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This paper explores new ways to use energy shaping and reg-
ulation methods in walking systems to generate new passive-
like gaits and dynamically transition between them. We re-
capitulate a control framework for Lagrangian hybrid sys-
tems, and show that regulating a state varying energy func-
tion is equivalent to applying energy shaping and regulat-
ing the system to a constant energy value. We then con-
sider a simple 1-dimensional hopping robot and show how
energy shaping and regulation control can be used to gen-
erate and transition between nearly globally stable hopping
limit cycles. The principles from this example are then ap-
plied on two canonical walking models, the spring loaded
inverted pendulum (SLIP) and compass gait biped, to gener-
ate and transition between locomotive gaits. These examples
show that piecewise jumps in control parameters can be used
to achieve stable changes in desired gait characteristics dy-
namically/online.

1 Introduction

Research for creating periodic gaits in locomotive sys-
tems has been in development since the early 2000’s, with a
celebrated example of Hybrid Zero Dynamics (HZD) [1,2].
This methodology revolves around designing state output
functions via Bezier polynomials such that when they are
driven to zero, a robot achieves a walking gait with pre-
defined trajectories. More recent work has focused on ex-
tending HZD to achieve dynamic motion transition through
motion planning techniques [3-5]. A trajectory-free method
that contrasts HZD is to mimic and stabilize “natural” or
passive dynamic walking gaits through “energy shaping”,
a termed coined in works on Interconnection and Damp-
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ing Assignment Passivity-Based Control (IDA-PBC) [6, 7]
and Controlled Lagrangian [8, 9] techniques. The gen-
eral equivalence between passivity-based energy shaping and
other techniques has been demonstrated, such as “Controlled
Hamiltonian” [10] or “Immersion and Invariance” [11]. En-
ergy shaping methods have a focus on using physically
meaningful parameters to produce desired system proper-
ties, which can provide intuition in the analysis and design
of extremely nonlinear systems in ways other control meth-
ods cannot, such as generalization of stability margins [12].
As seen in [13—16], energy shaping can force a biped robot
to emulate the dynamics of a target passive locomotive sys-
tem, then exploit a passivity property between the input and
energy-based output to regulate the desired energy level as-
sociated with a limit cycle without canceling the nonlinear
dynamics. Our paper is in this vein, but expands upon these
previous works by dynamically transitioning between gaits
through online switching of both the target energy and the
system parameters of the emulated locomotive system. This
offers a more simple (and arguably more natural) proce-
dure for achieving dynamic gait transition than designing a
plethora of gait trajectories and the transitions between them.

Inspired by [7] and [13], our approach to generate limit
cycles is as follows. First, identify a target Lagrangian sys-
tem endowed with a continuum of periodic orbits where each
orbit is associated with a unique energy value, and then set
the control equal to the difference between the open-loop
system dynamics and the desired system dynamics. This
forces the closed-loop system to behave like the desired sys-
tem. We refer to this step as energy shaping. Second, use
an outer-loop controller to target a specific orbit by driv-
ing the system to the associated energy level set, creating
a self-sustaining oscillator. We refer to this technique as en-
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ergy regulation. Ideally, this would allow us to switch be-
tween orbits by changing just the target system energy. For
walking systems it is not quite that simple because hybrid
dynamics with dissipative impact maps can cause limit cy-
cles, which by definition preclude other nearby periodic or-
bits [17]. However, changes in the system parameters, like
mass and gravity, can result in changes in the limit cycle tra-
jectory. Thus, we will modify both the virtual system param-
eters and target reference energy to generate and transition
between new limit cycles (essentially the idea of Lyapunov
funneling [18, 19]).

Our paper extends and connects the work on the com-
pass gait biped in [13] by Spong, Holm, and Lee and the
spring based models in [15, 20] by Garofalo and Ott. The
paper by Spong et al. uses “Controlled Symmetries”, a
form of energy shaping, to change the direction of the vir-
tual gravity vector of the compass gait biped combined with
an energy regulation technique to robustify walking gaits.
The paper [20] by Garofalo et al. uses energy regulation
techniques to control the hopping height of a springy robot,
while [15] uses energy regulation in conjunction with an em-
bedded SLIP controller on a walker with knees and a torso.
One of the main differences between the SLIP and compass
gait models is that the compass gait has energy dissipation
at impact while the SLIP model does not, which plays a key
role in the stability of their passive limit cycles. The con-
sideration of both of these models is important because they
are both fundamental to biped locomotion [21,22]. We note
that this idea of causing systems to emulate self sustaining
nonlinear oscillators has connections outside the domain of
walking bipeds; [23] is an example in the area micro-electro-
mechanical-systems (MEMS) that uses feedback control to
cause a microbeam to behave like a van-der-Pol or Rayleigh
oscillator.

The primary contribution of this paper is an analytical
framework and simulation results for the use of energy shap-
ing and regulation to dynamically transition between a range
of walking gaits on hybrid locomotive systems by leveraging
relations between system parameters and desired limit cycle
characteristics. Using this framework, we demonstrate an
equivalence between regulation of a time/state-varying en-
ergy function and a 2-step process of energy shaping then
energy regulation of a constant reference value. We then
argue that regulating a constant energy value is the more
meaningful and clear method of control construction because
the asymptotic limit cycle trajectory is an energy level set of
some system. We consider a simple hopping robot that illus-
trates the relationships between impact dissipation, system
parameters, energy, and limit cycle behavior. This leads us
to create a novel discrete update law for the reference en-
ergy that increases the robustness of a passive limit cycle in
the face of parameter uncertainty. We apply this law to the
compass gait biped in simulation, which is useful because
the energy associated with a limit cycle cannot be analyti-
cally computed in this model. The difference between this
work and [13] is that we change the virtual mass instead of
gravity. Changing the virtual mass does not enjoy the same
“Controlled Symmetry” property and is fundamentally more

difficult to analyze. A strict extension of [13] in this paper
is that we dynamically transition between different walking
gaits on the compass gait biped using the energy regulation
technique. In the same vein, our paper extends work on the
SLIP model in [15,20] by accomplishing dynamic gait tran-
sitions through switches in the target energy and spring stift-
ness. Finally, we also explicitly demonstrate that energy reg-
ulation can stabilize unstable limit cycles on the compass gait
biped.

The organization of the paper is as follows: Section 2 of
the paper gives a brief review of hybrid Lagrangian dynamics
with impacts and the application of energy shaping and regu-
lation to this class of systems. Section 3 details the dynamics
and control of a hopping robot to illustrate concepts. Section
4 presents the SLIP model dynamics, control, and simula-
tions that transition between various running speeds. Section
5 presents the compass gait biped model dynamics, control,
and simulations that transition between walking speeds and
stabilize previously unstable limit cycles of the passive sys-
tem.

Notation: Given two matrices a and b of suitable dimen-
sions, the matrix [a", »"]" is denoted by [a; b] where T is the
transpose operator.

Remark 1. In this paper, it is important to distinguish be-
tween the terms “passive” versus “passivity” and the con-
cepts to which they refer. To be clear, the term “passive”
refers to an uncontrolled mechanical system composed of
connected masses, springs, and dampers. The term “pas-
sivity” refers to the following mathematical definition.

Definition 1. Let S(¢,g) : R*" — R be a continuously dif-
ferentiable, non-negative scalar function. A system [q;§] =

f(a:dl) + &(lg:4))u, v = n([g:4]) has a passivity relation-
ship between input u and output Y with storage function

S(q,4) if S(q.q) <u'y.

2 Energy Shaping and Regulation with Lagrangian Dy-
namics

There are many papers on the idea of energy shaping
control for mechanical systems (which can be described by
Lagrangian or Hamiltonian dynamics); seminal work in this
area includes “Controlled Lagrangians” by Bloch et al. in [8]
and “Interconnection and Damping Assignment Passivity-
Based Control” by Ortega et al. in [6]. Recently, there has
been a focus on using similar methods to stabilize periodic
orbits, in both non-hybrid [7] and hybrid systems [16, 24].
We review some methods and notation to apply these tech-
niques on hybrid systems with Lagrangian dynamics and im-
pacts. The general idea is to first use energy shaping to gen-
erate desired virtual Lagrangian dynamics in the closed-loop,
then use energy regulation to drive the associated virtual en-
ergy function to a desired reference value associated with a
limit cycle.
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2.1 Hybrid Lagrangian Dynamics

We begin by defining the general notation of hybrid La-
grangian dynamics with impacts. The state of the system is
given by the vector ¢ € R". The continuous dynamics can be
derived from the Euler-Lagrange (EL) equations which have
the following form:

d dL(q,4) 9L(q,9)

dt  9q oq = Blgyu.

ey

The Lagrangian £ = X (gq,q) — P(q) is the difference be-
tween the system’s kinetic energy % and the potential en-
ergy P. The external control forces u € R"™ are mapped into
the dynamics by the matrix B € R"*™. Kinetic energy can
be expressed as K = %(fM(q)q', where M(q) is a positive
definite symmetric matrix that represents the mass/inertia of
the system. The EL equations expressed in matrix form are

M(q)§+C(q,4)4+G(q) = B(q)u 2

where the vector Cg represents Coriolis and centripetal

forces and the vector G = a{‘g—flq) represents gravity. The ma-

trix C is constructed such that M — 2C is skew symmetric.
Discrete impact dynamics capture the effect of system
components coming in sudden contact with surfaces that
constrain the motion of the system. The superscript nota-
tion — and + denotes variables just before and after impact,
respectively. We define a switching surface S as

S=1{(q,4)|h(g”) =0, < 0} 3)

where the function /4 gives the distance of the system com-
ponent from the constraint surface. The inequality h < 0 en-
sures that the component is moving into the constraint before
impact. The impact triggers when the state of system enters
the switching surface. We use the impact model from [2]
which causes instant, dissipative changes in the joint veloc-
ities of the system, but not the joint positions. However, we
do allow the world frame to jump and the coordinates of the
biped to be relabeled, which can appear as jumps in the po-
sition depending on the choice of coordinates. The impact
map is denoted by (¢7,¢") = A(g,¢~). The combination
of the continuous and discrete dynamics results in hybrid La-
grangian dynamics with impacts, expressed as

B(q)u=M(q)j+C(q,9)g+G(q) if(g,49) ¢S (4
(¢7.¢7)=A(g,47) if(q,g) €S (5)

2.2 Energy Shaping and Regulation Control

Our control approach is partitioned into two parts u =
us + u, so that u; performs energy shaping and u, performs
energy regulation. The method of energy shaping we will
use is that of Controlled Lagrangians [8]. We define a target

mechanical system with Lagrangian L, derive target dynam-
ics through the EL equations (1), and set the control equal to
the difference between the open loop dynamics and the target
dynamics. This yields the control law

us=(B"B)"'BT(C4+G—-MM~'(C4+G)), (6

which will render the desired dynamics if and only if the so-
called “matching condition”

B(C4+G—MM ' (C4+G)) =0, )
is satisfied. Here, B+ is a full rank left annihilator of B, i.e.,
BB = 0. The matching condition basically ensures there
is never a component of the difference between the open-
loop and desired dynamics in the nullspace of B. The new
continuous dynamics are then
MM 'Bu, = Mij+Cg+G. ®)
2.2.1 Regulating a Constant Reference Energy
The energy of the new system can be regulated using
the passivity-based control method from [13,24] through the
term u,. Consider the following storage function (Definition

Y

1 ~
§ =3 (E—Ewr)?, ©9)

where E (¢, q) is the closed-loop system energy and E is the
reference energy. The time derivative of this storage function
is

§ = (E — Euer) (E — Eu). (10)
From the equation for the shaped dynamics (8),
E—=¢ MM 'Bu, a1
="' Bu,. (12)
If the reference energy is constant then Ey; = 0 and
S =¢" Buy(E — Exep). (13)

Moreover, S can be rendered negative semi-definite by
choosing

Uy = —K(E — Eer) QB §. (14)

Here, k¥ > 0 is a scalar gain while the matrix Q € R"*" is
a positive definite weighting matrix with each element less
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than one. The storage function and its derivative are related
by

S = —K(E_Eref)zq'TEQETq'
= —2«]|glaS,

(15)
(16)

where the term C}TEQgTq' is a norm. The convergence of the
virtual energy to the target reference energy is guaranteed if
the system state cannot enter some positively invariant set
where ||||o = 0 (LaSalle’s invariance principle can be ap-
plied to validate this).

This controller differs from a similar method for Port-
Hamiltonian systems in [7]; their control construction re-
quires the ability to identify a state variable transformation
that decomposes a limit cycle into a 2 dimensional subman-
ifold where periodic motion occurs and a n — 2 dimensional
submanifold where the state is constant. The energy regu-
lation controller then only operates on the energy of the pe-
riodic submanifold. This is also the main idea behind the
work of [25] for inducing limit cycles in springy robots. Our
control method does not require the explicit identification of
these submanifolds, which can be difficult for passive loco-
motive systems. The disadvantage of assuming the implicit
existence of these submanifolds/limit cycles through the total
energy is that multiple periodic orbits can exist in the same
energy level set for a n > 2 dimensional system. This means
that in general, convergence to a reference energy does not
guarantee convergence to a desired limit cycle. However,
there are several examples of previous work on hybrid lo-
comotive systems [13, 15, 24,26, 27] that demonstrate that
achieving the desired energy does achieve a desired limit cy-
cle in practice.

2.2.2 Regulating a Varying Reference Energy

It is possible to consider a non-constant reference en-
ergy Er(q,q,t) that varies with state and time. However,
achieving a control that ensures the convergence of the sys-
tem to E = Ey(q,q,t) is essentially equivalent to the steps
of applying energy shaping then energy regulation as we did
in the previous section. First, define an energy/Hamiltonian
function E = E — Eyt(q,4,t). Then, use the Legendre trans-
formation to derive the associated Lagrangian L, assuming
that the transformation is well-defined. Finally, obtain the
target dynamics through the EL equation and use the Con-
trolled Lagrangians technique to arrive at an energy shap-
ing control (because of this more general form of E.f, more
general matching conditions from [9] must be satisfied). If
the reference energy has some constant term C such that
Ewt = f(q,G,t) + C, it will vanish after the EL equations
are applied. However, the desired convergence can be re-
covered by applying an outer-loop energy regulating control
with E = E — f(q,4,t) and Erf = C. This two step proce-
dure allows us to clearly interpret the effect of the control
as determining the shape of an energy level set through the
shaping step and then stabilizing the set through energy regu-
lation, similar to [7]. Directly regulating a time-state varying

reference energy results in a less clear effect.

2.3 Application to Hybrid Locomotive Systems

Our main interest in this paper is to use energy shaping
control to match the closed-loop dynamics to a passive loco-
motive system. This is what allows us to bypass the issue of
explicitly identifying a coordinate transformation or subman-
ifold in the state space. These systems generally have limit
cycles that depend on the value of their parameters [17,21],
meaning that we can generate new cycles by changing those
parameters in the virtual system. The basin of attraction of
these limit cycles are typically small, hence we will use en-
ergy regulation to increase the basin in order to make gait
transitions more robust as shown in [13]. This method of
gait transition is basically the idea of Lyapunov funneling,
see [18, 19]. However, the hybrid nature of the dynamics
can present conceptual challenges to the application of both
energy shaping and regulation control methods.

If the impact map A depends on the system parameters
and we are limited only to continuous/non-impulsive control,
then we are unable to completely emulate arbitrary virtual
hybrid systems. This idea is related to work on energy shap-
ing and Controlled Symmetries [28], of which a key compo-
nent was demonstrating that the impact dynamics of a rigid
biped are invariant with respect to the ground slope param-
eter. However, it is completely possible to change the vir-
tual parameters of only the closed-loop continuous dynam-
ics, while using the original open-loop impact dynamics. We
expect that the qualitative relationship between gait charac-
teristics (e.g., walking speed) and parameters will be similar
between the true system and partially emulated virtual sys-
tem, and we are not aware of any previous work that has
considered this approach.

The impact map also influences the construction of an
energy regulating control. If a passive walker has a con-
served energy on its periodic orbit in the continuous dynam-
ics, then the energy must be conserved across the discrete
dynamics as well. This implies an equilibrium between the
kinetic energy lost from dissipative impact and the potential
energy gained from shifting the world frame [29]. This equi-
librium can be unstable, such that a small perturbation will
cause the impact dynamics to drive the energy away from the
limit cycle [17]. However, it could be possible to use energy
regulation to stabilize these passively unstable limit cycles.
The idea is that over the flow of the continuous dynamics,
the energy regulating controller compensates for the desta-
bilizing effect of the impact dynamics. Consider the step to
step storage function

fi
S, = /O (¢ Buy)(E — Exer) dT+ S} (17)

_ /0 ! (G Buy)(E — Ex)dt+As(q,47)+S7 (18)

19)

where #; is the time between impacts and Ag is the change in
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the storage function at impact. If
fi o T o
0> [((q"Bu) (- Ew)de+Asla™q7) 20)

then ;| <S;, meaning the storage function is always de-
creasing between impacts and the energy is converging to the
target energy. This is basically the notion of a hybrid storage
function and so-called “jump and flow passivity” [30], but
applied to orbital stabilization. For an unstable passive limit
cycle, Ag > 0, while a stable one corresponds to Ag < 0.
From equation (15), the amount of storage dissipated over
the continuous dynamics can be modulated with the gain k.
Again, even if the inequality (20) is satisfied and the refer-
ence energy is asymptotically stable, this is only a necessary
but not sufficient condition for achieving a limit cycle in gen-
eral. Furthermore, this leaves the method of finding the E.c¢
associated with the equilibrium point induced by the impact
dynamics as an open question. At the end of the next section,
we offer an adaptive discrete update law to accomplish this
online for a hopping robot.

3 A Hopping Robot

This section considers a simple model of a hopping
robot with 1 degree-of-freedom (DOF). This makes it easier
to offer analytical proofs of stability due to the linear contin-
uous dynamics and low dimensionality. Some of the infor-
mation on the passive dynamics is similar to other works on
hoppers [20] and the rimless wheel [31]. The model serves
as a simple non-abstract example to demonstrate and develop
our ideas for application to the SLIP and compass gait mod-
els later in the paper. The novelty in this section is: 1) the
analytical procedure of using energy shaping and regulation
to achieve desired limit cycle characteristics, 2) proof of sta-
bilization of a range of limit cycles using energy shaping and
regulation, and 3) a discrete update law for the reference en-
ergy to deal with unknown environments.

3.1 Hopper Dynamics

Consider an actuated mass-spring system hopping on a
static flat surface and constrained to move along the vertical
axis. The continuous dynamics has two phases/equations

Stance (ST) u = my +k(y —yo) +mg
Flight (FL) 0= m§+ mg

2D
(22)

where the mass of the point is m, the distance from the point
to the ground is y, the relaxed length of the spring is yy,
the gravitational acceleration constant is g, and the actua-
tion force is u. The discrete dynamics that govern the switch

between these phases are

if phase==FL and y <y, (23)
§t=ey
phase := ST

if phase==ST and y>yg (24)
phase := FL

where the superscripts - and + indicate pre-impact and post-
impact states, respectively. The spring length at impact is y.,
and e is the coefficient of restitution. If e = 1, the impact is
elastic, and if 0 < e < 1, the impact is plastic. The switch
from stance to flight at y > yo occurs because the ground
is a unilateral constraint that cannot pull the mass into the
ground, but rather can only push it away. For this reason, we
only consider a relaxed or pre-compressed spring y. < yp at
impact. We note that this exact model might be difficult to
physically realize; it serves as simple abstract template for a
hybrid Lagrangian system with periodic motion.

3.2 Hopper Passive Dynamics

Periodic orbits in Lagrangian systems necessarily have
a conserved energy, which implies the system energy must
be conserved at impact. For periodic orbits of the pas-
sive hopper, this means the energy added by the spring pre-
compression must equal the energy dissipated by the impact
with

1 1 .
ko= ye)? = Sm(1—e)*(¥7)% (25)

If the impact is plastic, then the orbit can be shown to be lo-

cally exponentially stable in the sense of Lyapunov by con-
sidering the energy state from impact to impact. Before im-
pact,

(26)
and after

1,1
E = —m(ey™)* + Sk(yo —ye)? +mgye. (27)

2 2

Since energy is conserved over the continuous dynamics,

E;" = E; |, which implies that

_ 1
Ej, = €E; +5k(yo—ye)* +(1—e*)mgy..  (28)

2

Because 0 < e < 1, this discrete system is exponentially sta-
ble and

k(yO *yc)z

E
- 2(1—¢?)

+mgyc = Elim. (29)
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This forms an analytical Poincaré map [2], thus there is al-
ways a locally exponentially stable hybrid limit cycle for the
hopper.

For all parameter cases of the passive hopper, the system
will get stuck in the stance phase if the energy is too low to
achieve liftoff. In addition, the mass can bottom out against
the ground if the energy is too large, which we consider to
be a system failure. This implies that basin of attraction is
bounded by these two energy level sets as

1
mgyy < E < Eky(z). (30)

If e=1 and y. =y, the energy is always conserved across all
dynamic regimes and there is a family of marginally stable
periodic orbits within these energy bounds.

3.3 Hopper Control
The hopping height yapex is limited by the upper bound
on the energy with the expression

ky2
Yapex < —0

mg’ (€29

The good news is that energy shaping can be used to change
the virtual spring stiffness & to increase the basin ceiling and
achieve arbitrary hopping heights, while energy regulation
can be used to create energy for liftoff and minimize the
basin floor. The resulting control and closed loop stance dy-
namics are

U= us;+uy, (32)
= (k—k)(y = y0) — K(E — Exer)y (33)
0=my+K(E — Ewet)y+k(y—yo) +mg  (34)

where E = %m}'zz + %%(y —y0)? 4+ mgy. If there is a linear
damping term in the stance dynamics dy, it acts as a shift on
the reference energy as Epew = Erer — % so the damped hop-
per system can be addressed by this example as well. Inter-
estingly, the new stance dynamics correspond exactly to the
harmonic Rayleigh-Van-der-Pol oscillator from [32] (which
we elaborate on in the following section on the SLIP model).

In the case of e = 1 and y,. = yp, we can choose any ref-
erence energy that satisfies equation (30) to achieve a virtual
passive limit cycle. In the case of 0 < e < 1 and 0 < y. < yp,
we must choose Ef to be exactly equal to equation (29) if we
want to ensure that the hopping limit cycle mimics a passive
system. Consider the step-to-step storage function at impact,

1

Si+ = §(E+ _Eref)2 (35)
1 o
= E(eZE,. + 5k(yo —ye)? — Eet)?. (36)

If 0 < e < 1 and Eyef = Ejim, then S;” = ¢*S;” and the storage
function decreases after impact, i.e., S;r < §; . The energy
regulation control causes the storage to decrease over the
continuous dynamics, implying S, | < Sl-+. It follows then
that S | < S;; the post impact storage function monotoni-
cally decreases from event to event. Thus, the hybrid limit
cycle of the system under the energy regulation control is
asymptotically stable.

One could expect a hopping robot to operate in differ-
ent environments with varying coefficients of restitution that
cannot be estimated before hand. So it would be useful in
practice to have a method of updating E..¢. Inspired by struc-
ture of the impact dynamics, we propose the update policy

Eref,url = Loref; +7‘f(E,+ _E,'i)~ (37)

where A is a scaling gain. Essentially, if the impact dynam-
ics cause a net gain in E then El is increased, and vice-
versa. From the convergence of S in the continuous dynam-
ics, |E; | — Ere;| < |e2Elf — Epef;|. Though some manipula-
tion, this can be converted into the form

)=l ] e
5]+

where B is a constant, and |c +d| < 1. Then from the Perron-
Frobenius theorem [33], the maximum absolute eigenvalue
of A is less than one if |1 +2A(e? — 1)| < 1. Therefore, this
update law is globally stable for —1 < A < 0 and the refer-
ence energy will converge to the energy of the passive limit
cycle.

This update law can generalize to higher dimensional
systems, which we show through numerical simulation on
the compass gait biped in a later section. We remark that
in practice, using a different constant value of Ef can still
result in a limit cycle as in [20], but the asymptotic trajectory
will not emulate a virtual passive system and is dependent on
the value of the gain k. Finally, the proof of stability for the
hopper system relies on the stability properties of the passive
limit cycle, 0 < e < 1. This leads us to believe that in general,
the energy associated with an unstable limit cycle cannot be
arrived at via (37).

(38)

(39)

4 Spring Loaded Inverted Pendulum

The SLIP model can be considered as an extension of
the hopping robot that exhibits behaviors and properties sim-
ilar to human walking and running [21]. It comprises a
point mass that moves via connecting the mass to the ground
through ideal springs. The version we consider here has 2-
DOF, can exhibit both walking and running behaviors, and
has additional control actuation along the spring axis. The
walking behavior alternates between a single support phase

6 Copyright © by ASME



Fig. 1. Diagram of the spring loaded inverted pendulum.

and a double support phase, while the running behavior al-
ternates between a single support phase and a flight phase.
In this paper, we consider only the running behavior for sim-
plicity. A diagram of the model is given in Fig. 1. The
primary novelty of this section is using energy regulation
based methods to achieve dynamic gait transitions in the
SLIP model.

4.1 SLIP Dynamics and Control
In general, the energy of the system is

E=X(q)+2(q)

1o a1
= 5m(x2 +37) + Sk(L(x,) —Lo)* +mgy

(40)

(41)

The configuration vector of the model is ¢ = [x,y] ", the point
mass is m, and the length and stiffness of the springs are L
and k, respectively. The gravitational acceleration constant is
g, and is along the vertical coordinate y. At the relaxed spring
length L = Ly the system releases the spring from the ground,
and it engages the spring again at the contact angle o when
y = Lsin(a). The rules for releasing and engaging the spring
ensure that the spring energy is zero at phase transitions, thus
the energy of the open-loop system is conserved across all
regimes. The switching rules and the EL equation lead to the
following equations of motion:

Stance (ST) Ju=Mi+G 42)
. " 0

Flight (FL) 0=M{+ {mg] (43)

if phase==FL and y<Ljsin(a) (44)
phase := ST

if phase==ST and L>L 45)
phase := FL.

The matrix J maps the control input u (collinear with the
spring forces) into the stance coordinates. The system is un-
deractuated with degree 1 during the single support phase

and has no continuous actuation during the flight phase,
though we claim control authority over the touchdown con-
tact angle a.

In [21], it is shown that for a constant spring stiffness k
and touchdown angle o, there is a compact set of energies
that correspond to walking or running periodic orbits in the
SLIP model. They also show that these energy sets exist and
change for a range of stiffnesses and touchdown angles. This
is our motivation to use energy shaping to change the spring
stiffness. Because the energy of the open-loop system is con-
served, any periodic orbit is only marginally stable. Thus, it
is reasonable to use energy regulation to stabilize the orbit.
However, because the SLIP model has a 4 dimensional state
space instead of the 2 dimensional space of the hopper, a sin-
gle energy value does not uniquely define a trajectory of the
open-loop system. Additionally, work in both [21] and [34]
indicates that controlling the contact angle is critical to the
stability of this model. Inspired by [34], we use the policy

1
Oyl = 5 (0 +7T—6;) (46)

2
to update the contact angle, where 0; is the take off angle.
This policy reaches an equilibrium when the touchdown and
liftoff positions are symmetric about the y axis.

The control is partitioned into u = u, + u,. The stiffness
change is accomplished with u; = (k—k)(L—L,). Using the
storage function of equation (9), the time derivative under the
SLIP dynamics is

S = (E — Exer)q ' Juy (47)
which means we should choose
Ur = _KL(E - Eref) (48)

to ensure that S is negative semi-definite.

In section 3.3 we mentioned that the energy regulation
control caused the closed-loop hopper system to take the
form of a harmonic Rayleigh-Van-der-Pol oscillator. By in-
serting these closed loop dynamics into the SLIP model, we
can examine the effect of the “unmodeled” rotational dynam-
ics around the spring contact point. The motivation is that
this will be suggestive of qualitative behavior of embedding
this energy regulated SLIP model into higher order biped
models as in [15] without aggressive compensation of dy-
namics transverse to the spring action. The recycling of the
1-DOF hopper controller for the SLIP model is accomplished
by using only the energy of the SLIP model along the spring
axis as

.1 . 1~
Uy = —KL(EmLZ—i— Ek(L—LO)Z—Eref). (49)
The potential benefit of controller (49) over (48) is that it
requires less state information, but with the drawback that
the limit cycle trajectory will certainly not emulate a passive

system.
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4.2 SLIP Simulations

This section offers simulation results that demonstrate
the ability to use energy shaping regulation methods to
achieve different running speeds on the SLIP model. The
control in equation (48) is termed the regulation control
while equation (49) is termed the oscillator control. We
started with an initial known running gait from [34], with
m=70kg, L, =1m, 0(:55°,k:k:8200%, and £ =
1860J (marked as a red dot in Fig. 2-6). For all cases, k = 1.
For the oscillator, we heuristically found a reference energy
value E = 583/ that resulted in an average speed similar to
the known gait (=~ 67). We created a grid of target energies
and stiffnesses around this configuration, used the flight apex
of the known gait as the initial condition for every grid point,
and allowed the system to converge to a new limit cycle. This
means that every stable grid point is a stable transition from
the initial limit cycle to a new limit cycle due to a single
change in reference energy and/or virtual stiffness. The exis-
tence and stability of the limit cycle were confirmed via the
numerical linearization of the Poincaré return map via the
method from [2].

The results for the stable average running speed of the
model under the energy shaping and regulation control and
the embedded harmonic Rayleigh-Van-der-Pol oscillator are
given in Fig. 2 and 4. The edge of each surface indicates
the edge of the sampling grid, or a case where the model fell
through the floor or went backwards. For the regulation con-
trol in Fig. 2, the speed level set projections indicate that
stiffness does not determine the average speed which agrees
with the results of [21] that show a range of walking speeds
for a given spring stiffness. However, the oscillator control
causes a qualitative change in this relationship so that the av-
erage speed does depend on stiffness and reference energy
as seen in Fig. 4. The two methods give a similar range of
achievable walking speeds. We emphasize again that these
new gaits are all the result of stable transitions from the pas-
sive known gait. A sample trajectory for the energy regula-
tion controller is given in Fig. 3, where the known gait is run
for 3 steps then the parameters are switched and the trajec-
tory and contact angle converge to a new gait.

Plots of the equilibrium contact angle as a function of
stiffness and energy are given in Fig. 5 and 6 for direct com-
parison to the results in [21]. Both methods have a simi-
lar range of contact angles; the difference between them is
largely that the embedded oscillator surface in Fig. 6 seems
to be flatter than the surface in Fig. 5. This indicates that
there might be some constant normal vector in this space as-
sociated with stability for the system under the embedded
oscillator.

The most important take away from these simulation re-
sults is that a single change in parameters using energy shap-
ing and regulation can achieve a stable transition between
fast and slow running. Also, the principles of energy shap-
ing and regulation control can be applied to a subcomponent
of the system to achieve qualitatively similar behavior. We
expect that this could be extremely useful in the application
of these methods to wearable devices to assist locomotion,
like a powered prosthesis [35] or orthosis [36], where mea-

Speed (m s 1)

N w e (9] [} ~
/ / / / /

2500 T
2000 T

1500 = o
1000 ¢

Energy (J)

Fig. 2. Speed-Energy-Stifiness surface for the SLIP model under
the regulation control. The minimum speed achieved was 2.82%’,
the maximum 7.957.

0.95

0.9 1

> 0.851 1

0.8 i

0.75 : : :
0 5 10 15

X

Fig. 3. Sample trajectory of transition from 6’% to 3% under the
regulation control. The stiffness and reference energy were switched
at the horizontal dashed line.

3 <2 e

1000
800 T~

600

Energy (J)

Fig. 4. Speed-Energy-Stiffness surface for the SLIP model under
the oscillator control. The minimum speed achieved was 3.65°, the
maximum 8.057.

suring the total energy of the combined human-robot system
is infeasible.
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Fig. 5. Contact Angle-Energy-Stiffness surface for the SLIP model
under regulation control.
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Fig. 6. Contact Angle-Energy-Stiffness surface for the SLIP model
under the oscillator control.

5 Compass Gait Biped

The compass gait biped can walk down a shallow slope
under the power of gravity alone by reaching an energy equi-
librium between the potential energy gained and the kinetic
energy lost at each impact [17]. Much of the research in the
control of dynamic biped locomotion uses this model as a
testbed, to the point some have titled it “The Simplest Walk-
ing Model” [22]. Similar to the SLIP model, different walk-
ing speeds emerge for a given set of system parameters [17],
which motivates the application of the energy shaping and
regulation control methods. A diagram of the model is given
in Fig. 7.

5.1 Compass Gait Biped Dynamics and Control

The biped undergoes an instantaneous rigid impact
when the swing leg hits the ground. The impact model
from [2] and the EL equation gives the following hybrid dy-

Fig. 7. Diagram of the compass gait biped. The legs are symmetric.

namics for the compass gait biped:

M(q)§+C(q,4)q+G(q) =u (50)

ol 771
q M —-A M. .

=R fh(q,¥) <0
{FI] [A Ozxz} {Om}q e, ) <

(S

The continuous dynamics are described by (41), where g =

[01,08,]", M is the mass matrix, C is the corriolis/centrifugal

matrix, G = @ is the gravity vector, and u is the vector of

control torques applied at the joints. The discrete dynamics
are described by (51). They have a plastic impact map that
depends on M, a matrix A that describes the constraint of
the impact foot to the ground, and a relabeling matrix R that
swaps the swing and stance legs. The impact maps a pre-
impact velocity vector ¢~ to a post-impact velocity ¢+ and
an impact force F;. The vertical distance from the swing leg
to the ground is A. For additional modeling details, see [13]
and [17].

Using the framework from Section 2.2, the energy shap-
ing control is

uy = —MM ' (C4+G)+C4+G (52)
while the energy regulation control is
Uy = —K(E — Eref) MM ™' Qg (53)
The closed-loop dynamics are then
MG+ (C+X(E — Ewer)Q)§+G = 0. (54)

The parameters available for shaping in the energy func-
tion of the system are: my,,my,a,b and g. The question then
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becomes: how should we choose these values? In [37], the
effect of gravity shaping on the compass gait biped is thor-
oughly explored, indicating that average walking speed is
proportional to \/E In [17], it is shown that the dynam-
ics can be normalized to depend on the mass ratio y = Z—’Z
and the length ratio = %, which both influence the average
speed. Because the impact dynamics depend only on M, we
can exactly emulate a target g but we cannot do the same for

B and u. This means we could exactly reproduce the results
from [37] in the closed-loop hybrid dynamics, but we can-
not change i and P to reproduce similar results from [17].
The primary novelty of this section is the exploration of the
relationship between the walking speed and a virtual change
in g and B during the continuous dynamics while using the
natural values in the impact dynamics. In addition, we show
that energy regulation can be used to stabilize period-1 gaits
that otherwise would go unstable and bifurcate as mass pa-
rameters vary [17].

In the hopper with plastic impacts, we were able to an-
alytically compute the Er for a given passive limit cycle
using equation (29). In general, it is not possible to know
the energy of a passive biped limit cycle without simulating
it numerically. This poses a challenge to dynamically chang-
ing the virtual parameters and reference energy to achieve
new passive limit cycles without making a library of pre-
computed gaits. In [26], a discrete step-by-step update law
for E.f in an energy regulation control is proposed, as

Eret;, | = Eret, + MVret — vi). (33)

fit1

This law achieves a desired average walking speed vif,
where A is a scaling gain and v; is the average walking speed
for the i;; step. However this law simply shifts the problem
to picking the vir associated with a natural limit cycle before
hand, instead of E.¢. Instead, we can reuse the update law
in equation (37) from the 1-DOF hopper and apply it to the
compass gait biped. A comparison between these strategies
on a simulated biped is given in the following section. We
use u™ to denote the control under equation (37) and u*®!
for equation (55).

5.2 Compass Gait Biped Simulations

We now present simulation results for the compass gait
biped under the energy shaping and regulation controls. The
baseline parameters we use are m;, = 10kg,m; = 5kg,a =
0.5m,b = 0.5m,¥ = 3.7° with a known initial condition for
a stable limit cycle from [17]. We compare changes in the
true ratios 3 against changes in the virtual ratios 3 during the
continuous dynamics. We omit results for g and g for brevity.
The energy regulation controls ' and u" are applied to
the system with the virtual ratios, using the control parame-
ters A = 0.5, Kk = 100, and Q = diag([1,0]). Each reference
velocity vier for a given ratio is taken from the correspond-
ing physical ratio limit cycle. The ratios that we sample are
on a uniform grid from 0.5 to 1, and we do not display data
points in the grid range that either bifurcated or were unsta-

120 ‘ * B
| O O 0 3, ue
RS O o 3
E 1+ * * * % % O O O 57 u?at7
£ ool By O ]
& *%Q
0.8} & ®
07— : : : : ‘
05 0.6 0.7 0.8 0.9 1

Length Ratio

Fig. 8. Length ratio versus average spe~ed for physical and virtual
dynamics. [3 is the physical length ratio, 3 is the virtual length ratio,
u,vel converges to a desired walking speed, u™ converges to the
energy equilibrium induced by the discrete dynamics. Data points

that bifurcated or were unstable are not displayed.
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Fig. 9. Energy versus length ratio for the adaptive energy regula-
tion controllers. Data points that bifurcated or were unstable are not
displayed.

ble within our search tolerance. We confirm the stability of
the limit cycles using the linearized Poincaré return map.

The results are shown in Figs. 8, 9, and 10. We can
see that shaping the continuous dynamics alone through P
does not reproduce the same limit cycle as physically chang-
ing the parameters. In Fig. 8, the virtual length ratio B has
the same general trend between ratio and speed as P, but it
causes a larger increase in walking speed. The introduction
of u enables Ef to converge to Eyy, as evidenced where
the circle and cross data points overlap in the figures. It also
increases the range of achievable speeds, as seen by the circle
data points that do not overlap the cross points. The velocity
update law ®! causes the shaped system to converge to the
targeted walking speed of the associated physical system, as
seen by the overlap of the squares and stars. Fig. 9 shows
the energies that the update laws converge to, indicating the
real parameters shift energy down more than the virtual ones.
In Fig. 10, we can see that u}® causes limit cycles that are
less efficient compared to those from u}“", in the sense that
they require more torque output from the control to achieve
the same walking speed. These inefficient cycles are due to
the fact that they are unnatural and must compensate for the
energy mismatch between Eef and Enat.

Finally, we offer a simulation example of using energy
regulation to stabilize an unstable limit cycle. In this case,
the terrain is changed from a slope to stairs of a similar ge-
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Fig. 11. The slope period-1 passive limit cycle versus the stairs

period-2 passive limit cycle.

ometry. Thus, the impact map A(q,§) remains the same but
the switching surface S and distance function / are changed.
The stair impact map still admits the energy equilibrium from
the slope dynamics, however as seen in Fig. 11 this is not as-
sociated with a stable period-1 limit cycle for the passive sys-
tem. In Fig. 12, we present a stair walking simulation where
we switch on the energy regulation control after 4 steps and
run it for 10 more steps. This causes the biped to converge
to the period 1 slope limit cycle while walking on the stairs
terrain, indicating that we have stabilized this previously un-
stable gait.

6 Conclusion

In this article we have explored some principles and ex-
tensions of energy shaping and regulation control for gen-
erating and transitioning between limit cycles in simple lo-
comotive systems. We analytically and numerically demon-
strated that energy regulation can increase the basin of attrac-
tion of the limit cycle so that parameter switches in an energy
shaping control lead to stable gait transitions in a trajectory-
free manner. Our contributions are: 1) the demonstration of
the equivalence between the 2-step process of energy shap-
ing then energy regulation, and regulation of time and state
varying energy functions, 2) a discrete update law for Ef to
allow convergence to a passive limit cycle online, 3) transi-
tioning between running gaits on the SLIP model, 4) a novel
examination of energy shaping on the compass gait biped, 5)

40

N
o

Joint pos (deg)
o

-20

Time (s)

Fig. 12. Transition from passive period-2 limit cycle to an energy
regulated period-1 limit cycle. The energy regulation control is turned
on after 4 steps, at the green vertical line.

a theoretical explanation for using energy regulation to stabi-
lize unstable limit cycles and demonstration on the compass
gait biped. This paper also serves to connect and stream-
line previous works in the areas of orbital stabilization and
hybrid locomotive systems. The outcome of our work here
is a model with gaits based on continuously varying spring
stiffness and nonlinear damping in the form of energy reg-
ulation and is similar in spirit to previous work on variable
impedance control for a powered prosthesis [38]. As such,
we plan to utilize the theory and results in this work to shape
the dynamics of a powered prosthetic leg to mirror the SLIP
model to aid locomotion with task variation like changing
walking speeds and slopes.
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