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Abstract

We prove that the equivalence of two fundamental problems in the theory of computing. For
every polynomial t(n) ≥ (1 + ε)n, ε > 0, the following are equivalent:

• One-way functions exists (which in turn is equivalent to the existence of secure private-key
encryption schemes, digital signatures, pseudorandom generators, pseudorandom functions,
commitment schemes, and more);

• t-time bounded Kolmogorov Complexity, Kt, is mildly hard-on-average (i.e., there exists a
polynomial p(n) > 0 such that no PPT algorithm can compute Kt, for more than a 1− 1

p(n)

fraction of n-bit strings).

In doing so, we present the first natural, and well-studied, computational problem characterizing
the feasibility of the central private-key primitives and protocols in Cryptography.
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1 Introduction

We prove the equivalence of two fundamental problems in the theory of computing: (a) the exis-
tence of one-way functions, and (b) mild average-case hardness of the time-bounded Kolmogorov
Complexity problem.

Existence of One-way Functions: A one-way function [DH76] (OWF) is a function f that can
be efficiently computed (in polynomial time), yet no probabilistic polynomial-time (PPT) al-
gorithm can invert f with inverse polynomial probability for infinitely many input lengths n.
Whether one-way functions exist is unequivocally the most important open problem in Cryp-
tography (and arguably the most importantly open problem in the theory of computation,
see e.g., [Lev03]): OWFs are both necessary [IL89] and sufficient for many of the most cen-
tral cryptographic primitives and protocols (e.g., pseudorandom generators [BM88, HILL99],
pseudorandom functions [GGM84], private-key encryption [GM84], digital signatures [Rom90],
commitment schemes [Nao91], identification protocols [FS90], coin-flipping protocols [Blu82],
and more). These primitives and protocols are often referred to as private-key primitives,
or “Minicrypt” primitives [Imp95] as they exclude the notable task of public-key encryption
[DH76, RSA83]. Additionally, as observed by Impagliazzo [Gur89, Imp95], the existence of
a OWF is equivalent to the existence of polynomial-time method for sampling hard solved
instances for an NP language (i.e., hard instances together with their witnesses).

While many candidate constructions of OWFs are known—most notably based on factoring
[RSA83], the discrete logarithm problem [DH76], or the hardness of lattice problems [Ajt96]—
the question of whether there exists some natural average-case hard problem that characterizes
the hardness of OWFs (and thus the feasibility of the above central cryptographic primitives)
has been a long-standing open problem:1

Does there exists some natural average-case hard computational problem (i.e., both
the computational problem and the distribution over instances is “natural”), which
characterizes the existence of one-way functions?

This problem is particularly pressing given recent advances in quantum computing [AAB+19]
and the fact that many classic OWF candidates (e.g., based on factoring and discrete log) can
be broken by a quantum computer [Sho97].

Average-case Hardness of Kpoly-Complexity: What makes the string 12121212121212121 less
random than 60484850668340357492? The notion of Kolmogorov complexity (K-complexity),
introduced by Solomonoff [Sol64], Kolmogorov [Kol68] and Chaitin [Cha69], provides an elegant
method for measuring the amount of “randomness” in individual strings: The K-complexity
of a string is the length of the shortest program (to be run on some fixed universal Turing
machine U) that outputs the string x. From a computational point of view, however, this
notion is unappealing as there is no efficiency requirement on the program. The notion of t(·)-
time-bounded Kolmogorov Complexity (Kt-complexity) overcomes this issue: Kt(x) is defined
as the length of the shortest program that outputs the string x within time t(|x|). As surveyed
by Trakhtenbrot [Tra84], the problem of efficiently determining the Kt-complexity for t(n) =
poly(n) predates the theory of NP-completeness and was studied in the Soviet Union since the

1Note that Levin [Lev85] presents an ingenious construction of a universal one-way function—a function that is
one-way if one-way functions exists. But his construction (which relies on an enumeration argument) is artificial. Levin
[Lev03] takes a step towards making it less artificial by constructing a universal one-way function based on a new
specially-tailored Tiling Expansion problem.
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60s as a candidate for a problem that requires “brute-force search” (see Task 5 on page 392 in
[Tra84]). The modern complexity-theoretic study of this problem goes back to Sipser [Sip83],
Ko [Ko86] and Hartmanis [Har83].

Intriguingly, Trakhtenbrot also notes that a “frequential” version of this problem was considered
in the Soviet Union in the 60s: the problem of finding an algorithm that succeeds for a “high”
fraction of strings x—in more modern terms from the theory of average-case complexity [Lev86],
whether Kt can be computed by a heuristic algorithm with inverse polynomial error, over
random inputs x. We say that Kt is mildly hard-on-average (mildly HoA) if there exists some
polynomial p(·) > 0 such that every PPT fails in computing Kt(·) for at least a 1

p(·) fraction

of n-bit strings x for all sufficiently large n, and that Kpoly is mildly HoA if there exists some
polynomial t(n) > 0 such that Kt is mildly HoA.

Our main result shows that the existence of OWFs is equivalent to mild average-case hardness of
Kpoly. In doing so, we resolve the above-mentionned open problem, and present the first natural
(and well-studied) computational problem, characterizing the feasibility of the central private-key
primitives in Cryptography.

Theorem 1.1. The following are equivalent:

• One-way functions exist;

• Kpoly is mildly hard-on-average.

In other words,

Secure private-key encryption, digial dignatures, pseudorandom generators, pseudoran-
dom functions, commitment schemes, etc., are possible iff Kpoly-complexity is mildly
hard-on-average.

In fact, our main theorem is stronger than stated: we show that for every polynomial t(n) ≥
(1 + ε)n, where ε > 0 is a constant, mild average-case hardness of Kt is equivalent to the existence
of one-way functions.

On the Hardness of Approximating Kpoly-complexity Our connection between OWFs and
Kt-complexity has direct implications to the theory of Kt-complexity. Trakhtenbrot [Tra84] also
discusses average-case hardness of the approximate Kt-complexity problem: the problem of, given a
random x, outputting an “approximation” y that is β(|x|)-close to Kt(x) (i.e., |Kt(x)− y| ≤ β(|x|)).
He observes that there is a trivial heuristic approximation algorithm that succeeds with probability
approaching 1 (for large enough n): Given x, simply output |x|. In fact, this trivial algorithm
produces a (d log n)-approximation with probability ≥ 1− 1

nd
over random n-bits strings.2 We note

that our proof that OWFs imply mild average-case hardness of Kpoly actually directly extends to
show that Kpoly is mildly-HoA also to (d log n)-approximate. We thus directly get:

Theorem 1.2. If Kpoly is mildly hard-on-average, then for every constant d, Kpoly is mildly hard-
on-average to (d log n)-approximate.

In other words, any efficient algorithm that only slightly beats the success probability of the
“trivial” approximation algorithm, can be used to break OWFs.

2At most 2n−d logn out of 2n strings have Kt-complexity that is smaller than n− d log n.
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Existential v.s. Constructive Kt complexity Trakhtenbrot [Tra84] considers also “construc-
tive” variant of the Kt-complexity problem, where the task of the solver is to, not only determine the
Kt-complexity of a string x, but to also output a minimal-length program Π that generates x. We
remark that for our proof that mild average-case hardness of Kpoly implies OWFs, it actually suffices
to assume mild average-case hardness of the “constructive” Kpoly problem, and thus we obtain an
equivalence between the “existential” and “constructive” versions of the problem in the average-case
regime.

On Decisional Time-Bounded Kolmogorov Complexity Problems We finally note that
our results also show an equivalence between one-way functions and mild average-case hardness of
a decisional Kpoly problem: Let MINKt[s] denote the set of strings x such that Kt(|x|)(x) ≤ s(|x|).
Our proof directly shows that there exists some constant c such that for every constant ε > 0,
every t(n) ≥ (1 + ε)n, and letting s(n) = n − c log n, mild average-case hardness of the language
MINKt[s] (with respect to the uniform distribution over instances) is equivalent the existence of
one-way functions.

1.1 Related Work

We refer the reader to Goldreich’s textbook [Gol01] for more context and applications of OWFs
(and complexity-based cryptography in general); we highly recommend Barak’s survey on candidate
constructions of one-way functions [Bar17]. We refer the reader to the textbook of Li and Vitanyi
[LV08] for more context and applications of Kolmogorov complexity; we highly recommend Allender’s
surveys on the history, and recent applications, of notions of time-bounded Kolmogorov complexity
[All20a, All20b, All17].

On Connections between Kpoly-complexity and OWFs We note that some (partial) connec-
tions between Kt-complexity and OWFs already existed in the literature:

• Results by Kabanets and Cai [KC00] and Allender et al [ABK+06] show that the existence of
OWFs implies that Kpoly must be worst-case hard to compute; their results will be the starting
point for our result that OWFs also imply average-case hardness of Kpoly.

• Allender and Das [AD17] show that every problem in SZK (the class of promise problems
having statistical zero-knowledge proofs [GMR89]) can be solved in probabilistic polynomial-
time using a Kpoly-complexity oracle. Furthermore, Ostrovsky and Wigderson [Ost91, OW93]
show that if SZK contains a problem that is hard-on-average, then OWFs exist. In contrast,
we show the existence of OWFs assuming only that Kpoly is hard-on-average.

• A very recent elegant work by Santhanam [San20] is also explicitly motivated by the above-
mentionned open problem, and presents an intruiging connection between one-way functions
and error-less average-case hardness of the circuit minimization problem (MCSP) [KC00]—i.e.,
the problem of, given a truth table of a boolean function, determining the size of the smallest
circuit that computes the function; the MCSP problem is closely related to the time-bounded
Kolmogorov complexity problem [Tra84, ABK+06]. Santhanam proves equivalence between
OWFs and errorless average-case hardness of MCSP under a new (and somewhat complicated)
conjecture that he introduces. We emphasize that, in contrast, our equivalence is unconditional.

On Worst-case to Average-case Reductions for Kpoly-complexity We highlight a very el-
egant recent result by Hirahara [Hir18] that presents a worst-case (approximation) to average-case
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reduction for Kpoly-complexity. Unfortunately, his result only gives average-case hardness w.r.t.
errorless heuristics—namely, heuristics that always provide either the correct answer or output ⊥
(and additionally only output ⊥ with small probability). For our construction of a OWF, however,
we require average-case hardness of Kt also with respect to heuristics that may err (with small
probability). Santhanam [San20], independently, obtains a similar result for a related problem.

Hirahara notes that it is an open problem to obtain a worst-case to average-case reduction for
Kpoly w.r.t. heuristics that may err. Let us emphasize that average-case hardness w.r.t. error-
less heuristics is a much weaker property that just “plain” average-case hardness (with respect to
heuristics that may err): Consider a random 3SAT formula on n variables with 1000n clauses. It
is well-known that, with high probability, the formula is not be satisfiable. Thus, there is a trivial
heuristic algorithm for solving 3SAT on such random instances by simply outputting “No”. Yet,
the question of whether there exists an efficient errorless heuristic for this problem is still open, and
non-existence of such an algorithm is implied by Feige’s Random 3SAT conjecture [Fei02].

On Universal Extrapolation Impagliazzo and Levin [IL90] consider a problem of universal ex-
trapolation: Roughly speaking, extrapolation with respect to some polynomial-time Turing machine
M requires, given some prefix string xpre, sampling a random continuation xpost such that M (on
input a random tape) generates xpre||xpost. Universal extrapolation is said to be possible if all
polynomial-time Turing machines can be extrapolated. Impagliazzo and Levin demonstrate the
equivalence of one-way functions and the infeasibility of universal extrapolation.

As suggested by an anonymous FOCS reviewer, universal extrapolation seems related to time-
bounded Kolmogorov complexity: Extrapolation with respect to a universal Turing machine should,
intuitively, be equivalent to approximating Kpoly (for random string x) by counting the number of
possible continuations xpost to a prefix xpre of x: Strings with small Kpoly-complexity should have
many possible continuation, while strings with large Kpoly-complexity should have few.

While this method may perhaps be used to obtain an alternative proof of one direction (existence
of one-way function from hardness of Kpoly) of our main theorem, as far as we can tell, the actual
proof is non-trivial and would result in a significantly weaker conclusion than what we obtain: It
would only show that average-case hardness of approximating Kpoly implies infeasibility of universal
extrapolation and thus one-way functions, whereas we show that even average-case hardness of exactly
computing Kpoly implies the existence of one-way functions.

For the converse direction, the infeasibility of universal extrapolation only means that there exists
some polynomial-time Turing machine M that is hard to extrapolate, and this M is not necessarily
a universal Turing machine. It is not a-priori clear whether infeasibility of extrapolation w.r.t. some
M implies infeasibility of extrapolation w.r.t. a universal Turing machine.

A direct corollary of our main theorem is a formal connection between universal extrapolation
and average-case hardness of Kpoly: Infeasibility of universal extrapolation is equivalent to mild
average-case hardness of Kpoly (since by [IL90], infeasibility of universal extrapolation is equivalent
to the existence of one-way functions).

1.2 Proof outline

We provide a brief outline for the proof of Theorem 1.1.

OWFs from Avg-case Kpoly-Hardness We show that if Kt is mildly average-case hard for
some polynomial t(n) > 0, then a weak one-way function exists3; the existence of (strong) one-way

3Recall that an efficiently computable function f is a weak OWF if there exists some polynomial q > 0 such that f
cannot be efficiently inverted with probability better than 1 − 1

q(n)
for sufficiently large n.
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functions then follows by Yao’s hardness amplification theorem [Yao82]. Let c be a constant such
that every string x can be output by a program of length |x| + c (running on the fixed Universal
Turing machine U). Consider the function f(`||Π′), where ` is a bitstring of length log(n + c) and
Π′ is a bitstring of length n+ c, that lets Π be the first ` bits of Π′, and outputs `||y where y is the
output generated by running the program Π4 for t(n) steps.5

We aim to show that if f can be inverted with high probability—significantly higher than 1−1/n—
then Kt-complexity of random strings z ∈ {0, 1}n can be computed with high probability. Our
heuristic H, given a string z, simply tries to invert f on `||z for all ` ∈ [n + c], and outputs the
smallest ` for which inversion succeeds.6 First, note that since every length ` ∈ [n + c] is selected
with probability 1/(n+ c), the inverter must still succeed with high probability even if we condition
the output of the one-way function on any particular length ` (as we assume that the one-way function
inverter fails with probability significantly smaller than 1

n). This, however, does not suffice to prove
that the heuristic works with high probability, as the string y output by the one-way function is not
uniformly distributed (whereas we need to compute the Kt-complexity for uniformly chosen strings).
But, we show using a simple counting argument that y is not too “far” from uniform in relative
distance. The key idea is that for every string z with Kt-complexity w, there exists some program
Πz of length w that outputs it; furthermore, by our assumption on c, w ≤ n+ c. We thus have that
f(Un+c+log(n+c)) will output w||z with probability at least 1

n+c · 2
−w ≥ 1

n+c · 2
−(n+c) = 2−n

O(n) (we need

to pick the right length, and next the right program). So, if the heuristic fails with probability δ, then
the one-way function inverter must fail with probability at least δ

O(n) , which leads to the conclusion

that δ must be small (as we assumed the inverter fails with probability significantly smaller than 1
n).

Avg-case Kpoly-Hardness from EP-PRGs To show the converse direction, our starting point
is the earlier result by Kabanets and Cai [KC00] and Allender et al [ABK+06] which shows that
the existence of OWFs implies that Kt-complexity, for every sufficiently large polynomial t(·), must
be worst-case hard to compute. In more detail, they show that if Kt-complexity can be computed
in polynomial-time for every input x, then pseudo-random generators (PRGs) cannot exist (and
PRGs are implied by OWF by [HILL99]). This follows from the observations that (1) random
strings have high Kt-complexity with overwhelming probability, and (2) outputs of a PRG always
have small Kt-complexity as long as t(n) is sufficiently greater than the running time of the PRG
(as the seed plus the constant-sized description of the PRG suffice to compute the output). Thus,
using an algorithm that computes Kt, we can easily distinguish outputs of the PRG from random
strings—simply output 1 if the Kt-complexity is high, and 0 otherwise. This method, however, relies
on the algorithm working for every input. If we only have access to a heuristic H for Kt, we have
no guarantees that H will output a correct value when we feed it a pseudorandom string, as those
strings are sparse in the universe of all strings.7

4Formally, the program/description Π is an encoding of a pair (M,w) where M is a Turing machine and w is some
input, and we evaluate M(w) on the Universal Turing machine U .

5We remark that although our construction of the function f is somewhat reminiscent of Levin’s construction of
a universal OWF, the actual function (and even more so the analysis) is actually quite different. Levin’s function f̂ ,
roughly speaking, parses the input into a Turing machine M of length log n and an input x of length n, and next
outputs M(x). As he argues, if a OWF f ′ exists, then with probability 1

n
, f̂ will compute output f ′(x) for a randomly

selected x, and is thus hard to invert. In contrast, in our candidate OWF construction, the key idea is to vary the
length of a “fully specified” program Π (including an input).

6Or, in case, we also want to break the “constructive” Kpoly problem, we also output the `-bit truncation of the
program Π′ output by the inverter.

7We note that, although it was not explictly pointed out, their argument actually also extends to show that Kt does
not have an errorless heuristic assuming the existence of PRGs. The point is that even on outputs of the PRG, an
errorless heuristic must output either a small value or ⊥ (and perhaps always just output ⊥). But for random strings,
the heuristic can only output ⊥ with small probability. Dealing with heuristics that may err will be more complicated.

5



To overcome this issue, we introduce the concept of an entropy-preserving PRG (EP-PRG).
This is a PRG that expands the seed by O(log n) bits, while ensuring that the output of the PRG
loses at most O(log n) bits of Shannon entropy—it will be important for the sequel that we rely on
Shannon entropy as opposed to min-entropy. In essence, the PRG preserves (up to an additive term
of O(log n)) the entropy in the seed s. We next show that any good heuristic H for Kt can break
such an EP-PRG. The key point is that since the output of the PRG is entropy preserving, by an
averaging argument, there exists a 1/n fraction of “good” seeds S such that, conditioned on the seed
belonging to S, the output of the PRG on input seeds of length n has min-entropy n − O(log n).
This means that the probability that H fails to compute Kt on output of the PRG, conditioned on
picking a “good” seed, can increase at most by a factor poly(n). We conclude that H can be used
to determine (with sufficiently high probability) the Kt-complexity for both random strings and for
outputs of the PRG.

EP-PRGs from Regular OWFs We start by noting that the standard Blum-Micali-Goldreich-
Levin [BM84, GL89] PRG construction from one-way permutations is entropy preserving. To see
this, recall the construction:

Gf (s, hGL) = f(s)||hGL||hGL(s)

where f is a one-way permutation and hGL is a hardcore function for f—by [GL89], we can select a
random hardcore function hGL that output O(log n) bits. Since f is a permutation, the output of the
PRG fully determines the input and thus there is actually no entropy loss. We next show that the
PRG construction of [GKL93, HILL99, Gol01, YLW15] from regular OWFs also is an EP-PRG. We
refer to a function f as being r-regular if for every x ∈ {0, 1}∗, f(x) has between 2r(|x|)−1 and 2r(|x|)

many preimages. Roughly speaking, the construction applies pairwise independent hash functions
(that act as strong extractors) h1, h2 to both the input and output of the OWF (parametrized to
match the regularity r) to “squeeze” out randomness from both the input and the output, and finally
also applies a hardcore function that outputs O(log n) bits:

Grf (s||h1||h2||hGL) = hGL||h1||h2||[h1(s)]r−O(logn)||[h2(f(s))]n−r−O(logn)||hGL(s), (1)

where [a]j means a truncated to j bits. As already shown in [Gol01] (see also [YLW15]), the output of
the function excluding the hardcore bits is actually 1/poly(n) -close to uniform in statistical distance
(this follows directly from the Leftover Hash Lemma [HILL99]), and this implies (using an averaging
argument) that the Shannon entropy of the output is at least n − O(log n), thus the construction
is an EP-PRG. We finally note that this construction remains both secure and entropy preserving,
even if the input domain of the function f is not {0, 1}n, but rather any set S of size 2n/n; this will
be useful to us shortly.

Cond EP-PRGs from Any OWFs Unfortunately, constructions of PRGs from OWFs [HILL99,
Hol06, HHR06, HRV10] are not entropy preserving as far as we can tell. We, however, remark that
to prove that Kt is mildly HoA, we do not actually need a “full-fledged” EP-PRG: Rather, it suffices
to have what we refer to as a conditionally-secure EP-PRG G: a conditionally-secure EP-PRG (cond
EP-PRG) is an efficiently computable function G having the property that there exists some event
E such that:

1. G(Un′ | E) has Shannon entropy n′ −O(log n′);

2. G(Un′ | E) is indistinguishable from Um for some m ≥ n′ +O(log n′).
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In other words, there exists some event E such that conditionned on the event E, G behaves likes
an EP-PRG. We next show how to adapt the above construction to yield a cond EP-PRG from any
OWF f . Consider G(i||s||h1, h2, hGL) = Gif (s, h1, h2, hGL) where |s| = n, |i| = log n, and Gif is
the PRG construction defined in equation 1. We remark that for any function f , there exists some
regularity i∗ such that at least a fraction 1/n of inputs x have regularity i∗. Let Si∗ denote the set of
these x’s. Clearly, |Si∗ | ≥ 2n/n; thus, by the above argument, Gi

∗
f (Un′ | Si∗) is both pseudorandom

and has entropy n′ −O(log n′). Finally, consider the event E that i = i∗ and s ∈ Si∗ . By definition,
G(Ulogn||Un||Um | E) is identically distributed to Gi

∗
f (Un′ | Si∗), and thus G is a cond EP-PRG from

any OWF. For clarity, let us provide the full expanded description of the cond EP-PRG G:

G(i||s||h1||h2||hGL) = hGL||h1||h2||[h1(s)]i−O(logn)||[h2(f(s))]n−i−O(logn)||hGL(s)

Note that this G is not a PRG: if the input i 6= i∗ (which happens with probability 1− 1
n), the output

of G may not be pseudorandom! But, recall that the notion of a cond EP-PRG only requires the
output of G to be pseudorandom conditioned on some event E (while also being entropy preserving
conditioned on the same event E).

Finally, the above outline only shows that Kt is mildly HoA if t(·) is larger than running time of
the cond EP-PRG that we constructed; that is, so far, we have only shown that OWFs imply that
Kt is mildly HoA for some polynomial t. To prove that this holds for every t(n) ≥ (1 + ε)n, ε > 0,
we remark that using a padding trick, we can also construct a cond EP-PRG that can be computed
in time n + O(nα), where α < 1—we refer to this as a rate-1 efficient PRG. Using such a rate-1
efficient cond EP-PRG, we can show that Kt is mildly HoA for every t(n) ≥ (1 + ε)n, ε > 0.

2 Preliminaries

We assume familiarity with basic concepts such as Turing machines, polynomial-time algorithms and
probabilistic polynomial-time algorithms (PPT). A function µ is said to be negligible if for every
polynomial p(·) there exists some n0 such that for all n > n0, µ(n) ≤ 1

p(n) . A probability ensemble is

a sequence of random variables A = {An}n∈N. We let Un the uniform distribution over {0, 1}n.

2.1 One-way Functions

We recall the definition of one-way functions [DH76]. Roughly speaking, a function f is one-way if
it is polynomial-time computable, but hard to invert for PPT attackers.

Definition 2.1. Let f : {0, 1}∗ → {0, 1}∗ be a polynomial-time computable function. f is said to be
a one-way function (OWF) if for every PPT algorithm A, there exists a negligible function µ such
that for all n ∈ N,

Pr[x← {0, 1}n; y = f(x) : A(1n, y) ∈ f−1(f(x))] ≤ µ(n)

We may also consider a weaker notion of a weak one-way function [Yao82], where we only require
all PPT attackers to fail with probability noticeably bounded away from 1:

Definition 2.2. Let f : {0, 1}∗ → {0, 1}∗ be a polynomial-time computable function. f is said to be
a α-weak one-way function (α-weak OWF) if for every PPT algorithm A, for all sufficiently large
n ∈ N ,

Pr[x← {0, 1}n; y = f(x) : A(1n, y) ∈ f−1(f(x))] < 1− α(n)

We say that f is simply a weak one-way function (weak OWF) if there exists some polynomial q > 0
such that f is a 1

q(·) -weak OWF.
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Yao’s hardness amplification theorem [Yao82] shows that any weak OWF can be turned into a
(strong) OWF.

Theorem 2.3 ([Yao82]). Assume there exists a weak one-way function. Then there exists a one-way
function.

2.2 Time-bounded Kolmogorov Complexity

Let U be some fixed Universal Turing machine that can emulate any Turing machine M with poly-
nomial overhead. Given a description Π ∈ {0, 1}∗ which encodes a pair (M,w) where M is a
(single-tape) Turing machine and w ∈ {0, 1}∗ is an input, let U(Π, 1t) denote the output of M(w)
when emulated on U for t steps. Note that (by assumption that U only has polynomial overhead)
U(Π, 1t) can be computed in time poly(d, t).

The t-time bounded Kolmogorov Complexity, Kt(x), of a string x [Kol68, Sip83, Tra84, Ko86] is
defined as the length of the shortest description Π such that U(Π, 1t) = x:

Kt(x) = min
Π∈{0,1}∗

{|Π| : U(Π, 1t(|x|)) = x}.

A central fact about Kt-complexity is that the length of a string x essentially (up to an additive
constant) bounds the Kt-complexity of the string for every t(n) > 0 [Sol64, Kol68, Cha69] (see e.g.,
[Sip96] for simple treatment). This follows by considering Π = (M,x) where M is a constant-length
Turing machine that directly halts; consequently, M simply outputs its input and thus M(x) = x.

Fact 2.1. There exists a constant c such that for every function t(n) > 0 and every x ∈ {0, 1}∗ it
holds that Kt(x) ≤ |x|+ c.

2.3 Average-case Hard Functions

We turn to defining what it means for a function to be average-case hard (for PPT algorithms).

Definition 2.4. We say that a function f : {0, 1}∗ → {0, 1}∗ is α(·) hard-on-average (α-HoA) if for
all PPT heuristic H, for all sufficiently large n ∈ N ,

Pr[x← {0, 1}n : H(x) = f(x)] < 1− α(|n|)

In other words, there does not exist a PPT “heuristic” H that computes f with probability
1−α(n) for infinitely many n ∈ N . We also consider what it means for a function to be average-case
hard to approximate.

Definition 2.5. We say that a function f : {0, 1}∗ → {0, 1}∗ is α hard-on-average (α-HoA) to
β(·)-approximate if for all PPT heuristic H, for all sufficiently large n ∈ N ,

Pr[x← {0, 1}n : |H(x)− f(x)| ≤ β(|x|)] < 1− α(|n|)

In other words, there does not exists a PPT heuristicH that approximates f within a β(·) additive
term, with probability 1 − α(n) for infinitely many n ∈ N .

Finally, we refer to a function f as being mildly HoA (resp HoA to approximate) if there exists
a polynomial p(·) > 0 such that f is 1

p(·) -HoA (resp. HoA to approximate).
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2.4 Computational Indistinguishability

We recall the definition of (computational) indistinguishability [GM84].

Definition 2.6. Two ensembles {An}n∈N and {Bn}n∈N are said to be µ(·)-indistinguishable, if for
every probabilistic machine D (the “distinguisher”) whose running time is polynomial in the length
of its first input, there exists some n0 ∈ N so that for every n ≥ n0:

|Pr[D(1n, An) = 1]− Pr[D(1n, Bn) = 1]| < µ(n)

We say that are {An}n∈N and {Bn}n∈N simply indistinguishable if they are 1
p(·) -indistinguishable for

every polynomial p(·).

2.5 Statistical Distance and Entropy

For any two random variables X and Y defined over some set V, we let SD(X,Y ) = 1
2

∑
v∈V |Pr[X =

v]−Pr[Y = v]| denote the statistical distance betweenX and Y . For a random variable X, letH(X) =
E[log 1

Pr[X=x] ] denote the (Shannon) entropy of X, and let H∞(X) = minx∈Supp(X) log 1
Pr[X=x] denote

the min-entropy of X.
We next demonstrate a simple lemma showing that any distribution that is statistically close to

random, has very high Shannon entropy.

Lemma 2.2. For every n ≥ 4, the following holds. Let X be a random variable over {0, 1}n such
that SD(X,Un) ≤ 1

n2 . Then H(Xn) ≥ n− 2.

Proof: Let S = {x ∈ {0, 1}n : Pr[X = x] ≤ 2−(n−1)}. Note that for every x /∈ S, x will contribute
at least

1

2
(Pr[X = x]− Pr[Un = x]) ≥ 1

2

(
Pr[X = x]− Pr[X = x]

2

)
=

Pr[X = x]

4

to SD(X,Un). Thus,

Pr[X /∈ S] ≤ 4 · 1

n2
.

Since for every x ∈ S, log 1
Pr[X=x] ≥ n − 1 and the probability that X ∈ S is at least 1 − 4/n2, it

follows that

H(X) ≥ Pr[X ∈ S](n− 1) ≥ (1− 4

n2
)(n− 1) ≥ n− 4

n
− 1 ≥ n− 2.

3 The Main Theorem

Theorem 3.1. The following are equivalent:

(a) The existence of one-way functions.

(b) The existence of a polynomial t(n) > 0 such that Kt is mildly hard-on-average.

(c) For all constants d > 0, ε > 0, and every polynomial t(n) ≥ (1 + ε)n, Kt is mildly hard-on-
average to (d log n)-approximate.

We prove Theorem 3.1 by showing that (b) implies (a) (in Section 4) and next that (a) implies
(c) (in Section 5). Finally, (c) trivially implies (b).

Note that a consequence of 3.1 is that for every polynomial t(n) ≥ (1 + ε)n, where ε > 0 is a
constant t(n), mild average-case hardness of Kt is equivalent to the existence of one-way functions.
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4 OWFs from Mild Avg-case Kt-Hardness

In this section, we state our main theorem.

Theorem 4.1. Assume there exist polynomials t(n) > 0, p(n) > 0 such that Kt is 1
p(·) -HoA. Then

there exists a weak OWF f (and thus also a OWF).

Proof: Let c be the constant from Fact 2.1. Consider the function f : {0, 1}n+c+dlog(n+c)e → {0, 1}∗,
which given an input `||Π′ where |`| = dlog(n + c)e and |Π′| = n + c, outputs `||U(Π, 1t(n)) where
Π is the `-bit prefix of Π′. This function is only defined over some input lengths, but by an easy
padding trick, it can be transformed into a function f ′ defined over all input lengths, such that if
f is (weakly) one-way (over the restricted input lengths), then f ′ will be (weakly) one-way (over
all input lengths): f ′(x′) simply truncates its input x′ (as little as possible) so that the (truncated)
input x now becomes of length m = n+ c+ dlog(n+ c)e for some n and outputs f(x).

We now show if Kt is 1
p(·) -HoA, then f is a 1

q(·) -weak OWF, where q(n) = 22c+3np(n)2, which

concludes the proof of the theorem. Assume for contradiction that f is not a 1
q(·) -weak OWF. That

is, there exists some PPT attacker A that inverts f with probability at least 1 − 1
q(n) ≤ 1 − 1

q(m)

for infinitely many m = n + c + dlog(n + c)e. Fix some such m,n > 2. By an averaging argument,
except for a fraction 1

2p(n) of random tapes r for A, the deterministic machine Ar (i.e., machine A
with randomness fixed to r) fails to invert f with probability at most 2p(n)

q(n) . Fix some such “good”

randomness r for which Ar succeeds to invert f with probability 1− 2p(n)
q(n) .

We next show how to use Ar to compute Kt with high probability over random inputs z ∈ {0, 1}n.
Our heuristic Hr(z) runs Ar(i||z) for all i ∈ [n+ c] where i is represented as a dlog(n+ c)e bit string,
and outputs the length of the smallest program Π output by Ar that produces the string z within
t(n) steps. Let S be the set of strings z ∈ {0, 1}n for which Hr(z) fails to compute Kt(z). Note that
Hr thus fails with probability

failr =
|S|
2n
.

Consider any string z ∈ S and let w = Kt(z) be its Kt-complexity. By Fact 2.1, we have that
w ≤ n+ c. Since Hr(z) fails to compute Kt(z), Ar must fail to invert (w||z). But, since w ≤ n+ c,
the output (w||z) is sampled with probability

1

n+ c
· 1

2w
≥ 1

(n+ c)

1

2n+c
≥ 1

n22c+1
· 1

2n

in the one-way function experiment, so Ar must fail with probability at least

|S| · 1

n22c+1
· 1

2n
=

1

n22c+1
· |S|

2n
=

failr
n22c+1

which by assumption (that Ar is a good inverter) is at most that 2p(n)
q(n) . We thus conclude that

failr ≤
22c+2np(n)

q(n)

Finally, by a union bound, we have that H (using a uniform random tape r) fails in computing Kt

with probability at most

1

2p(n)
+

22c+2np(n)

q(n)
=

1

2p(n)
+

22c+2np(n)

2c+3np(n)2
=

1

p(n)
.

Thus, H computes Kt with probability 1 − 1
p(n) for infinitely many n ∈ N, which contradicts the

assumption that Kt is 1
p(·) -HoA.
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5 Mild Avg-case Kt-Hardness from OWFs

We introduce the notion of a (conditionally-secure) entropy-preserving pseudo-random generator
(EP-PRG) and next show (1) the existence of a condEP-PRG implies that Kt is hard-on-average
(even to approximate), and (2) OWFs imply condEP-PRGs.

5.1 Entropy-preserving PRGs

We start by defining the notion of a conditionally-secure entropy-preserving PRG.

Definition 5.1. An efficiently computable function G : {0, 1}n → {0, 1}n+γ logn is a µ(·)-conditionally
secure entropy-preserving pseudorandom generator (µ-condEP-PRG) if there exist a sequence of
events = {En}n∈N and a constant α (referred to as the entropy-loss constant) such that the following
conditions hold:

• (pseudorandomness): {G(Un|En)}n∈N and {Un+γ logn}n∈N are µ(n)-indistinguishable;

• (entropy-preserving): For all sufficiently large n ∈ N, H(G(Un|En)) ≥ n− α log n.

If for all n, En = {0, 1}n (i.e., there is no conditioning), we say that G is an µ-secure entropy-
preserving pseudorandom generator (µ-EP-PRG).

We say that G has rate-1 efficiency if its running time on inputs of length n is bounded by
n+O(nε) for some constant ε < 1.

5.2 Avg-case Kt-Hardness from Cond EP-PRGs

Theorem 5.2. Assume that for every γ > 1, there exists a rate-1 efficient µ-condEP-PRG G :
{0, 1}n → {0, 1}n+γ logn where µ(n) = 1/n2. Then, for every constant d > 0, ε > 0, for every
polynomial t(n) ≥ (1 + ε)n, Kt is mildly hard-on-average to (d log n)-approximate.

Proof: Let γ ≥ max(8, 8d), and let G′ : {0, 1}n → {0, 1}m′(n) where m′(n) = n + γ log n be a
rate-1 efficient µ-condEP-PRG, where µ = 1/n2. For any constant c, let Gc(x) be a function that
computes G′(x) and truncates the last c bits. It directly follows that Gc is also a rate-1 efficient
µ-condEP-PRG (since G′ is so). Consider any ε > 0 and any polynomial t(n) ≥ (1 + ε)n and let
p(n) = 2n2(α+γ+1).

Assume for contradiction that there exists some PPT H that β-approximates Kt with probability
1− 1

p(m) for infinitely many m ∈ N, where β(n) = γ/8 log n ≥ d log n. Since m′(n+1)−m′(n) ≤ γ+1,

there must exist some constant c ≤ γ+1 such thatH succeeds (to β-approximate Kt) with probability
1 − 1

p(m) for infinitely many m of the form m = m(n) = n + γ log n − c. Let G(x) = Gc(x); recall

that G is a rate-1 efficient µ-condEP-PRG (trivially, since Gc is so), and let α, {En}, respectively,
be the entropy loss constant and sequence of events, associated with it.

We next show that H can be used to break the condEP-PRG G. Towards this, recall that a
random string has high Kt-complexity with high probability: for m = m(n), we have,

Pr
x∈{0,1}m

[Kt(x) ≥ m− γ

4
log n] ≥ 2m − 2m−

γ
4

logn

2m
= 1− 1

nγ/4
, (2)

since the total number of Turing machines with length smaller than m − γ
4 log n is only 2m−

γ
4

logn.
However, any string output by the EP-PRG, must have “low” Kt complexity: For every sufficiently
large n,m = m(n), we have that,

Pr
s∈{0,1}n

[Kt(G(s)) ≥ m− γ

2
log n] = 0, (3)
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since G(s) can be represented by combining a seed s of length n with the code of G (of constant
length), and the running time of G(s) is bounded by t(|s|) = t(n) ≤ t(m) for all sufficiently large n,
so Kt(G(s)) = n+O(1) = (m− γ log n+ c) +O(1) ≤ m− γ/2 log n for sufficiently large n.

Based on these observations, we now construct a PPT distinguisher A breaking G. On input
1n, x, where x ∈ {0, 1}m(n), A(1n, x) lets w ← H(x) and outputs 1 if w ≥ m(n) − 3

8γ log n and 0
otherwise. Fix some n and m = m(n) for which H succeeds with probability 1

p(m) . The following

two claims conclude that A distinguishes Um(n) and G(Un | En) with probability at least 1
n2 .

Claim 1. A(1n,Um) outputs 1 with probability at least 1− 2
nγ/4

.

Proof: Note that A(1n, x) will output 1 if x is a string with Kt-complexity larger than m−γ/4 log n
and H outputs a γ/8 log n-approximation to Kt(x). Thus,

Pr[A(1n, x) = 1]

≥ Pr[Kt(x) ≥ m− γ/4 log n ∧H succeeds on x]

≥ 1− Pr[Kt(x) < m− γ/4 log n]− Pr[H fails on x]

≥ 1− 1

nγ/4
− 1

p(n)

≥ 1− 2

nγ/4
.

where the probability is over a random x← Um and the randomness of A and H.

Claim 2. A(1n, G(Un | En)) outputs 1 with probability at most 1− 1
n + 2

nα+γ

Proof: Recall that by assumption, H fails to (γ/8 log n)-approximate Kt(x) for a random x ∈
{0, 1}m with probability at most 1

p(m) . By an averaging argument, for at least a 1 − 1
n2 fraction of

random tapes r for H, the deterministic machine Hr fails to approximate Kt with probability at
most n2

p(m) . Fix some “good” randomness r such that Hr approximates Kt with probability at least

1− n2

p(m) . We next analyze the success probability of Ar. Assume for contradiction that Ar outputs 1

with probability at least 1− 1
n + 1

nα+γ
on input G(Un | En). Recall that (1) the entropy of G(Un | En)

is at least n − α log n and (2) the quantity − log Pr[G(Un | En) = y] is upper bounded by n for all
y ∈ G(Un | En) since H∞(G(Un | En)) ≤ H∞(Un | En) ≤ H∞(Un) = n. By an averaging argument,
with probability at least 1

n , a random y ∈ G(Un | En) will satisfy

− log Pr[G(Un | En) = y] ≥ (n− α log n)− 1.

We refer to an output y satisfying the above condition as being “good” and other y’s as being “bad”.
Let S = {y ∈ G(Un | En) : Ar(1n, y) = 1 ∧ y is good}, and let S′ = {y ∈ G(Un | En) : Ar(1n, y) =
1 ∧ y is bad}. Since

Pr[Ar(1n, G(Un | En)) = 1] = Pr[G(Un | En) ∈ S] + Pr[G(Un | En) ∈ S′],

and Pr[G(Un | En) ∈ S′] is at most the probability that G(Un) is “bad” (which as argued above is
at most 1− 1

n), we have that

Pr[G(Un | En) ∈ S] ≥
(

1− 1

n
+

1

nα+γ

)
−
(

1− 1

n

)
=

1

nα+γ
.

Furthermore, since for every y ∈ S, Pr[G(Un | En) = y] ≤ 2−n+α logn+1, we also have,

Pr[G(Un | En) ∈ S] ≤ |S|2−n+α logn+1
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So,

|S| ≥ 2n−α logn−1

nα+γ
= 2n−(2α+γ) logn−1

However, for any y ∈ G(Un | En), if Ar(1n, y) outputs 1, then by Equation 3, Hr(y) > Kt(y) + γ/8,
so H fails to output a good approximation. (This follows, since by Equation 3, Kt(y) < n−γ/2 log n
and Ar(1n, y) outputs 1 only if Hr(y) ≥ n− 3

8γ log n.)
Thus, the probability that Hr fails (to output a good approximation) on a random y ∈ {0, 1}m

is at least

|S|/2m =
2n−(2α+γ) logn−1

2n+γ logn−c ≥ 2−2(α+γ) logn−1 =
1

2n2(α+γ)

which contradicts the fact that Hr fails with approximate Kt probability at most n2

p(m) <
1

2n2(α+γ)

(since n < m).
We conclude that for every good randomness r, Ar outputs 1 with probability at most 1− 1

n+ 1
nα+γ

.
Finally, by union bound (and since a random tape is bad with probability ≤ 1

n2 ), we have that the
probability that A(G(Un | En)) outputs 1 is at most

1

n2
+

(
1− 1

n
+

1

nα+γ

)
≤ 1− 1

n
+

2

n2
,

since γ ≥ 2.

We conclude, recalling that γ ≥ 8, that A distinguishes Um and G(Un | En) with probability of at
least (

1− 2

nγ/4

)
−
(

1− 1

n
+

2

n2

)
≥
(

1− 2

n2

)
−
(

1− 1

n
+

2

n2

)
=

1

n
− 4

n2
≥ 1

n2

for infinitely many n ∈ N.

5.3 Cond EP-PRGs from OWFs

In this section, we show how to construct a condEP-PRG from any OWF. Towards this, we first recall
the construction of [HILL99, Gol01, YLW15] of a PRG from a regular one-way function [GKL93].

Definition 5.3. A function f : {0, 1}∗ → {0, 1}∗ is called regular if there exists a function r : N→ N
such that for all sufficiently long x ∈ {0, 1}∗,

2r(|x|)−1 ≤ |f−1(f(x))| ≤ 2r(|x|).

We refer to r as the regularity of f .

As mentioned in the introduction, the construction proceeds in the following two steps given a OWF
f with regularity r.

• We “massage” f into a different OWF f̂ having the property that there exists some `(n) =
n − O(log n) such that f̂(Un) is statistically close to U`(n)—we will refer to such a OWF as
being dense. This is done by applying pairwise-independent hash functions (acting as strong
extractors) to both the input and the output of the OWF (parametrized to match the regularity
r) to “squeeze” out randomness from both the input and the output.

f̂(s||σ1||σ1) = σ1||σ2||[hσ1(s)]r−O(logn)||[hσ2(f(s))]n−r−O(logn)

where [a]j means a truncated to j bits.
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• We next modify f̂ to include additional randomness in the input (which is also revealed in the
output) to make sure the function has a hardcore function:

f ′(s||σ1||σ2||σGL) = σGL||f̂(s||σ1||σ1)

• We finally use f ′ to construct a PRG Gr by simply adding the the Goldreich-Levin hardcore
bits [GL89], GL, to the output of the function f ′:

Gr(s||σ1||σ2||σGL) = f ′(s||σ1||σ2||σGL)||GL(s||σ1||σ2, σGL))

We note that the above steps do not actually produce a “fully secure” PRG as the statistical distance
between the output of f̂(Un) and uniform is only 1

poly(n) as opposed to being negligible. [Gol01] thus
presents a final amplification step to deal with this issue—for our purposes it will suffice to get a

1
poly(n) indistinguishability gap so we will not be concerned about the amplification step.

We remark that nothing in the above steps requires f to be a one-way function defined on the
domain {0, 1}n— all three steps still work even for one-way functions defined over domains S that
are different than {0, 1}n, as long as a lower bound on the size of the domain is efficiently computable
(by a minor modification of the construction in Step 1 to account for the size of S). Let us start by
formalizing this fact.

Definition 5.4. Let S = {Sn} be a sequence of sets such that Sn ⊆ {0, 1}n and let f : Sn → {0, 1}∗
be a polynomial-time computable function. f is said to be a one-way function over S (S-OWF) if for
every PPT algorithm A, there exists a negligible function µ such that for all n ∈ N,

Pr[x← Sn; y = f(x) : A(1n, y) ∈ f−1(f(x))] ≤ µ(n)

We refer to f as being regular if it satisfies Definition 5.3 with the exception that we only quantify
over all n ∈ N and all x ∈ Sn (as opposed to all x ∈ {0, 1}n).

We say that a family of functions {fi}i∈I is efficiently computable if there exists a polynomial-time
algorithm M such that M(i, x) = fi(x).

Lemma 5.1 (implicit in [Gol01, YLW15]). Let S = {Sn} be a sequence of sets such that Sn ⊆ {0, 1}n,
let s be an efficiently computable function such that s(n) ≤ log |Sn|, and let f be an S-OWF with
regularity r(·). Then, there exists a constant c ≥ 1 such that for every α′, γ′ ≥ 0, there exists an
efficiently computable family of functions {f ′i}i∈N, and an efficiently computable function GL, such
that the following holds for `(n) = s(n) + 3nc − 2α′ log n, `′(n) = `(n) + γ′ log n:

• density: For all sufficiently large n, the distributions

–
{
x← Sn, σ1, σ2, σGL ← {0, 1}n

c
: f ′r(n)(x, σ1, σ2, σGL)

}
, and

– U`(n)

are 3
nα
′/2 -close in statistical distance.

• pseudorandomness: The ensembles of distributions,

–
{
x← Sn, σ1, σ2, σGL ← {0, 1}n

c
: f ′r(n)(x, σ1, σ2, σGL)||GL(x, σ1, σ2, σGL)

}
n∈N

, and

–
{
U`′(n)

}
n∈N

are 4
nα
′/2 -indistinguishable.
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Proof: Given a r(·)-regular S-OWF f , the construction of f ′ has the form

f ′(s||σ1||σ1||σGL) = σGL||σ1||σ2||[hσ1(s)]r−α′ logn||[hσ2(f(s))]s(n)−r−α′ logn

where |x| = n, |σ1| = |σ2| = |σc| = nc, and GL(x, σ1, σ2, σGL) is simply the Goldreich-Levin hardcore
predicate [GL89] outputting γ′ log n inner products between x and vectors in σGL. The function f ′r
thus maps n′ = n+3nc bits to 3nc+s(n)−2α′ log n bits, and once we add the output of GL, the total
output length becomes 3nc + s(n) − 2α′ log n + γ′ log n as required. The proof in [Gol01, YLW15]
directly works to show that {fi}, GL satisfy the requirements stated in the theorem. (For the reader’s
convenience, we present a simple self-contained proof of this in Appendix A.8)

We additionally observe that every OWF actually is a regular S-OWFs for a sufficiently large S.

Lemma 5.2. Let f be an one way function. There exists an integer function r(·) and a sequence of
sets S = {Sn} such that Sn ⊆ {0, 1}n, |Sn| ≥ 2n

n , and f is a S-OWF with regularity r.

Proof: The following simple claim is the crux of the proof:

Claim 3. For every n ∈ N, there exists an integer rn ∈ [n] such that

Pr[x← {0, 1}n : 2rn−1 ≤ |f−1(f(x)|) ≤ 2rn ] ≥ 1

n
.

Proof: For all i ∈ [n], let

w(i) = Pr[x← {0, 1}n : 2i−1 ≤ |f−1(f(x))| ≤ 2i].

Since for all x, the number of pre-images that map to f(x) must be in the range of [1, 2n], we know
that

∑n
i=1w(i) = 1. By an averaging argument, there must exists such rn that w(rn) ≥ 1

n .

Let r(n) = rn for every n ∈ N , Sn = {x ∈ {0, 1}n : 2r(n)−1 ≤ |f−1(f(x))| ≤ 2r(n)]}; regularity
of f when the input domain is restricted to S follows directly. It only remains to show that f is
a S-OWF; this follows directly from the fact that the set Sn are dense in {0, 1}. More formally,
assume for contradiction that there exists a PPT algorithm A that inverts f with probability ε(n)
when the input is sampled in Sn. Since |Sn| ≥ 2n

n , it follows that A can invert f with probability at
least ε(n)/n over uniform distribution, which is a contradiction (as f is a OWF).

By combining Lemma 5.1 and Lemma 5.2, we can directly get an EP-PRG defined over a subset
S. We next turn to showing how to instead get a µ-conditionally secure EP-PRG that is defined
over {0, 1}n.

Theorem 5.5. Assume that one way functions exist. Then, there exists a polynomial t0(·) such that
for every γ > 1, δ > 1, there exists a

(
1
nδ

)
-condEP-PRG G′δ,γ : {0, 1}n → {0, 1}n+γ logn with running

time bounded by (γ + δ)t0(n).

Proof: By Lemma 5.2, there exists a sequence of sets S = {Sn} such that Sn ⊆ {0, 1}n, |Sn| ≥
2n

n , a function r(·), and an S-OWF f with regularity r(·). Let s(n) = n − log n (to ensure that
s(n) ≤ log |Sn|). Let c be the constant guaranteed to exist by Lemma 5.1 w.r.t. S and f . Consider
any δ, γ > 1 and define α′ = 8cδ and γ′ = (c + 1)γ + 2α′ + 3, and define `(n), `′(n) just as in the
stament of Lemma 5.1, namely, `(n) = s(n) + 3nc− 2α′ log n and `′(n) = `(n) + γ′ log n. Let {f ′i}i∈N

8This proof may be of independent didactic interest as an elementary proof of the existence of PRGs from regular
OWFs.
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and GL be the functions guaranteed to exists by Lemma 5.1 w.r.t. α′, γ′, and consider the function
Gδ,γ : {0, 1}logn+n+3nc → {0, 1}`′(n) defined as follows:

Gδ,γ(i, x, σ1, σ2, σGL) = f ′i(x, σ1, σ2, σGL)||GL(x, σ1, σ2, σGL)

where |i| = log n, i ∈ [n], |x| = n, |σ1| = |σ2| = |σGL| = nc. Let n′ = n′(n) = log n + n + 3nc denote
the input length of Gδ,γ . Let {En′(n)} be a sequence of events where

En′(n) = {i, x, σ1, σ2, σGL : i = r(n), x ∈ Sn, σ1, σ2, σGL ∈ {0, 1}n
c}

Note that the two distributions,

• {x← Sn, σ1, σ2, σGL ← {0, 1}n
c

: f ′r(n)(x, σ1, σ2, σGL)||GL(x, σ1, σ2, σGL)}n∈N, and

• Gδ,γ(Un′ | En′)

are identically distributed. It follows from Lemma 5.1 that {Gδ,γ(Un′ | En′)}n∈N and {U`′(n)}n∈N are
4

nα
′/2 -indistinguishable. Note that for α′ = 8cδ, we have that 4

nα
′/2 = 4

n4cδ ≤ 1
n′(n)δ

for sufficiently

large n. Thus, Gδ,γ satisfies the pseudorandomness property of a
(

1
n′δ

)
-cond EP-PRG.

We further show that the output of Gδ,γ preserves entropy. Let Xn be a random variable uniformly
distributed over Sn. By Lemma 5.1, f ′r(n)(Xn,U3nc) is 4

nα
′/2 ≤ 4

n4cδ ≤ 1
`(n)2

close to U`(n) in statistical

distance for sufficiently large n. By Lemma 2.2 it thus holds that

H(f ′r(n)(Xn,U3nc)) ≥ `(n)− 2.

It follows that

H(f ′r(n)(Xn,U3nc), GL(Xn,U3nc)) ≥ H(f ′r(n)(Xn,U3nc)) ≥ `(n)− 2.

Notice that Gδ,γ(Un′ | En′) and (f ′r(n)(Xn,U3nc), GL(Xn,U3nc)) are identically distributed, so on

inputs of length n′ = n′(n), the entropy loss of Gδ,γ is n′ − (`(n) − 2) ≤ (2α′ + 2) log n + 2 ≤
(2α′ + 4) log n′, thus Gδ,γ satisfies the entropy-preserving property (by setting the entropy loss α in
cond EP-PRG to be (2α′ + 4)).

The function G maps n′ = log n + n + 3nc bits to `′(n) bits, and it is thus at least `′(n) − n′ ≥
(γ′ − 2α′ − 2) log n -bit expanding. Since n′ ≤ nc+1 for sufficiently large n and recall that γ′ =
(c+ 1)γ+ 2α′+ 2, Gδ,γ will expand its input by at least (γ′− 2α′− 2) log n ≥ (c+ 1)γ log n ≥ γ log n′

bits.
Notice that although Gδ,γ is only defined over some input lengths n = n′(n), by taking “extra”

bits in the input and appending them to the output, Gδ,γ can be transformed to a cond EP-PRG
G′δ,γ defined over all input lengths: G′δ,γ(x′) finds a prefix x of x′ as long as possible such that |x| is
of the form n′ = log n+ n+ 3nc for some n, rewrites x′ = x||y, and outputs Gδ,γ(x)||y. The entropy
preserving and the pseudorandomness property of G′δ,γ follows directly; finally, note that if |x′| is

sufficiently large, it holds that nc+1 ≥ |x′|, and thus by the same argument as above, G′δ,γ will also
expand its input by at least γ log |x′| bits.

We finally show that there exists some polynomial t0(n′) such that for every δ, γ > 1, (γ+δ)t0(n′)
bounds the running time of G′δ,γ on inputs of length n′. To see this, note that the OWF used in
this construction can be assumed to have some fixed polynomial running time. The hash function
and the GL hardcore function take (no more than) O(nc) time to output one bit, and in total the
hash function outputs at most O(n) bits, so the running time of the hash function is O(nc+1). (If δ
increases, then α′ increases—recall that α′ ≥ 8cδ—and the hash function outputs fewer bits and runs
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faster.) On the other hand, for all γ, δ, G outputs γ′ log(n) = ((c+1)γ+2α′+2) log n = (γ+δ)O(log n)
GL hardcore bits. Thus, for any γ, δ, G′ runs in poly(n)+O(nc+1)+(γ+δ)O(nc log n) ≤ (γ+δ)t0(n′)
time for some polynomial t0(n′) over input of length n′.

We now use a standard padding trick to obtain a rate-1 efficient µ-cond EP-PRG: we simply
output the first n−` bits unchanged, and next apply a cond EP-PRG on the last ` bits. Since we only
have a cond EP-PRG that satisfies inverse polynomial (as opposed to negligible) indistinguishability,
we need to be a bit careful with the choice of the parameters.

Theorem 5.6. Assume that one way functions exist. Then, for every γ > 1, there exists a rate-1
efficient µ-cond EP-PRG Gγ : {0, 1}n → {0, 1}n+γ logn, where µ(n) = 1/n2.

Proof: Let t0(·) be the polynomial guaranteed to exist due to Theorem 5.5. Let c0 be a constant
such that O(nc0) ≥ t0(n). Consider any γ > 1, and let γ′ = 2c0γ and δ′ = 4c0 and µ′(n) = 1

nδ′
. By

Theorem 5.5, there exists a µ′-cond EP-PRG G′δ′,γ′ : {0, 1}n → {0, 1}n+γ′ logn; let α′ its associated

entropy-loss constant. Consider a function Gγ : {0, 1}n → {0, 1}n+γ logn defined as follows:

Gγ(s0||s1) = s0||G′δ′,γ′(s1)

where |s1| = n
1

2c0 . Note that |G′δ′,γ′(s1)| = |s1| + γ′ log |s1| = n
1

2c0 + γ′ log(n
1

2c0 ) = n−2c0 + γ log n,

so Gγ is (γ log n)-bit expanding. Furthermore, the entropy-loss of Gγ is α′ log(n
1

2c0 ) = α log n for

some constant α = α′

2c0
. Since the running time of G′δ′,γ′ is bounded by (γ′ + δ′)t0(n

1
2c0 ) ≤ O(n

1
2 ),

the running time of Gγ is |s0|+O(n
1
2 ) ≤ n+O(n

1
2 ). Finally, it holds that µ′(|s1|) = µ′(n

1
2c0 ) = 1

n2 ,
so we conclude that Gγ is a rate-1 efficient µ-cond EP-PRG for µ(n) = 1

n2 , that expand n bits to
(n+ γ log n) bits.
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A Proof of Lemma 5.1

In this section we provide a proof of Lemma 5.1. As mentionned in the main body, the proof of
this lemma readily follows using the proofs in [HILL99, Gol01, YLW15], but for the convenience
of the reader, we provide a simple self-contained proof of the lemma (which may be useful for
didactic purposes). We start by recalling the Leftover Hash Lemma [HILL99] and the Goldreich-
Levin Theorem [GL89].

The Leftover Hash Lemma We recall the notion of a universal hash function [CW79].

Definition A.1. Let Hnm be a family of functions where m < n and each function h ∈ Hnm maps
{0, 1}n to {0, 1}m. We say that Hnm is a universal hash family if (i) the functions hσ ∈ Hnm can be
described by a string σ of nc bits where c is a universal constant that does not depend on n; (ii) for
all x 6= x′ ∈ {0, 1}n, and for all y, y′ ∈ {0, 1}m

Pr[hσ ← Hnm : hσ(x) = y and hσ(x′) = y′] = 2−2m

It is well-known that truncation preserves pairwise independence; for completeness, we recall the
proof:

Lemma A.1. If Hnm is a universal hash family and ` ≤ n, then H′n` = {hσ ∈ Hnm : [hσ]`} is also a
universal hash family.

Proof: For every x 6= x′ ∈ {0, 1}n, y, y′ ∈ {0, 1}`,

Pr[hσ ← Hnm; [hσ(x)]` = y and [hσ(x′)]` = y′]

=
∑

z∈{0,1}n,[z]`=y

∑
z′∈{0,1}n,[z′]`=y′

Pr[hσ ← Hnm;hσ(x) = z and hσ(x′) = z′]

= 2−2`.

Carter and Wegman demonstrate the existence of efficiently computable universal hash function
families.

Lemma A.2 ([CW79]). There exists a polynomial-time computable function H : {0, 1}n×{0, 1}nc →
{0, 1}n such that for every n, Hnn = {hσ : σ ∈ {0, 1}nc} is a universal hash family, where hσ :
{0, 1}n → {0, 1}n is defined as hσ(x) = H(x, σ).

We finally recall the Leftover Hash Lemma.
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Lemma A.3 (Leftover Hash Lemma (LHL) [HILL99]). For any integers d < k ≤ n, let Hnk−d be a

universal hash family where each h ∈ Hnk−d maps {0, 1}n to {0, 1}k−d. Then, for any random variable
X over {0, 1}n such that H∞(X) ≥ k, it holds that

SD((Hn
k−d, H

n
k−d(X)), (Hn

k−d,Uk−d)) ≤ 2−
d
2 ,

where Hn
k−d denotes a random variable uniformly distributed over Hnk−d.

Hardcore functions and the Goldreich-Levin Theorem We recall the notion of a hardcore
function and the Goldreich-Levin Theorem [GL89].

Definition A.2. A function g : {0, 1}n → {0, 1}v(n) is called a hardcore function for f : {0, 1}n →
{0, 1}∗ over S = {Sn ⊆ {0, 1}n}n∈N if the following ensembles are indistinguishable:

• {x← Sn : f(x)||g(x)}n∈N

• {x← Sn : f(x)||Uv(n)}n∈N

While the Goldreich-Levin theorem is typically stated for one-way functions f , it actually applies
to any randomized function f(x,Um) of x that hides x. Note that hiding is a weaker property than
one-wayness (where the attacker is only required to find any pre-image, and not necessarily the pre-
image x we computed the function on). Such a version of the Goldreich-Levin theorem was explicitly
stated in e.g., [HHR06] (using somewhat different terminology).

Definition A.3. A function f : {0, 1}n × {0, 1}m(n) → {0, 1}∗ is said to be entropically-hiding over
S = {Sn}n∈N (S-hiding) if for every PPT algorithm A, there exists a negligible function µ such that
for all n ∈ N,

Pr[x← Sn, r ← {0, 1}m(n);A(1n, f(x, r)) = x] ≤ µ(n)

Theorem A.4 ([GL89], also see Theorem 2.12 in [HHR06]). There exists some c such that for
every γ, and every m(·), there exists a polynomial-time computable function GL : {0, 1}n+m(n)+nc →
{0, 1}γ logn such that the following holds: Let S = {Sn ⊆ {0, 1}n}n∈N and let f : {0, 1}n×{0, 1}m(n) →
{0, 1}∗ be S-hiding. Then GL is a hardcore function for f ′ : {0, 1}n×{0, 1}m(n)×{0, 1}nc → {0, 1}∗,
defined as f ′(x, r, σ) = σ||f(x, r).

Given these preliminaries, we are ready to present the proof of Lemma 5.1.

Proof of Lemma 5.1 Let S = {Sn} be a sequence of sets such that Sn ⊆ {0, 1}n, let s be
an efficiently computable function such that s(n) ≤ log |Sn|, and let f : Sn → {0, 1}n be a S-
OWF with regularity r(n). By Lemma A.2 and Lemma A.1, there exists some constant c and a
polynomial-time computable function H : {0, 1}n × {0, 1}nc → {0, 1}n such that for every n,m ≥ n,
Hnm = {h′σ : σ ∈ {0, 1}nc} is a universal hash family, where h′σ = [hσ]m and hσ(x) = H(x, σ).
We consider a “massaged” function fi, obtained by hashing the input and the output of f : fi :
Sn × {0, 1}n

c × {0, 1}nc → {0, 1}2nc × {0, 1}i−α′ logn × {0, 1}s(n)−i−α′ logn

fi(x, σ1, σ2) = σ1||σ2||[hσ1(x)]i−α′ logn||[hσ2(f(x))]s(n)−i−α′ logn

where n = |x| and show that the function f̂(x, (σ1, σ2)) = fr(n)(x, σ1, σ2) is S-hiding.

Claim 4. The function f̂(·, ·) is S-hiding.
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Proof: Assume for contradiction that there exists a PPT A and a polynomial p(·) such that for
infinitely many n ∈ N,

Pr[x← Sn, σ1, σ2 ← {0, 1}n
c

: A(1n, fr(n)(x, σ1, σ2)) = x] ≥ 1

p(n)

That is,

Pr[x← Sn, σ1, σ2 ← {0, 1}n
c

: A(1n, σ1||σ2||[hσ(x)]r(n)−α′ logn||[hσ2(f(x))]s(n)−r(n)−α′ logn) = x] ≥ 1

p(n)
.

We show how to use A to invert f . Consider the PPT A′(1n, y) that samples σ1, σ2 ← {0, 1}n
c

and a
“guess” z ← {0, 1}r(n)−α′ logn, and outputs A(1n, σ1||σ2||z||[hσ2(y)]s(n)−r(n)−α′ logn). Since the guess

is correct with probability 2−r(n)+α′ logn ≥ 2−r(n), we have that

Pr[x← Sn : A′(1n, f(x)) = x] ≥ 2−r(n)

p(n)
.

Since the any y ∈ f(Sn) has at least 2r(n)−1 pre-images (since f is r(n)-regular over S), we have that

Pr[x← Sn : A′(1n, f(x)) = x] ≥ Pr[x← Sn : A′(1n, f(x)) ∈ f−1(f(x))]× 2−r(n)+1.

Thus,

Pr[x← Sn : A′(1n, f(x)) ∈ f−1(f(x))] ≥ 2−r(n)+1 × Pr[x← Sn : A′(1n, f(x)) = x] ≥ 1

2p(n)

which contradicts that f is an S-OWF.

Next, consider f ′i(s, σ1, σ2, σGL) = σGL||fi(s, σ1, σ2), and the hardcore function GL guaranteed
to exists by Theorem A.4. Since f̂ is S-hiding, by Theorem A.4, the following ensembles are indis-
tinguishable:

• {x← Sn, σ1, σ2, σGL ← {0, 1}n
c

: f ′r(n)(x, σ1, σ2, σGL)||GL(x, (σ1, σ2), σGL)}n∈N

• {x← Sn, σ1, σ2, σGL ← {0, 1}n
c

: f ′r(n)(x, σ1, σ2, σGL)||Uγ′ logn}n∈N

We finally show that {x← Sn, σ1, σ2, σGL ← {0, 1}n
c

: f ′r(n)(x, σ1, σ2, σGL)} is 3
nα
′/2 close to uniform

for every n, which will conclude the proof of both the pseudorandomness and the density properties
by a hybrid argument. Let X be a random variable uniformly distributed over Sn, and let R1, R2,RGL
be random variables uniformly distributed over {0, 1}nc . Let

REAL = f ′r(n)(X,R1, R2, RGL) = RGL||R1||R2||[hR1(X)]r(n)−α′ logn, [hR2(f(X))]s(n)−r(n)−α′ logn

We observe:

• For every y ∈ f(Sn), H∞(X|f(X) = y) ≥ r(n) − 1 due to the fact that f is r(n)-regular; by
the LHL (i.e., Lemma A.3), it follows that REAL is 2

nα
′/2 close in statistical distance to

HYB1 = RGL||R1||R2||Ur(n)−α′ logn||[hR2(f(X))]s(n)−r(n)−α′ logn

• H∞(f(X)) ≥ s(n) − r(n) due to the fact that f is r(n)-regular and |Sn| ≥ s(n); by the LHL,
it follows that HYB1 is 1

nα
′/2 close in statistical distance to

HYB2 = RGL||R1||R2||Ur(n)−α′ logn||Us(n)−r(n)−α′ logn = Us(n)+3nc−2α′ logn

Thus, REAL is 3
nα
′/2 -close to uniform, which concludes the proof.
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