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Abstract

We prove that the equivalence of two fundamental problems in the theory of computing. For
every polynomial ¢(n) > (1 4+ ¢)n,e > 0, the following are equivalent:

e One-way functions exists (which in turn is equivalent to the existence of secure private-key
encryption schemes, digital signatures, pseudorandom generators, pseudorandom functions,
commitment schemes, and more);

e {-time bounded Kolmogorov Complexity, K¢, is mildly hard-on-average (i.e., there exists a
polynomial p(n) > 0 such that no PPT algorithm can compute K, for more than a 1 — ﬁ
fraction of n-bit strings).

In doing so, we present the first natural, and well-studied, computational problem characterizing
the feasibility of the central private-key primitives and protocols in Cryptography.
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1 Introduction

We prove the equivalence of two fundamental problems in the theory of computing: (a) the exis-
tence of one-way functions, and (b) mild average-case hardness of the time-bounded Kolmogorov
Complexity problem.

Existence of One-way Functions: A one-way function [DH76] (OWF) is a function f that can
be efficiently computed (in polynomial time), yet no probabilistic polynomial-time (PPT) al-
gorithm can invert f with inverse polynomial probability for infinitely many input lengths n.
Whether one-way functions exist is unequivocally the most important open problem in Cryp-
tography (and arguably the most importantly open problem in the theory of computation,
see e.g., [Lev03]): OWFs are both necessary [IL89] and sufficient for many of the most cen-
tral cryptographic primitives and protocols (e.g., pseudorandom generators [BM88, HILL99],
pseudorandom functions [GGMS84], private-key encryption [GM84], digital signatures [Rom90],
commitment schemes [Nao91], identification protocols [FS90], coin-flipping protocols [Blu82],
and more). These primitives and protocols are often referred to as private-key primitives,
or “Minicrypt” primitives [Imp95] as they exclude the notable task of public-key encryption
[DH76, RSA83]. Additionally, as observed by Impagliazzo [Gur89, Imp95], the existence of
a OWF is equivalent to the existence of polynomial-time method for sampling hard solved
instances for an NP language (i.e., hard instances together with their witnesses).

While many candidate constructions of OWFs are known—most notably based on factoring
[RSA83], the discrete logarithm problem [DH76], or the hardness of lattice problems [Ajt96]—
the question of whether there exists some natural average-case hard problem that characterizes
the hardness of OWF's (and thus the feasibility of the above central cryptographic primitives)
has been a long-standing open problem:!

Does there exists some natural average-case hard computational problem (i.e., both
the computational problem and the distribution over instances is “natural”), which
characterizes the existence of one-way functions?

This problem is particularly pressing given recent advances in quantum computing [AABT19]
and the fact that many classic OWF candidates (e.g., based on factoring and discrete log) can
be broken by a quantum computer [Sho97].

Average-case Hardness of KP°Y-Complexity: What makes the string 12121212121212121 less
random than 604848506683403574927 The notion of Kolmogorov complexity (K-complexity),
introduced by Solomonoff [Sol64], Kolmogorov [Kol68] and Chaitin [Cha69], provides an elegant
method for measuring the amount of “randomness” in individual strings: The K-complexity
of a string is the length of the shortest program (to be run on some fixed universal Turing
machine U) that outputs the string . From a computational point of view, however, this
notion is unappealing as there is no efficiency requirement on the program. The notion of #(-)-
time-bounded Kolmogorov Complezity (K'-complexity) overcomes this issue: K!(z) is defined
as the length of the shortest program that outputs the string x within time ¢(|z|). As surveyed
by Trakhtenbrot [Tra84], the problem of efficiently determining the K'-complexity for t(n) =
poly(n) predates the theory of NP-completeness and was studied in the Soviet Union since the

'Note that Levin [Lev85] presents an ingenious construction of a universal one-way function—a function that is
one-way if one-way functions exists. But his construction (which relies on an enumeration argument) is artificial. Levin
[Lev03] takes a step towards making it less artificial by constructing a universal one-way function based on a new
specially-tailored Tiling Expansion problem.



60s as a candidate for a problem that requires “brute-force search” (see Task 5 on page 392 in
[Tra84]). The modern complexity-theoretic study of this problem goes back to Sipser [Sip83],
Ko [Ko86] and Hartmanis [Har83].

Intriguingly, Trakhtenbrot also notes that a “frequential” version of this problem was considered
in the Soviet Union in the 60s: the problem of finding an algorithm that succeeds for a “high”
fraction of strings —in more modern terms from the theory of average-case complexity [Lev86],
whether K* can be computed by a heuristic algorithm with inverse polynomial error, over
random inputs x. We say that K¢ is mildly hard-on-average (mildly HoA) if there exists some
polynomial p(-) > 0 such that every PPT fails in computing K'(-) for at least a WIJ fraction

of n-bit strings z for all sufficiently large n, and that KP°Y is mildly HoA if there exists some
polynomial ¢(n) > 0 such that K* is mildly HoA.

Our main result shows that the existence of OWFs is equivalent to mild average-case hardness of
KPY_ In doing so, we resolve the above-mentionned open problem, and present the first natural
(and well-studied) computational problem, characterizing the feasibility of the central private-key
primitives in Cryptography.

Theorem 1.1. The following are equivalent:
o One-way functions exist;
o KPY is mildly hard-on-average.

In other words,

Secure private-key encryption, digial dignatures, pseudorandom generators, pseudoran-
dom functions, commitment schemes, etc., are possible iff KPY-complexity is mildly
hard-on-average.

In fact, our main theorem is stronger than stated: we show that for every polynomial t(n) >
(1 + &)n, where € > 0 is a constant, mild average-case hardness of K is equivalent to the existence
of one-way functions.

On the Hardness of Approximating KP°Y-complexity Our connection between OWFs and
K'-complexity has direct implications to the theory of K®-complexity. Trakhtenbrot [Tra84] also
discusses average-case hardness of the approzimate K'-complexity problem: the problem of, given a
random x, outputting an “approximation” y that is 8(|z|)-close to K'(x) (i.e., |K'(x) —y| < B(|z])).
He observes that there is a trivial heuristic approximation algorithm that succeeds with probability
approaching 1 (for large enough n): Given z, simply output |z|. In fact, this trivial algorithm
produces a (dlogn)-approximation with probability > 1 — # over random n-bits strings.? We note
that our proof that OWFs imply mild average-case hardness of KP°Y actually directly extends to
show that KP°Y is mildly-HoA also to (dlogn)-approximate. We thus directly get:

Theorem 1.2. If KP°Y is mildly hard-on-average, then for every constant d, KP°Y is mildly hard-
on-average to (dlogn)-approzimate.

In other words, any efficient algorithm that only slightly beats the success probability of the
“trivial” approximation algorithm, can be used to break OWFs.

2At most 274198 out of 2™ strings have K*-complexity that is smaller than n — dlogn.



Existential v.s. Constructive K’ complexity Trakhtenbrot [Tra84] considers also “construc-
tive” variant of the K’-complexity problem, where the task of the solver is to, not only determine the
K'-complexity of a string z, but to also output a minimal-length program II that generates z. We
remark that for our proof that mild average-case hardness of KP°Y implies OWFs, it actually suffices
to assume mild average-case hardness of the “constructive” KP°Y problem, and thus we obtain an
equivalence between the “existential” and “constructive” versions of the problem in the average-case
regime.

On Decisional Time-Bounded Kolmogorov Complexity Problems We finally note that
our results also show an equivalence between one-way functions and mild average-case hardness of
a decisional KP°Y problem: Let MINK![s] denote the set of strings x such that KD (z) < s(|z]).
Our proof directly shows that there exists some constant ¢ such that for every constant ¢ > 0,
every t(n) > (1 + €)n, and letting s(n) = n — clogn, mild average-case hardness of the language
MINK®[s] (with respect to the uniform distribution over instances) is equivalent the existence of
one-way functions.

1.1 Related Work

We refer the reader to Goldreich’s textbook [Gol01] for more context and applications of OWF's
(and complexity-based cryptography in general); we highly recommend Barak’s survey on candidate
constructions of one-way functions [Barl7]. We refer the reader to the textbook of Li and Vitanyi
[LV08] for more context and applications of Kolmogorov complexity; we highly recommend Allender’s
surveys on the history, and recent applications, of notions of time-bounded Kolmogorov complexity
[All20a, Al120b, All17].

On Connections between KP°Y-complexity and OWFs We note that some (partial) connec-
tions between K'-complexity and OWFs already existed in the literature:

e Results by Kabanets and Cai [KC00] and Allender et al [ABK06] show that the existence of
OWF's implies that KP°Y must be worst-case hard to compute; their results will be the starting
point for our result that OWFs also imply average-case hardness of KPY.

e Allender and Das [AD17] show that every problem in SZK (the class of promise problems
having statistical zero-knowledge proofs [GMR89]) can be solved in probabilistic polynomial-
time using a KP°Y-complexity oracle. Furthermore, Ostrovsky and Wigderson [Ost91, OW93]
show that if SZK contains a problem that is hard-on-average, then OWF's exist. In contrast,
we show the existence of OWFs assuming only that KP°Y is hard-on-average.

e A very recent elegant work by Santhanam [San20] is also explicitly motivated by the above-
mentionned open problem, and presents an intruiging connection between one-way functions
and error-less average-case hardness of the circuit minimization problem (MCSP) [KC00]—i.e.,
the problem of, given a truth table of a boolean function, determining the size of the smallest
circuit that computes the function; the MCSP problem is closely related to the time-bounded
Kolmogorov complexity problem [Tra84, ABK'06]. Santhanam proves equivalence between
OWF's and errorless average-case hardness of MCSP under a new (and somewhat complicated)
conjecture that he introduces. We emphasize that, in contrast, our equivalence is unconditional.

On Worst-case to Average-case Reductions for KP°Y-complexity We highlight a very el-
egant recent result by Hirahara [Hirl8] that presents a worst-case (approximation) to average-case



reduction for KP°Y-complexity. Unfortunately, his result only gives average-case hardness w.r.t.
errorless heuristics—namely, heuristics that always provide either the correct answer or output L
(and additionally only output L with small probability). For our construction of a OWF, however,
we require average-case hardness of K'! also with respect to heuristics that may err (with small
probability). Santhanam [San20], independently, obtains a similar result for a related problem.
Hirahara notes that it is an open problem to obtain a worst-case to average-case reduction for
KPoY wr.t. heuristics that may err. Let us emphasize that average-case hardness w.r.t. error-
less heuristics is a much weaker property that just “plain” average-case hardness (with respect to
heuristics that may err): Consider a random 3SAT formula on n variables with 1000n clauses. It
is well-known that, with high probability, the formula is not be satisfiable. Thus, there is a trivial
heuristic algorithm for solving 3SAT on such random instances by simply outputting “No”. Yet,
the question of whether there exists an efficient errorless heuristic for this problem is still open, and
non-existence of such an algorithm is implied by Feige’s Random 3SAT conjecture [Fei02].

On Universal Extrapolation Impagliazzo and Levin [IL90] consider a problem of universal ez-
trapolation: Roughly speaking, extrapolation with respect to some polynomial-time Turing machine
M requires, given some prefix string xpye, sampling a random continuation xp.s such that M (on
input a random tape) generates Tpre||Tpost. Universal extrapolation is said to be possible if all
polynomial-time Turing machines can be extrapolated. Impagliazzo and Levin demonstrate the
equivalence of one-way functions and the infeasibility of universal extrapolation.

As suggested by an anonymous FOCS reviewer, universal extrapolation seems related to time-
bounded Kolmogorov complexity: Extrapolation with respect to a universal Turing machine should,
intuitively, be equivalent to approzimating KP°Y (for random string ) by counting the number of
possible continuations st to a prefix x,,. of x: Strings with small K po'y—complexity should have
many possible continuation, while strings with large KP°Y-complexity should have few.

While this method may perhaps be used to obtain an alternative proof of one direction (existence
of one-way function from hardness of K p°'y) of our main theorem, as far as we can tell, the actual
proof is non-trivial and would result in a significantly weaker conclusion than what we obtain: It
would only show that average-case hardness of approzimating KP°Y implies infeasibility of universal
extrapolation and thus one-way functions, whereas we show that even average-case hardness of ezactly
computing KP°Y implies the existence of one-way functions.

For the converse direction, the infeasibility of universal extrapolation only means that there exists
some polynomial-time Turing machine M that is hard to extrapolate, and this M is not necessarily
a universal Turing machine. It is not a-priori clear whether infeasibility of extrapolation w.r.t. some
M implies infeasibility of extrapolation w.r.t. a universal Turing machine.

A direct corollary of our main theorem is a formal connection between universal extrapolation
and average-case hardness of KP°Y: Infeasibility of universal extrapolation is equivalent to mild
average-case hardness of KP°Y (since by [IL90], infeasibility of universal extrapolation is equivalent
to the existence of one-way functions).

1.2 Proof outline

We provide a brief outline for the proof of Theorem 1.1.

OWFs from Avg-case KP°Y-Hardness We show that if K* is mildly average-case hard for
some polynomial t(n) > 0, then a weak one-way function exists®; the existence of (strong) one-way

3Recall that an efficiently computable function f is a weak OWF if there exists some polynomial ¢ > 0 such that f

cannot be efficiently inverted with probability better than 1 — ﬁ for sufficiently large n.



functions then follows by Yao’s hardness amplification theorem [Yao82]. Let ¢ be a constant such
that every string x can be output by a program of length |z| + ¢ (running on the fixed Universal
Turing machine U). Consider the function f(¢||II'), where ¢ is a bitstring of length log(n + ¢) and
IT' is a bitstring of length n + ¢, that lets II be the first ¢ bits of II', and outputs ||y where y is the
output generated by running the program II* for ¢(n) steps.”®

We aim to show that if f can be inverted with high probability—significantly higher than 1—1/n—
then K'-complexity of random strings z € {0,1}" can be computed with high probability. Our
heuristic H, given a string z, simply tries to invert f on ¢||z for all £ € [n + ¢]|, and outputs the
smallest ¢ for which inversion succeeds.® First, note that since every length ¢ € [n + c] is selected
with probability 1/(n + ¢), the inverter must still succeed with high probability even if we condition
the output of the one-way function on any particular length ¢ (as we assume that the one-way function
inverter fails with probability significantly smaller than %) This, however, does not suffice to prove
that the heuristic works with high probability, as the string y output by the one-way function is not
uniformly distributed (whereas we need to compute the K*-complexity for uniformly chosen strings).
But, we show using a simple counting argument that y is not too “far” from uniform in relative
distance. The key idea is that for every string z with K®-complexity w, there exists some program
I, of length w that outputs it; furthermore, by our assumption on ¢, w < n + c¢. We thus have that

J Untct1og(n+e)) Will output w|[z with probability at least nic LTV > n%rc L9 (nte) — % (we need
to pick the right length, and next the right program). So, if the heuristic fails with probability §, then

the one-way function inverter must fail with probability at least %, which leads to the conclusion

that 0 must be small (as we assumed the inverter fails with probability significantly smaller than %)

Avg-case KP%Y-Hardness from EP-PRGs To show the converse direction, our starting point
is the earlier result by Kabanets and Cai [KC00] and Allender et al [ABK"06] which shows that
the existence of OWFs implies that K®-complexity, for every sufficiently large polynomial #(-), must
be worst-case hard to compute. In more detail, they show that if K’-complexity can be computed
in polynomial-time for every input z, then pseudo-random generators (PRGs) cannot exist (and
PRGs are implied by OWF by [HILL99]). This follows from the observations that (1) random
strings have high K'-complexity with overwhelming probability, and (2) outputs of a PRG always
have small K®-complexity as long as t(n) is sufficiently greater than the running time of the PRG
(as the seed plus the constant-sized description of the PRG suffice to compute the output). Thus,
using an algorithm that computes K, we can easily distinguish outputs of the PRG from random
strings—simply output 1 if the K*-complexity is high, and 0 otherwise. This method, however, relies
on the algorithm working for every input. If we only have access to a heuristic H for K¢, we have
no guarantees that H will output a correct value when we feed it a pseudorandom string, as those
strings are sparse in the universe of all strings.”

4Formally, the program/description II is an encoding of a pair (M, w) where M is a Turing machine and w is some
input, and we evaluate M (w) on the Universal Turing machine U.

5We remark that although our construction of the function f is somewhat reminiscent of Levin’s construction of
a universal OWF, the actual function (and even more so the analysis) is actually quite different. Levin’s function f ,
roughly speaking, parses the input into a Turing machine M of length logn and an input x of length n, and next
outputs M (z). As he argues, if a OWF f’ exists, then with probability %, f will compute output f'(z) for a randomly
selected x, and is thus hard to invert. In contrast, in our candidate OWF construction, the key idea is to wvary the
length of a “fully specified” program II (including an input).

50r, in case, we also want to break the “constructive” KP problem, we also output the ¢-bit truncation of the
program I’ output by the inverter.

"We note that, although it was not explictly pointed out, their argument actually also extends to show that K* does
not have an errorless heuristic assuming the existence of PRGs. The point is that even on outputs of the PRG, an
errorless heuristic must output either a small value or L (and perhaps always just output L). But for random strings,
the heuristic can only output L with small probability. Dealing with heuristics that may err will be more complicated.



To overcome this issue, we introduce the concept of an entropy-preserving PRG (EP-PRG).
This is a PRG that expands the seed by O(logn) bits, while ensuring that the output of the PRG
loses at most O(logn) bits of Shannon entropy—it will be important for the sequel that we rely on
Shannon entropy as opposed to min-entropy. In essence, the PRG preserves (up to an additive term
of O(logn)) the entropy in the seed s. We next show that any good heuristic H for K can break
such an EP-PRG. The key point is that since the output of the PRG is entropy preserving, by an
averaging argument, there exists a 1/n fraction of “good” seeds S such that, conditioned on the seed
belonging to S, the output of the PRG on input seeds of length n has min-entropy n — O(logn).
This means that the probability that H fails to compute K* on output of the PRG, conditioned on
picking a “good” seed, can increase at most by a factor poly(n). We conclude that H can be used
to determine (with sufficiently high probability) the K®-complexity for both random strings and for
outputs of the PRG.

EP-PRGs from Regular OWFs We start by noting that the standard Blum-Micali-Goldreich-
Levin [BM84, GL89] PRG construction from one-way permutations is entropy preserving. To see
this, recall the construction:

Gy(s,har) = f(s)llhaLllhaL(s)

where f is a one-way permutation and hgy is a hardcore function for f—by [GL89], we can select a
random hardcore function hgy, that output O(logn) bits. Since f is a permutation, the output of the
PRG fully determines the input and thus there is actually no entropy loss. We next show that the
PRG construction of [GKL93, HILL99, Gol01, YLW15] from regular OWFs also is an EP-PRG. We
refer to a function f as being r-regular if for every = € {0,1}*, f(z) has between 27(#D=1 and 27(I=])
many preimages. Roughly speaking, the construction applies pairwise independent hash functions
(that act as strong extractors) hi, he to both the input and output of the OWF (parametrized to
match the regularity ) to “squeeze” out randomness from both the input and the output, and finally
also applies a hardcore function that outputs O(logn) bits:

G (sllhallhallhar) = harllhallh2|l[P (s)]r—ogog m) [TP2(f ($))ln—r—0(ogm) L (s), (1)

where [a]; means a truncated to j bits. As already shown in [Gol01] (see also [YLW15]), the output of
the function excluding the hardcore bits is actually 1/poly(n) -close to uniform in statistical distance
(this follows directly from the Leftover Hash Lemma [HILL99]), and this implies (using an averaging
argument) that the Shannon entropy of the output is at least n — O(logn), thus the construction
is an EP-PRG. We finally note that this construction remains both secure and entropy preserving,
even if the input domain of the function f is not {0,1}", but rather any set S of size 2" /n; this will
be useful to us shortly.

Cond EP-PRGs from Any OWFs Unfortunately, constructions of PRGs from OWFs [HILL99,
Hol06, HHR06, HRV10] are not entropy preserving as far as we can tell. We, however, remark that
to prove that K is mildly HoA, we do not actually need a “full-fledged” EP-PRG: Rather, it suffices
to have what we refer to as a conditionally-secure EP-PRG G: a conditionally-secure EP-PRG (cond
EP-PRG) is an efficiently computable function G having the property that there exists some event
FE such that:

1. G(Uy | F) has Shannon entropy n’ — O(logn’);

2. G(U, | E) is indistinguishable from U,, for some m > n’ + O(logn’).



In other words, there exists some event F such that conditionned on the event E, G behaves likes
an EP-PRG. We next show how to adapt the above construction to yield a cond EP-PRG from any
OWF f. Consider G(i||s||h1,he, har) = sz}(s,hl,hz,hGL) where |s| = n, |i| = logn, and Géc is
the PRG construction defined in equation 1. We remark that for any function f, there exists some
regularity * such that at least a fraction 1/n of inputs x have regularity i*. Let S;« denote the set of
these x’s. Clearly, |S;«| > 2" /n; thus, by the above argument, G’; (Upy | Si+) is both pseudorandom
and has entropy n’ — O(logn'). Finally, consider the event E that i = i* and s € S;«. By definition,
G(Uiog n||[Un|[Up, | E) is identically distributed to G’; (Uyy | Si+), and thus G is a cond EP-PRG from
any OWF. For clarity, let us provide the full expanded description of the cond EP-PRG G:

G(illsllhlh2llhar) = harllballhzll[hi(s)]i—oaog ) I [h2(f ($))ln—i—0(0g m) lhaL(5)

Note that this G is not a PRG: if the input ¢ # ¢* (which happens with probability 1— %), the output
of G may not be pseudorandom! But, recall that the notion of a cond EP-PRG only requires the
output of G to be pseudorandom conditioned on some event E (while also being entropy preserving
conditioned on the same event E).

Finally, the above outline only shows that K* is mildly HoA if ¢(-) is larger than running time of
the cond EP-PRG that we constructed; that is, so far, we have only shown that OWF's imply that
K is mildly HoA for some polynomial t. To prove that this holds for every ¢(n) > (1 +¢&)n, € > 0,
we remark that using a padding trick, we can also construct a cond EP-PRG that can be computed
in time n 4+ O(n®), where a < 1—we refer to this as a rate-1 efficient PRG. Using such a rate-1

efficient cond EP-PRG, we can show that K is mildly HoA for every ¢(n) > (1 +¢)n, e > 0.

2 Preliminaries

We assume familiarity with basic concepts such as Turing machines, polynomial-time algorithms and
probabilistic polynomial-time algorithms (PPT). A function p is said to be negligible if for every
polynomial p(-) there exists some ng such that for all n > ng, u(n) < ﬁ. A probability ensemble is

a sequence of random variables A = {Ay, },,en. We let U, the uniform distribution over {0, 1}".

2.1 One-way Functions

We recall the definition of one-way functions [DH76]. Roughly speaking, a function f is one-way if
it is polynomial-time computable, but hard to invert for PPT attackers.

Definition 2.1. Let f:{0,1}* — {0,1}* be a polynomial-time computable function. f is said to be
a one-way function (OWF) if for every PPT algorithm A, there exists a negligible function p such
that for all n € N,

Prlz < {0,1}"y = f(z) : A(1",y) € F71(f(2))] < p(n)

We may also consider a weaker notion of a weak one-way function [Yao82], where we only require
all PPT attackers to fail with probability noticeably bounded away from 1:

Definition 2.2. Let f:{0,1}* — {0,1}* be a polynomial-time computable function. f is said to be
a a-weak one-way function (a-weak OWF) if for every PPT algorithm A, for all sufficiently large
n €N,

Priz + {0,1}"y = f(z) : A(1",y) € [T (f(2)] <1 —a(n)

We say that f is simply a weak one-way function (weak OWF) if there exists some polynomial ¢ > 0

such that f is a ﬁ—weak OWEF.



Yao’s hardness amplification theorem [Yao82] shows that any weak OWF can be turned into a
(strong) OWF.

Theorem 2.3 ([Yao82]). Assume there exists a weak one-way function. Then there exists a one-way
function.

2.2 Time-bounded Kolmogorov Complexity

Let U be some fixed Universal Turing machine that can emulate any Turing machine M with poly-
nomial overhead. Given a description II € {0,1}* which encodes a pair (M,w) where M is a
(single-tape) Turing machine and w € {0,1}* is an input, let U(II, 1*) denote the output of M (w)
when emulated on U for t steps. Note that (by assumption that U only has polynomial overhead)
U(I1,1%) can be computed in time poly(d, t).

The t-time bounded Kolmogorov Complexity, K'(z), of a string x [Kol68, Sip83, Tra84, Ko86] is
defined as the length of the shortest description IT such that U(II, 1¢) = z:

Ki(z)= min {|0]: 0,140y = 21,
(x) né?éﬂ}*{‘ |- U( ) =z}
A central fact about K'-complexity is that the length of a string x essentially (up to an additive
constant) bounds the K'-complexity of the string for every t(n) > 0 [Sol64, Kol68, Cha69] (see e.g.,
[Sip96] for simple treatment). This follows by considering IT = (M, x) where M is a constant-length
Turing machine that directly halts; consequently, M simply outputs its input and thus M (z) = x.

Fact 2.1. There exists a constant ¢ such that for every function t(n) > 0 and every x € {0,1}* it
holds that K'(x) < |z| + c.
2.3 Average-case Hard Functions

We turn to defining what it means for a function to be average-case hard (for PPT algorithms).

Definition 2.4. We say that a function f : {0,1}* — {0,1}* is a(-) hard-on-average (a-HoA) if for
all PPT heuristic H, for all sufficiently large n € N,

Pr[z < {0,1}" : H(z) = f(2)] <1 — a(|n|)

In other words, there does not exist a PPT “heuristic” H that computes f with probability
1 —a(n) for infinitely many n € N. We also consider what it means for a function to be average-case
hard to approximate.

Definition 2.5. We say that a function f : {0,1}* — {0,1}* is « hard-on-average (a-HoA) to
B(-)-approximate if for all PPT heuristic H, for all sufficiently large n € N,

Priz < {0,1}" : [H(z) — f(z)| < B(|z)] <1 —a(|n|)

In other words, there does not exists a PPT heuristic H that approximates f within a 5(-) additive
term, with probability 1 — a(n) for infinitely many n € N.

Finally, we refer to a function f as being mildly HoA (resp HoA to approximate) if there exists
a polynomial p(-) > 0 such that f is ﬁ—HoA (resp. HoA to approximate).



2.4 Computational Indistinguishability
We recall the definition of (computational) indistinguishability [GM84].

Definition 2.6. Two ensembles {An}nen and {Bp}nen are said to be u(-)-indistinguishable, if for
every probabilistic machine D (the “distinguisher”) whose running time is polynomial in the length
of its first input, there exists some ng € N so that for every n > ng:

IPr[D(1", A,) = 1] — Pr[D(1", B,) = 1]| < u(n)

We say that are {Ap}nen and { By, }nen simply indistinguishable if they are Z%—mdistz’ngm‘shable for
every polynomial p(-).

2.5 Statistical Distance and Entropy

For any two random variables X and Y defined over some set V, we let SD(X,Y) = 33 ), | Pr[X =
v]—Pr[Y = v]| denote the statistical distance between X and Y. For a random variable X, let H(X) =
Ellog m] denote the (Shannon) entropy of X, and let Hoo (X) = mingegypp(x) log m denote
the min-entropy of X.

We next demonstrate a simple lemma showing that any distribution that is statistically close to

random, has very high Shannon entropy.

Lemma 2.2. For every n > 4, the following holds. Let X be a random variable over {0,1}" such
that SD(X,Up) < 2. Then H(Xy,) > n—2.

Proof: Let S ={z € {0,1}":Pr[X = 2] <2 1}, Note that for every = ¢ S, x will contribute
at least

DN | =

1
(Pr[X = 2| — Pr[U, =z]) > 3 <Pr[X =z —

to SD(X,U,). Thus,
1
Pr[X ¢ S] §4'ﬁ'
Since for every = € S, log @ > n — 1 and the probability that X € S is at least 1 — 4/n? it
follows that 4 4
HX)>Pr[XeSln-1)>1-=)n—-1)>n———-1>n-2.

n? n

3 The Main Theorem

Theorem 3.1. The following are equivalent:
(a) The existence of one-way functions.
(b) The existence of a polynomial t(n) > 0 such that K is mildly hard-on-average.

(¢c) For all constants d > 0,e > 0, and every polynomial t(n) > (1 + &)n, K is mildly hard-on-
average to (dlogn)-approximate.

We prove Theorem 3.1 by showing that (b) implies (a) (in Section 4) and next that (a) implies
(c) (in Section 5). Finally, (c) trivially implies (b).

Note that a consequence of 3.1 is that for every polynomial ¢(n) > (1 + ¢)n, where € > 0 is a
constant ¢(n), mild average-case hardness of K! is equivalent to the existence of one-way functions.



4 OWTFs from Mild Avg-case K'-Hardness

In this section, we state our main theorem.

Theorem 4.1. Assume there exist polynomials t(n) > 0,p(n) > 0 such that Kt is ﬁ—HoA. Then
there exists a weak OWF f (and thus also a OWF).

Proof: Let ¢ be the constant from Fact 2.1. Consider the function f : {0, 1} +etloen+a)l 5 10 1}*,
which given an input £||TI' where |¢| = [log(n + ¢)] and |II'| = n + ¢, outputs £||U(IT, 14™)) where
IT is the ¢-bit prefix of II'. This function is only defined over some input lengths, but by an easy
padding trick, it can be transformed into a function f’ defined over all input lengths, such that if
f is (weakly) one-way (over the restricted input lengths), then f’ will be (weakly) one-way (over
all input lengths): f/(2’) simply truncates its input 2’ (as little as possible) so that the (truncated)
input  now becomes of length m = n + ¢+ [log(n + ¢)| for some n and outputs f(x).

We now show if K! is Wll)—HoA, then f is a ﬁ—weak OWF, where q(n) = 22¢"3np(n)?, which
concludes the proof of the theorem. Assume for contradiction that f is not a ﬁ—weak OWF. That

is, there exists some PPT attacker A that inverts f with probability at least 1 — ﬁ <1- ﬁ

for infinitely many m = n + ¢ + [log(n + ¢)]. Fix some such m,n > 2. By an averaging argument,
except for a fraction #(n) of random tapes r for A, the deterministic machine A, (i.e., machine A4

with randomness fixed to r) fails to invert f with probability at most 25(:)). Fix some such “good”

randomness r for which A, succeeds to invert f with probability 1 — 25(7:3).

We next show how to use A, to compute K* with high probability over random inputs z € {0, 1}".
Our heuristic H,(z) runs A, (i||z) for all ¢ € [n+ ¢] where i is represented as a [log(n + ¢)] bit string,
and outputs the length of the smallest program II output by A, that produces the string z within
t(n) steps. Let S be the set of strings z € {0,1}" for which H,(2) fails to compute K*(z). Note that
‘H, thus fails with probability

5 1S
fail, = on
Consider any string z € S and let w = K'(2) be its K’-complexity. By Fact 2.1, we have that
w < n+ c. Since H,(z) fails to compute K'(z), A, must fail to invert (wl||z). But, since w < n + ¢,
the output (w||z) is sampled with probability
1 1 1 1 1 1
n4c 20 (n+c)2rte T p2etl on

in the one-way function experiment, so A, must fail with probability at least
1 1 1 S| fail,

5] n22c+l " on T 92+l gn 92+l

which by assumption (that A, is a good inverter) is at most that Q(ﬁ(n”)). We thus conclude that

22c+2np(n)

q(n)
Finally, by a union bound, we have that H (using a uniform random tape ) fails in computing K*
with probability at most

fail, <

1 22¢+2np(n) 1 22¢+2np(n) 1

2p(n) g(n)  2p(n)  2¢%3np(n)?  p(n)’
Thus, H computes K* with probability 1 — —= for infinitely many n € N, which contradicts the

p(n)
assumption that K? is ﬁ—HoA. [ |
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5 Mild Avg-case K'-Hardness from OWFs

We introduce the notion of a (conditionally-secure) entropy-preserving pseudo-random generator
(EP-PRG) and next show (1) the existence of a condEP-PRG implies that K' is hard-on-average
(even to approximate), and (2) OWFs imply condEP-PRGs.

5.1 Entropy-preserving PRGs

We start by defining the notion of a conditionally-secure entropy-preserving PRG.

Definition 5.1. An efficiently computable function G : {0,1}" — {0, 1}"+718" s ¢ y(-)-conditionally
secure entropy-preserving pseudorandom generator (u-condEP-PRG) if there exist a sequence of
events = {Ey, }nen and a constant v (referred to as the entropy-loss constant ) such that the following
conditions hold:

¢ (pseudorandomness): {G(Uy,|E,)}nen and {Upivyiogntnen are p(n)-indistinguishable;
e (entropy-preserving): For all sufficiently large n € N, H(G(U,|E,)) > n — alogn.

If for all n, E, = {0,1}" (i.e., there is no conditioning), we say that G is an p-secure entropy-
preserving pseudorandom generator (u-EP-PRG).

We say that G has rate-1 efficiency if its running time on inputs of length n is bounded by
n + O(n®) for some constant € < 1.

5.2 Avg-case K'-Hardness from Cond EP-PRGs

Theorem 5.2. Assume that for every ~v > 1, there exists a rate-1 efficient p-condBEP-PRG G :
{0,1}" — {0,1}"F71%en where u(n) = 1/n%. Then, for every constant d > 0, > 0, for every
polynomial t(n) > (1 +e)n, K' is mildly hard-on-average to (dlogn)-approximate.

Proof: Let v > maxz(8,8d), and let G’ : {0,1}" — {0,1} (™ where m/(n) = n + vlogn be a
rate-1 efficient p-condEP-PRG, where u = 1/n%. For any constant ¢, let G¢(x) be a function that
computes G'(z) and truncates the last ¢ bits. It directly follows that G¢ is also a rate-1 efficient
p-condEP-PRG (since G’ is s0). Consider any € > 0 and any polynomial ¢(n) > (1 + &)n and let
p(n) = 2n2ety+l),

Assume for contradiction that there exists some PPT # that S-approximates K¢ with probability
1—% for infinitely many m € N, where 3(n) = v/8logn > dlogn. Since m/(n+1)—m/(n) < v+1,
there must exist some constant ¢ < y+1 such that H succeeds (to S-approximate K*) with probability
1— ﬁ for infinitely many m of the form m = m(n) = n+ ylogn — ¢. Let G(z) = G°(x); recall
that G is a rate-1 efficient p-condEP-PRG (trivially, since G¢ is so), and let a, {E,}, respectively,
be the entropy loss constant and sequence of events, associated with it.

We next show that H can be used to break the condEP-PRG G. Towards this, recall that a
random string has high K'-complexity with high probability: for m = m(n), we have,

om _ me% logn 1

Pr [K'z)>m— L1 > =1-— 2
refohyml 1 (@) 2m = ylogn] 2 om /4 @)

since the total number of Turing machines with length smaller than m — 7 logn is only gm—1logn,

However, any string output by the EP-PRG, must have “low” K' complexity: For every sufficiently
large n, m = m(n), we have that,

t > 7 _
P IK'G() = m = Jlogn] = 0. g
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since G(s) can be represented by combining a seed s of length n with the code of G (of constant
length), and the running time of G(s) is bounded by ¢(|s|) = ¢(n) < t(m) for all sufficiently large n,
so K'(G(s)) =n+O(1) = (m —ylogn +¢) + O(1) < m — v/2logn for sufficiently large n.

Based on these observations, we now construct a PPT distinguisher A breaking G. On input
1", 2, where z € {0,1}™(") A(1" z) lets w < H(x) and outputs 1 if w > m(n) — %’ylogn and 0
otherwise. Fix some n and m = m(n) for which H succeeds with probability W}n). The following

two claims conclude that A distinguishes U,,,(,y and G(U,, | E;,) with probability at least 1712
Claim 1. A(1",U,,) outputs 1 with probability at least 1 — nT2/4

Proof: Note that A(1", z) will output 1 if z is a string with K*-complexity larger than m—-~/4logn
and H outputs a 7/8log n-approximation to K*(z). Thus,

PrlA(1", z) = 1]

> Pr[K'(z) > m — v/4logn A ‘H succeeds on z]

> 1—Pr[K'(z) < m —v/4logn] — Pr[H fails on z]

o] 1
a4 p(n)
2

where the probability is over a random z < U,, and the randomness of A and H. [

Claim 2. A(1",G(Uy | Ey)) outputs 1 with probability at most 1 — 1 + —2

nat+y

Proof:  Recall that by assumption, H fails to (y/8logn)-approximate K'(z) for a random x €
{0,1}™ with probability at most ﬁ. By an averaging argument, for at least a 1 — # fraction of
random tapes r for H, the deterministic machine #, fails to approximate K’ with probability at

most #jﬁ. Fix some “good” randomness r such that H, approximates K' with probability at least

1-— ﬁ;). We next analyze the success probability of A,. Assume for contradiction that A, outputs 1
with probability at least 1 — 1 + na—lﬂ on input G(U, | Ey). Recall that (1) the entropy of G(U, | Er)
is at least n — awlogn and (2) the quantity —log Pr[G (U, | E,) = y] is upper bounded by n for all
y € GU, | Ey) since Hoo(G(Uy, | Ep)) < Hoo(Un | Ern) < Hoo(Uyn) = n. By an averaging argument,
with probability at least %, a random y € G(U, | Ey,) will satisfy

—logPr[G(Uy, | En) = y] > (n — alogn) — 1.

We refer to an output y satisfying the above condition as being “good” and other y’s as being “bad”.
Let S ={y € GU, | E,) : A.(1",y) = 1 Ay is good}, and let " = {y € GU,, | E,) : A-(1",y) =
1 Ay is bad}. Since

PrlA. (1", G(Uy | En)) = 1] = Pr[GUy, | En) € S] + Pr[G(Uy, | E,) € 7],

and Pr[G(U, | E,) € S’] is at most the probability that G(U,,) is “bad” (which as argued above is
at most 1 — 1), we have that

Pr[G(Un|En)€S]2(1—71L+ ! )—(1—1>: !

no+y n noty’
Furthermore, since for every y € S, Pr[G(U, | E,) = y] < 27"+eloentl e also have,

Pr[G(U, | E,) € S] < |S|2 nTalsntl

12



So,
analog n—1
|S‘ > _ 2n—(2a+v) logn—1
= oty

However, for any y € G(U, | E,), if A,(1",y) outputs 1, then by Equation 3, H,(y) > K'(y) + /8,
so H fails to output a good approximation. (This follows, since by Equation 3, K*(y) < n—~/2logn
and A, (1", y) outputs 1 only if H,(y) >n — %fylog n.)
Thus, the probability that H, fails (to output a good approximation) on a random y € {0,1}™
is at least
on—(2a+y)logn—1

1
m o__ —2(a+v)logn—1 __
‘S‘/Q - 9on+vylogn—c >2 T op2(aty)

which contradicts the fact that H, fails with approximate K* probability at most p(”—;) < m
(since n < m).

We conclude that for every good randomness 7, A, outputs 1 with probability at most 1—%—}— nalﬂ .
Finally, by union bound (and since a random tape is bad with probability < %), we have that the

probability that A(G (U, | E)) outputs 1 is at most

1 1 1 <1 1 2
2T h e S Tt

sincey>2. N
We conclude, recalling that v > 8, that A distinguishes U,,, and G(U,, | E,,) with probability of at

feast 2 1 2 2 1 2 1 4 1
- ) (142 )>(1-2 ) (1- 2+ 2 )= 2>~
< n7/4> ( n+n2> _< n2) ( n+n2> n  n? = n?

for infinitely many n € N. W

5.3 Cond EP-PRGs from OWFs

In this section, we show how to construct a condEP-PRG from any OWEF. Towards this, we first recall
the construction of [HILL99, Gol01, YLW15] of a PRG from a regular one-way function [GKL93].

Definition 5.3. A function f : {0,1}* — {0,1}* is called regular if there exists a functionr : N — N
such that for all sufficiently long x € {0,1}*,

et <71 (f ()] < 270D
We refer to r as the reqularity of f.

As mentioned in the introduction, the construction proceeds in the following two steps given a OWF
f with regularity 7.

e We “massage” f into a different OWF f having the property that there exists some ¢(n) =
n — O(logn) such that f (Un) is statistically close to Up,)—we will refer to such a OWF as
being dense. This is done by applying pairwise-independent hash functions (acting as strong
extractors) to both the input and the output of the OWF (parametrized to match the regularity
r) to “squeeze” out randomness from both the input and the output.

f(sllorllon) = alloal|[hay ()l —ogiog m | [Pas (F(8))In—r—0(10gm)

where [a]; means a truncated to j bits.
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e We next modify f to include additional randomness in the input (which is also revealed in the
output) to make sure the function has a hardcore function:

[ (sllo1lloalloar) = oaLll f(sl|o1]lo1)

e We finally use f’ to construct a PRG G" by simply adding the the Goldreich-Levin hardcore
bits [GL89], GL, to the output of the function f’:

G (sl|o1llozllogr) = f'(sllol|oalloar)|GL(s||o1||o2, oGL))

We note that the above steps do not actually produce a “fully secure” PRG as the statistical distance
between the output of f(U,) and uniform is only m as opposed to being negligible. [Gol01] thus
presents a final amplification step to deal with this issue—for our purposes it will suffice to get a
m indistinguishability gap so we will not be concerned about the amplification step.

We remark that nothing in the above steps requires f to be a one-way function defined on the
domain {0, 1}"— all three steps still work even for one-way functions defined over domains S that
are different than {0, 1}", as long as a lower bound on the size of the domain is efficiently computable
(by a minor modification of the construction in Step 1 to account for the size of S). Let us start by

formalizing this fact.

Definition 5.4. Let S = {S,} be a sequence of sets such that S, C {0,1}" and let f : S,, — {0,1}*
be a polynomial-time computable function. f is said to be a one-way function over S (S-OWF) if for
every PPT algorithm A, there exists a negligible function p such that for alln € N,

Prlz « Spiy = f(2) : A", y) € f71(f(2))] < p(n)

We refer to f as being reqular if it satisfies Definition 5.3 with the exception that we only quantify
over alln € N and all x € Sy, (as opposed to all x € {0,1}").

We say that a family of functions {fi}ier is efficiently computable if there exists a polynomial-time
algorithm M such that M (i, x) = fi(x).

Lemma 5.1 (implicit in [Gol01, YLW15]). Let S = {S,} be a sequence of sets such that S,, C {0,1}",
let s be an efficiently computable function such that s(n) < log|Sy|, and let f be an S-OWF with
reqularity r(-). Then, there exists a constant ¢ > 1 such that for every o/,~' > 0, there exists an
efficiently computable family of functions {f]}ien, and an efficiently computable function GL, such
that the following holds for £(n) = s(n) + 3n® — 2a’logn, ¢'(n) = {(n) ++'logn:

e density: For all sufficiently large n, the distributions

_ {a:é— Sn, 01,092,001 e—{O,l}”c: ;Oﬂ(x701702;UGL)}; and

— Up(n)

3

W—close in statistical distance.

are

e pseudorandomness: The ensembles of distributions,
_ {:U < Sp, 01,090,061 + {0,131 : f;(n)(ﬂj‘,dl,dg,O‘GL)HGL(J},O'1,0'2,0'GL)} and

n€N7
— Uy} e

are ﬁ-indistinguishable.
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Proof: Given a r(:)-regular S-OWF f, the construction of f’ has the form

f'(sllorllorllocr) = oarlloilloal| [P, ()lr—ar g nl oy (£ (5)]s(n)—r—a’ log n

where |z| = n, |o1| = |o2]| = |o¢| = n¢, and GL(x, 01,092,0¢L) is simply the Goldreich-Levin hardcore
predicate [GL89] outputting 7' log n inner products between z and vectors in ogr. The function f;
thus maps n’ = n+3n° bits to 3n°+ s(n) —2a’ log n bits, and once we add the output of GL, the total
output length becomes 3n¢ + s(n) — 2a’logn + ' logn as required. The proof in [Gol01, YLW15]
directly works to show that { f;}, GL satisfy the requirements stated in the theorem. (For the reader’s
convenience, we present a simple self-contained proof of this in Appendix A.%) W

We additionally observe that every OWF actually is a regular S-OWFs for a sufficiently large S.

Lemma 5.2. Let f be an one way function. There exists an integer function r(-) and a sequence of
sets S = {S,} such that S, C {0,1}", |Sp| > 2=, and f is a S-OWF with reqularity r.

Proof: The following simple claim is the crux of the proof:

Claim 3. For every n € N, there exists an integer vy, € [n| such that

Prle {01} 27 < T (f@)) <27 2

Proof: For all i € [n], let
w(i) = Prlz < {0,1}" : 270 < [f7(f(2))] < 27).

Since for all z, the number of pre-images that map to f(x) must be in the range of [1,2"], we know
that " ; w(i) = 1. By an averaging argument, there must exists such 7, that w(r,) > % [ |

Let r(n) = r, for every n € N, S, = {z € {0,1}" : 2701 < |f~1(f(z))| < 2"™]}; regularity
of f when the input domain is restricted to S follows directly. It only remains to show that f is
a S-OWF; this follows directly from the fact that the set S,, are dense in {0,1}. More formally,
assume for contradiction that there exists a PPT algorithm A that inverts f with probability e(n)
when the input is sampled in S,,. Since |S,| > %n, it follows that A can invert f with probability at
least e(n)/n over uniform distribution, which is a contradiction (as f is a OWF). [l

1
)

By combining Lemma 5.1 and Lemma 5.2, we can directly get an EP-PRG defined over a subset
S. We next turn to showing how to instead get a p-conditionally secure EP-PRG that is defined
over {0,1}".

Theorem 5.5. Assume that one way functions exist. Then, there exists a polynomial to(-) such that
for every v > 1,0 > 1, there exists a (%)—condEP—PRG G5, :{0,1}" — {0,1}"7 81 with running
time bounded by (v + 0)to(n).

Proof: By Lemma 5.2, there exists a sequence of sets S = {S,} such that S, C {0,1}",|S,| >
2 a function r(-), and an S-OWF f with regularity r(-). Let s(n) = n —logn (to ensure that
s(n) <log|Sp|). Let ¢ be the constant guaranteed to exist by Lemma 5.1 w.r.t. S and f. Consider
any 6,7 > 1 and define o/ = 8¢d and 7' = (¢ + 1)y + 2o’ + 3, and define £(n),¢'(n) just as in the

stament of Lemma 5.1, namely, £(n) = s(n) + 3n® —2a’logn and ¢'(n) = £(n) +~'logn. Let {f!}ien

8This proof may be of independent didactic interest as an elementary proof of the existence of PRGs from regular
OWFs.
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and GL be the functions guaranteed to exists by Lemma 5.1 w.r.t. o/,7, and consider the function
G~ 1 {0, 1}logn4n43n" 10 1100 defined as follows:

Gs(i,2,01,02,061) = fi(x,01,02,06L)||GL(%, 01,02,06L)

where |i| =logn,i € [n],|z| = n,|o1| = |o2] = |ogr| = n°. Let n’ = n'(n) =logn + n + 3n° denote
the input length of Gs,. Let {E,/(,)} be a sequence of events where

Epny = {i,x,01,00,061 1 i =r(n),x € Sy, 01,02, 061 € {0,1}"}
Note that the two distributions,
o {2 S,,01,00,001 < {0,1}": f;(n)<l‘,01,02,0'GL)HGL(Z',O'l,O'Q,O'GL)}neN, and
o Gsy(Up | En)

are identically distributed. It follows from Lemma 5.1 that {GM( ' | Enr) fnen and {Up () fnen are

, z-indistinguishable. Note that for o/ = 8¢, we have that , 77 = ﬁ < m for sufficiently

large n. Thus, G5 satisfies the pseudorandomness property of a (n/ )—cond EP-PRG.

We further show that the output of G, preserves entropy Let X, be a random variable uniformly
distributed over .S,,. By Lemma 5.1, f;(n) (Xn,Uspe) is //2 < nfe(s < i )2 close to Uy, in statistical
distance for sufficiently large n. By Lemma 2.2 it thus holds that

H(fy ) (XnsUspe)) > £(n) — 2.
It follows that
H (f ) (X Usne), GL (X, Usne)) > H (£ (X, Usne)) > ) = 2.

Notice that Gs.(Up | En) and (f] (n) (X, Uspe), GL(X,,,Uspc)) are identically distributed, so on
inputs of length n’ = n'(n), the entropy loss of Gs, is n' — (¢(n) —2) < (2¢' 4+ 2)logn +2 <
(2a’ +4)logn/, thus G5 satisfies the entropy-preserving property (by setting the entropy loss « in
cond EP-PRG to be (2a/ +4)).

The function G maps n’ = logn + n + 3n° bits to £/(n) bits, and it is thus at least ¢/(n) — n’
(7 — 2a’ — 2)logn -bit expanding. Since n’ < n°*! for sufficiently large n and recall that ~'
(c+1)y+2a’' +2, G5 will expand its input by at least (7' — 2/ —2)logn > (c+1)ylogn > vylogn
bits.

Notice that although Gj is only defined over some input lengths n = n/(n), by taking “extra”
bits in the input and appending them to the output, G5, can be transformed to a cond EP-PRG
G, defined over all input lengths: Gj5_(2') finds a prefix x of 2’ as long as possible such that || is
of the form n’ = logn + n + 3n° for some n, rewrites 2’ = z||y, and outputs G5~ (z)||y. The entropy
preserving and the pseudorandomness property of Ggﬁ follows directly; finally, note that if |2/| is

v

~

sufficiently large, it holds that n°*! > |2’|, and thus by the same argument as above, Ggﬁ will also
expand its input by at least ~ylog |2'| bits.

We finally show that there exists some polynomial ¢o(n’) such that for every §,v > 1, (y+9)to(n’)
bounds the running time of Ggﬁ on inputs of length n’. To see this, note that the OWF used in
this construction can be assumed to have some fixed polynomial running time. The hash function
and the GL hardcore function take (no more than) O(n¢) time to output one bit, and in total the
hash function outputs at most O(n) bits, so the running time of the hash function is O(n¢*1). (If §
increases, then o increases—recall that o/ > 8cd—and the hash function outputs fewer bits and runs
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faster.) On the other hand, for all 7, §, G outputs 7' log(n) = ((c¢+1)y+2a’4+2)logn = (v+0)O(logn)
GL hardcore bits. Thus, for any v, §, G’ runs in poly(n) +O(ntH) 4 (y+6)O(nclogn) < (y+8)te(n')
time for some polynomial ¢y(n’) over input of length n’. i

We now use a standard padding trick to obtain a rate-1 efficient p-cond EP-PRG: we simply
output the first n—¢ bits unchanged, and next apply a cond EP-PRG on the last £ bits. Since we only
have a cond EP-PRG that satisfies inverse polynomial (as opposed to negligible) indistinguishability,
we need to be a bit careful with the choice of the parameters.

Theorem 5.6. Assume that one way functions exist. Then, for every v > 1, there exists a rate-1
efficient u-cond EP-PRG G-, : {0,1}" — {0,1}"F7108n where pu(n) = 1/n?.

Proof: Let ¢y(-) be the polynomial guaranteed to exist due to Theorem 5.5. Let ¢y be a constant
such that O(n®) > ty(n). Consider any v > 1, and let 4" = 2¢py and ¢’ = 4¢p and p/(n) = # By
Theorem 5.5, there exists a p'-cond EP-PRG G, ., : {0,1}" — {0, 1377 lgn: et o its associated
entropy-loss constant. Consider a function G-, : {0,1}" — {0,1}"*71°8" defined as follows:

G (s0l[s1) = s0l|G5r ./ (s1)

1 1 1
where [s1] = n20. Note that |G, /(s1)| = [s1] +7'log|[s1]| = n?*o + 7 log(n?0) = n=2% + ylogn,
1
so G, is (ylogn)-bit expanding. Furthermore, the entropy-loss of G is a’log(n?v) = alogn for

, 1
some constant o = g.-. Since the running time of Gy, , is bounded by (7' + ¢")to(n?0) < O(n%),

1
the running time of G, is |so| + O(n%) <n+ O(n%) Finally, it holds that 4/(|s1]) = p/(n>0) = 2,
so we conclude that G is a rate-1 efficient p-cond EP-PRG for p(n) = %, that expand n bits to
(n+~logn) bits. N
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A Proof of Lemma 5.1

In this section we provide a proof of Lemma 5.1. As mentionned in the main body, the proof of
this lemma readily follows using the proofs in [HILL99, Gol01, YLW15], but for the convenience
of the reader, we provide a simple self-contained proof of the lemma (which may be useful for
didactic purposes). We start by recalling the Leftover Hash Lemma [HILL99] and the Goldreich-
Levin Theorem [GL89].

The Leftover Hash Lemma We recall the notion of a universal hash function [CW79].

Definition A.1. Let H}, be a family of functions where m < n and each function h € H], maps
{0,1}™ to {0,1}™. We say that H}, is a universal hash family if (i) the functions hy € H]', can be
described by a string o of n® bits where ¢ is a universal constant that does not depend on n; (ii) for
all x # &' € {0,1}", and for all y,y' € {0,1}™

Prlhy < H" : ho(z) =y and hy(z') =9/] =272"

It is well-known that truncation preserves pairwise independence; for completeness, we recall the
proof:

Lemma A.1. If H}}, is a universal hash family and ¢ < n, then H;" = {hy € H],, : [ho]e} is also a
universal hash family.

Proof: For every z # 2/ € {0,1}", 4,9 € {0,1}",
Pr[hcr — ,HZw [hcr(x)]€ =y and [hcr(x/)]é = y/]
= Z Z Prihy < Ml ho(x) = 2z and hy(2') = 2/

zE{O,l}”,[z]e:y Zle{oal}n7[zl]zzy,
_ 2—2€'

Carter and Wegman demonstrate the existence of efficiently computable universal hash function
families.

Lemma A.2 ([CW79]). There exists a polynomial-time computable function H : {0,1}" x {0, 1} —
{0,1}" such that for every n, H' = {h, : 0 € {0,1}} is a universal hash family, where h, :
{0,1}™ — {0,1}™ is defined as hy(z) = H(x,0).

We finally recall the Leftover Hash Lemma.
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Lemma A.3 (Leftover Hash Lemma (LHL) [HILL99]). For any integers d < k < n, let H}}_, be a
universal hash family where each h € H}_; maps {0,1}" to {0, 1}Y=4. Then, for any random variable
X over {0,1}" such that Hy(X) > k, it holds that

[NJIsH

SD((Hy_g, Hi—o(X)), (Hf_q,Ur—a)) <272,

where Hj!_; denotes a random variable uniformly distributed over HJ_ .

Hardcore functions and the Goldreich-Levin Theorem We recall the notion of a hardcore
function and the Goldreich-Levin Theorem [GL89].

Definition A.2. A function g : {0,1}"* — {0,1}*™ is called a hardcore function for f : {0,1}" —
{0,1}* over S = {S,, C {0, 1}"}nen if the following ensembles are indistinguishable:

o {z < Sn: f(@)llg(2) }nen
* {x < Sy f(x)Huv(n)}nEN

While the Goldreich-Levin theorem is typically stated for one-way functions f, it actually applies
to any randomized function f(x,U,,) of = that hides z. Note that hiding is a weaker property than
one-wayness (where the attacker is only required to find any pre-image, and not necessarily the pre-
image x we computed the function on). Such a version of the Goldreich-Levin theorem was explicitly
stated in e.g., [HHRO6] (using somewhat different terminology).

Definition A.3. A function f: {0,1}" x {0,1}™™ — {0,1}* is said to be entropically-hiding over
S = {Sh}nen (S-hiding) if for every PPT algorithm A, there exists a negligible function p such that
for alln e N,

Pr(z Sy, 7 {0,1}™™; A", f(a,7)) = 2] < u(n)

Theorem A.4 ([GL89], also see Theorem 2.12 in [HHRO06]). There exists some ¢ such that for
every v, and every m(-), there exists a polynomial-time computable function GL : {0, 1}”+m(”)+”c —
{0,1}71°87 sych that the following holds: Let S = {S,, C {0,1}"}pen and let f : {0,137 x{0, 1} —
{0,1}* be S-hiding. Then GL is a hardcore function for f: {0,1}" x {0, 1} x {0,1} — {0,1}*,
defined as f'(z,r,0) = ol|f(z,7).

Given these preliminaries, we are ready to present the proof of Lemma 5.1.

Proof of Lemma 5.1 Let S = {5,} be a sequence of sets such that S, C {0,1}", let s be
an efficiently computable function such that s(n) < log|S,|, and let f : S, — {0,1}" be a S-
OWF with regularity r(n). By Lemma A.2 and Lemma A.1, there exists some constant ¢ and a
polynomial-time computable function H : {0,1}" x {0,1}™ — {0,1}" such that for every n,m > n,
HY = {hl : 0 € {0,1}""} is a universal hash family, where h. = [h,]m and h,(z) = H(x,0).
We consider a “massaged” function f;, obtained by hashing the input and the output of f: f; :
S x {0,137 x {0,131 — {0,1}2° x {0, 1}i=e"log™ x {0, 1}s(n)—i=a’logn

fi(li’ 01, 02) =01 ‘ |0'2‘ | [hm (l‘)]i—a’ logn”[hGQ (f(x))]s(n)fifa’ logn
where n = |z| and show that the function f(z, (01,02)) = frn)(x,01,02) is S-hiding.

Claim 4. The function f(-,-) is S-hiding.
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Proof:  Assume for contradiction that there exists a PPT A and a polynomial p(-) such that for
infinitely many n € N,

Pr[z < Sy, 01,09 ¢+ {0, 1}" - A", frmy(@,01,02)) = 2] > p(ln)
That is,

. . 1
Prly ¢ Sp, 01,02 ¢ (0,11 + A" 01l loalllao (@)t -ottagnll s (@Dt r -t i) = 2] = -

We show how to use A to invert f. Consider the PPT A’(17,y) that samples 01,02 + {0,1}" and a
“guess” z + {0,1}7(M—a"logn anq outputs A(1", o1lloa]|2|[[Poy (Y)]s(n)—r(n)—a’ 1ogn)- Since the guess
is correct with probability g-r(n)+a’logn > 277(") we have that

9—r(n)

Pr[z < S, : A (1", f(2)) = 2] > o)

Since the any y € f(S,) has at least 2"()~1 pre-images (since f is r(n)-regular over S), we have that
Prla S, : (1" f(@)) = a] > Prla 5, : A(17, /(@) € /(f(a))] x 277+,
Thus,

Pr[z « S, : A(1", f(z)) € F~(f(x))] > 277+ x Prlz « S, : A/(17, f(z)) = 2] >

which contradicts that f is an S-OWF. |}

Next, consider f] (8,0‘1,0‘2,O'GLA) = ogrl||fi(s,01,02), and the hardcore function GL guaranteed
to exists by Theorem A.4. Since f is S-hiding, by Theorem A.4, the following ensembles are indis-
tinguishable:

o {z+ Sy,01,00,06 « {0,1}" : frmy(@;01,02,06L)||GL(x, (01,02),0GL) fnen
L4 {$ — Sn,O-l,O'Q,O'GL — {Oa ]-}nc : f;,(n)(l‘a0-170-270-GL)||U’}//10gn}n€N

We finally show that {z < S, 01,02,0qL + {0,1}" : ﬁ(n)(m, o1,02,0GL)} is ﬁ close to uniform
for every n, which will conclude the proof of both the pseudorandomness and the density properties
by a hybrid argument. Let X be a random variable uniformly distributed over S, and let R1, Ro,Rgr.
be random variables uniformly distributed over {0,1}"". Let

REAL = f;(n) (X7 Ri, Ry, RGL) = RGLHRl ‘ ’RZH[hR1 (X)]r(n)—a’ logmn> [hR2 (f(X>)]s(n)—r(n)—oc’ logn
We observe:

e For every y € f(Sy), Heo(X|f(X) = y) > r(n) — 1 due to the fact that f is r(n)-regular; by
the LHL (i.e., Lemma A.3), it follows that REAL is ﬁ close in statistical distance to

HYB; = RGLHRluRQHUT(n)fo/ 10gn‘ ’ [th (f(X))]s(n)fr(n)fo/ logn

e Hyo(f(X)) > s(n) —r(n) due to the fact that f is r(n)-regular and |S,| > s(n); by the LHL,
it follows that HYBq is 7z close in statistical distance to

HYBy = RGLHRl”RQHZ/{r(n)—a’ logn| |us(n)—7’(n)—oc’ logn — Z/[s(n)+3nc—2a’ logn

Thus, REAL is ﬁ-close to uniform, which concludes the proof.
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