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Abstract

Linear programming (LP) is an extremely useful tool and has been successfully applied to solve
various problems in a wide range of areas, including operations research, engineering, economics,
or even more abstract mathematical areas such as combinatorics. It is also used in many machine
learning applications, such as ¢;-regularized SVMs, basis pursuit, nonnegative matrix factorization,
etc. Interior Point Methods (IPMs) are one of the most popular methods to solve LPs both in theory
and in practice. Their underlying complexity is dominated by the cost of solving a system of linear
equations at each iteration. In this paper, we consider infeasible IPMs for the special case where the
number of variables is much larger than the number of constraints. Using tools from Randomized
Linear Algebra, we present a preconditioning technique that, when combined with the Conjugate
Gradient iterative solver, provably guarantees that infeasible IPM algorithms (suitably modified to
account for the error incurred by the approximate solver), converge to a feasible, approximately
optimal solution, without increasing their iteration complexity. Our empirical evaluations verify
our theoretical results on both real-world and synthetic data.

1 Introduction

Linear programming (LP) is one of the most useful tools available to theoreticians and practition-
ers throughout science and engineering. It has been extensively used to solve various problems in a
wide range of areas, including operations research, engineering, economics, or even in more abstract
mathematical areas such as combinatorics. Also in machine learning and numerical optimization, LP
appears in numerous settings, including ¢;-regularized SVMs [54], basis pursuit (BP) [51], sparse in-
verse covariance matrix estimation (SICE) [52], the nonnegative matrix factorization (NMF) [42], MAP
inference [34], etc. Not surprisingly, designing and analyzing LP algorithms is a topic of paramount
importance in computer science and applied mathematics.

One of the most successful paradigms for solving LPs is the family of Interior Point Methods (IPMs),
pioneered by Karmarkar in the mid 1980s [23]. Path-following IPMs and, in particular, long-step path
following IPMs, are among the most practical approaches for solving linear programs. Consider the
standard form of the primal LP problem:

min ¢'x, subject to Ax =b,x >0, (1)

where A € R™*" b € R™, and ¢ € R" are the inputs, and x € R™ is the vector of the primal variables.
The associated dual problem is

max b'y, subject to ATy +s=c,s >0, (2)

*Department of Statistics, Purdue University, West Lafayette, IN, USA, chowdhu5@purdue.edu.

tDepartment of Computer Science, California Institute of Technology, Pasadena, CA, USA, plondon@caltech.edu.
School of Mathematical Sciences, Tel Aviv University, Tel Aviv, Israel, haimav@tauex.tau.ac.il.

SDepartment of Computer Science, Purdue University, West Lafayette, IN, USA, pdrineas@purdue.edu.


http://arxiv.org/abs/2003.08072v1
chowdhu5@purdue.edu
plondon@caltech.edu
haimav@tauex.tau.ac.il
pdrineas@purdue.edu

where y € R™ and s € R™ are the vectors of the dual and slack variables respectively. Triplets (x,y,s)
that uphold both (1) and (2) are called primal-dual solutions. Path-following IPMs typically converge
towards a primal-dual solution by operating as follows: given the current iterate (x*,y* s*), they
compute the Newton search direction (Ax, Ay, As) and update the current iterate by following a step
towards the search direction. To compute the search direction, one standard approach [38] involves
solving the normal equations':

AD?ATAy = p. (3)

Here, D = X1/2871/2 ig a diagonal matrix, X,S € R"*" are diagonal matrices whose i-th diagonal
entries are equal to x; and s;, respectively, and p € R™ is a vector whose exact definition is given in
eqn. (22). Given Ay, computing As and Ax only involves matrix-vector products.

The core computational bottleneck in IPMs is the need to solve the linear system of eqn. (3)
at each iteration. This leads to two key challenges: first, for high-dimensional matrices A, solving
the linear system is computationally prohibitive. Most implementations of IPMs use a direct solver;
see Chapter 6 of [38]. However, if AD2AT is large and dense, direct solvers are computationally
impractical. If AD?AT is sparse, specialized direct solvers have been developed, but these do not
apply to many LP problems, especially those arising in machine learning applications, due to irregular
sparsity patterns. Second, an alternative to direct solvers is the use of iterative solvers, but the
situation is further complicated since AD?AT is typically ill-conditioned. Indeed, as IPM algorithms
approach the optimal primal-dual solution, the diagonal matrix D becomes ill-conditioned, which also
results in the matrix AD?AT becoming ill-conditioned. Additionally, using approximate solutions
for the linear system of eqn. (3) causes certain invariants, which are crucial for guaranteeing the
convergence of IPMs, to be violated; see Section 1.1 for details.

In this paper, we address the aforementioned challenges, for the special case where m < n, i.e., the
number of constraints is much smaller than the number of variables; see Section 5 for a generalization.
This is a common setting in many applications of LP solvers. For example, in machine learning, ¢;-
SVMs and basis pursuit problems often exhibit such structure when the number of available features
(n) is larger than the number of objects (m). Indeed, this setting has been of interest in recent work
on LPs [16, 3, 29]. For simplicity of exposition, we also assume that the constraint matrix A has full
rank, equal to m. First, we propose and analyze a preconditioned Conjugate Gradient (CG) iterative
solver for the normal equations of eqn. (3), using matrix sketching constructions from the Randomized
Linear Algebra (RLA) literature. We develop a preconditioner for AD?AT using matrix sketching
which allows us to prove strong convergence guarantees for the residual of CG solvers. Second, building
upon the work of [35], we propose and analyze a provably accurate long-step infeasible IPM algorithm.
The proposed IPM solves the normal equations using iterative solvers. In this paper, for brevity and
clarity, we primarily focus our description and analysis on the CG iterative solver. We note that a non-
trivial concern is that the use of iterative solvers and matrix sketching tools implies that the normal
equations at each iteration will be solved only approximately. In our proposed IPM, we develop a novel
way to correct for the error induced by the approximate solution in order to guarantee convergence.
Importantly, this correction step is relatively computationally light, unlike a similar step proposed
in [35]. Third, we empirically show that our algorithm performs well in practice. We consider solving
LPs that arise from ¢;-regularized SVMs and test them on a variety of synthetic and real-world data
sets. Several extensions of our work are discussed in Section 5.

! Another widely used approach is to solve the augmented system [38]. This approach is less relevant for this paper.
2The superscript k in eqn. (22) simply indicates iteration count and is omitted here for notational simplicity.



1.1 Owur contributions

Our point of departure in this work is the introduction of preconditioned, iterative solvers for solving
eqn. (3). Preconditioning is used to address the ill-conditioning of the matrix AD2AT. Tterative solvers
allow the computation of approximate solutions using only matrix-vector products while avoiding
matrix inversion, Cholesky or LU factorizations, etc. A preconditioned formulation of eqn. (3) is:

Q 'AD*ATAy = Q7 'p, (4)

where Q € R™*™ is the preconditioning matrix; Q should be easily invertible (see [2, 20] for back-
ground). An alternative yet equivalent formulation of eqn. (4), which is more amenable to theoretical
analysis, is

Q ?PAD?ATQ Y2z = Q*p, (5)

where z € R™ is a vector such that Ay = Q~"2z. Note that the matrix in the left-hand side of the
above equation is always symmetric, which is not necessarily the case for eqn. (4). We do emphasize
that one can use eqn. (4) in the actual implementation of the preconditioned solver; eqn. (5) is much
more useful in theoretical analyses.

Recall that we focus on the special case where A € R"™*" has m < n, i.e., it is a short-and-fat
matrix. Our first contribution starts with the design and analysis of a preconditioner for the Conjugate
Gradient solver that satisfies, with high probability,

2
2+

< 7hn(QFAD) < 02, (Q FAD) < 5 (6)

for some error parameter ¢ € [0,1]. In the above, oyin(+) and omax(-) correspond to the smallest and
largest singular value of the matrix in parentheses. The above condition says that the preconditioner
effectively reduces the condition number of AD to a constant. We note that the particular form of
the lower and upper bounds in eqn. (6) was chosen to simplify our derivations. RLA matrix-sketching
techniques allow us to construct preconditioners for all short-and-fat matrices that satisfy the above
inequality and can be inverted efficiently. Such constructions go back to the work of [1]; see Section 3
for details on the construction of Q and its inverse. Importantly, given such a preconditioner, we then
prove that the resulting CG iterative solver satisfies

|Q*AD?ATQ 3" — Q~Voplly < C'|Q bz @

Here %! is the approximate solution returned by the CG iterative solver after t iterations. In words,
the above inequality states that the residual achieved after t iterations of the CG iterative solver drops
exponentially fast. To the best of our knowledge, this result is not known in the CG literature: indeed,
it is actually well-known that the residual error of CG may oscillate, even in cases where the energy
norm of the solution error decreases monotonically. However, we prove that if the preconditioner is
sufficiently good, i.e., it satisfies the constraint of eqn. (6), then the residual error decreases as well.
Our second contribution is the analysis of a novel variant of a long-step infeasible IPM algorithm
proposed by [35]. Recall that such algorithms can, in general, start with an initial point that is not
necessarily feasible, but does need to satisfy some, more relaxed, constraints. Following the lines
of [53, 35], let S be the set of feasible and optimal solutions of the form (x*,y*,s*) for the primal
and dual problems of eqns. (1) and (2) and assume that S is not empty. Then, long-step infeasible
IPMs can start with any initial point (x°,y?,s%) that satisfies (x%,s) > 0 and (x°,s%) > (x*,s*), for
some feasible and optimal solution (x*,s*) € §. In words, the starting primal and slack variables must
be strictly positive and larger (element-wise) when compared to some feasible, optimal primal-dual



solution. See Chapter 6 of [49] for a discussion regarding why such choices of starting points are also
relevant to computational practice.

The flexibility of infeasible IPMs comes at a cost: long-step feasible IPMs converge in O(n log 1/e)
iterations, while long-step infeasible IPMs need O(n?log1/e) iterations to converge [53, 35]. Here €
is the accuracy of the approximate LP solution returned by the IPM; see Algorithm 2 for the exact
definition. Let

Ax" —b = rg, (8)
ATy’ +s" —c=rj, 9)

where rg € R" and rg € R™ are the primal and dual residuals, respectively, and characterize how far
the initial point is from being feasible. As long-step infeasible IPM algorithms iterate and update the
primal and dual solutions, the residuals are updated as well. Let r* = (rlg , r’j) € R™ be the primal
and dual residual at the k-th iteration: it is well-known that the convergence analysis of infeasible
long-step IPMs critically depends on r* lying on the line segment between 0 and r’. Unfortunately,
using approximate solvers (such as the CG solver proposed above) for the normal equations violates
this invariant.Aa simple solution to fix this problem by adding a perturbation vector v to the current
primal-dual solution that guarantees that the invariant is satisfied is proposed in [35]. Again, we use
RLA matrix sketching principles to propose an efficient construction for v that provably satisfies the
invariant. Next, we combine the above two primitives to prove that Algorithm 2 in Section 4 satisfies
the following theorem.

Theorem 1. Let 0 < € < 1 be an accuracy parameter. Consider the long-step infeasible IPM Algo-
rithm 2 (Section /) that solves eqn. (5) using the CG solver of Algorithm 1 (Section 3). Assume that
the CG iterative solver runs with accuracy parameter ¢ = 1/2 and iteration count t = O(logn). Then,
with probability at least 0.9, the long-step infeasible IPM converges after O(n?log1/e) iterations.

We note that the 0.9 success probability above is for simplicity of exposition and can be easily
amplified using standard techniques. Also, at each iteration of our infeasible long-step IPM algorithm,
the running time is O((nnz(A) + m3)logn). See Section 4 for a detailed discussion of the overall
running time.

Our empirical evaluation demonstrates that our algorithm requires an order of magnitude much
fewer inner CG iterations than a standard IPM using CG, while producing a comparably accurate
solution (see Section 6). In practice, our empirical evaluation also indicates that using a CG solver with
our sketching-based preconditioner does not increase the number of (outer) iterations of the infeasible
IPM, compared to unpreconditioned CG or a direct linear solver. In particular, there are instances
where our solver performs much better than unpreconditioned CG in terms of (outer) iteration count.

1.2 Comparison with Related Work

There is a large body of literature on solving LPs using IPMs. We only review literature that is
immediately relevant to our work. Recall that we solve the normal equations inexactly at each iteration,
and develop a way to correct for the error incurred. We also focus on IPMs that can use an sufficiently
positive, infeasible initial point (see Section 1.1). We discuss below two papers that present related
ideas.

The use of an approximate iterative solver for eqn. (3), followed by a correction step to “fix” the
approximate solution was proposed in [35] (see our discussion in Section 1.1). We propose efficient,
RLA-based approaches to precondition and solve eqn. (3), as well as a novel approach to correct for
the approximation error in order to guarantee the convergence of the IPM algorithm. Specifically, [35]
propose to solve eqn. (3) using the so-called mazimum weight basis preconditioner [43]. However,



computing such a preconditioner needs access to a maximal linearly independent set of columns of
AD in each iteration, which is costly, taking O(m?n) time in the worst-case. More importantly,
while [36] was able to provide a bound on the condition number of the preconditioned matrix, that
depends only on properties of A, and is independent of D, this bound might, in general, be very large.
In contrast, our bound is a constant and it does not depend on properties of A or its dimension. In
addition, [35] assumed a bound on the two-norm of the residual of the preconditioned system, but it is
unclear how their preconditioner guarantees such a bound. Similar concerns exist for the construction
of the correction vector v proposed by [35], which our work alleviates.

The line of research in the Theoretical Computer Science literature that is closest to our work is [14],
who presented an IPM that uses an approximate solver in each iteration. However, their accuracy
guarantee is in terms of the final objective value which is different from ours. More importantly, [14]
focuses on short-step, feasible IPMs, whereas ours is long-step and does not require a feasible starting
point. Finally, the approximate solver proposed by [14] works only for the special case of input matrices
that correspond to graph Laplacians, following the lines of [44, 45].

We also note that in the Theoretical Computer Science literature, [24, 25, 26, 27, 28, 11] proposed
and analyzed theoretically ground-breaking algorithms for LPs based on novel tools such as the so-
called inverse maintenance for accelerating the linear system solvers in IPMs. However, all these
endeavors are primarily focused on the theoretically fast but practically inefficient short-step feasible
IPMs. In contrast, our work is focused on infeasible long-step IPMs, known to work efficiently in
practice. Very recently, [6] proposed another fast, short-step, feasible IPM for solving tall and dense
LPs. The output of their algorithm does not satisfy the linear constraints exactly (similar to [14]) and
the final convergence guarantee is somewhat different from our work.

Another relevant line of research is the work of [13], which proposed solving eqn. (3) using pre-
conditioned Krylov subspace methods, including variants of generalized minimum residual (GMRES)
or CG methods. Indeed, [13] conducted extensive numerical experiments on LP problems taken from
standard benchmark libraries, but did not provide any theoretical guarantees.

From a matrix-sketching perspective, our work was partially motivated by [7], which presented
an iterative, sketching-based algorithm to solve under-constrained ridge regression problems, but did
not address how to make use of such approaches in an IPM-based framework, as we do here. Recent
papers proposed the so-called Newton sketch [40, 50] to construct an approximate Hessian matrix for
more general convex objective functions of which LP is a special case. Nevertheless, these randomized
second-order methods are significantly faster than the conventional approach only when the data
matrix is over-constrained, i.e. m > n. It is unclear whether the approach of [40, 50] is faster than
IPMs when the optimization problem to be solved is linear. A probabilistic algorithm to solve LP
approximately in a random projection-based reduced feature-space was proposed in [46]. A possible
drawback of this paper is that the approximate solution is infeasible with respect to the original region.

Finally, we refer the interested reader to the surveys [48, 18, 22, 31, 17] for more background on
Randomized Linear Algebra.

2 Notation and Background

A B,... denote matrices and a, b, ... denote vectors. For vector a, ||al|s denotes its Euclidean norm;
for a matrix A, ||A|2 denotes its spectral norm and ||A|r denotes its Frobenius norm. We use 0
to denote a null vector or null matrix, dependent upon context, and 1 to denote the all-ones vector.
For any matrix X € R™*" with m < n of rank m a thin Singular Value Decomposition (SVD) is a
product UEXVT | with U € R™*™ (the matrix of the left singular vectors), V € R™*™( the matrix of
the top-m right singular vectors), and ¥ € R™*™ a diagonal matrix whose entries are equal to the
singular values of X. We use o;(-) to denote the i-th singular value of the matrix in parentheses.



For any two symmetric positive semidefinite (resp. positive definite) matrices A; and Ag of
appropriate dimensions, A; < As (A; < As) denotes that Ay — A; is positive semidefinite (resp.
positive definite).

We now briefly discuss a result on matrix sketching [12, 10] that is particularly useful in our
theoretical analyses. In our parlance, [12] proved that, for any matrix Z € R™*™ there exists a
sketching matrix W € R™*" such that

|lzwwTzT - ZZTH2 < %( I1Z|% + %) (10)

holds with probability at least 1 — ¢ for any » > 1. Here ¢ € [0,1] is a (constant) accuracy parameter.
Ignoring constant terms, w = O(rlog(7/s)); W has O(log(r/J)) non-zero entries per row; and the
product ZW can be computed in time O(log(r/d) - nnz(Z)).

3 Conjugate Gradient Solver

In this section, we discuss the computation of the preconditioner Q (and its inverse), followed by a
discussion on how such a preconditioner can be used to satisfy eqns. (6) and (7).

Algorithm 1 Solving eqn. (5) via CG
Input: AD € R™*" p € R™, sketching matrix W € R"*"  iteration count ¢;
1. Compute ADW and its SVD: let Uq € R™*™ be the matrix of its left singular vectors and let

232 € R"™*™ he the matrix of its singular values;
2. Compute Q"2 = UQZZ;/QUT;

3. Initialize z° < 0,, and run standard CG on the preconditioned system of eqn. (5) for ¢ iterations;

Output: return z';

Algorithm 1 takes as input the sketching matrix W € R™ ", which we construct as discussed in
Section 2. Our preconditioner Q is equal to

Q=ADWW'DAT. (11)

Notice that we only need to compute Q 2 in order to use it to solve eqn. (5). Towards that end, we
first compute the sketched matrix ADW € R™*%. Then, we compute the SVD of the matrix ADW:
let Uq be the matrix of its left singular vectors and let 232 be the matrix of its singular values. Notice

that the left (and right) singular vectors of Q /2 are equal to Uq and its singular values are equal to
2(31/2. Therefore, Q /2 = UQZE;/QU-{Q.

Let AD = UXVT be the thin SVD representation of AD. We apply the results of [12] (see
Section 2) to the matrix Z = VI € R™*" with » = m to get that, with probability at least 1 — d,

[VIWWTV - ImH2 < %( V)2 + HVmH%) < g (12)

In the above we used |V, = 1 and |V||% = m. The running time needed to compute the sketch
ADW is equal to (ignoring constant factors) O(nnz(A) - log(m/d)). Note that nnz(AD) = nnz(A).
The cost of computing the SVD of ADW (and therefore Q") is O(m?log(m/§)). Overall, computing
Q"2 can be done in time

O(nnz(A) - log(m /) + m3log(m/6)). (13)



Given these results, we now discuss how to satisfy eqns. (6) and (7) using the sketching matrix W.
We start with the following bound, which is relatively straight-forward given prior RLA work.

Lemma 2. If the sketching matric W satisfies eqn. (12), then, for alli=1...m,
(1+¢/2)7' <o (QAD) < (1—-¢/2)7".
Proof. Consider the condition of eqn. (12):

¢

[VIWWTV — 1|, < g & —shn< VIWWTV -1, glm (14)
& - gAD2AT < ADWW'DAT - AD?AT < gADzAT (15)
& (1 — g) AD’AT < ADWWTDAT < (1 + g) AD?AT. (16)

Q

We obtain eqn. (15) by pre- and post-multiplying the previous inequality by UX and ZUT respectively

and using the facts that AD = UXVT and AD?AT = UX?UT. Also, from eqn. (14), note that all

the eigenvalues of VIWWTV lie between (1 — %) and (1 + %) and thus rank(VTW) = m. Therefore,

rank(ADW) = rank(USVTW) = m, as U is non-singular and we know that the rank of a matrix

remains unaltered by pre- or post-multiplying it by a non-singular matrix. So, we have rank(Q) = m;

in words Q has full rank. Therefore, all the diagonal entries of 3q are positive and Q '2QQ 2 =1,,.
Using the above arguments, pre- and post- multiplying eqn. (16) by Q12 we get

(1 - 5) Q '?AD?ATQ V<1, < (1 + S) Q '/?AD?ATQ'/?
2 2
¢\ ¢\
= (1+3) <@ ADATQ < (1-5) I, "

-1
Eqn. (17) implies that all the eigenvalues of Q" /2AD?ATQ~'/2 are bounded between (1 + %) and

-1
(1 — %) , which concludes the proof of the lemma. O

The above lemma directly implies eqn. (6). We now proceed to show that the above construction for
Q 2, when combined with the conjugate gradient solver to solve eqn. (5), indeed satisfies eqn. (7)°.
We do note that in prior work most of the convergence guarantees for CG focus on the error of the
approximate solution. However, in our work, we are interested in the convergence of the residuals
and it is known that even if the energy norm of the error of the approximate solution decreases
monotonically, the norms of the CG residuals may oscillate. Interestingly, we can combine a result on
the residuals of CG from [5] with Lemma 2 to prove that in our setting the norms of the CG residuals
also decrease monotonically.

Let () be the residual at the j-th iteration of the CG algorithm:
fU) = Q 2 AD?ATQ ?%7 — Q*p.

Recall from Algorithm 1 that z° = 0 and thus f(© = —Q~"2p. In our parlance, Theorem 8 of [5]
proved the following bound.

3See Chapter 9 of [30] for a detailed overview of CG.



Lemma 3 (Theorem 8 of [5]). Let fU~1 and £U) be the residuals obtained by the CG solver at steps
j—1and j. Then,

K2(Q7?AD) — 1

||f(j)\|2 < 5

IOz,

where £(Q~72AD) is the condition number of Q~/*AD.

From Lemma 2, we get

Tmax(Q”?AD) _ 1+¢/2

2(Q /?AD) = —max . 18
K (Q ) Urznin(Q_l/2AD) - 1— C/2 ( )
Combining eqn. (18) with Lemma 3,
14¢/2 ¢
0 £ SE 0Dy = SO < ¢EY, (19)

where the last inequality follows from ¢ < 1. Applying eqn. (19) recursively, we get
DYl < CIE V2 < - < CIEOl2 = ¢IQ™pll2,

which proves the condition of eqn. (7).

We remark that one can consider using MINRES [39] instead of CG. Our results hinges on bounding
the two-norm of the residual. MINRES finds, at each iteration, the optimal vector with respect the
two-norm of the residual inside the same Krylov subspace of CG for the corresponding iteration. Thus,
the bound we prove for CG applies to MINRES as well.

4 The Infeasible IPM algorithm

In order to avoid spurious solutions, primal-dual path-following IPMs bias the search direction towards
the central path and restrict the iterates to a neighborhood of the central path. This search is controlled
by the centering parameter o € [0,1]. At each iteration, given the current solution (x*,y* s¥), a
standard infeasible IPM obtains the search direction (Ax*, Ay*, As*¥) by solving the following system
of linear equations:

AD?ATAy* = pF, (20a)
AsP = —rk — ATAY®, (20b)
AxF = —xF 4+ op,8711, — D2ASE (20c¢)

Here D and S are computed given the current iterate (x* and s¥); we skip the indices on D and S
for notational simplicity. After solving the above system, the infeasible IPM Algorithm 2 proceeds by
computing a step-size & to return:

(xFHL yREHL sy = (xF vk sF) + a(Axk, AyF, AsP). (21)

Recall that r* = (r'; ,r%) is a vector with r'; = Ax* — b and r¥ = ATy* + s* — ¢ (the primal and dual

residuals). We also use the duality measure pj = XkTSk/n and the vector

p" = —rl; — ourAST'1, + Ax® — AD%rR (22)



Given Ay* from eqn. (20a), As* and Ax* are easy to compute from eqns. (20b) and (20c), as they only
involve matrix-vector products. However, since we use Algorithm 1 to solve eqn. (20a) approximately
using the sketching-based preconditioned CG solver, the primal and dual residuals do not lie on the
line segment between 0 and r°. This invalidates known proofs of convergence for infeasible IPMs.

For notational simplicity, we now drop the dependency of vectors and scalars on the iteration
counter k. Let AAy = Q "/2z! be the approximate solution to equn. (20a). In order to account for the
loss of accuracy due to the approximate solver, we compute Ax as follows:

~

Ax = —x+opuS'1, - D?*As— S~ v. (23)

Here v € R" is a perturbation vector that needs to exactly satisfy the following invariant at each
iteration of the infeasible IPM:

AS7lv = AD?ATAy — p. (24)
We note that the computation of As is still done using, essentially, eqn. (20b), namely
AsF = —rk_ ATAY". (25)

In [35] it is argued that if v satisfies eqn. (24), the primal and dual residuals lie in the correct line
segment.

Construction of v. There are many choices for v satisfying eqn. (24). To prove convergence, it is
desirable for v to have a small norm, hence a general choice is

v=(ASTHf(AD?ATAy — p),

which involves the computation of the pseudoinverse (AS_I)T, which is expensive, taking time O(m?n).
Instead, we propose to construct v using the sketching matrix W of Section 2. More precisely, we
construct the perturbation vector

v = (XS)”*"W(ADW)’(AD?ATAy — p). (26)
The following lemma proves that the proposed v satisfies eqn. (24).

Lemma 4. Let W € R™*Y be the sketching matriz of Section 2 and v be the perturbation vector of
eqn. (26). Then, with probability at least 1 — &, rank(ADW) = m and v satisfies eqn. (24).

Proof. Let AD = UXVT be the thin SVD representation of AD. We use the exact same W as
discussed in Section 3. Therefore, eqn. (12) holds with probability 1 — ¢ and it directly follows
from the proof of Lemma 2 that rank(ADW) = m. Recall that ADW has full row-rank and thus
ADW (ADW)f =1I,,,. Therefore, taking v = (XS)/*W(ADW)T(AD2ATAy — p), we get
AS v =AS1(XS)”*"W(ADW)(AD?ATAy — p)
— ADW(ADW)T(AD?ATAy — p)
= AD’ATAy — p,

where the second equality follows from D = X1/28-1/2, O

We emphasize here that we use the same exact sketching matrix W € R™*% to form the preconditioner
used in the CG algorithm of Section 3 as well as the vector v in eqn.(26). This allows us to sketch AD
only once, thus saving time in practice. Next, we present a bound for the two-norm of the perturbation
vector v of eqn. (26).



Lemma 5. With probability at least 1 — &, our perturbation vector v in Lemma 4 satisfies

[vll2 < v/Bnu|[ED ]2, @
with f(t) = Q_l/QAD2ATQ—1/2zt _ Q_I/QP.

Proof. Recall that Q = ADW(ADW)T = UQﬁqUa. Also, Uq and Zgz are (respectively) the
matrices of the left singular vectors and the singular values of ADW. Now, let V be the right singular
vector of ADW. Therefore, ADW = UQZgz\A/'T is the thin SVD representation of ADW. Also,
from Lemma 2, we know that Q has full rank. Therefore, Q/2Q "2 = I,,,. Next, we bound ||v]|2:

Ivll2 = [|(XS)""W(ADW)'(AD’ATAy — p)|»
= [|(XS)""W(ADW)'Q"* Q" *(AD’AT Ay — p)|»
< [[(X8) " W(ADW) Q"5 [[F¥)]|,. (28)
In the above we used Q71/2(AD2ATAAy —p) = f®. Using the SVD of ADW and Q, we get
(ADW)'Q"? = VEg'’UL UgBg Uy, = VU, Now, note that Ug € R™ ™ is an orthogonal
matrix and |[V||z = 1. Therefore, combining with eqn. (28) yields
[Vll2 < [I(XS)*WVUGI2[|E7 |2 = [|(XS) *WV 5] [FV)]|2
Q
<[|(X8)"*W o[ o (29)
The first equality follows from the unitary invariance property of the specitral norm and the second
inequality follows from the sub-multiplicativity of the spectral norm and ||V|2 = 1. Our construction

for W implies that eqn. (10) holds for any matrix Z and, in particular, for Z = (XS)"2. Eqn. (10)
implies that

/2112
|xs) = wwT(xs) - (xs)], < § (uocsf/w% " W) (30)

holds with probability at least 1 —¢d. Applying Weyl’s inequality on the left hand side of the eqn. (30),
we get

2
2

floxsy=w, - Joxs)

1/2112
<t <\|<Xs>1/2u% + IS Pl ”F) . (31)

Using ¢ < 1 and ||(XS)"?|ls < [|(XS)"?||r < x's = nu, we get*
2
Jxs) Wl < 31x8)"7 = 3 3

Finally, combining eqns. (29) and (32), we conclude

Ivll2 < v/3npl EVl2.
O

4The constant 3 in eqn. (32) could be slightly improved to 3/2; we chose to keep the suboptimal constant to make our
results compatible with the work in [35] and avoid reproving theorems from [35]. The better constant does not result in
any significant improvements in the number of iterations of the Algorithm 2.
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The above result is particularly useful in proving the convergence of Algorithm 2. More precisely,
combining a result from [35] with our preconditioner Q /2, we can prove that |Q ™ /?p|l2 < O(n),/L.
This bound allows us to prove that if we run Algorithm 1 for O(logn) iterations, then

7 o Yo
[E9l2 < 7= Vi and [Ivll2 < Fp

The last two inequalities are critical in the convergence analysis of Algorithm 2; see Appendix C for

details.
We are now ready to present the infeasible IPM algorithm. We will need the following definition
for the neighborhood

k
r
N(y) = {(xk,yk,sk) cafsh > (1 —4)p and | 0”2 < ﬁ, }
[x0fl2 ™ po

Here v € (0,1) and we note that the duality measure py, steadily reduces at each iteration.

Algorithm 2 Infeasible IPM
Input: A € R™*" b e R™, ceR" v € (0,1), tolerance € > 0, centering parameter o € (0,4/5);

Initialize: k < 0; initial point (x°,y?,s%);
while uy; > € do
(a) Compute sketching matrix W € R™*% (Section 2) with ¢ = 1/2 and § = O(n™2);
(b) Compute r'; = AxF —b; r]j = ATy* +s¥ —c; and p* from eqn. (22);
(c) Solve the linear system of eqn. (5) for z using Algorithm 1 with W from step (a) and
t = O(logn). Compute Ay = Q™ /?z;
(d) Compute v using eqn. (26) with W from step (a); As using eqn. (20b); Ax using eqn. (23);
(e) Compute & = argmax{a € [0,1] : (x*,y*, sF) + a(AAxk, AAyk, AAsk) e N(v)}-
(f) Compute & = argmin{a € [0,a] : (x* + aAAxk)T(sk + ozAAsk)}.
(g) Compute (xF+1 y*+l ght1) = (xk yk sk) + &(AAXk, AAyk, Ask); set k< k+1;
d

end while

Running time. We start by discussing the running time to compute v. As discussed in Section 3,
(ADW)' can be computed in O(nnz(A) -log(m/8) +m?log(m/§)) time. Now, as W has O(log(m/6))
non-zero entries per row, pre-multiplying by W takes O(nnz(A)log(m/d)) time (assuming nnz(A) > n).
Since X and S are diagonal matrices, computing v takes O(nnz(A) - log(m/§) + m3log(m/6)) time,
which is asymptotically the same as computing Q /? (see eqn. (13)).

We now discuss the overall running time of Algorithm 2. At each iteration, with failure probability
8, the preconditioner Q /2 and the vector v can be computed in O(nnz(A) -log(m/8) + m3log(m/6))
time. In addition, for ¢ = O(logn) iterations of Algorithm 1, all the matrix-vector products in the
CG solver can be computed in O(nnz(A) - logn) time. Therefore, the computational time for steps
(a)-(d) is given by O(nnz(A) - (log n + log(m/8)) + m3log(m/§)). Finally, taking a union bound over
all iterations with 6 = O(n~2) (ignoring constant factors), Algorithm 2 converges with probability at
least 0.9. The running time at each iteration is given by O((nnz(A) + m?)logn).

5 Extensions

We briefly discuss extensions of our work. First, there is nothing special about using a CG solver for
solving eqn. (5). We analyze two more solvers that could replace the proposed CG solver without any
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loss in accuracy or any increase in the number of iterations for the long-step infeasible IPM Algorithm 2
of Section 4. In Appendix A, we analyze the performance of the preconditioned Richardson Iteration
and in Appendix B, we analyze the performance of the preconditioned Steepest Descent. In both cases,
if the respective preconditioned solver (with the preconditioner of Section 3) runs for ¢ = O(log n) steps,
Theorem 1 still holds, with small differences in the constant terms. While preconditioned Richardson
iteration and preconditioned Steepest Descent are interesting from a theoretical perspective, they
are not particularly practical. In future work, we will also consider the preconditioned Chebyshev
semi-iterative method, which offers practical advantages compared to PCG in parallel settings.

Second, recall that our approach focused on full rank input matrices A € R™*"™ with m < n. Our
overall approach still works if A in any m x n matrix that is low-rank, e.g., rank(A) = k < min{m,n}.
In that case, using the thin SVD of A, we can rewrite the linear constraints as follows U X AVLX = b,
where Ua € R™*F and V5 € R™ ¥ are the matrices of left and right singular vecors of A respectively;
> a € R¥*F ig the diagonal matrix with the k non-zero singular values of A as its diagonal elements.
The LP of eqn. (1) can be restated as

min ¢'x, subject to VAx =b,x >0, (33)

where b = > 'ULb. Note that, rank(Va) = k < n and therefore eqn. (33) can be solved using
our framework. The matrices Ua, Va, and XA can be approximately recovered using the fast SVD
algorithms of [22, 4, 9]. However, the accuracy of the final solution will depend on the accuracy of the
approximate SVD and we defer this analysis to future work.

Third, even though we chose to use the Count-Min sketch and its analysis from [12] (Section 2),
there are many other alternative sketching matrix constructions that would lead to similar results. A
particularly simple one is the Gaussian sketching matrix W € R™ % where every entry is a N'(0,1)
random variable. Setting w = O (m+log(1/6)/¢2) would result in the same accuracy guarantees as the
sketching matrix of Section 2. However, the (theoretical) running time needed to compute ADW
increases to O(m-nnz(A)). In practice, at least for relatively small matrices, using Gaussian sketching
matrices is a reasonable alternative; see the discussion in [33] which argued that the Gaussian matrix
sketching-based solvers are considerably better than direct solvers. We also opted to use Gaussian
matrices in our empirical evaluation, since we primarily interested in measuring the accuracy of the
final solution as a function of the number of iterations of the solver and the IPM algorithm. Other
known constructions of sketching matrices that are also applicable in our setting include (any) sub-
gaussian sketching matrix; the Subsampled Randomized Hadamard transform (SRHT); and any of
the Sparse Subspace Embeddings of [8, 37, 32, 10].

6 Experiments

Here we demonstrate the empirical performance of our algorithm on a variety of real-world data
sets from the UCI ML Repository [19], such as ARCENE, DEXTER [21], DrivFace [15], and a gene
expression cancer RNA-Sequencing dataset that is part of the PANCAN dataset [47]. See Table 1 for
a description of the datasets. The experiments were implemented in Python and we observed that the
results for both synthetic data (generated as described in Appendix D.2) and real-world data were
qualitatively similar. Thus, we highlight results on several representative real datasets.

As an application, we consider ¢1-regularized SVMs. All of the data sets are concerned with binary
classification with m < n, where n is the number of features. In Appendix D.1, we describe the
£1-SVM problem and how it can be formulated as an LP. Here, m is the number of training points, n
is the feature dimension, and the size of the constraint matrix in the LP becomes m x (2n + 1).
Comparisons and Metrics. We compare our Algorithm 2 with a standard IPM (see Chapter 10, [41])
using CG, and a standard IPM using a direct solver. We also use CVXPY as a benchmark to compare
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Figure 1: ARCENE (top row) and DEXTER (bottom row) data sets: Our algorithm (Sk. IPM) requires
an order of magnitude fewer inner iterations than the Standard IPM with CG at each outer iteration,
as demonstrated in (a). This is possibly due to the improved conditioning of Q 2AD2ATQ "2 com-
pared to AD?A” | as shown in (b). For all experiments tolCG = 107% and 7 = 1077.

the accuracy of the solutions; we define the relative error IX—x*[l2/|x*|., where X is our solution and
x* is the solution generated by CVXPY. We also consider the number of outer iterations, namely
the number of iterations of the IIPM algorithm, as well as the number of inner iterations, namely the
number of iterations of the CG solver. We denote the relative stopping tolerance for CG by tolCG and
we denote the outer iteration residual error by 7. If not specified: 7 = 1077, tolCG = 107°, and o = 0.5.
We evaluated a Gaussian sketching matrix, and the initial triplet (x,y,s) for all IPM algorithms was
set to be all ones.

Experimental Results. Figure 1(a) shows that our Algorithm 2 uses an order of magnitude fewer
inner iterations than the un-preconditioned standard solver. This is due to the improved conditioning
of the respective matrices in the normal equations, as demonstrated in Figure 1(b). Across various
real-world and synthetic data sets, the results were qualitatively similar to those shown in Figure 1.
Results for several real-world data sets are summarized in Table 1.

In general, our preconditioned CG solver used in Algorithm 2 does not increase the total number
of outer iterations as compared to the standard IPM with CG, and the standard IPM with a direct
linear solver (denoted IPM w/Dir), as seen in Table 1. Actually, for unpreconditioned CG there is
clearly more outer iterations, especially for Gene RNA, which has x5 outer iterations. Figure 1 also
demonstrates the relative insensitivity to the choice of w (the sketching dimension, i.e., the number
of columns of the sketching matrix W of Section 2). For smaller values of w, our algorithm requires
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Figure 2: ARCENE data set: for various (w, tolCG) settings, (a) the maximum number of inner
iterations used by our algorithm and (b) the maximum condition number of Q '2AD2ATQ 2,
across outer iterations. The standard IPM, across all settings, needed on the order of 1,000 iterations
and x(AD?AT) was on the order of 108. The relative error was fixed to 0.04%.

Table 1: Comparison of (our) sketched IPM with CG, standard IPM with CG, and Standard IPM with
a direct solver, for the ¢1-SVM problem on UCI Machine Learning Repository [19] data sets. Across all,
7 =109 and a relative error of 1073 or less was achieved. We define kg = £(Q 7> AD?ATQ~"?) and
Kstan = K(AD2AT).

Problem Size Sketch IPM w/ Precond. CG | Stand. IPM w/ Unprec. CG | IPM w/ Dir.
(m x N) w  In. It. Out. It. KSK In. It. Out. It. KStan Out. It.

ARCENE | (100 x 10K) | 200 30 50 38.09 | 1.1K 59 4.4 x 108 50

DEXTER | (300 x 20K) | 500 39 39 75.42 4.6K 39 7.6 x 10° 39

DrivFace (606 x 6400) | 1000 50 42 68.87 139K 43 17 x 10'2 42

Gene RNA | (801 x 20531) | 2000 27 44 20.03 101K 208 4.7 x 1012 44

more inner iterations. However, across various choices of w, the number of inner iterations is always
an order of magnitude smaller than the number required by the standard solver.

Figure 2 shows the performance of our algorithm for a range of (w, tolCG) pairs. Figure 2(a)
demonstrates that the number of the inner iterations is robust to the choice of tolCG and w. The
number of inner iterations varies between 15 and 35 for the ARCENE data set, while the standard
IPM took on the order of 1,000 iterations across all parameter settings. Across all settings, the
relative error was fixed at 0.04%. In general, our sketched IPM is able to produce an extremely high
accuracy solution across parameter settings. Thus we do not report additional numerical results for
the relative error, which was consistently 1072 or less. Figure 2(b) demonstrates a trade-off of our
approach: as both t0olCG and w are increased, the condition number K(Q_l/ 2AD2ATQ Y %) decreases,
corresponding to better conditioned systems. As a result, fewer inner iterations are required. In this
context, Figure 3 shows that how the number of inner CG iterations (Figure 3(a)) or the condition
number of Q~/2AD?ATQ /2 (Figure 3(b)) decreases with the increase in sketching dimension w for
various tolCG .
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Figure 3: ARCENE data set: As w increases, (a) the number of inner iterations decreases, and is
relatively robust to tolCGand (b) the condition number decreases as well.

7 Conclusions

We proposed and analyzed an infeasible IPM algorithm using a preconditioned conjugate gradient
solver for the normal equations and a novel perturbation vector to correct for the error due to the
approximate solver. Thus, we speed up each iteration of the IPM algorithm, without increasing
the overall number of iterations. We demonstrate empirically that our IPM requires an order of
magnitude fewer inner iterations within each linear solve than standard IPMs. It would be interesting
to extend our work to analyze feasible IPMs. More precisely, we would like to apply Algorithm 2 of
Section 4 starting with a strictly feasible point. In that case, the analysis should be simpler and the
iteration complexity of the IPM algorithm should reduce to O(nlog(1/€)), which is the best known for
feasible long-step path following IPM algorithms. We chose to present the more technically challenging
approach in this paper and delegate the feasible case to future work.
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Appendix A Richardson Iteration

Here, we show that all our analyses still hold if we replace Step 4 of Algorithm 1 (CG solver) with
Richardson’s iteration. Basically, all we need to show is that the condition of eqn. (7) holds. Note
that the condition of eqn. (6) already holds from Lemma 2, as we use the sketching matrix W € R"*%
discussed in Section 3.

Algorithm 3 Richardson Iteration Solver
Input: AD € R™*" p € R™; number of iterations ¢ > 0; sketching matrix W € R"*%;
Initialize: z° < 0,,;
for j=1totdo
77—z 1+ Q2(p— AD?ATQ 2z 1);
end for
Output: return z';

Our first result expresses the residual vector £U) in terms of fU=1) for j =1...¢.

Lemma 6. Let £, 7 =1...t be the residual vectors at each iteration. Then,
FU) — (In _ Q—l/zAD2ATQ—1/2) FU-1) (34)

Recall that Q = ADWWTDAT and fU) = Q=/2(AD?2ATQ"/*z7 — p).
Proof. Using Algorithm 3, we express (/) as
fU) — Q_l/QADZATQ_l/QZj _ Q—1/2p
=Q PAD’ATQ Y (# + Q Vi (p ~ AD*ATQ 2 ) - QVp
- (Q_l/QAD2ATQ—1/2ij—1 _ Q_l/zp)
_ Q—1/2AD2ATQ—1/2 (Q—1/2AD2ATQ—1/2ZJ'—1 _ Q_l/Qp)

= (L. - Q""*AD?ATQ""*) (Q"*AD?ATQ "7/~ — Q" *p)

= (L. - Q"*AD?ATQ""*) §U-1),
which concludes the proof. O
In the next result, we show that the spectral norm of I,,, — Q 72AD2ATQ "2 is upper bounded by (.

Lemma 7. Let the condition of eqn. (6) holds for the sketching matric W € R"**. Then
IQ™* AD’ATQ "> — T[] < ¢.

Proof. As the condition in eqn. (6) holds, we can go backwards in the proof of Lemma 2 and note that
eqn. (17) holds. So, we subtract I,,, from each side of eqn. (17) to get

2
—1/2 2ATH-1/2 e
(72— 1) <@ PADATQ 2 -1, < (57 - 1)L
_ q 1/2 2ATH-1/2 _ ¢
& 5 cln < QPADPATQ T 1 < 2T
¢ 1/2 2ATH-1/2 _ ¢
= — g2 cIn < QPADPATQTY — T < 2T (35)
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QT PADPATQ T Ll < o < (36)

Eqn. (35) holds as WCC < ﬁ and the last inequality of eqn. (36) follows from ¢ < 1. O

Satisfying eqn. (6). Note that the condition in eqn. (6) already holds from Lemma 2, as we use the
exact same sketching matrix W € R™*%,

Satisfying eqn. (7). Using Lemma 7 and applying Lemma 6 recursively, we get
IEO 2 < CIECDl2 < - < CIEO o = ¢*lQ™pll2

Appendix B Steepest Descent

We now replace Step 4 of Algorithm 1 (our proposed PCG solver) by preconditioned steepest descent.
We again prove that our analysis of the proposed infeasible long-step IPM remains essentially the
same.

First, we construct the sketching matrix W as discussed in Section 2, with a slightly more stringent
accuracy guarantee. More specifically, we necessitate that

[vrwwty -, < S

holds with probability at least 1 — ¢ for a constant ¢ € [0,1]. Notice that the sketching dimension
w = O(mlog(m/s)) and the running time needed to compute Q /> (which is O(nnz(A) - log(m/d) +
m3log(m/§))) remain, asymptotically, the same. In the case of steepest descent, it turns out that
at each iteration the search direction is the negative of the gradient, which is equal to the residual
£U). Moreover, the step size a;j is determined by an exact line search that minimizes the underlying
quadratic function:

(37)

FOTFG)
4= fOTQ-/2 AD2ATQ-/2f0)"
For this choice of o, it is easy to verify that the current gradient is orthogonal to the previous one.

Algorithm 4 Steepest Descent Solver
Input: AD € R™*" p € R™; number of iterations ¢ > 0; sketching matrix W € R™*%;
Initialize: z° < 0,,;
for j=0tot—1do

. HOMRG) )
T FOTQ-2 AD2ATQ/2F0)’
il 20

A W ajf(3)7
end for

@

Output: return z*;

Similar to Lemma 6, our next result reveals a recursive relation between the search directions which
will be instrumental in bounding £®.

Lemma 8. Let fU), j = 1...t be the residual vectors at each iteration and let a; be as in Algorithm 4.
Then,

fU+) = (In - an‘l/QADzATQ‘l/Q) £0). (38)

Recall that Q = ADWWTDAT and f9) = Q~72(AD2ATQ"?z/ — p).
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Proof. In Algorithm 4, we pre-multiply z/** by Q /2AD2ATQ~"2 and then subtract Q~"/2p to get
f‘(j-ﬁ-l) — Q—l/QADZATQ—l/sz-Fl _ Q—l/Qp
— Q_l/QADzATQ_l/QZj _ Q—1/2p _ an_l/QADzATQ_l/Qf'(j)
= f0) — 0,;Q PAD2ATQ £ = (Im - an_l/QADZATQ_l/Q) £
which concludes the proof. O

Next, using this new condition in eqn. (37), we bound HIm — Osz_l/QAD2ATQ_1/2

. . 1—
Lemma 9. If eqn. (37) is satisfied, then |o; — 1| < %

Proof. First, we rewrite eqn. (37) as follows,

4(1;<)Im$VTWWTV—Im#w

L,.

Next, we pre- and post-multiply the above expression by UX and ZUT to get

1- 1-
—¥AD2AT < ADWWTDAT _AD2AT < %

Q

AD?AT. (39)

Now, pre and post-multiplying eqn. (39) again by Q~"/2, we get

(1 _ w> Q—1/2AD2ATQ—1/2 < Im < <1 + C(12_ C)) Q_l/zAD2ATQ_1/2

N (1 _ M) 0T Q-2 ADZATQ- 2 F0) < FUTFU) < (1 n M) 0T Q-2 ADZATQ2F0)
2 - - 2

¢1-¢) £O£0) (19
= (1 2 ) = fO)'Q-/2AD2ATQ~Y/2£() = (1 T )
:>|aj—1|§C(1_<),forjzl...t. (40)

2
O

Our next result shows that if eqn. (37) holds, then HIm —a;Q P AD?ATQ 2
by a small quantity for j =1...t¢.

) is upper bounded

Lemma 10. If eqn. (37) is satisfied, then HIm — 04]-Q_1/2AD2ATQ_1/2

2§C,f0rj:1...t.

Proof. We note that eqn. (37) directly implies
[VTWWTV - ImH2 < g (41)

Now, as eqn. (41) holds, from eqn. (17) in the proof of Lemma 2,we have

2

20 ~1/2AP2ATO-1/2 ( 20 )
-1)L, < qj AD"A -1, < -1)L,
* (grg 1)t <0 ° 2—¢

(\7! 12 A2 AT -1/2 (\7!
14+3) L.<QPADPATQ 25 (1-3) 1,
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2(0[j-1)-<
2+¢

Q(OZj—l)—FCI

= .
2—¢ m

L, < a;Q 2AD?ATQ 2 -1, < (42)
The above expression follows by multiplying eqn. (17) by «; and then subtracting I,,. Now, from
Lemma 9, we get —((1 —¢) <2(a; —1) < (1 —=¢) for j =1...t. Using this in eqn. (42), we further

have

(1-0+¢ 12 A2 AT -1/2 1-¢)+¢
31 ¢ I, <o;Q /"AD"A ' Q I 3¢ I
2 _
o - Yr, <00 PADATQ A -1, <1,
= — (I, < OéjQ_l/2AD2ATQ_1/2 -L,<CL, (43)
= HIm - 0;Q PAD?ATQ | <,
where eqn. (43) is due to the fact that g%g <1 O

Satisfying eqn. (6). As eqn. (41) holds, eqn. (6) directly follows from Lemma 2.
Satisfying eqn. (7). Using Lemma 10 and applying Lemma 8 recursively, we get

[y < CIECI ]y < - < CEO Yy = Q2o

Appendix C Convergence analysis of Algorithm 2

C.1 Additional notation

For any two vectors a = (ay,...,a;)" and b = (by,...,b)" let aob = (a1by,...,azby)T. For any
vector a € R" its { norm is defined as ||al|.c = max;|a;|. We heavily use the following standard
inequality to prove results in this section:

a'l,

< llallee < llal2- (44)

C.2 Number of iterations for the CG solver

In this section, most of the proofs follow [35] except for the fact that we used our sketching based
preconditioner Q /2. Recall that S is the set of optimal and feasible solutions for the proposed LP.

Lemma 11. Let (x°,y% s be the initial point with (x°,s°) > 0 and (x*,y*,s*) € S such that
(x*,8*) < (x0,8%) with s° > |ATy" — c|. Then, for any point (x,y,s) € N () such that r = nr’ and

0<n< min{l, SE‘I—XXO}, we get

(i) n(x"s" +s"x%) < 3nu, (45a)
(i) n]S(x" —x")]l2 <7 ISx°||2 < ns"x" < 3nu, (45b)
(ii3) X"+ ATy® — e)lla < 29[y < 2x7s0 < 6np. (45¢)

Proof. We prove eqns. (45a)—(45¢) below.
Proof of eqn. (45a). For completeness, we provide a proof of eqn. (45a) following [35]. Since
(x*,8*,y*) € S, the following equalities hold:

Ax* =b (46a)
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ATy +s* =c. (46b)
Furthermore, r = nr® implies

Ax — b =n(Ax" —b) (47a)
ATy +s—c=nATy" +s" —¢). (47b)

Combining eqn. (46a) with eqn. (47a) and eqn. (46b) with eqn. (47b), we get

Ax—nx"—(1-n)x*) =0 (48a)
ATy —ny’ = (L=n)y*) + (s — 18" — (L —m)s") = 0. (48b)
Multiplying eqn. (48b) by (x —nx° — (1 — n)x*)T on the left and using eqn. (48a), we get
(x —nx® — (1 - n)x*)T (s — s — (1 - n)s*) =0.
Expanding we get
n (XOTS + XTSO) = n>x""s0 + (1—n)?2x")Ts*+x"s
(1= n) (s + (x)7s?) = (1 =) ((x)Ts+xTs"). (49)
Next, we use the given conditions and rewrite eqn. (49) as
n (XOTS + SOTX> < ?72XOTSO +x's+n(l —n) (XOTS* + SOTX*)
< 7’]2X0TSO +x"s+2n(1 — n)xOTSO
< 2x%"s? +x's < 3x"s = 3nu. (50)

The first inequality in eqn. (50) follows from the following facts. First, (1 —n)((x*)Ts +x"s*) > 0
as (x*,8*) > 0 and (x%,s”) > 0. Second, as (x*,s*,y*) € S (which implies x* o s* = 0), we have
(x*)Ts* = 0. The second inequality in eqn. (50) holds as x* < x°, s* < s (x*,s*) > 0, and
(x°,s) > 0; combining them we get (XOTS* + sOTx*) < 2x%'s%. Third inequality in eqn. (50) is true
as we have nzxoT + 2n(1 — n)xOTSO = 2?’]X0TSO — T]2X0TSO < 277X0Tso. The final inequality holds as
T
n< )STSO . O
X" 8

Proof of eqn. (45b). The last inequality follows from eqn. (45a). The second to last inequality is

also easy to prove as
S S 2
18x°| = Z(sw?ﬁ < (Z sm?) =s"x’. (51)
i=1 i=1

To prove the first inequality in eqn. (45b), we use the fact x° > x* as follows:
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Proof of eqn. (45c). To prove this we use a similar approach as in eqn. (45b). The last inequality
directly follows from eqn. (45a); the second to last inequality is also easy to prove as

2
n n
[Xs%lo = Z(mis?)z < <Z x,-s?) =x's. (52)
i=1 i=1
For the first inequality, we proceed as follows:
IX(s” + ATy" = o)5 = IXs°|I3 + [X(ATY" = ©)[13 + 2E"OTXTX(ATyO -c)

n
= [Xs"3 + D _af(ATy" ~ +22x (ATy’ —c);
i=1

< [1Xs°)13 +Z i8] +2Z isy

=1
= [IXs°|f3 + [ X3 + 2HXSOH2 = 4| Xs°|3. (53)

The inequality in eqn. (53) follows from x; > 0, s¥ > 0 and ’(ATy0 —c)|<sVforalli=1...n. 0O

Our next result bounds ||Q~"?p|| which is instrumental in proving the final bound.

Lemma 12. Let (x°,y° s%) be the initial point with (x°,s°) > 0 such that x° > x* and s* >
max{s*,|c — ATy%} for some (x*,y*,s*) € S. Furthermore, let (x,y,s) € N(y) with r = nr°
for some 0 < n < 1. If the sketching matrizc W € R™ " satisfies the condition in eqn. (6), then

IQ~"plla < V2 (\/1971_7 +a\/g+ \/ﬁ) N

Recall that r = (rp,rq) = (Ax —b, ATy +s—c) and r’ = (r9,r) = (Ax" —b,ATy? +s" — c).

Proof. Note that after correcting the approximation error of the CG solver using v, the primal and
dual residuals r = (rp,ry) corresponding to an iterate (x,y,s) € N (v) always lie on the line segment
between zero and r(?). In other words, r = nr(®) always holds for some 7 € [0,1]. This was formally
proven in Lemma 3.3 of [35]. In order to bound ||Q~"2p||2, first we express p as in eqn. (3) and rewrite

Q Vp=Q (—r,, — opAST1, + Ax — AD2rd) : (54)
Then, applying the triangle inequality to ||Q~7>p||2 in eqn. (54), we get
1Q™72plla < Ay + Ag+ Ay + Ay, (55)

where

Ar=1Q 2,

Ay = o QP AD(XS) 1, |2,
As = [|Q”?ADD x5,

Ay = |Q 2AD?ry]5.

To bound Ay, Ag, Az and Ay we heavily use the condition of eqn. (6).
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Bounding A;. Using r, = nrp, p = Ax" — b and b = Ax*, we rewrite A as

Ar=n]lQ A" —x)|2
=1]Q *ADD™! (x” — x*)]|»
<7 [Q*AD|2|D™! (x” — x|l
< V2 D" - x|
= V21 [[(XS)"7*S(x" — x|
< V27 [[(X8) 772 IS(x” - x)||2, (56)
where the above steps follow from submultiplicativity and eqn. (6). From eqn. (6), note that we have

|Q~?AD||2 < V2 as ¢ < 1. Now, applying eqn. (45b) and ||(XS)™"/?||2 = maxi<i<p \/%, we further
have

where the last inequality follows from (x,y,s) € N (7).

Bounding As. Applying submultiplicativity, we get

Ay = ou Q7 AD (X8)"V*1, 2
op Q™ AD|2[|(XS) 1, Iz

< V20u/(XS) 1/21n|12
=V2opu Z 20u Z 1=~
i= 1 = 1

= (1_ )’ (58)

where the second to last inequality follows from eqn. (6) and the last inequality holds as (x,y,s) €

N(®).

AI/\

Bounding Az. Using D = S~/2X"2 and x = X 1,, we get

Az = [Q ?AD (S72X~7%) X 1,2
= [|Q”"* AD (SX)"* 1|2
< Q™2 AD||2[|(SX)"* 1,2

<VES asi = VI (59)
=1

where the inequalities follow from submultiplicativity and eqn. (6).
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Bounding A4. Using rg = nrg, we have

Ag=1n]Q 7 AD?Y;
< n[|Q~"2 AD||5||(XS)~"/2XrY|2
< V2 [(XS)"2X(ATy? +5° — o)||2
< V2 [[(XS) "2 [X(ATY +5° —¢)|2,

where the above inequalities follow from submultiplicativity and eqn. (6). Now, applying eqn. (45c)
and [[(XS)™2[|2 < \/(11_—”#, we further have

Ay < 620,/ % (60)

Final bound. Combining eqns. (55), (57), ,(58), (59) and (60), we get

In n
Q plls < \/§< +o —+\/ﬁ> . 61
lQ "] T o\ [T VR ) v (61)
This concludes the proof of Lemma 12. O
Lemma 13. Let the sketching matriz W satisfy the conditions of eqns. (6) and (7). Then, after
t> %ﬁ_# iterations of the CG solver in Algorithm 1,

~ o g
[Ele < =R and vl < “Fp

Here i = (\/?"j +o /s + \/ﬁ> and £® = Q-2AD2ATQ 23t — Q~"/2p is the residual of the
CG solver.

Proof. Combining Lemma 12 and the condition in eqn. (7), we get
IEO2 < ¢y v/2p. (62)

- t
Now, [|f®)||, < %\/ﬁ holds if v2¢ ¢!\ /i < %\/ﬁ, which holds if (%) > 4\/3__;1&' The last inequality
holds for our choice of t. Next, combining Lemma 5 and eqn. (62) we get

[vlla < vBrg [ED )2 < V6n ¢tou

Therefore, |[v[2 < 23 holds if v6ny (*fyp < 29, which holds for our choice of ¢. Now, fixing v, o,

and ¢, after ¢ = O(logn) iterations of Algorithm 1 the conclusions of the lemma hold. O
C.3 Determining step-size, bounding the number of iterations, and proof of The-
orem 1

Assume that the triplet (Ax, Ay, As) satisfies eqns. (23), (24) and (25). We rewrite this system in
the following alternative form:

AAX = —r1,, (63a)
ATAy + As = —ry, (63b)

26



XAs+SAx =—XS1, +oul, —v. (63c)

Indeed, we now show how to derive eqns. (23), (24) and (25) from eqn. (63). Pre-multiplying both
sides of eqn. (63c) by AS™! and noting that D? = XS™!, we get
AD?As + AAx = ~AX1, + opAS™'1, — AS”lv
= AD?As = —Ax+r1, +ouAS ™1, — AS7 v, (64)
Eqn. (64) holds as AX1,, = Ax and, from eqn. (63a), AAx = —r,,. Next, pre-multiplying eqn. (63b)
by AD?, we get
AD?ATAy + AD?As = —AD?r,

= AD?ATAy = —r, — opAS™'1, + Ax — AD’r;+ AS"'v =p + AS”lv. (65)
The first equality in eqn. (65) follows from eqn. (64) and the definition of p. This establishes eqn. (24).
Eqn. (25) directly follows from eqn. (63b). Finally, we get eqn. (23) by pre-multiplying eqn. (63c) by
S—L.

Next, we define each new point traversed by the algorithm as (x(«),y(«),s(«)), where

®
£
<
£
i’}
£
i

s) + a(Ax, Ay, As), (66)

X,Yy,S8
)Ts(a)/n, (67)
(a),s(a),y(a)) . (68)

The goal in this section is to bound the number of iterations required by Algorithm 2. Towards that
end, we bound the magnitude of the step size a. First, we provide an upper bound on «, which
allows us to show that each new point (x(«),s(«),y(a)) traversed by the algorithm stays within the
neighborhood N (). Second, we provide a lower bound on «, which allows us to bound the number of
iterations required. We use multiple lemmas from [35], which we reproduce here, without their proofs.

First, we provide an upper bound on «, ensuring that each new point (x(«),y(a),s(«)) traversed
by the algorithm stays within the neighborhood N (7).

(x
a) =x(a

r(a) = r(x

Lemma 14 (Lemma 3.5 of [35]). Assume (Ax, Ay, As) satisfies eqns. (63) for some o0 > 0, (x,y,s) €
N(©®) (forv€(0,1)), and ||v||2 < 1=, Then, (x(a),y(a),s(a)) € N(v) for every scalar a such that

0 < a < min 1,# . (69)
4| Ax o As||oo
We now provide a lower bound on the values of & and the corresponding p(&); see Algorithm 2.

Lemma 15 (Lemma 3.6 of [35]). In each iteration of Algorithm 2, if ||v|j2 < 23E, then the step size
Q@ satisfies

& > min {1, min{y0, (1 — 30) i } (70)
4| Az o As||oo
and
_ a. 5
u(@) = [1- 501 J0)|u (71)

At this point, we have provided a lower bound (eqn. (70)) for the allowed values of the step size a.
Next, we show tpat t}}is lower bound is bounded away from zero. From eqn. (70) this is equivalent to
showing that ||Ax o As||« is bounded.
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Lemma 16 (Lemma 3.7 of [35] (slightly modified)). Let (x°,y%,s%) be the initial point with (x°,s%) > 0
and (x°,8%) > (x*,s*) for some (x*,y*,s*) € S. Let (x,y,s) € N(v) be such that r = nr® for some
n € [0,1] and |v||2 < IFE. Then, the search direction (Ax, Ay, As) produced by Algorithm 2 at each
iteration satisfies

2
max{[|D~" Ax||s, [DAs|2} < (1 T

1/2
6n Yo
_20'> Vnp A+ ﬁ\/ﬁ_‘_ ZI\/T—’Y\/'U (72)

We should note here that the above lemma is slightly different than Lemma 3.7 of [35]. Indeed, Lemma
3.7 of [35] actually proves the following bound:

2
maxc{ [D~ Axs, [DAs]2} < (1 o

1/2
6n Yo
_20> Vnp A+ ﬁ\/ﬁ—i_ m\/ﬁ (73)

Notice that there is slight difference in the last term in the right-hand side, which does not asymptoti-
cally change the bound. The underlying reason for this difference is the fact that [35] constructed the
vector v differently. In our case, we need to bound ||(XS)~!/2v||y, which we do as follows:

_ _ 1 Yol
XS) M2y, < ||(XS) Y2 < 4
—1/2||y = Wm Now as (x,y,s) € N(v),
we further have x;s; > (1 —«)p for all i = 1...n. Combining this with eqn. (74), we get

where in the above expression we use the fact that ||(XS)

(XS) 22 < (75)

Yo _ \/7
VA =yu 4 \/1 -
On the other hand, [35] had a different construction of v for which ||(XS)~1/2v|ly = [|[f)|]y holds.
Therefore they had the following bound:
XS)~1/2 —IFO, < 2 o
IK8) 20 = 92 < {5 i
The next lemma bounds the number of iterations that Algorithm 2 needs when started with an
infeasible point that is sufficiently positive.

Lemma 17 (Theorem 2.6 of [35]). Assume that the constants 7 and o are such that max{y~! (1 —
V) o (1= 50)71 = O(1). Let the initial point (x°,s°,y°) satisfy (x°,s°) > (x*,s*) for some
(x*,8%,y*) € S and ||v|2 < TZE. Algorithm 2 generates an iterate (xF, sk, y*) satisfying pe < epo and
%12 < €|lt®l2 after O(n?log Ye) iterations.

Finally, Theorem 1 follows from Lemmas 13 and 17.

Appendix D Additional notes on experiments

D.1 Support Vector Machines (SVMs)

The classical £1-SVM problem is as follows. We consider the task of fitting an SVM to data pairs
S = {(zi, i)}, where z; € R” and y; € {+1,—1}. Here, m is the number of training points, and n
is the feature dimension. The SVM problem with an ¢; regularizer has the following form:

minimize |[w]) (76)
subject to yi(ng:Z- + b/) >1, i1=1...m.

This problem can be written as an LP by introducing the variables w™ and w™, where w = w™ —w™.
The objective becomes Z 1 w + wj;, and we constrain w;r > 0 and w; > 0. Note that the size of
the constraint matrix in the LP becomes m x (2n+1).
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D.2 Random data

We generate random synthetic instances of linear programs as follows. To generate A € R™*", we
set a;j ~;iq U(0,1) with probability p and a;; = 0 otherwise. We then add min{m,n} ii.d. draws
from U(0,1) to the main diagonal, to ensure each row of A has at least one nonzero entry. We set
b = Ax + 0.1z, where x and z are random vectors drawn from N(0,1). Finally, we set ¢ ~ N(0, 1).

D.3 Real-world data

We used a gene expression cancer RNA-Sequencing dataset, taken from the UCI Machine Learning
repository. It is part of the RNA-Seq (HiSeq) PANCAN data set [47] and is a random extraction of
gene expressions from patients who have different types of tumors: BRCA, KIRC, COAD, LUAD, and
PRAD. We considered the binary classification task of identifying BRCA versus other types.

We also used the DrivFace dataset taken from the UCI Machine Learning repository. In the
DrivFace dataset, each sample corresponds to an image of a human subject, taken while driving
in real scenarios. Each image is labeled as corresponding to one of three possible gaze directions:
left, straight, or right. We considered the binary classification task of identifying two different gaze
directions: straight, or to either side (left or right).
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