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Abstract— Attack detection and mitigation strategies for
cyberphysical systems (CPS) are an active area of research,
and researchers have developed a variety of attack-detection
tools such as dynamic watermarking. However, such methods
often make assumptions that are difficult to guarantee, such
as exact knowledge of the distribution of measurement noise.
Here, we develop a new dynamic watermarking method that we
call covariance-robust dynamic watermarking, which is able to
handle uncertainties in the covariance of measurement noise.
Specifically, we consider two cases. In the first this covariance
is fixed but unknown, and in the second this covariance is
slowly-varying. For our tests, we only require knowledge of a
set within which the covariance lies. Furthermore, we connect
this problem to that of algorithmic fairness and the nascent field
of fair hypothesis testing, and we show that our tests satisfy
some notions of fairness. Finally, we exhibit the efficacy of our
tests on empirical examples chosen to reflect values observed
in a standard simulation model of autonomous vehicles.

I. INTRODUCTION

The development of 5G, the “fifth generation” of wireless
technology, brings with it increased bandwidth, massive-
scale device-to-device (D2D) connections, lower latency, and
high reliability. The latency reductions with 5G open the door
to further growth in cyberphysical systems (CPS), which
involve the intercommunication and real-time management
of large numbers of physical sensors and actuators, often
in shifting environments [1]. System vulnerabilities to ma-
licious agents abound in all of these technologies [2]–[4],
and 5G in particular necessitates more robust cyber-security
measures for the relevant control systems [1].

Much of the existing work on security for CPS assumes
that the system is fixed and all required distributions are
exactly known [5]–[7]. However, the system description is
often time-varying or partially uncertain for many CPS [8],
[9]. Given this real-world motivation of security for time-
varying or partially unknown CPS, we focus in this paper
on designing robust security schemes to test for adversarial
attacks on LTI systems. Recent work has established dynamic
watermarking as a key active method for detecting sensor
attacks [5]–[7], [10]–[14], and here we build on this work
by designing covariance-robust dynamic watermarking.
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We design robust watermarking for two sub-cases: The
first is where the covariance of measurement noise is fixed
but unknown, and the second is where the covariance of
measurement noise is unknown and slowly-varying. The first
reflects a scenario of many nearly-identical systems with
variation between copies of the system. The second sub-case
reflects a scenario where a sensor has different accuracy in
varying regimes, such as lidar on an autonomous vehicle
in changing weather. Attack detection is critical in all of
these such cases, and we need statistical tests that retain
their power in the face of system changes or uncertainty.

A. Fairness

Robust data-driven decision-making has gained attention
in the literature on algorithmic fairness. Motivated by ma-
chine learning tasks with societal applications, the fairness
literature has sought to design learning methods that refrain
from considering certain variables. To that extent, this body
of work defines rigorous, mathematical notions of fairness
for supervised learning [15]–[22], which have recently been
extended to unsupervised learning by [23], [24].

The work in [25] outlines a general framework: Consider
(X,Y, Z) with a joint distribution P, where X are exogenous
inputs, Y are endogenous “targets”, and Z is a “protected
attribute”. The goal is to choose a decision rule δ(x) that
makes a decision d using inputs X , in order to minimize
some risk function RP(δ, Y ). In dynamic watermarking:
X are measurements, Y is a binary variable that denotes
if the system is under attack, and Z is the true system
characterization; our decision rule δ for if the system is under
attack is made without Y and Z, which are not observed. We
then define a decision rule to be without disparate impact if

δ∗ ∈ arg min
δ

{
RP(δ, Y )

∣∣ δ(X) ⊥⊥ Z
}
, (1)

where δ(X) ⊥⊥ Z means δ(X) is independent of Z. This
increases fairness because it removes any impact of Z on the
decision by imposing independence as a constraint. However,
some [16], [18] have argued that this above definition of fair-
ness can be too restrictive in some cases and that equalized
odds is a better definition of fairness. Its only difference is
that in (1) we replace δ(X) ⊥⊥ Z with (δ(X) ⊥⊥ Z)|Y .
That is, equalized odds ask for independence of δ(X) and Z
when conditioned on Y . We can interpret equalized odds as
requiring error rates to be similar across protected groups.
Finally, a notion associated equalized odds is that of equal
opportunity, which amounts to enforcing (δ(X) ⊥⊥ Z)|Y =
y, for some value y. This is relevant when one particular
type of error is of more interest than another.



B. Relevance of Fairness to Watermarking

Fairness is relevant to the design of robust tests for two
reasons. First, it provides a well-established technical lan-
guage with which to discuss our requirement of robustness.
Past dynamic watermarking techniques require exact system
knowledge, and as such the corresponding watermarking
tests will have error rates that are biased over inevitable
system perturbations or uncertainties. Fairness notions such
as equalized odds and equal opportunity allow for more
specific framing of the problem and thus give a framework
to design more robust methods for dynamic watermarking.

Second, robust cyber-security methods will have improved
social impacts, which is the most general way of interpreting
“fairness”. For example, smart homes can have many sensors.
Changes in the distribution of sensor noise can correlate with
factors such as climate, which correlates with geography
and thus attributes like race, ethnicity, or class. A systemic
bias in the ability to detect threats thus yields, and possibly
perpetuates, systemic bias in outcomes among these groups.
Robustness of cyber-security methods thus have the potential
to improve societal fairness of the corresponding methods.

C. Outline

In Sect. II, we outline key terminology and results in
dynamic watermarking. In Sect. III-A, we present our
covariance-robust dynamic watermarking scheme for the
case of fixed, but unknown, measurement noise covariance.
This is then extended in Sect. III-B to the case where
measurement noise covariance is allowed to slowly vary.
Sect. IV presents empirical results that demonstrate efficacy
of our approach.

II. PRELIMINARIES

We describe the LTI system and attack models, and then
review existing results about dynamic watermarking.

A. LTI System Model

Consider a partially-observed MIMO LTI system

xn+1 = Axn +Bun + wn

yn = Cxn + zn + vn
(2)

for xn, wn ∈ Rp, un ∈ Rq and yn, zn, vn ∈ Rm. Here wn
is mean-zero i.i.d. multivariate Gaussian process noise with
covariance matrix ΣW , and this is independent of zn that is
i.i.d. Gaussian measurement noise with mean-zero; but we
assume that the covariance matrix for zn is a linear function
ΣZ(θ) of a set of parameters θ ∈ P ⊂ Rd taking values in
polyhedron P . For now, θ is assumed constant but unknown
for any fixed system. The vn is an additive signal chosen by
an attacker who seeks to corrupt sensor measurements.

Stabilizability of (A,B) and detectability of (A,C) imply
the existence of a controller K and observer L such that A+
BK and A+ LC are Schur stable. The closed-loop system
can be stabilized using the control input un = Kx̂n, where

x̂n is the observer-estimated state. Define x̃n =
[
xT
n x̂T

n

]T
,

D =
[
I 0

]T
, L =

[
0 −LT

]T
, and

A =

[
A BK
−LC A+BK + LC

]
. (3)

We can write the closed-loop evolution of the state and
estimated state when vn ≡ 0 as x̃n+1 = Ax̃n+Dwn+Lzn.
Alternatively, we may define the observation error δn =

x̂n − xn. Let x̆n =
[
xT
n δT

n

]T
, D =

[
I −I

]T
, L = L,

and

A =

[
A+BK BK

0 A+ LC

]
. (4)

The closed-loop system for this change of variables is
x̆n+1 = Ax̆n + Dwn + Lzn. Note that A is Schur stable
since both A+BK and A+ LC are Schur stable.

B. Attack Model

Following [26], we consider attacks where vn = α(Cxn+
zn) + Cηn + ζn for a fixed α ∈ R and i.i.d. Gaussian ζn
with mean-zero and covariance matrix ΣS . Here, the ηn are
chosen to follow the process ηn+1 = (A + BK)ηn + ωn,
where ωn are similarly i.i.d. Gaussian with mean-zero and
covariance matrix ΣO. The implication is that the attacker
minimizes or mutes the true output Cxn + zn, and instead
replaces it with a simulated output that follows the system
dynamics and is thus not easily distinguishable as false.
Furthermore, the attacker has access to process wn and
measurement noise zn. With this attack, the closed-loop
systems above become x̃n+1 = Ax̃n + Dwn + L(zn + vn)
and x̆n+1 = Ax̆n +Dwn + L(zn + vn).

C. (Nonrobust) Dynamic Watermarking

The steady-state distribution of δn in an unattacked system
will be Gaussian with mean-zero and a covariance matrix of

Σ∆ = (A+ LC)Σ∆(A+ LC)T + ΣW + LΣZ(θ)LT. (5)

Dynamic watermarking adds a small amount of Gaussian
noise en, the values unknown to the attacker, into the control
input un = Kx̂n+en. This private excitation has mean-zero
and covariance matrix ΣE . Defining B =

[
BT BT

]T
and

B =
[
BT 0

]T
, the closed-loop systems with watermarking

are given by x̃n+1 = Ax̃n +Ben +Dwn +L(zn + vn) and
x̆n+1 = Ax̆t +Ben +Dwn + L(zn + vn), respectively.

The watermarking noise en leaves a detectable signal in
the measurements yn, which can detect the presence of an
attack vn by comparing the observer error Cx̂n − yn to
previous values of the watermark en−k for some integer
k > 0. Specifically, the work in [26] proposes the tests

as-limN→∞
1
N

∑N−1
n=0 (Cx̂n − yn)(Cx̂n − yn)T =

CΣ∆C
T + ΣZ (6)

as-limN→∞
1
N

∑N−1
n=0 (Cx̂n − yn)eT

n−k′−1 = 0, (7)

where k′ = mink≥1{C (A + BK)kBT 6= 0}. Any modeled
attack passing these tests can be shown to asymptotically
have zero power as-limN→∞

1
N

∑N−1
n=0 v

T
nvn = 0 [26].



Finally, [26] also provides a test statistic for implementing
the above test. Define ψn =

[
(Cx̂n − yn)T eT

n−k′−1

]T
and

Sn =
∑n+`
i=n+1 ψnψ

T
n. Then the negative log-likelihood of a

Wishart distribution is

L =(m+ q + 1− `) log detSn

+ trace

{[(
CΣ∆C

T + ΣZ
)−1

0
0 Σ−1

E

]
× Sn

}
.

(DW)
This can be used to perform a statistical hypothesis test to
detect attacks when using dynamic watermarking.

III. COVARIANCE-ROBUST DYNAMIC WATERMARKING

We develop covariance-robust dynamic watermarking
methods for two different cases. The first is where θ is fixed
but unknown, and the second is where θ is slowly varying.

A. Fixed But Unknown Noise Covariance

We begin by stating our assumptions for this case. First,
we assume that we have knowledge of a set of positive
semidefinite matrices Σz,1, . . . ,Σz,d such that these matrices
are affinely independent and ΣZ(θ) ∈ int(ΩZ) for the set

ΩZ = {θ1Σz,1 + · · ·+ θdΣz,d : 1T θ = 1, θ ≥ 0}. (8)

Note that ΩZ is a polyhedron, and that this set is defined to
be the convex combination of Σz,1, . . . ,Σz,d. Our first result
characterizes Ω∆, which is the set of possible Σ∆(θ).

Lemma 1: Let Σ̄δ,k satisfy Σ̄δ,k = (A + LC)Σ̄δ,k(A +
LC)T +ΣW +LΣz,kL

T . For ΣZ(θ) = θ1Σz,1+· · ·+θdΣz,d,
the solution to (5) is Σ∆(θ) = θ1Σ̄δ,1 + · · ·+ θdΣ̄δ,d.

Proof: This immediately follows by noting that both
sides of (5) are linear in the matrices Σ∆ and ΣZ(θ).

Since E[ψnψ
T
n] = blkdiag{CΣ∆C

T + ΣZ ,ΣE}, we need
to characterize the set Ω of feasible matrices in terms of θ.

Lemma 2: Let Σ̄k = blkdiag{C Σ̄δ,kC
T + Σz,k,ΣE}.

Then Ω = {θ1Σ̄k + · · ·+ θdΣ̄d : 1T θ = 1, θ ≥ 0}.
Proof: This follows by the linearity in Σ∆ and ΣZ .

The set Ω represents covariance matrices of ψn that are
“acceptable”, according to the original set ΩZ of observation
noise covariances that we should not mistake for attacks.

Lemma 3: The set Ω is of dimension d− 1.
Proof: This follows from Lemma 1, the fact that L is

of full column-rank, and the observability of (A + LC,C),
which in turn follows from the observability of (A,C).

Finally, consider a modification of (DW) given by

L(Sn, V ) = (m+ q + 1− `) log detSn+

trace
{
V Sn

}
− ` log detV. (9)

Note (9) is the negative log-likelihood of an (m+q)×(m+q)
Wishart distribution with scale matrix V −1 and ` degrees of
freedom. Now, we may present our test statistic. Let Ω−1 =
{V : V −1 ∈ Ω} and define the test statistic

T (Sn) = min
V ∈Ω−1

L(Sn, V ) (10)

for the composite null hypothesis H0 : E[ψnψ
T
n] ∈ int(Ω).

For some 0 ≤ ν, consider the test{
reject H0 if T (Sn) > ν

accept H0 if T (Sn) ≤ ν.
(11)

Since arg minV ∈Ω−1 L(Sn, V ) = S−1
n , this proposed test is

equivalent to the generalized likelihood ratio test.
Theorem 1: For large enough `, the decision rule (11)

using test statistic T (Sn) satisfies equal opportunity with re-
spect to the null hypothesis and where the protected attribute
is the true measurement noise covariance ΣZ(θ) ∈ int(ΩZ).

Proof: Due to Lemma 3 and our assumption that
ΣZ(θ) ∈ int(ΩZ), T (Sn) satisfies the Le Cam regularity
conditions required for the application of Wilk’s Theorem
[27]. This means −2T (Sn) will be asymptotically distributed
as a χ2(m + q − p) random variable plus a fixed constant
regardless of the true value of Σ∆, and thus implies that the
event of a Type I error is independent of Σ∆.

This is a useful result because it implies that, in the proper
regime, our test can come arbitrarily close to satisfying the
initial goal of remaining robust to some uncertainty in the
distribution of the measurement noise. However, Ω−1 is a
non-convex set, and so the computation of T (Sn) is difficult.
To this end, we propose the approximate test statistic

T̄ (Sn) = min L(Sn, V )
s.t.

∑p
k=1 θkΣ̄−1

k � V,[
V I
I

∑p
k=1 θkΣ̄k

]
� 0,

1Tθ = 1,
θ ≥ 0.

(CRDW)

Lemma 4: For any V ∈ Ω−1, there exists a θ ∈ Rp such
that (V, θ) is a feasible solution to the optimization problem
defining test (CRDW).

Proof: First observe that any V ∈ Ω−1 can be written as
V = (

∑p
k=1 θkΣ̄k)−1 for some nonzero θ such that 1Tθ = 1.

Thus, it holds trivially that

(
∑p
k=1 θkΣ̄k)−1 � V � (

∑p
k=1 θkΣ̄k)−1 (12)

The right-most constraint in (12) can be restated using
the Schur complement, and this reformulation is exact.
Since

∑p
k=1 θkΣ̄k � 0, the Schur complement implies

the second constraint in (CRDW) is equivalent to V −
(
∑p
k=1 θkΣ̄k)−1 � 0.

The first constraint in (CRDW) follows from the convexity
of the matrix inverse for positive semidefinite matrices:
Letting X(τ) = (1− τ)X1 + τX2 for positive definite n×n
matrices X1, X2 and 0 ≤ τ ≤ 1, we have ∇2

∇τ2X(τ)−1 =
2X−1(τ)X ′(τ)X−1(τ)X ′(τ)X−1(τ). For any a ∈ Rn, the
function φa(τ) = aTX−1(τ)a will have second derivative
φ′′a(τ) = 2aTX−1(τ)X ′(τ)X−1(τ)X ′(τ)X−1(τ)a ≥ 0 due
to the positive-semidefiniteness of X(τ)−1, so (1−τ)φa(0)+
τφa(1) ≥ φa(τ). Since this holds for any a, we have that∑p

k=1 θkΣ̄−1
k � (

∑p
k=1 θkΣ̄k)−1. (13)

The first constraint in (CRDW) follows from (12) and (13).



Remark 1: It was shown in [26] that test (7) ensures α =
0 in any attack such that it holds true. In that case, we have

as-limN→∞
1
N

∑N−1
n=0 (Cx̂n − yn)(Cx̂n − yn)T

= CΣ∆(θ)CT + ΣZ(θ)+

ΣS + as-limN→∞
1
N

∑N−1
n=0 Cηnη

T
nC

T, (14)

since the Schur stability of A+BK implies that any effect
of x0 and η0 are reduced to zero asymptotically. Since
ΣS and as-limN→∞

1
N

∑N−1
n=0 Cηnη

T
nC

T are both positive
semidefinite, meaning that

as-lim 1
N

∑N−1
n=0 (Cx̂n − yn)(Cx̂n − yn)T �

CΣ∆(θ)CT + ΣZ(θ). (15)

Inverting both sides of this implies that, in the case that
ΣS+as-limN→∞

1
N

∑N−1
n=0 Cηnη

T
nC

T 6= 0, we can generally
expect that S−1

n � (CΣ∆(θ)CT + ΣZ(θ))−1 ∈ Ω−1. The
takeaway is that the looseness of the upper bound (13) should
not greatly decrease the power of the modified test in the
presence of test (7), as the tight lower bound is more germane
to situations where the system is actually being attacked.

Remark 2: If the dimension m + q is large, then the op-
timization (CRDW) may be expensive to solve from scratch
each time. Furthermore, Sn will likely not change drastically
between runs when ` is large. So, lighter-weight first-order
methods such as ADMM can be used instead [28]. These
generally take longer to converge to high levels of accuracy,
but have the advantage of being able to be readily warm-
started.

B. Slowly Varying Unknown Noise Covariance

A key difference between this setting and that of the static
distribution is that a shift in the observer noise covariance
in one period can have impacts on Σ∆ over the next few
periods that do not easily fit into our previous representation
of the Ω. This is because it will take many steps before the
covariance of δn approaches its asymptotic limit in Ω. Thus,
to accommodate a dynamically changing distribution of zn,
we must use an expansion of the set Ω.

We modify our setup for this subsection. The true covari-
ance of δn and zn are Σ∆n

and ΣZn
, respectively. Let Ψn =

ΣZn
− ΣZn−1

and Φjn = (A + LC)jLΨnL
T(A+ LC)j

T.
Note that all ΣZn

are still assumed to be in ΩZ . Finally,
we make some additional assumptions. Since the spectral
radius of A+LC is less than one, there exists some induced
norm (denote this ‖ · ‖) such that ‖A + LC‖ < 1 [29].
We assume θ changes every step but ΣZ0

∈ Ω and all Ψn

satisfy ‖Ψn‖ ≤ ξ for some known value of ξ > 0. We
also assume the system starts at steady state in the sense
Σ∆0 = (A+ LC)Σ∆0(A+ LC)T + ΣW + LΣZ0L

T. Under
these assumptions we have:

Lemma 5: Let ε ∈ R be defined as

ε =
ξ‖C‖2‖L‖2‖A+ LC‖2

√
m

(1− ‖A+ LC‖2)
2 (16)

Then CΣ∆n
CT + ΣZn

∈ Ω⊕ {E : −εI � E � εI}, where
⊕ is the Minkowski sum for all n.

Proof: Let Ωm×m be the set of m × m upper-left
submatrices of elements of Ω, associated with CΣ∆(θ)CT +
ΣZ(θ) terms. We start by noting that

Σ∆1
=(A+ LC)Σ∆0

(A+ LC)T + ΣW + LΣZ1
LT

=Σ∆0
+ Φ0

1.
(17)

Similarly, we can see that Σ∆2
= Σ∆0

+L (Ψ0 + Ψ1)LT +
Φ1

0 = Σ∆0
+Φ0

2+Φ0
1+Φ1

1. Continuing this recursion relation
leads to the fact that

Σ∆n
= Σ∆0

+
∑n−1
i=0

∑i
j=0 Φjn−i. (18)

Due to the Schur stability of A + LC, the following limit
exists, and can be represented as in Lemma 1.

Σ∆k′
∞

= limk→∞
(
Σ∆0 +

∑k−1
i=k−k′

∑i
j=0 Φjk−i

)
(19)

Note that Σ∆k′
∞

is the steady state that Σ∆n
would ultimately

reach if θ (and therefore ΣZn does not shift after step k′;
thus, it solves (5) for ΣZk′ and exists in Ωm×m. Denote
Υi = Σ∆i

∞
− Σ∆i−1

∞
. Then,

Σ∆n
= limk→∞

(
Σ∆0

+
∑k−1
i=k−n

∑i−k+n
j=0 Φjk−i

)
= Σ∆n

∞
− limk→∞

(∑k−1
i=k−n

(∑i
j=i−k+n+1 Φjk−i

))
= Σ∆n

∞
−
∑n
i=1(A+ LC)n−i+1Υi(A+ LC)n−i+1T

(20)
Note that the term in the limit in the first equality is a
constant in k due to a simple re-indexing of (18). This is
convenient because we can now break Σ∆n

into an element
known to be in Ωm×m and an error term. Our goal is now
to choose ε large enough to bound

min
P∈Ωm×m

∥∥CΣ∆n
CT + ΣZn − P

∥∥
2
, (21)

over all paths that ΣZn can take. An easy bound on the
minimization is to simply set P = CΣ∆n

∞
CT + ΣZn

. Then,
ε only needs to exceed∥∥∑n

i=1 C(A+ LC)n−i+1Υi(A+ LC)n−i+1T
CT
∥∥

2
(22)

By sub-multiplicativity of induced norms,

‖Υi‖ =
∥∥∑∞

j=0 Φji
∥∥ ≤∑∞j=0 ‖(A+ LC)‖2j‖L‖‖Ψn′+ki‖

= ξ‖L‖2
(
1− ‖A+ LC‖2

)−1

(23)
Finally, using the fact that ‖·‖2 ≤

√
m‖·‖ [30] and applying

(23) to the error term from (21) yields the desired result.
Remark 3: Due to the topological equivalence of induced

norms, the dependence of our choice of norm ‖·‖ on A+LC
can only affect the value of ξ required by a constant

√
m.

Corollary 1: If ‖A + LC‖2 < 1, then the statement in
Lemma 5 holds for ‖ · ‖ = ‖ · ‖2 and

ε =
ξ‖C‖22‖L‖22‖A+ LC‖22

(1− ‖A+ LC‖22)
2 (24)

Proof: The proof of this result is almost identical to
the proof of the previous lemma with the only changes that
‖ · ‖ = ‖ · ‖2 and that we stop after applying (23) to (21).

With this ε, it is straightforward to extend the previous
test statistic (CRDW) to this new expansion of Ω as long as
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Fig. 1: The evolution and histogram of test statistics (DW) and (CRDW) on the attacked and unattacked systems where ΣZ
is fixed, but unknown to the tester. In this case, the nonrobust test statistic (DW) is unable to clearly distinguish the attacked
from the unattacked system, whereas the new test statistic (CRDW) can.

Σ̄k − εI remains positive definite for all k. In this case, we
may define our new test statistic as

T (Sn) = min L(Sn, V )

s.t.
∑p
k=1 θk

(
Σ̄k − εI

)−1 � V,[
V I
I εI +

∑p
k=1 θkΣ̄k

]
� 0,

1Tθ = 1,
θ ≥ 0.

(CRDW*)
Remark 4: If there is some k so Σ̄k − εI is not positive

definite, then the first constraint above is not well-defined.
Recalling that V is a surrogate for

(
CΣ∆n

CT + ΣZn

)−1
,

we note V trivially satisfies Σ−1
Zn
� V . Thus in this

problematic case, we may replace the
(
Σ̄k − εI

)
in the first

constraint with Σz,k, for all k. This issue is unlikely to
be of practical concern for the same reasons discussed in
Remark 1 regarding the relaxation of the set Ω. Specifically,
the structure of the attacks makes it unlikely that the first
constraint in (CRDW*) would be binding in any case.

IV. EMPIRICAL RESULTS

In this section, we present simulation results that showcase
the strength of our method when compared with the original
test statistic (DW). We present results for both the case where

the noise distribution is fixed but unknown, and for the case
where the noise covariance is unknown and slowly-varying.

We use the standard model for simulation of an au-
tonomous vehicle in [31], where the error kinematics
of lane keeping and speed control is given by xT =[
ψ y s γ v

]
and uT =

[
r a

]
. Here, ψ is heading

error, y is lateral error, s is trajectory distance, γ is vehicle
angle, v is vehicle velocity, r is steering, and a is acceler-
ation. We linearize and initialize with a straight trajectory
and constant velocity v0 = 10. We then performed exact
discretization with sampling period ts = 0.05. This yields
the system dynamics

A =


1 0 0 1

10 0
1
2 1 0 1

40 0
0 0 1 0 1

2
0 0 0 1 0
0 0 0 0 1

 , B =


1

400 0
1

2400 0
0 1

800
1
20 0
0 1

20

 (25)

with C =
[
I 0

]
∈ R3×5. We use process noise covariance

ΣW = 10−8 × I .
All tests use dynamic watermarking with variance ΣE =

1
2I , and K and L were chosen to stabilize the system without
an attack. We conduct four simulations: attacked and non-
attacked systems where the measurement noise covariance
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Fig. 2: The evolution and histogram of test statistics (DW) and (CRDW*) on the attacked and unattacked systems where ΣZ
varies as described, again unknown to the tester. Note the robust statistic (CRDW*) takes distinctly higher for the attacked
values over almost the entire 1000 iterations than in the unattacked system, while the nonrobust statistic (DW) is again
unable to clearly distinguish the two.

is fixed, and attacked and non-attacked systems where the
measurement noise covariance is allowed to vary. We ran all
four simulations for 1000 iterations, or 50 seconds. In all
cases, we compare the test metrics using the hypothesis test
described in (11), where the measurement noise covariance
is assumed to be 10−5 × I . When simulating the attacked
system, we choose an attacker with α = −1, η0 = 0, ΣO =
10−8 × I , and ΣS = 10−8 × I .

A. Fixed Covariance
We first show our test outperforms in the case where

the true measurement noise covariance matrix is fixed but
unknown to the tester. In our simulations, the true noise
covariance is ΣZ = 10−5×diag{0.18, 30, 0.18}. In all tests,
ΩZ is described by the p = 4 extreme points: ΣZ,1 = 10−6×
diag{300, 1.8, 1.8}, ΣZ,2 = 10−6 × diag{1.8, 300, 1.8},
ΣZ,3 = 10−6 × diag{9, 9, 12}, ΣZ,4 = 10−6 × diag{9, 9, 9}.
Both the true measurement noise covariance and that incor-
rectly assumed in test statistic (DW) are in the resulting set.
The simulation is run for 1000 steps.

Fig. Figure 1 shows the efficacy of our method under this
new uncertainty. If test detection is consistent, the negative
log likelihood values should be lower under regular condi-
tions, and higher when the model is attacked. In particular,

the nonrobust test statistic (DW) is shown in Fig. 1a to be
wholly unable to distinguish an attacked system from an
unattacked system when its assumption on the measurement
noise covariation is violated, while Fig. 1b shows the robust
test statistic (CRDW) to be able to do so.

B. Varying Covariance

Unattacked and attacked simulations were also conducted
with a measurement noise distribution that was allowed to
vary. We set τ = 1 and ξ = 0.00002, implying ε =
7.205 × 10−6. The true measurement noise is initialized at
ΣZ0

= 10−5 × diag{0.9, 0.9, 1.2}. This shifts linearly over
the course of 250 iterations to a new value of ΣZ250

=
10−5 × diag{15, 15, 0.18}, at which point it changes di-
rection to shift linearly over 250 iterations to a value of
ΣZ500 = 10−5 × diag{30, 0.18, 0.18}. The measurement
noise covariance stays at this value for 150 iterations. It
then shifts linearly over 200 iterations to a terminal value
of ΣZ850

= 10−5 × diag{0.18, 30, 0.18}, which it takes for
another 150 iterations before the simulation is terminated.
The results for both the nonrobust and robust tests are shown
in Fig. 2. As in the fixed covariance case, our test is able
to distinguish between the attacked and unattacked systems



better and more consistently than the nonrobust test that
requires unsatisfied assumptions.

V. CONCLUSION

We developed covariance-robust dynamic watermarking
tests for detecting sensor attacks on LTI systems in the
presence of uncertainty about the measurement noise co-
variance. We considered cases where the covariance of
measurement noise is unknown and either fixed or slowly-
varying, and we required our test to be “fair” with respect
to all possible values of the covariance in that it not be
more or less powerful for some covariances over others.
These reflect real-world needs that will increase as 5G is
deployed, because there will be an increase in the deployment
of smart CPS systems. In such systems, an “unfair” test can
translate to disparate impact across different users in different
environments, which is a problem of algorithmic bias. Future
research includes studying how dynamic watermarking can
be adapted to other system uncertainties.
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