RY — RY,

Table 1 lists the maps S(-) for the proximal point, proximal gradient, and proximal
linear algorithms. In each case, the fixed points of S(-) are precisely the critical points
of the minimization problem.

To put our guarantees in context, it will be useful to recall the center stable manifold
theorem. To this end, suppose that the iteration map S(-) is C'-smooth on a neigh-
borhood of some fixed point x. Then, X is called an unstable fixed point of S if the
Jacobian V. S(x) has at least one eigenvalue whose magnitude is strictly greater than
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one. The center stable-manifold theorem [60, Theorem II1.7] guarantees the following:
if x is an unstable fixed point of S and the Jacobian VS(x) is invertible, then almost
all initializers x in a neighborhood U of ¥ generate iterates {S¥ (x)}k>1 that eventually
escape the neighborhood. More precisely, the theorem guarantees that the set of initial
conditions

{x cU: S5(x) e Uforall k > 1}

has zero Lebesgue measure. All that is needed to globalize this guarantee is to ensure
that the preimage S~' (V) of any measure zero set V is itself measure zero. Then, for
almost all initial conditions x € R¥, the limit limy_, oo S¥ (x), when it exists, is not
an unstable fixed point of S. A straightforward way to ensure that the inverse S~!
respects null sets is by introducing the relaxation map:

Tx):=(1—a)x+aSkx). (1.3)

Both T and S have the same fixed points, and any fixed point x at which V.§(x) has a
real eigenvalue strictly greater than one is an unstable fixed point of 7. Moreover, if
the map S is Lipschitz, then the inverse 7! preserves null-sets for sufficiently small
a e (0,1).

1.4 The Main Results

‘We can now summarize our main results:

We show that around each strict saddle of the problem, each of the iterations
maps S(-) in Table 1 is C! smooth. Moreover, if X is a strict saddle, then the
Jacobian V§(x) has a real eigenvalue strictly greater than one.

From this result, the center stable manifold theorem guarantees that iteration (1.3)
locally escapes strict saddles. Seeking to globalize the guarantees, we compute the
global Lipschitz constants for the proximal point and proximal gradient methods.
We deduce that, when randomly initialized, the relaxed iterations (1.3) for both the
proximal point and proximal gradient methods converge to local minimizers of weakly
convex functions, provided they have the strict saddle property. On the other hand,
without placing further restrictions on the problem data, we are unable to compute
the global Lipschitz constant of the map S(-) corresponding to the proximal linear
algorithm. We leave it as an intriguing open question to determine Lipschitz properties
of the proximal linear update.

The outlined results may seem surprising at first: the optimization problem is non-
smooth and yet we prove the iteration maps S(-) are C'-smooth around any strict
saddle. The reason is transparent and derives from the interplay between the active
manifold and weak convexity. Take the proximal point method, for example. The very
definition of the active manifold guarantees that the fixed point iteration S(-) maps an
entire neighborhood X" around an strict saddle x info the active manifold M. Conse-
quently, for all x € X, the update S(x) can be realized as a minimizer of a smooth
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function over the active manifold:

1
S(x) = argmin £(y) + 7l - x|I%. (1.4)
nw

yeM

Weak convexity, in turn, ensures that S(x) satisfies a quadratic growth condition for
the problem (1.4), which by classical perturbation theory guarantees that S(-) is C'-
smooth on a neighborhood of x. It only remains to argue that the negative curvature of
the objective function at x implies that the Jacobian V S(x) has at least one real eigen-
value greater than one. Though this computation is straightforward for the proximal
point method, it becomes more interesting (and surprising) for the proximal gradient
and proximal linear algorithms.

Roadmap The outline of the paper is as follows. Section 2 is a self-contained pre-
sentation of the necessary preliminaries for formalizing the ideas of the introduction.
Then, in Sects. 3, 4, and 5 we directly analyze the iteration maps for the proximal
point, proximal gradient, and proximal linear algorithms. Section 6 establishes iterate
convergence of the relaxed schemes (1.3) under the Kurdyka—t.ojasiewicz property.

2 Preliminaries

Throughout, we follow standard notation in convex and variational analysis, as set
out, for example, in the monographs [14,45,54,57]. We consider a Euclidean space
R? endowed with an inner product (-, -) and the induced norm | x| = /{x, x). The
unit sphere in R? will be denoted by S?~!. For any function f: RY — R U {co}, the
domain and epigraph are the sets

domf={xeR: f(x) <oo}, epif={xr)eRxR:r=>fx),

respectively. The function f is called closed if epi f is a closed set. For any set
M C RY, the indicator function § M evaluates to zero on M and to 400 off it.
For any function f: R? — R U {oo} and a set M C R?, we define the restriction
fm = f + dp. Throughout, the symbol o(r) will denote any univariate function
satisfying o(r)/r — Oasr N\ 0.

Consider a differentiable mapping F(x) = (F1(x), ..., Fy;(x)) from RY to R™,
Throughout, the symbol V F(x) € R"*? will denote the Jacobian matrix, whose ij’th
entry is given by diiji (x). Thus, row i of VF(x) is the gradient of the coordinate
function F; (x). In the particular case m = 1, we will treat V F (x) either as a column or
as a row vector, depending on context. For a C2-smooth function g: RY x R" — R,
we partition the Hessian as follows:

Vixg(x, y) Vi g(x,y)]
V2 X, — XX y
§.7) [Vyxg(x, ¥) Vyyg(x, y)

FoCT
e,
@ Springer |?o4

Journal: 10208 Article No.: 9516 [ TYPESET [__]DISK [_]LE [_]CP Disp.:2021/4/28 Pages: 46 Layout: Small-Ex

[SPI




Author Proof

228

229

230

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

Foundations of Computational Mathematics

2.1 Subdifferentials and Subderivatives

The following definition records the standard first- and second-order differential con-
structions, which we will use in the paper. After the definition, we will comment on
the role of each construction. For further details we refer the reader to [57, Definitions
8.1, 8.3, 13.59].

Definition 2.1 (Subdifferential and subderivatives) Consider a function f: R? —

R U {oo} and a point x with f(x) finite. Then, the subdifferential of f at x, denoted
d f (x), consists of all vectors v satisfying

) = fE®+ vx—F) +o(lx— &) asx — .
The subderivative of f at X in direction it € R? is

SO+ - f&X)
t

df (x)(u) := lifrii(r)_lf

u—u
The critical cone of f at x for v € R? is
Cr(x,v):={uc R : (0, u) = df (%) (u)).

The parabolic subderivative of f at x for u € domdf (x) with respect to w is

i F ()l D) = liming L0 E 020w — fO) —dfF D@
™NO %Z‘Z .

w—w

We now comment on these definitions, in order. First, a vector v lies in the subdif-
ferential d f (x) precisely when the affine function x — f(x) + (v, x — X) minorizes
f up to first order near x. The definition reduces to familiar objects in classical
circumstances. For example, differentiability of f at x implies the set d f(x) is a
singleton, containing only the gradient V f(x). Convexity of f too entails a simplifi-
cation, wherein 9 f (x) reduces to the subdifferential of convex analysis.

While the subdifferential encodes the set of approximate affine minorants, the sub-
derivative measures the maximal instantaneous rate of decrease of f in direction u.
Like the subdifferential, the subderivative reduces to familiar objects in classical cir-
cumstances. For example, if f is locally Lipschitz at x, then one may set © = u in
its defining expression. Simplifying further, if f is differentiable at x, we recover the
directional derivative expression d f (x) (i) = (V f(x), u). Finally, if f is convex, then
the subderivative reduces to the support function of the subdifferential

df (x)(u) = sup{{i, v) v € I f(N)},

highlighting the dual roles of the subdifferential and subderivative constructions.
FoCT
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For smooth losses, necessary optimality conditions entail vanishing gradients, while
sufficient optimality conditions follow from second-order growth properties of f. Sim-
ilar characterizations persist in the nonsmooth setting. In particular, the subderivative
and the subdifferential feature in first-order necessary optimality conditions, where
the (dual) criticality condition O € 9 f (x) is equivalent to the (primal) nonnegativity
condition

df (X)(u) >0 forallu € R?. (2.1

A point x satisfying these first-order necessary conditions (2.1) is thus called critical
for f. Sufficient optimality conditions, on the other hand, make use of second-order
variations of f. Namely, suppose that a point x is critical for f and consider a direction
i € R, There are two possibilities to consider. On the one hand, if df (x)(u) > O,
then f must locally increase in direction u. On the other hand, if df (x) (i) = 0, then
we must examine second-order variations of f to determine local optimality. Such
directions of ambiguity for the subderivative make up the critical cone C 7 (x, 0). For
these directions, we must look to the parabolic derivative d? £ (X)(i|w), a measurement
of the second-order variation of f along a parabolic arc with tangent direction u# and
second-order variation w. This construction too simplifies when f is C? smooth at ¥,
reducing to the familiar second-order variation:

d? f (%) @@|w) = (V> f (%), i).

This relation suggests second-order optimality conditions for nonsmooth problems.
Although we will not appeal to such conditions directly in this work, we record them
here for completeness. If x is alocal minimizer of f,thendf (x)(u) > O for all u € R",
and moreover inf, crr d? f(x)(u|w) > Oforany nonzerou € Cyr(x, 0). Complement-
ing this necessary condition, a large class of functions, those that are parabolically
regular, may also be endowed with a sufficient optimality condition. Namely, if
df X)(u) > Oforallu € R" and inf,eprr d? f(¥)(u|lw) > O for any nonzero
u € Cyr(x,0), then x is a local minimizer of f. We refer the reader to [8] or [57,
Theorem 13.66] for details.

2.2 Smooth Minimization on a Manifold

The main results of this work exploit local smooth features of nonsmooth optimization
problems (c.f. Definition 2.6). In the presence of these features, the constructions of
Definition 2.1 locally simplify. Before moving to the general setting, we thus interpret
the various derivative constructions in the classical setting of minimizing a C2-smooth
function f ona C 2_smooth manifold M. To that end, we first recall the definition of
a manifold.

Definition 2.2 (Smooth manifold) A subset M C R" is a C? manifold of dimension
r around x € M if there is an open neighborhood U around x and a mapping G from
R" to R"™" such that following hold: G is C?-smooth, the derivative VG (x) has full
rank, and equality holds:

MNU ={xeU:Gx) =0}
FoCT
e
@ Springer |?o4

[SPI

Journal: 10208 Article No.: 9516 [ TYPESET [__]DISK [_]LE [_]CP Disp.:2021/4/28 Pages: 46 Layout: Small-Ex




Author Proof

298

299

300

301

302

303

304

305

306

307

308

309

310

31

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

Foundations of Computational Mathematics

We call G = 0 the local defining equations for M around x. The tangent space to
M at X is Taq(x) := ker VG(X) and the normal space to M at X is Npyq(X) =
range VG (x)*.

Turning to the classical setting, consider the optimization problem

min f(y) subjecttoy € M. (2.2)
yGRd

Fix a point j € M and suppose that both the function f is C?-smooth around j and
M is a C%-smooth manifold around y. Due to local smoothness, the subdifferential
admits the simple expression:

3fm) =V )+ Nm(y).

Recall that we use the shorthand foq := f + 8 r4. From this expression, we see that a
point y € M is first-order critical for the problem (2.2) precisely when the inclusion
holds:

0e Vi) +NmO). (2.3)

This inclusion can be equivalently stated in terms of the Lagrangian function. Namely,
let G = 0 be the local defining equations for M around y and define the Lagrangian
function

L3y, )= f()+(GQY), ).

Then, (2.3) amounts to existence of a (unique) multiplier vector reRm satisfying
0 =V, L(y, A). Next, assuming y is critical, second-order necessary conditions read

<v§yc(y, Mu,u) >0 forallu € Ta(y). 2.4)
Conversely, second-order sufficient conditions read
(ngﬁ()'), Mu,u) >0 forall0 # u € T (). 2.5)

It is well known that the sufficient condition (2.5) implies more than just local mini-
mality; namely, (2.5) holds if and only if there exists ¢ > 0 such that

fO) = f(3) =aly—3I> forally € M neary. (2.6)

Any point y satisfying (2.6) is called a strong local minimizer of f on M.

The Lagrangian conditions (2.4) and (2.5) may be succinctly expressed through
parabolic subderivatives of fa4(y), yielding a form independent of the choice of local
defining equations G = 0. In particular, a quick computation shows that for any
u € Try(y), the function w +— d? f (3)(u|w) is constant on its domain.® Dropping

6 The domain of dsz(y)(ul-) consists of w satisfying ((VZG]()_J)M, uy, ..., (Van_r Mu,u)) =
—VG(y)w, where G; are the coordinate functions of G.
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28 the dependence on w, the equation then holds:
d> ()W) = (Vo LG, Du,u)  forall u € Tay(F).

330 The use of (2.5) goes far beyond verifying local optimality; indeed, this condition
s plays a fundamental role in certifying solution stability under small perturbations. To
;2 illustrate, consider the value function of the parametric family

33 p(x) = ir;f {f(x,y):y e M}, (Py)

334

25 where f is C2-smooth and M C R is a closed set. Let j be a minimizer of P; for a
s fixed parameter X, and suppose that M is a C2-smooth manifold around j. Let G = 0
37 be the local defining equations for M around y and define the parametric Lagrangian
18 function

339 E(x,y,)»)=f(x,y)+<G()’),)x)~

u  Since y solves Py, there is a multiplier vector A satisfying 0 = V,L(%, ¥, 1).

341 The following perturbation result will form the core of our arguments. In short:
w2 both the value function ¢(x) and the minimizer of P, vary smoothly with x, provided
s3  two mild conditions hold (level-boundedness and quadratic growth). Moreover, the
us  derivatives of both the value function and the solution maps can be computed explicitly.
us  For details and a much more general perturbation result, see [59, Theorem 3.1].

1s Theorem 2.3 (Perturbation analysis) Suppose that the following two properties hold.

w 1. (Level-boundedness) There exists a number y > ¢(x) and a neighborhood X of
348 X such that the set

U eM:fG.y) <y} isbounded.
xeX

0 2. (Quadratic growth) The point y is a strong local minimizer and a unique global
351 minimizer of Psx.

32 Define the partial Hessian matrices

s Hoy =Vi LG 5.2,  Hy=ViLE SN, Hy=ViLE 5,

14 and the quantities

355 n(h) = min_ (Hych, h) +2(Hyv, h) + (Hyyv, v),
veTam (3) .
356 ®(h) = argmin (Hych, h) + 2(Hyxyv, h) + (Hyyv, v).
357 veTM(Y)
FoC Tl
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Then, for every x near X, the problem Py admits a unique solution y(x), which varies
C'-smoothly and admits the first-order expansion

yx+h)=y+®h)+o(|k|) ash— 0.

Moreover, the function ¢ is C*-smooth around % and admits the second-order expan-
sion

QE + 1) = () + (Vi f &, ), ) + gn(h) + o(Ih]I*)  ash = 0.

The two assumptions of the theorem play different roles. The level-boundedness
property ensures that the solutions of the perturbed problems P, lie in a compact
set around y. The quadratic growth property in turn ensures smoothness of both the
solution map and the value function. In what follows, we will apply this result several
times. Both conditions will follow in all cases from the next simple lemma.

Lemma 2.4 (Sufficient conditions for level boundedness) Consider a closed function
¢: R x R" — R U {00} and fix a point x € R?. Suppose there exists a > 0 such
that for all x near x, the function ¢(x, -) is a-strongly convex and its minimizer y(x)
varies continuously. Then, y(x) is a strong global minimizer of ¢ (x, -) for all x near x.
Moreover, there exists a neighborhood X of x such that for any real y > ¢(x, y(x)),
the set

U {yeR":9(x,y) <y} isbounded.
xeX

Proof Strong convexity ensures there is a neighborhood X of x such that for any
x € X, the estimate holds:

o(x, () + %ny —yWI* <ox.y) VyeR" @.7)

showing y(x) is a strong global minimizer of ¢(x, -). Shrinking X if necessary, we
may assume that y(-) also varies continuously on X'. Choose any § > 0. Then, by
shrinking X’ again and by leveraging both closedness of ¢ and continuity of y, we may
ensure that

[y(x) —y@®I =8 and o, y(x) =X, y(x) -8 forallx € X. (2.8)

The proof will now follow quickly from the bound (2.8). Indeed, consider any points
x € X and y € R satisfying ¢(x, y) < y. Then, (2.7) yields

2(y — o(x, y(x)))
ly =yl 5\/ . .

Applying (2.8) then gives the uniform bound
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2(y — s 2 §— o, y(x
ly — y@®| < IIY(x)—Y(JE)IH-\/M 58+\/ v+ ;"(’“ YO

completing the proof. O

2.3 Weak Convexity and the Moreau Envelope

In general, the little-o error term in the definition of d f (x) (Definition 2.1) may depend
both on the base point x and on the subgradient v. In this work, we focus on a particular
class of functions for which the error in approximation is uniform. Namely, we focus
on the class of p-weakly convex functions f: RY — R U {oo}, meaning those for
which the assignment x — f(x) + §||x | defines a convex function. Subgradients of
a p-weakly convex function f automatically yield a uniform lower bound:

FO) = F@) + (v, y—x) — gny —x?, VryeR vedfkx). (29

A useful feature of weakly convex functions is that they admit a smooth approxima-
tion that preserves critical points. Setting the notation, fix a p-weakly convex function
f:R?Y — R U {oo} and a parameter i < p~!. Define the Moreau envelope and the
proximal point map, respectively:

1
x) = inf + —|ly—x 2} ,
Ju(x) Jnf {f(y) o Iy —xIl
) 1
prox,, (x) = argmin {f(y) + oy - x||2} :
yeRd M
We will use a few basic properties of these two constructions, summarized below.

Lemma 2.5 (Moreau envelope and the proximal point map) Consider a p-weakly
convex function f: R? — RU{oc} and fix a parameter 1 < p~". Then, the following
are true.

1. The envelope f), is C L_smooth with its gradient given by

V fu(x) = ™" (x — prox,, (x)). (2.10)

1 P

L—pp

2. The envelope f,(-) is ™" -smooth and -weakly convex meaning:

i =5 £ = ) = (V) = 1) = 2 = 2P,
2.11)

forall x,x" € R,

3. The proximal map prox , (-) is ﬁ-Lipschitz continuous and the gradient map

V fu is Lipschitz continuous with constant max{u !, ﬁ .
FolCTM
I_, o
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4. The critical points of f and f, coincide. In particular, they are exactly the fixed
points of the proximal map prox, s.

Proof Claim 1 follows, for example, from [53, Theorem 4.4]. The left-hand side of
(2.11) is proved in [53, Theorem 5.2]. To see the right-hand side, observe

1
fux') < f(prox,, ;(x)) + 350 PO, () = X2

1
= fu)+ 5 (Hprox,, () = /12 = flx = prox,, s ()11

1
= fu () + (™" (x — prox,, ;(x)), x’ — x) + Gl 7.

Thus, claim 2 holds. The result [53, Theorem 4.4] shows that prox,, f(') is Lips-
chitz continuous with constant ﬁ. Lipschitz continuity of V f;,(-) with constant

max{p !, —2—} follows from (2.11) and Alexandrov’s theorem [57, Theorem 13.51].
Thus, claim 3 holds. Claim 4 is immediate from (2.10) and the observation that the
function y — f(y) + ﬁ ly — x||? is strongly convex for any x. O

2.4 Active Manifolds

The nonsmooth behavior of sets and functions arising in applications is typically far
from pathological and instead manifests in highly structured ways. Formalizing this
perspective we will assume that nonsmoothness, in a certain localized sense, only
occurs along an “active manifold.” This notion, introduced in [39] under the name of
partial smoothness and rooted in the earlier works [1,10-12,24-26,64], extends the
concept of active sets in nonlinear programming far beyond the classical setting. In
this work, we will take the related perspective developed in [19], since it will be most
expedient for our purpose.

Before giving the formal definition, we provide some intuition. Taking a geometric
view, we will assume that each critical point of a function f lies on a smooth manifold
M, and that the objective varies smoothly along the manifold, but sharply off of it.
For example, consider Fig. 2a: there, the function f(x,y) = |x| — y2 admits the
active manifold M = {0} x R around its unique critical point (the origin). From an
algorithmic point of view, active manifolds are the sets that typical algorithms (e.g.,
proximal point, proximal gradient [31], and dual averaging [37]) identify in finite
time. Active manifolds also play a central role for sensitively analysis, providing a
path to reduce such questions to the smooth setting. In particular, reasonable conditions
guarantee that the active manifold is smoothly traced out by critical points of slight
perturbations of the problem. We are now ready to state the formal definition.”

Definition 2.6 (Active manifold) Consider a closed weakly convex function f: RY —
R U {oo} and fix a set M C R containing a critical point x of f. Then, M is called

7 What we call an active manifold here is called an identifiable manifold in [19]—the reference we most

closely follow. The term active is more evocative in the context of the current work.
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an active CP-manifold around x if there exist a neighborhood U around x satisfying
the following.

e (smoothness) The set M N U is a CP-smooth manifold and the restriction of f
to M N U is CP-smooth.
o (sharpness) The lower bound holds:

inf{|jv]| :vedf(x), x e U\ M} >0.

If f admits an active manifold around a critical point x, then it must be locally
unique: any two active manifolds at x must coincide on a neighborhood of x [19,
Proposition 2.4, Proposition 10.10].8 Moreover, the critical cone C ¢ (x, 0) coincides
with the tangent space A (x) [19, Proposition 10.8]. With the definition of the active
manifold in hand, we can now introduce the strict saddle property for nonsmooth
functions.’

Definition 2.7 (Strict saddles) Consider a weakly convex function f: RY — RU{oco}.
Then, we say that a critical point X is a strict saddle of f if there exists a C2-active
manifold M of f at X and the inequality d” fy((¥)(u) < 0 holds for some vector
u € Tpq(x). If every critical point of f is either a local minimizer or a strict saddle,
then we say that f satisfies the strict saddle property.

Looking at Fig. 2a, we see that the function f (x, y) = |x| — y* indeed has the strict
saddle property: the restriction of f to the axis M = {0} xR, namely fr4(0, ) = —12,
certainly has directions of negative curvature. Figure 2b depicts the subgradient flow
generated by this function. Notice that the set of initial conditions attracted to the origin
has measure zero. This observation suggests that typical algorithms are also unlikely to
stall at the strict saddle point, an observation made precise by the forthcoming results.

The curvature condition in the definition of the strict saddle pertains only to negative
curvature of the restriction of f to M. One may instead ask whether existence of
directions of negative curvature for f alone suffice. The answer turns out to be yes.

Theorem 2.8 ([18, Corollary 4.15]) Consider a closed weakly convex function
f:RY — R U {00} that admits a C3-active manifold M around a critical point
X. Then, it holds:

A fE) | w) > d*fuE @ forallu € Cr(%,0), w e R
A natural question is whether we expect the strict saddle property to hold typically.

One supporting piece of evidence is that the property holds under generic linear per-
turbations of semialgebraic problems.'? This is almost immediate from guarantees

8 Note that due to the convention infy = +o0, the entire space M = R4 is the active manifold for a
globally C?-smooth function f around any of its critical points.

9 Better terminology would be the terms active strict saddle and the active strict saddle property. To
streamline the notation, we omit the word active, as it should be clearly understood from context.

10° A function is semi-algebraic if its graph can be written as a finite union of sets each cut out by finitely
many polynomial inequalities.
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in [18, Theorem 4.16], though this conclusion is not explicitly stated in the theorem
statement. We state this guarantee below and provide a quick proof in Sect. A for
completeness.

Theorem 2.9 (Strict saddle property is generic). Consider a closed, weakly convex,
semi-algebraic function f: RY — R U {oo}. Then, for a full Lebesgue measure set of
perturbations v € R%, the perturbed function x — f(x) — (v, x) has the strict saddle

property.
2.5 The Center Stable Manifold Theorem

In this work, we will show that a variety of simple algorithms escape strict saddle
points. To prove results of this type, we will interpret algorithms as fixed point iterations
of anonlinearmap 7 : R? — R¢, having certain favorable properties. As in the smooth
setting of [35], the core of our arguments will be based on the center stable manifold
theorem.

Theorem 2.10 (The Center Stable Manifold Theorem [60, Theorem II1.7]) Let the
origin be a fixed point of the C' local diffeomorphism T: U — RY where U is a
neighborhood of the origin in R?. Let ES @ E€ @ E" be the invariant splitting of R¢
into the generalized eigenspaces of the Jacobian VT (0) corresponding to eigenvalues
of absolute value less than one, equal to one, and greater than one. Then, there exists a
local T invariant C' embedded disk Wier., tangent to E* @ E€ at 0 and a neighborhood
B around zero such that T(WS) N B C WE.. In addition, if T*(x) € B forallk > 0,

o loc loc*
then x € W

An immediate consequence of this theorem is the following: if VT (0) is invertible
and has at least one eigenvalue of magnitude greater than one, then there exists a
neighborhood B of the origin such that the set

{xeB: Tk(x) € B for all k£ > 0},

has measure zero. This fact motivates the following key definition.

Definition 2.11 (Unstable fixed points) A fixed point ¥ of a map 7: RY — R< is
called unstable if T is C'-smooth around % and the Jacobian VT (¥) has an eigenvalue
of magnitude strictly greater than one.

To globalize the guarantees of the center stable manifold theorem, we will need to
impose global regularity properties on 7. In this work, we will require the map T to be
a lipeomorphism, namely, we require that T is globally Lipschitz and its inverse 7!
is a well-defined globally Lipschitz map. The following corollary is now immediate.
Its proof closely follows the presentation in [34, Theorem 2].

Corollary 2.12 Let T : RY — R? be a lipeomorphism and let Uy consist of all unstable
fixed points x of T at which the Jacobian VT (x) is invertible. Then, the set of initial
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conditions attracted by such fixed points
W= {x eR?: lim T*(x) eUT}
k— 00

has zero Lebesgue measure.

Proof For every % € Ur there exists a neighborhood U of ¥ such that T: U — R? is
a local diffeomorphism. Thus, the center stable manifold theorem shows there exists
an open neighborhood By of ¥ so that S; := (7, 7% (Bs) is contained in a measure
zero set. In particular, Si itself is measure zero.

Now observe that Uy C U;EuT Bs is an open cover of Ur. Since R? is second
countable, this cover has a countable subcover U7 C Ufi 1 By, . Observe the inclusion
w < Uz U T=J(Ss). Since T is a lipeomorphism, the right-hand side is a
countable union of measure zero sets, and therefore, W has measure zero. O

To verify that amap T is a lipeomorphism, we will appeal to the following standard
sufficient condition. We provide a quick proof for completeness.

Lemma2.13 Let H: R? — RY be a Lipschitz continuous map with constant A < 1.
Then, I + H is invertible and (I + H)~': RY — R4 is Lipschitz continuous with
constant (1 — 1)~ L.

Proof To show that (I + H) is invertible, we must show that for every u € R4, the
equation u = H (x) + x has a unique solution x () € R¥. Equivalently, we must show
that for every u € RY, the mapping

Cu(x) :=u — H(x)

has a unique fixed point. This is immediate from Banach’s fixed point theorem since
&, (+) is strictly contractive.

To show that (I + H )_1 is Lipschitz, choose arbitrary u, v € R4 and define x :=
(I +H) "u)and y := (I + H)"'(v). We then compute

lu—vl =10+ H)x) =T +HWI =[x =yl = I1H&) = H)|
= (1 =Mlx =yl

where we have used the reverse triangle inequality and Lipschitz continuity of H.
Rearranging completes the proof. O

While the iteration mappings S of Sect. 1.3 can be Lipschitz, they are usually not
invertible. Thus, to ensure Lipschitz invertibility, we will consider damped fixed point
iterations, as summarized in the following elementary lemma. We provide a quick
proof for completeness.

Lemma 2.14 (Damped fixed point iterations). Consider a map S: R — R? and fix
a damping parameter @ € (0, 1). Define the map

Tx)=(0—a)x +a-Sk).
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Then, the following are true.

1. The fixed points of T and S coincide.

2. If S is differentiable at x and the Jacobian V S(x) has a real eigenvalue strictly
greater than one, then x is an unstable fixed point of T .

3. Ifthe map S is continuous and the iterates generated by the process xyy+1 = T (x)
converge to some point X, then X must be a fixed point of S.

4. Ifthe map I — S is L-Lipschitz, then T is a lipeomorphism for any & € (0, L™1).

Proof Claims 1 and 2 follow directly from algebraic manipulations. Claim 4 follows
immediately from Lemma 2.13 by writing 7 = I + H with H = «(S — I). To see
claim 3, suppose that T is continuous and that x; converge to some point x. Then, we
deduce

Tx)=T ( lim xk> = lim T(x) = lim xz41 = X.
k— 00 k— 00 k—00

Therefore, x is a fixed point of 7. Using claim 1, we deduce that X is a fixed point of
S. O

3 The Proximal Point Method

‘We now turn to the saddle escape properties of the proximal-point method. Fixing the
problem at hand, we consider

min f(x),

xeRd

where f: RY — RU{oo} is a p-weakly convex function that is bounded from below.
For a fixed u < p~!, the classical proximal-point method is precisely the fixed point
iteration

Xt41 = proxuf (x,).

Key to our analysis is the equivalence between this algorithm and gradient descent on
the Moreau envelope. This equivalence follows from (2.10), which quickly yields the
description

Xkl = Xk — -V fu(xp).

The saddle escape properties of the proximal point method thus flow from the strict
saddle properties of the Moreau envelope. Indeed, the following theorem shows that
when f admits a C? active manifold around a critical point X, the envelope Sfu is
automatically C 2_smooth near x. Moreover, if ¥ is a strict saddle of f, then it is also
a strict saddle of f;,. Consequently, any strict saddle point of f is an unstable fixed
point of the proximal map prox,, ((-).
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Theorem 3.1 (Saddle points of the Moreau envelope). Let f : R? — R U {00} be a
closed and p-weakly convex function and let X be any critical point of f. Suppose that
f admits a C? active manifold M at x. Then, for any u < p~", the Moreau envelope
fuisC 2_smooth around X and its Hessian satisfies

min (V2 f,(X)h, h) < min  d? fap(E)(h). (3.1
heST—1NT (%) heST—INT (%)

Consequently, if X is a strict saddle point of f, then X is both a strict saddle point of
fu and an unstable fixed point of the proximal map prox,, ¢ (-). Moreover, Vprox,, ;(x)
has a real eigenvalue that is strictly greater than one.

Proof 1t is well known (for example, from [31]) that for all x near x, the inclusion
prox,, ¢ (x) € M holds. From this inclusion, we will be able to view the proximal
subproblem through the lens of the perturbation result in Theorem 2.3. For the sake
of completeness, however, let us first quickly verify the claim. Consider a sequence
x; — X and observe the inclusion V f, (x;) € 9 f (prox " f(x,-)). Since the gradient V f},
is continuous, we deduce the limits Prox,, s (x;) = x and V f,(x;) — 0. Therefore,
by definition of the active manifold, we have prox,, ;(x;) € M for all sufficiency large
indices i, proving the claim.

Turning to the perturbation result, let F: R? — R be any C?-smooth function
agreeing with f on a neighborhood of % in M.!! Applying the claim, we find that the
equality

o L
fu(x)—yﬂelﬁ {F()’)+2M||y x|l }

holds for all x near x. Our goal is to apply the perturbation result (Theorem 2.3) with
fx,y) = F@y) + ﬁ”y — x||? and ¢(x) = fr(x). To that end, we now verify
the assumptions of Theorem 2.3. First, we verify the quadratic growth condition:
since we have chosen . < p~!, it follows that for every x € R the function y >
fx) + ﬁ |y — x||? is strongly convex with constant ;! — p. Next, we verify the
level boundedness condition: since the minimizer y(x) := prox, £(x) of this function
varies continuously and satisfies y(x) = X, the conditions of Lemma 2.4 are satisfied.
Therefore, the assumptions of Theorem 2.3 are valid.

We now apply Theorem 2.3. To that end, let G = 0 be the defining equation of M
around x and define the parametric Lagrangian function

1
L(x,y,2) = F()+ muy — x|+ (G (), ).

Since X is critical for f, the equality ¥ = prox,, ;(x) holds. Consequently, y(x) =
X minimizes the function y — F(y) + ﬁ”)’ — X||? on M. Therefore, first-order

1 For example, let F be a C? function defined on a neighborhood U of X that agrees with f on U N M.
Using a partition of unity (e.g., [36, Lemma 2.26]), one can extend F from a slightly smaller neighborhood
to be CZ on all of RY.
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optimality conditions guarantee there exists a multiplier vector A satisfying

0=V,L(¥, % 1) = VFE) + Y_LGi(X),

i>1

where G; (-) are the coordinate functions of G (-). Appealing to Theorem 2.3, we learn
both that f,, is C2-smooth around ¥ and that its Hessian satisfies

(V2f ()b, h)y = min_ (Hych, h) +2(Hyyu, h) + (Hyyu, u), (3.2)

ueT A (%)
where the Hessian matrices are given by
m
Hoo=p ',  Hy=-p"'I,  Hy=VF&+)Y LVGiE) +pu 'l
i=1

Thus, rearranging (3.2) and setting D := V2F (%) + > %iV2G; (%), we have

(V2 fu@h, )y = min | (Du )+ h = ul?].
ueTrq(x)

Therefore, we arrive at the estimate

min  (V2f,(®)h. h) = min mi {(Du, )+ — u||2]
heSI=INT A (%) UETAM(X) heS—1NTpq(¥)
< min (Dh,h)= min  d*fp@E)0h),
heS?=1NT (o) heS=1INT A (X)

thereby verifying (3.1). If ¥ is a strict saddle point of £, then (3.1) implies that V2 Ju(x)
has a strictly negative eigenvalue. From the expression prox, , = I — uV fy, we
therefore deduce that the Jacobian of prox , , at x has at least one real eigenvalue that
is strictly greater than one. Consequently, X is an unstable fixed point of prox, ;. O

Even if the proximal mapping has an unstable fixed-point, it often fails to meet the
conditions of the center stable manifold theorem (Theorem 2.10). Indeed, the proximal
mapping is generally not injective, even near critical points. To remedy this issue, we
instead analyze a slightly damped version of the proximal point method

Xi+1 = (1 =) xg + o - prox,, ¢ (x),

where « € (0, 1) is a fixed constant. Reinterpreting this algorithm in terms of the
Moreau envelope, we arrive at the recurrence

X1 = Xk — (ap) -V fru(xe). (3.3)

Thus, the role of damping is clear: it still induces gradient descent on the Moreau
envelope, but with a stepsize slightly below the “theoretically optimal” step w. This is
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entirely in line with the saddle point escape guarantees for gradient descent in smooth
minimization [35].

Theorem 3.2 (Proximal point method: global escape). Let f : R? — R U{oo} be a
closed and p-weakly convex function satisfying the strict saddle property. Choose a
constant i < p~ ' and a damping parameter o € (0, min{1, (up) "' —1}). With these
choices, consider the algorithm

X1 = (I — @)xg + o - prox, ¢ (xi). 34

Then, for almost all initializers xo, the following holds: if the limit of {xx}k>0 exists,
it must be a local minimizer of f.

Proof Define the map S := prox,, 7 (xx). Lemma 2.5 guarantees that the map / — § =
uV f,, is Lipschitz continuous with constant max{1, %}. Taking into account the
range of o and applying Lemma 2.14 and Theorem 3.1, we may deduce the following
three properties: (1) 7 is a lipeomorphism, (2) the limit of the sequence xy, if it exists,
must be a critical point of f, and (3) if a critical point of f is not a local minimum,
then it is an unstable fixed point of 7. An application of Corollary 2.12 completes the

proof. O

4 The Proximal Gradient Method

‘We now turn to the saddle escape properties of the proximal gradient method. Fixing
the problem at hand, we consider

min f(x) = g(x) + r(x), 4.1)
xeRd

where g: RY — R is a C%-smooth function with S-Lipschitz gradient and r: R? —
R U {400} is a closed and p-weakly convex function. We assume throughout that f is
bounded from below. For this problem, the proximal gradient method takes the form

X1 = Prox,,, (xk — uVg(xp)) .

Unlike the proximal point algorithm, the proximal gradient algorithm may not corre-
spond to gradient descent on a smooth envelope of the problem. Still, as the following
theorem shows, the iteration mapping is C' smooth near X whenever f admits a C>
active manifold around a critical point x. Moreover, if x is a strict saddle point of f,
then x is an unstable fixed point of the iteration mapping

Theorem 4.1 (Unstable fixed points of the prox-gradient map). Consider the optimiza-
tion problem (4.1) and let X be any critical point of f. Suppose that f admits a C?
active manifold M at X. Then, for any ju € (0, p~V), the proximal-gradient map

S(x) = prox,,, (x — uVg(x))
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e
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is C'-smooth on a neighborhood of . Moreover, if X is a strict saddle point of f, then
VS§(x) has a real eigenvalue that is strictly greater than one.

Proof 1tis well known (for example, from [31]) that for all x near x, the point S(x) lies
in M. From this inclusion, we will be able to view the proximal subproblem through the
lens of the perturbation result in Theorem 2.3. For the sake of completeness, however,
we provide a quick proof. Indeed, consider a sequence x; — x and set y; = S(x;).
Then, by definition of the proximal gradient map, we have 0 € Vg(x;) + u ' (y;i —
x;i) + 0r(y;), and therefore

dist(0, 8 f (v;)) = dist(—=Vg(y;), dr(yi)) < dist(—Vg(x;), dr(yi) + Bllyi — x|l
< "+ B)llyi — xill.

Since S(-) is continuous and S(x) = x, we deduce y; — x and therefore
dist(0, 3 f (yi)) — 0. Therefore, the points y; lie in M for all sufficiently large indices
i, proving the claim.

Turning to the perturbation result, let R: R? — R be any C?-smooth function
agreeing with r on a neighborhood of x in M. Applying the claim, we find that for x
near x, the point S(x) uniquely minimizes problem

1
min {g(x)+(Vg(x),y—x)~|—R(y)+—||y—x||2}. (Px)
yeM 21

Our goal is to apply the perturbation result (Theorem 2.3) with f(x, y) = g(x) +
(Vg(x),y—x)+R()+ ﬁ |ly — x| To that end, we now verify the assumptions of
Theorem 2.3. First, we verify the quadratic growth condition: since we have chosen
n < p~ L, itfollows that for every x € R the function y — £ (x, y) is strongly convex
with the constant 2 ~! — p. Next, we verify the level-boundedness condition: since the
minimizer S(x) clearly varies continuously and satisfies S(x) = x, the conditions of
Lemma 2.4 are satisfied. Therefore, the assumptions of Theorem 2.3 are valid.

We now apply Theorem 2.3. To that end, let G = 0 be the defining equation of M
around x and define the parametric Lagrangian function

1
L0y, 1) = g0+ (Ve), y=x) + RO + 7l - X[+ Y MG,

i>1

where G;(-) are the coordinate functions of G. Clearly y(x) = X minimizes f(x, -)
on M. Therefore, first-order optimality conditions guarantee there exists a multiplier
vector A satisfying

0=V,L(X, % 4) = Vg&) + VRE + Y_ 4G;i().

i>1

Appealing to Theorem 2.3, we learn that the solution map S(-) is C'-smooth around
x with

VS(X)h = argmin 2(H,,v, h) + (Hyyv, v), “4.2)
veT ()
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where the Hessian matrices are given by

p
Hy =V2g(®) —p ', Hy=VRE®+p ' 1+) LV3Gi().
i=1

We now simplify the expression (4.2). To that end, let W be the orthogonal projection
onto 7o (x) and define the linear maps H_)y Thr(x) = Taq(x) and H_xy: Th(x) =
Thr(x) by setting H_” = WH,,W and H_xy = WH,,W, respectively. Since X is a
strong local minimizer of Py, the map Hy, is positive definite, and hence invertible.
Solving (4.2) then yields the expression

VS(@h=—H, Hy b forallh € Tag(3).

Note that H_XyT is a symmetric matrix, so we drop the “T” throughout.

Let us now verify that if x is a strict saddle of f, then V.S(x) has a real eigenvalue
that is greater than one. To this end, observe that y € R is a real eigenvalue of VS(x)
with an associated eigenvector v € T4 (x) if and only if

- — 1 — —_
VSx)v = yv — —Hyy Hyyv=yv <— (yHyy + Hyy)v =0.

In particular, if the matrix yﬁyy + H,, is singular, then y is an eigenvalue of VS§(x).
To prove such a y exists, we will examine the following ray of symmetric matrices

{Vﬁyy +H_xy 2
Beginning with the end point, the strict saddle property shows that
Hyy+ Hey =W (Vzg@) +V’R() + Zi,v%,-@) w.
i
has a strictly negative eigenvalue. On the other hand, the direction of the ray ﬁyy isa

positive definite matrix. Therefore, by continuity of the minimal eigenvalue function,
there exists some y > 1 such that the matrix y Hy, + H,, is singular, as claimed. O

Similar to the proximal point method, the proximal gradient mapping fails to meet
the conditions of the center stable manifold theorem (Theorem 2.10), since it generally
lacks invertibility. Therefore, as before we will analyze a slightly damped version of
the process, and prove the following theorem.

Theorem 4.2 (Proximal gradient method: global escape). Consider the optimization
problem (4.1) and suppose that f has the strict saddle property. Choose any constant
w € (0, p~Y) and a damping parameter « € (0, 1) satisfying

«- (uﬂ—i—(l +,u,3)max{1, %}) <1
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Consider the algorithm
Xk+1 = (1 —a@)xg + o - prox,, (xx — uVgxy)). 4.3)

Then, for almost all initializers x, the following holds: if the limit of {xi}r>0 exists,
it must be a local minimizer of f.

Proof Define the maps S = prox,,, (I — uVg). We successively rewrite

[ —S=(—-nvg) —prox,, (I —uvVg)+uvg
=u-Vrpo(l —uvVg)+uVvg.

Lemma 2.5 implies that the map I — S is Lipschitz continuous with constant g+ (1+

uB) max { 1, 5 ‘_‘Z 5 } . Taking into account the range of « and applying Lemma 2.14 and
Theorem 4.1, we may deduce the following three properties: (1) T is a lipeomorphism,
(2) the limit of the sequence xy, if it exists, must be a critical point for f, and (3) if a
critical point of f is not a local minimum, then it is an unstable fixed point of 7. An

application of Corollary 2.12 then completes the proof. O

5 The Proximal Linear Method

We now turn to the saddle escape properties of the proximal linear method, a gen-
eralization of the proximal point and proximal gradient methods. Setting the stage,
consider the composite optimization problem

min f(x) = h(F () +r(x), (5.1

where F: RY — R™ is a C%-smooth map, h: RY — R is convex, and r: RY —
RU{oo} is p-weakly convex. As is standard in the literature, we will assume that there
exists a constant 8 > 0 satisfying

Ih(F(y)) — h(F(x) + VF(x)(y — x))| < guy —xI?, Vx,yeRY (52

These assumptions then easily imply that f is weakly convex with constant 8 + p.

With the stage set, we now slightly refine the notion of a strict saddle, adapting it
to the compositional nature of the problem. This refinement intuitively asks that the
active manifold for f at a critical point x is induced by active manifolds of / and r.
Similar conditions have appeared elsewhere, for example, in [19,39,40]. To describe
the condition formally, we will also revise the definition of an active manifold, allowing
us to discuss active manifolds of 4(-) and r(-) at noncritical points. The revision is
intuitive, requiring just a linear tilt of the functions:

e Consideraset R C RY, a point x € R, and a subgradient v € dr(x). We will say
that R is a C? active manifold of r at x for v if R is a C? active manifold of the
tilted function r — (v, -) at x in the sense of Definition 2.6.
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We may likewise define the active manifold of / at z for w € dh(z), based on a tilting
of h by w. Coupling these definitions, we arrive at the active manifold concept for the
composite problem (5.1).

Definition 5.1 (Composite active manifold) Consider the compositional problem (5.1)
and let x be a critical point of f. Fix arbitrary vectors w € dh(F(x)) and v € 9r(x)
satisfying

0e VFX)*w + v. (5.3)

Suppose the following hold.

1. There exist C2-smooth manifolds R C R? and H c R™ containing x and F(x),
respectively, and satisfying the transversality condition:

VF @) [TR()] + TH(F(¥)) = R™. (5.4)

2. R is an active manifold of » at x for v and H is an active manifold of 4 at F(x)
for w.

Then, we will call M := R N F~'(H) a composite C? active manifold for the
problem (5.1) at x. If in addition the inequality d” fa((¥)(#) < O holds for some
vector u € Taq(x), then we will call x a composite strict saddle point.

This definition has several important subtleties. First, the set M := RN F G
is indeed a C2-smooth manifold around X, due to the classical transversality condition
(5.4), a central fact in differential geometry [36, Theorem 6.30]. Next, the vectors v
and w do exist. This follows since x is first-order critical for f:

0 € VF(X)*0h(F (X)) + ar(x).

Beyond existence, the vectors v € dr(x) and w € dh(F(x)) are in fact the unique
elements satisfying (5.3), a second consequence of transversality. To see this, we state
(5.4) in dual terms as

(VF(E)*) ™ 'Nr(¥) N Ny (F (%)) = {0} (5.5)
Considering another pair v € dr(x) and w € dh(F (x)) satisfying (5.3), we deduce
0=VF*&)(w—w)+ (v —v).

To conclude v = v and w = w, we use (5.5) and simply recall that span 0h(F (x)) =
Ny (F(x)) and span dr(x) = NR(X), as shown in [19, Proposition 10.12]. Finally,
collecting these facts together, it follows from the chain rule [19, Proposition 5.1] that
M is an active manifold of f at x in the sense of Definition 2.7.

A natural question is whether we expect the composite strict saddle property to hold
typically. One supporting piece, of evidence, analogous to Theorem 2.9, is that the
property holds under generic linear perturbations of semialgebraic composite prob-
lems. This result quickly follows from [18, Theorem 5.2]. We provide a proof sketch
in Sect. A.
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Theorem 5.2 (Strict saddle property is generic). Consider the composite problem (5.1),
where h, r, and F are in addition semi-algebraic. Then, for a full Lebesgue measure
set of perturbations (y, v) € R" x RY, the problem

min A(F (x) +y) +r(x) — (v, x)

has the composite strict saddle property.

Turning to our central task, we aim to analyze the saddle escape properties of the
proximal linear method:

. 1
X1 = argmin ~(F (xx) + VF () (y — xi) +r(y) + ﬂlly — xill.
y

To analyze this method, we prove the following theorem, showing that any strict
saddle point of the composite problem (5.1) is an unstable fixed point of proximal
linear update.

Theorem 5.3 (Unstable fixed points of the proximal linear map). Consider the com-
posite problem (5.1) and let x be any critical point of f. Suppose the problem admits
a composite C? active manifold M at x. Then, for any u € (0, p~"), the proximal
linear map

1
S(x) = argmin h(F(x) + VF()(y —x)) +r(y) + ley — x| (5.6)
y

is C'-smooth on a neighborhood of . Moreover, if X is a composite strict saddle point,
then the Jacobian V S(X) has a real eigenvalue strictly greater than one.

In most ways, the proof mirrors that of Theorem 3.2. There is, however, an impor-
tant complication: we must move beyond the perturbation result of Theorem 2.3 and
instead analyze a parametric family of optimization problems where both the objective
and the constraints depend on a perturbation parameter. Therefore, we will rely on
the following generalization of Theorem 2.3. For details and a much more general
perturbation result, see [59, Theorem 4.2].

Theorem 5.4 (Perturbation analysis). Consider the family of optimization problems

min f(x,y) subjectto G(x,y)=0 (Qx)
y

Fix a point x and a minimizer y of Qz, and suppose the following hold.

1. (Nondegeneracy) The function f(-,-) and the map G(-,-) are C2-smooth near
(x, y), and the Jacobian VyG(x, y) is surjective.

2. (Level-boundedness) There exists a neighborhood X of x and a number y greater
than the minimal value of Qi such that the set

U {ye¥Yx): f(x,y) <y} isbounded,

xeX
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where Y (x) := {y : G(x, y) = 0} denotes the set of feasible points for Q.
3. (Quadratic growth) The point y is a strong local minimizer and a unique global
minimizer of Qx.

Define the parametric Lagrangian function

L.y, A) = f(x,y) +(G(x, ), 2).

Fix the multiplier vector X satisfying 0 = VyL(x,y, 1) and define the Hessian matri-
ces

Hye = V3 LE 5.0,  Hy=ViLE 5.1, Hy =V LE ..

Then, for every x near x, the problem Q, admits a unique solution y(x), which varies
Cl-smoothly. Moreover, its directional derivative in direction h given by

Vy@)h = argmin 2(Hyyv, h) + (Hyyv, v)
v 6.7
s.t. ViG(x,y)h+ V,G(x, y)v =0.

With these tools in hand, we now prove Theorem 5.3.

Proof of Theorem 5.3 Let v, w, H , R, and M be the vectors and manifolds specified in
Definition 5.1. It is known from [40, Theorem 4.11] that for all x near x, the inclusions
hold:

Sx)eM and F(x)+VFx)(Skx)—x)eH.

From this inclusion, we will be able to view the proximal subproblem through the lens
of the perturbation result in Theorem 5.4. For the sake of completeness, however, we
provide a quick proof. Indeed, consider a sequence x; — x and define z; = F(x;) +
V F(x;)(S(x;)—x;). Then, appealing to the optimality conditions of the proximal linear
subproblem, we deduce that there exist vectors v; € dr(x;) and w; € dh(z;) satisfying
l%(xi — S(xj)) = VF(x;)*w; + v;. Since S(-) is continuous and % is Lipschitz, the
vectors w; and v; are bounded. Passing to a subsequence, we may assume that w; and
v; converge to some w € dh(F(x)) and v € dr(x), respectively, and moreover, that

0e VF(X)*w +v.

We therefore deduce w = w and v = v. Taking into account that R is a C>-active
manifold at ¥ for ¥ and H is a C2-active manifold at F (X) for w, we deduce S(x;) € R
and z; € H for all large indices i, proving the claim.

Turning to the perturbation result, let h: R" — R be any C2-smooth function
agreeing with  on a neighborhood of F (i) in , and let 7: R? — R be any C>-
smooth function agreeing with r on a neighborhood of x in R. Applying the claim,
we find that for x near x, we may write
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R 1
S(x) = argmin h(F(x)+ VF&)(y —x)) +7(y) + 2—I|y —x|?
y n (5.8)

st. Fx)+VF(x)(y—x)eH and yeR

Our goal is to apply the perturbation result (Theorem 5.4) to the parametric family
(5.8). To this end, let @ = 0 be the local defining equations of H around F(x) and
let n = 0 be the local defining equation of R around x. We can now place (5.8) in the
setting of Theorem 5.4 by setting

n 1
fx,y) =h(F(x)+VFx)(y —x)) +F(y) + ﬁny —x|?
and

G(x,y) == (GM™(x,y), GR(x,)) i= (@(F(x) + VF(x)(y = x)), n(y))-

For these functions, we now verify the assumptions of Theorem 2.3. First, the nonde-
generacy property follows from the transversality condition (5.4). Second, we verify
the quadratic growth condition: since we have chosen it < p~!, it follows that for
every x € R? the function y — f(x, y) is strongly convex with the constant u~! — p.
Finally, we verify the level-boundedness condition: since the minimizer S(x) clearly
varies continuously and satisfies S(x) = x, the conditions of Lemma 2.4 are satisfied.
Therefore, the assumptions of Theorem 2.3 are valid. In particular, we learn that the
solution map S(-) is C!'-smooth around .

Computing the Jacobian of the solution mapping will occupy the remainder of the

proof. To that end, define the parametric Lagrangian

Lx,y,2) = f(x, ) +(G(x, ), A).

Localizing, the identification properties then entail that y = X is a minimizer of the
problem (5.8) corresponding to x = x. We conclude there exists a Lagrange multiplier
vector A = ()_LH s )_LR) satisfying 0 = V, L(x, x, i), a fact we will return to after a few
calculations.

We now compute the first-order variations of f and G. To simplify notation, we
adopt two conventions. First, we align the notation of gradients and Jacobians, viewing
every gradient as a row vector. Second, we let the symbol V2 F[x; v] denote the m x d
matrix whose ith row equals v V2F;(x). Then, defining the map

{(x,y) = F(x) + VF()(y — x),
a quick computation shows

Vyi(x,y) = VF(x) and Viel(x,y) =V2F[x,y—x].
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Therefore, using the chain rule, we compute the first-order variations

VoG (x,y) = Voo (§(x, y)) - VEF[x, y — x]

VyG(x,y) = VoL (x, y)) - VF(x)

V,GR(x,y) =0

VyGR(x,y) = Vn(y)
Vif @, y) = Vh(x,y) VFlx,y —xl+u ' — )"
Vy @, y) = VA, ) - VF@) + Vi) +p ' -2 ".

From these variations we deduce V,G (x, x) = 0 and therefore the constraint in (5.7)
simply amounts to the inclusion

v € ker V, G (¥, ¥) = <ker vn(;z)) n (ker(Va)(F()E)) . VF()E)))

5.9
= TR(¥) N VF@) ™' T (F(®)) = T ().
In particular, formula (5.7) reduces to
VS8(x)h = argmin 2(H,yv, h) + (Hyyv, v), (5.10)

veT pq (%)

To find an explicit solution, we mirror the analysis of the proximal gradient method.
We let W be the orthogonal projection onto 7p(¥) and define the linear maps
Hyy: TpM(X) — Tamq(X) and Hyy: Taq(X) — Taq(%) by setting Hyy, = WHy,, W
and H_xy = WH,, W, respectively. Since x is a strong local minimizer of (5.7), the
map H_yy is positive definite and invertible. Solving (5.7) then yields the expression

VS@h=—H, Hy h forallh € Ta (o).

Let us now verify that if x is a composite strict saddle of f, then V.S(x) has a real
eigenvalue that is greater than one. To this end, observe that y € R is an eigenvalue
of V§(x) with an associated eigenvector v € T (x) if and only if

- N — — —T
VSx)v = yv — —Hyy Hyy v=yv — (yHyy + Hyy )v=0.

In particular, if the matrix y Hyy + nyT is singular, then y is an eigenvalue of V. §(x).
To prove such a y > 1 exists, we will show that ﬁxy is self-adjoint, and then, we will
examine the following ray of symmetric matrices

— —T
{(vHyy + Hyy :y >1}.

Beginning with the end point, we will show that the matrix ﬁyy + Iy—r has a strictly

negative eigenvalue. On the other hand, we already know the direction of the ray
FoC !
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ﬁyy is a positive definite matrix. Therefore, by continuity of the minimal eigenvalue
function, there will exist some y > 1 such that the matrix yﬁyy + H_Xy is singular, as
claimed.

To this end, we now compute the second-order variations.

Viy Gl (x, y)v = V2F[x; 0] Vo (¢ (x, ) T
+ V2F[x:y — x]' V2w (¢ (x, y)VF (x)v
Vyy G (x, y)v = VF(x) T V2w (£ (x, y))VF (x)v
Viy f(x, y)v = VEF[x; 0] VA (x, y) T
+ VEFLx; y — x]IV2A(E (x, Y)VF(x)v —
Vyy f(x, y)v = VF @) VR (x, ))VF () + V2E()v + o,

A quick computation then shows that Vy, f(x, X) and nyGlH()E, x) are self-adjoint
operators. Consequently, we obtain H,, = H )Iv and the expression

(Hyy + HL)v = VF(@)TV2h(F(£)VF (&)v + V(@) + V2F[E; v] T VAF (%)
+y A <VF()E)TV20),-(F()E))VF()?)U + V2F[x; v]TVa);(F()Z))T)

i>1

+Y ARV,

i>1

To prove that Hy, + H);';, has a strictly negative eigenvalue, we will show that it
coincides with the Hessian of the Lagrangian of the problem:

min ﬁ(F(x)) + F(x) subject to w(F(x))=0,nx) =0.
X
Indeed, define the Lagrangian function

Lo(x,2) = h(F(x)) +F@)+ Y Ato(F)+ Y aFn(x).

i>1 i1
A quick computation shows

V2(ho F)(x)v = VF(x) VZh(F(x))VF (x)v + V2F[x, v] ' VA(F (x)) "
V2 (w; o F)(x)v = VF(x)"V2w; (F(x))VF(x)v + V?F[x,v] Ve (F(x))"

and therefore the equality
V2Lo(X, 1) = Hyy + H,,.

The composite strict saddle property guarantees that the matrix V2Lo(x, A) has a
strictly negative eigenvalue, completing the proof. m}
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In line with the previous sections, one could ask whether a damped and randomly
initialized proximal linear method almost surely escapes all composite strict saddle
points. An immediate obstacle is that the global Lipschitz constant of the proximal
linear map S(-) defined in (5.6) seems unclear, and therefore, we are unable to find
an appropriate damping parameter. Instead we will settle for a local escape guarantee
supplied by the center stable manifold theorem. We leave it as an intriguing open
question to obtain global escape guarantees for the damped proximal linear algorithm.

A first difficulty in applying the center stable manifold theorem is that the Jacobian
VS(x) at the saddle point x may not be invertible. Consequently, we will damp the
proximal linear method, forcing the update to be a local diffeomorphism. To compute
an appropriate threshold for the damping parameter, we will need to estimate the
operator norm of V.S(x). This is the content of the following lemma.

Lemma 5.5 (The slope at the critical points). Consider the composite optimization
problem (5.1) and choose any u € (0, (p + 2,3)_1). Then, for all points x € R? and
all critical points ¥ € RY, the proximal linear map S(-) defined in (5.6) satisfies

- [ 2Bu up + up -
I1S(x) — x| = <1 + m) -max{l, m} e — x|l

Proof To simplify notation, define the map

C(x,y) =Fx)+ VF(@x)(y—x).

' B, fix an arbitrary point x € R?, and define

Sety :=u~
¥t .= S(x) and il ProxX ¢/, (x).

Using strong convexity of the prox-linear and proximal subproblems and the estimate
(5.2), we successively compute

B + (@) + 2IE = xI? < b 4 r) + 2t —x)? - %nf - 2|
<h@ @y +rech) + T e e VA B gy
<h@G ) +r@) + #nf —xI? = (v = p)lxt = #|?
<@ + ) + L2211

Rearranging yields the estimate

(v —o)lxt =212 < 281% — xII* =28y IV fi, ()11
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Therefore, using Lipschitz continuity of the gradient V f1,, (Lemma 2.5) and the
triangle inequality yields

_ 28y 2 + -
Ixt =z <[y '+ Py ~maX{%p1—ﬁ}~llx—xll
y—p L—y=(p+8)
2
(14 2R ~max{l,M}-||x—i||,
L —uB—pp 1 —pup—2uB
as claimed. O

We are now ready to deduce that the damped proximal linear method almost locally
escapes any composite strict saddle point.

Theorem 5.6 (Proximal linear method: local escape). Consider the composite prob-
lem (5.1) and let X be any composite strict saddle point. Choose any constant
we @, (p+ 2/3)_1) and a damping parameter o € (0, 1) satisfying

[ 2Bu up + pup
a-<1+(<1+ —1_%3_“/0)~max{l,—1_up_2uﬂ}>) < 1.

Define the damped proximal linear update
Tx)=(1—a)x +aS(x),

where S(-) is the proximal linear map defined in (5.6). Then, there exists a neighbor-
hood U of x such that the set of initial conditions

{(x e U : S¥x) e U forallk > 0}

has zero Lebesgue measure.

Proof First, using Theorem 5.3 and Lemma 2.14, we deduce that x is an unstable fixed
point of x. Let us next verify that 7 is a local diffeomorphism around x. To see this,
observe

VT &) = I —a(l — VS(X)).

Using Theorem 5.5, we deduce a|[/ — VS(x)[lop < 1 and therefore T is invertible.
An application of the center stable manifold theorem (Theorem 2.10) completes the
proof. O
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6 Convergence of Relaxed Descent Methods

Thus far, all of our escape theorems made an assumption that the iterate sequence
generated by the algorithms converges. In this section, we verify this assumption for
the damped proximal point, proximal gradient, and proximal linear methods. Taking a
general view, we see that the iterative methods of this paper can be understood within
a broad family of damped model-based algorithms for minimizing a function f. These
algorithms construct iterates xo, xi . . . by repeatedly minimizing a local model f; (-)
of the function and moving in the direction of its minimizer. More specifically, in the
section we suppose that there exist constant p, 1, 8 > 0 such that the the following
properties hold:

(A1) The function f: R? — R U {oo} is closed and p-weakly convex.
(A2) Forallx € R there exists a closed -weakly convex function f, : R — RU{oo}
satisfying

O — f] < guy _xIP  forally € RY.

Under these assumptions, we will study how the following algorithm behaves: given
iterates xo, ..., x; define

) T
o = argmin { £, 0) + Sy — 3112}
yeRd

(MBA)
X1 = (1 —a)x; +ayy,

where T > 0 and o > 0 are fixed constants, determined below.

To analyze this algorithm, we rely on the seminal paper [3]. There, the authors
identified three conditions, guaranteeing global convergence of a sequence {z;} of
“algorithm iterates” to a critical point of a closed function g : R — RU{oc}. Namely,
they assume there exist a, b > 0 such that the following holds:

(B1) (Sufficient Decrease.) For each r € N, we have

8z +allzesr — ze1% < g(z0)

(B2) (Relative Error Conditions.) For each ¢t € N there exists w,+1 € dg(z;+1) such
that

lweill < Dllze+1 — 2|l
(B3) (Continuity Condition.) There exists a subsequence {z;; } and Z such that
2, — zand g(z;) — g(2), as j — oo.

The above assumptions alone may not guarantee that z; converges to a critical
point of g. Instead, the authors of [3] restrict their focus to the broad class of functions
satisfying the Kurdyka—tojasiewicz property.
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Definition 6.1 (KE Function) Let g: RY — RU{oo} be a closed function. We say that
g has the Kurdyka—tL.ojasiewicz (KL) property at a point X, where dg(x) is nonempty,
if there exists ¢ € (0, 400], a neighborhood U of x, and a continuous convex function
¢: [0, &) = R satisfying

1. ¢(0) =0,
2. ¢is C'on (0, &) with ¢’ > 0, and
3. the KL inequality

1

dist(0, 8g(x)) = —— ==
ist(0, dg(x)) > @' (g(x) — g(X))

holds for all x € U satisfying g(x) < g(x) < g(x) + ¢.

If g satisfies the KL property at each point x, with dg(x) # @, then g is called a KE
function.

The class of KL functions is broad, containing all closed semialgebraic functions
and more broadly any functions definable in an o-minimal structure, as shown in the
pioneering work [7]. Under these assumptions we have the following theorem from [3,
Theorem 2.9].

Theorem 6.2 Let g: R? — RU{oo} be a closed function. Consider a sequence x; that
satisfies (B1), (B2), and (B3). If g satisfies the KL property at some cluster point X,
then X is a critical point of g, the entire sequence xj converges to X, and the sequence
X; has finite length

o0
D s — xil < oo
t=0

In the remainder of this section, we will verify assumption (B1), (B2), and (B3)
for the sequence {z;} = {x;} and the Moreau envelope g := fj,;, where 0 will be
chosen in a moment. Since the critical points of f and f},; agree, the result will imply
convergence to critical points of f.To do so, we employ one final assumption.

(A3) Forevery p > 0, the Moreau envelope f; /p s a KE function.

Although assumption (A3) may appear hard to verify, it holds whenever f is semi-
algebraic since in this case f7,; is also semialgebraic. More generally, the analogous
statement holds if f is definable in an o-minimal structure. The following is the main
result of this section.

Theorem 6.3 (Convergence of relaxed model-based methods). Suppose that a €

(0, 1], that T > max{n, 2p, 4’3+Tp+’7}, and that assumptions (A1) and (A2) hold. Then,

forall T > 0, we have

f1p(x0) —inf f
ap—p—n—P) ’
%Gt T D

min ||V fi/; <
o IV f15x0ll <
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where p = (1/2)t + (1/4)(p +n). Moreover; if (A3) also holds and the sequence {x;}
has a cluster point x, then X is critical for f and the entire sequence {x;} converges
to X. Moreover, the sequence {x;} has finite length.

o0
D s = xill < oo
t=0

This result is new and may be of independent interest. In particular, the conclusion
of the theorem extends the convergence guarantees for the proximal linear method

devel

oped in [52] to all relaxed model-based algorithms.

6.1 Proof of Theorem 6.3

We are free to choose the parameter p defining the Moreau envelope. To this end, we

will need the existence of a parameter 0, satisfying the following inequalities.

Lemma 6.4 Under the assumptions of Theorem 6.3, it holds that p > p and

1.t

- [5 - f; > (l

2.20-p—n—B>0,

3. 5
4. 1

+t1—p—1n>0,
— 2=pmn=b
p+T—p—1 :

Proof Notethatp > 7/2 > p > Oandthatp =t —B—¢/2fore = 2t —48—p —
n)/2 > 0. To prove the first inequality, notice that t — 0 — 8 = &/2 > 0. To prove
the second inequality, notice that

20—p—n—B=2t—4B—p—n—c=¢>0.

To prove the third inequality, observe

prt—p—n>p+P+p —p—n=2p—p—n—p>0,

where the first and second inequalities follow from items 6.4 and 6.4, respectively. To
prove the fourth inequality, we compute

2% -p-n—B_ Btt—p _ 2B+¢/2

1-= = = = <
p+t—p—n p+T—p—-n p+T—p—0

> 0,

as desired.

O

Throughout the rest of this section, we fix a constant p satisfying the conditions
of Lemma 6.4. Critical to our proof is the following lemma, comparing the proximal

point
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to the

“approximately proximal point” y,. A closely related estimate appeared in [16,

Lemma 4.2], driving the convergence analysis of that paper.

Lemma 6.5 It holds that

1% —

Proof

20—p—n—§8, . T—p—p
X — xt||2 - A—_n”xt - Yt||2-

2 A 2
el < xe — xell” — —
p+T—p—n p+T—0p

Since the function y — f(y) + glly — x/||? is (p — p)-strongly convex and %,

18 its minimizer, we have

A

p—p

. p P
51— v I? < (f(y» + Sl = xt||2> - (f(x,) + I = x,||2) .

Consequently, using the double-sided model property (A2), we find

0 —p o <\, PTHB =8, .
12 = 3ill® < oy 00) = fo i)+ == b = 3P = ==& =l (6.1)
Since the function y > fi, () + 5y — x; % is (r — n)-strongly convex and y; is its

minimizer, we have

R T . T T—7 ~
Fa ) = fu G) < 5114 — x| - 7y —x|* = —5 Il — &

Combining this estimate with (6.1), we compute

b — T T —
pM—MWSEM—&W—;m—MW—7#Ww%W
p+A p—B .
+—Twa—»W— I — x|I?
B+t —p, . P+p—r1 T—7 .
=4—3——wa—xm?+4—3——wM—ym2—Aa—ww—xm?
Rearranging, we conclude
ptT—p—n . » _BtT—p . » PEB—T 2
— X% = ll" = X = x|+ —— X = ¥
2 2
Dividing both sides by "'”;2"_’7, we achieve the result:
. B+t —p o p+B—T
1% = yill? < ——— % — x> + ——— %, — ¥
pt+T—p—n p+T—p—n
2 B+t—ph A p+B—7
=m—mw—0—f—————|m—nw+7————4m—ww
p+Tt—p—n p+Tt—p—n
. 20—p—n—48 . T—p—p
=& = x> — ————— % — X — ——— % — ¥ ]?
p+T—p—n p+rTt—p—n
This completes the proof of the lemma. O
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The following lemma verifies the Assumption (B1).

Lemma 6.6 (Sufficient Decrease) We have

a2p—p—n—p) 19 f15 Gt

2+t —p—n)

)I%.

2
[l 1 — x|

In particular, f\,; and {x,} satisfy (B1). Moreover, for all T > 0, we have

min_ 1V fi, ()l < — ZTjMVf )| < b0 ~ It
—0,...7 MOV T~ /P _%%ﬁﬂf%T+D
Proof We successively compute
ﬁmuwozf@ﬁo+§mwlanw
sf@n+§m—MHV
=f@»+§m17m®ﬁw»+m&fnm2
sf@n+N“”W&—MV+%%&—wW
sf@»+§m—nw
—%(%Effﬁ;%m—&V+;}};£;m—ww>

pa(t —p —B)

2
L iy - _
2(,0+‘c—p—77)”t yell

< fiyp(a) —

a2p—p—n—p)
20(p+T—p—1n)

IV 15017,

6.2)

where (6.2) follows from Lemma 6.5, and the final inequality follows since p (x; —X;) =
V f175(xr). To get the descent inequality, it remains to write x; — y; = (X;41 — X;)/c.

Finally, the bound on the average gradient norm follows by induction.

The following lemma verifies the Assumption (B2).

Lemma 6.7 (Relative Error). It holds

IV fi7p e DIl < max{ﬁ,#}_ké 1
l—p/p o
In particular, fy,; and {x,} satisfy (B2).
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Proof We have

. P
Vi <\IVfis £
IV fiy5 Dl < IV fiyp0l +max{p, 7

~ } lxr4+1 — x|l
Thus, we want to bound

IV f175eoll = plIXe — x|l

by a multiple of ||x;4+1 — x;||. This follows by Lemma 6.5:

2p-p—n—4p

% =l < 1% = yell + llye — xel < (1 = )||Xt =%+ llye = x|l
p+Tt—p—n

Rearranging and using the definition x; — y; = (x;41 — x;)/c, it holds

A 1
IxXr — x|l < lye — xcll
_ _ 2p=p=n=p
1 (1 p+Tt—p—n
1 1
= o X1 — Xl
_ _ 2p—p=n-p
1 (1 p+t—p—n
The proof is complete. as desired. O

Finally, we can dispense with Assumption (B3), which is a simple consequence of
the continuity of f.

Lemma 6.8 (Continuity Condition). The function f; and the sequence {x;} sat-

isfy (B3).

Acknowledgements We thank John Duchi for his insightful comments on an early version of the
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A Proofs of Theorems 2.9 and 5.2

In this section, we prove Theorem 2.9. We should note that Theorem 2.9, appropriately
restated, holds much more broadly beyond the weakly convex function class. To sim-
plify the notational overhead, however, we impose the weak convexity assumption,
throughout.

We will require some basic notation from variational analysis; for details, we refer
the reader to [57]. A set-valued map F: R? = R” assigns to each point x € R? a set
F(x) in R™. The graph of F is defined by

gph F :={(x,v) : v e F(x)}.
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A map F: RY = R™ is called metrically regular at (¥, v) € gph F if there exists a
constant k > 0 such that the estimate holds:

dist(x, F~'(v)) < kdist(v, F(x))

for all x near X and all v near v. If the graph gph F is a C'-smooth manifold around
(x, v), then metric regularity at (x, v) is equivalent to the condition [57, Theorem
9.43(d)]:?

(0,u) € Ngphr(x,v) = u=0. (A.1)

We begin with the following lemma.

Lemma A.1 (Subdifferential metric regularity in smooth minimization). Consider the
optimization problem

min f(x) subjectto x € M,
xeRd

where f: R? — R is a C*-smooth function and M is a C?-smooth manifold. Let X €
M satisfy the criticality condition O € 9 faq(X) and suppose that the subdifferential
map 3 fag: RY = R? is metrically regular at (%, 0). Then, the guarantee holds:

inf d? fa (X)) # 0. (A.2)
)

ueSTINTpq (%
Proof First, appealing to (A.1), we conclude that the implication holds:
(0,u) € Nophofp(X,0) = u=0. (A.3)

Let us now interpret the condition (A.3) in Lagrangian terms. To this end, let G = 0
be the local defining equations for M around x. Define the Lagrangian function

L(x,2) = fx) + (G(x), ),

and let A be the unique Lagrange multiplier vector satisfying V, £(¥, 1) = 0. Accord-
ing to [41, Corollary 2.9], we have the following expression:

(0,u) € Ngpho £ (£, 0) = ueTy(x) and Lu € Nayg(X), (A4)

where L := V}%XE()E, ) denotes the Hessian of the Lagrangian. Combining (A.3) and
(A.4), we deduce that the only vector u € T, (x) satisfying Lu € N pq(x) is the zero
vector u = 0.

Now for the sake of contradiction, suppose that (A.2) fails. Then, the quadratic
form Q(u) = (Lu, u) is nonnegative on T (x) and there exists 0 # u € Thq(x)
satisfying Q () = 0. We deduce that # minimizes Q(-) on T (x), and therefore, the
inclusion Lu € N pq(x) holds, a clear contradiction. ]

12’ We should note that metric regularity of F' at (x, v) is equivalent to (A.1) for an arbitrary set-valued map
F with closed graph, provided we interpret Ngph, F (X, v) as the limiting normal cone [57, Definition 6.3].
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The following corollary for active manifolds will now quickly follow.

Corollary A.2 (Subdifferential metric regularity and active manifolds). Consider a
closed and weakly convex function f: R? — R U {oo}. Suppose that f admits a
C2-smooth active manifold around a critical point X and that the subdifferential map
3 f: R? = RY is metrically regularat (X, 0). Then, X is either a strong local minimizer
of f or satisfies the curvature condition d* f\4(X)(u) < 0 for some u € Tpq(%).

Proof The result [19, Proposition 10.2] implies that gph 9 f coincides with gph d fa4
on a neighborhood of (%, 0). Therefore, the subdifferential map 9 fo: RY = R? is
metrically regular at (x, 0). Using Lemma A.1, we obtain the guarantee:

inf d? fa(X) () # 0.
ueSI—INT A (%)

If the infimum is strictly negative, the proof is complete. Otherwise, the infimum is
strictly positive. In this case, x is a strong local minimizer of f4, and therefore by
[19, Proposition 7.2] a strong local minimizer of f. O

We are now ready for the proofs of Theorems 2.9 and 5.2.

Proof of Theorem 2.9 The result [18, Corollary 4.8] shows that for almost all v € R4,
the function g(x) := f(x) — (v, x) has at most finitely many critical points. Moreover
each such critical point X lies on some C? active manifold M of g and the subdiffer-
ential map dg: R? = R? is metrically regular at (¥, 0). Applying Corollary A.2 to g
for such generic vectors v, we deduce that every critical point x of g is either a strong
local minimizer or a strict saddle of g. The proof is complete. O

Proof of Theorem 5.2 The proof is identical to that of Theorem 2.9 with [18, Theorem
5.2] playing the role of [18, Corollary 4.8]. O

B Pathological Example

Theorem B.1 Consider the following function

_l 2 P2
S, y) = 2(IXI +lyD 2x

Assume that ). > p. Define a mapping T : R¢ — R by the following formula.

0 lf(x,y):Q
sy = (0 ry) il = sl
(252.0) iyl = s,
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and ifmm < |y] < (1 +X)|x|, we have

S(x,y) =

A (1+2) -1 x| o :
s1gn(x) = si1gn N
TOT=-T | _1 d4a—p ||y if sign(x) = sign(y)
A (1+2) 1 x| o :
T4 — o —1 1 s1gn(x s1gn .
TF0(+—p)—1 1 d+a—m ||y if sign(x) # sign(y)

Then, prox; ;)¢ (x, y) = S(x, y).

Proof Let us denote the components of S(x, y) by (x4, y4+) = S(x, y). By first-order
optimality conditions, we have prox; ) ¢ (x, y) = (x4, y4) if and only if

AMx — (1= A/M)p)xy,y —y4) €
{x+ + sign(x4)|y+|} x {sign(yvy)|x4+| + y4+} if x4 # Oand yy # 0;

(=1, 1y4+) x {y+} ifxy =0and yy #0;
{4} x ([=1, 1x4) ifxy # 0and y; = 0;
{0} x {0} if x; = 0and y; = 0.

Let us show that (x, y4) indeed satisfies this inclusion.

1. If (x, y) =0, then x4 = y; = 0, and the pair satisfies the inclusion.
2. If x| < 1J%)Jyl andy # 0,then x4 =0, y; = ﬁy, and

Ax =1 =A/M)p)xp,y = y4) =4 (x, y) € ([=1 Ly4) x {y+}.

1+

Thus, the pair satisfies the inclusion.
3. If |y| < ———|x| and x # 0, then x; = —=——x, y; = 0, and

= 1+ir—p (I+2r—p)

AMx = (1= A/M)p)xy,y = y+)

—A( _WR-pr) ) (-1,1
=AY € {x4} x ([=1, 1lx4).

.. 1
For the remaining two cases, let us assume that T x| < |yl < (14 A)|x].

4. If sign(x) = sign(y), let s = sign(x) and note that

@ Springer | o

|:x+i| 7 A |:(1 +A) —1 ] |:xi|
yil Q+MnA+r—p)—1] -1 A+r—p ]|y

_ Sk [ (I +2)x[ =yl }
(T+0DA+r—p)—1[—IxI+T+A1—p)yl
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From this equation we learn sign(x4) = sign(yy4) = s. Inverting the matrix, we
also learn

N H _ [(1 +r-p 1 } [)ﬂ _ [x+ + A1 = p/M)xy +y+]
vl 1 T+ ] [y+] Xy +y++ Ayt

Xy +sign(xp) |y + A0 = p/M)xy
sign(y4) x| + y+ + Ay+ )

Thus, the pair satisfies the inclusion.
5. If sign(x) # sign(y), let s = sign(x) and note that

a1 asionll]
Y+ A+0A+r—p—1[ 1 A+i-—p)]|y

_ A [ A+ Mlx] =yl ]
A+0A+r—p) =1 [x[ =T +1=p)lyl

From this equation we learn sign(xy) # sign(y4). Inverting the matrix we also
learn

[
y| -1 T+ ] [y+

—X4p +yr +Ayy

[x+ +sign(x )|y | + (1 — p/x)x+]
sign(y4) x4 + y4 + Ay4 ’

[x+ + Al =p/M)x4 — )’+]

Thus, the pair satisfies the inclusion.

Therefore, the proof is complete. O

Corollary B.2 (Convergence to Saddles). Assume the setting of Theorem B.1. Let o €
(0, 1] and define the operator T = (1 — a)I + oS on R2. Then, the cone K =
{(x, y): |x] < (1 + 1)1y} satisfies TIC € KC. Moreover, for any (x, y) € K, it holds
that T*(x, y) = (1 — a)*x, (1 — a(1 — A(1 + A~ y) linearly converges to the
origin as k tends to infinity.

Proof Since K is convex, it suffices to show that SXC C K. This follows from Theo-
rem B.1. O
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