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Abstract— This paper considers a learning problem with
heteroscedastic and correlated data that is distributed
across nodes. We propose a distributed learning scheme
where each node asynchronously implements stochastic
gradient descent updates and exchanges their current
models with neighbors. We ensure the similarity among
the local models and the ensemble average by having
a network regularization penalty to the least squares
problem. This penalty is associated with weights that are
proportional to the relative accuracy of local models. We
further provide finite time characterization of the disparity
between local models and the ensemble average model
based on the penalty constants and network connectivity.
We compare the proposed method with generalized least
squares and logistic regression in the prediction of activities
of individuals based on head movement data.

I. INTRODUCTION

In many applications, like cell phones, sensors, or

other computing devices, data is inherently collected

from spatially distributed sources. Given the volume of

data, communication limitations, and security and pri-

vacy issues, a distributed architecture may be preferred

over centralized storage and processing. However, an

isolated architecture, where processing is solely based

on available (local) data, may create vast disparities in

performance across computing nodes. Moreover, local

datasets can be correlated and heteroscedastic. In such a

scenario, a simple averaging of local models can perform

significantly worse than a centralized model built at a

fusion center. If a centralized architecture is not desirable

and a fully distributed architecture may be lacking in

performance, it is of interest to study alternatives that

make use of possible network structure in data and

communication capabilities among nodes.

In addressing the shortcomings of centralized and

isolated settings mentioned above, we consider a net-

work of local learners. Each learner accesses to a local

dataset and solves a distributed estimation problem with

a network regularization penalty, which enforces the

model to be similar to its neighbors. This penalization

method that reduces performance disparity among local

models is similar to methods known as Network Lasso

[1]–[3] and graph Laplacian regularization [4]. Both
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existing methods aim to improve local learners’ esti-

mates by making use of neighboring models. However,

the underpinning modeling assumption in these studies

is that local datasets are independent and identically

distributed.

Unlike these approaches, here we consider local

datasets that suffer from both global and local noise.

In such a setting, one node may have “better” data

than the other, we cannot assume all neighbors to be

equal. Two relevant approaches are model averaging

[5], [6] and ensemble learning [7], [8], e.g., “bagging”

in statistics that aim to find a weighted averaging of

models to reduce variance and increase forecast robust-

ness against measurement errors. In some settings, local

computing nodes weight the neighboring models by their

data fidelity. However, often in the ensemble learning

methods, e.g., “divide and conquer” [9], averaging is

done at a single step after all local models are identified

in isolation. This synchronous updating scheme does

not provide a good working model for local nodes and

assumes aggregation at a fusion center. Instead in this

paper, we propose an updating scheme where nodes

implement an asynchronous distributed stochastic gradi-

ent descent algorithm [10]–[13]. The proposed approach

can not be interpreted as consensus-based optimization

(see e.g. [11] and [14]). We are not aiming to find a

common linear estimate for all the nodes but to maintain

sufficiently cohesion among diverse local models that

the ensemble solution is (eventually) arbitrarily close to

that of the generalized least squares problem.

In stochastic gradient with network regularization

(SGN), the network regularization penalty requires

nodes to exchange their current models with each other

after each update. We show that SGN updates converge,

and provide a finite time bound for the disparity between

local models (Theorem 1). In the analysis, we assume

the regression model is linear. Thus, given heteroscedas-

tic and correlated data, the centralized regression prob-

lem is generalized least squares (GLS). Our method ap-

proximates the centralized GLS by assuming a network

structure in data and imposing the smoothness of models

across nodes. We characterize finite-time bounds for the

optimality of the ensemble (weighted average) model

(Theorem 2). Similar to Federated Learning approaches

[15]–[17], we locally process data, iteratively average

local models, and our analysis focuses on the ensem-

ble average. Unlike Federated Learning, this ensemble
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model is not kept at any single location (fusion center)

and is only a measure of the method’s robustness.

We compare the performance of SGN to the central-

ized GLS solution on a head movement dataset collected

via Google Glass [18]. In the numerical implementation,

local data fidelity is not known. We compound our

method with mini-batching for stochastic gradient com-

putation, and a fading memory update rule to compute

local data accuracy. Our distributed approach compares

well against both GLS and logistic regression (LR).

II. NETWORK OF LOCAL LEARNERS

There are N > 1 nodes each with access to its

local dataset (Xi,yi), where Xi ∈ R
m×d is the input

matrix with d features, yi ∈ R
m is the associated output

vector. Node i would like to find the best linear model

with coefficients wi ∈ R
d by minimizing the following

function,

fi(wi) =
1

2
(yi −Xiwi)

TΩ−1
i (yi −Xiwi), (1)

where Ωi is the covariance matrix of the error term in

a linear model for yi.

The set of nodes V := {1, . . . , N} is connected via

a communication network G = (V, E) with edge set E .

We use αi,j to denote the ij-th element of the adjacency

matrix. Nodes i and j can exchange information, if there

is an edge between them, i.e., if αi,j = 1. In particular,

we assume neighboring agents exchange their models

with each other. Each node solves the problem

min
wi

(
fi(wi) + λρi(wi)

)
, (2)

where

ρi(wi) =
1

2

N∑

j=1,j 6=i

αi,j

tr(Ωj)
‖wi −wj‖2 (3)

is the network regularization penalty with parameter λ ≥
0. In (3), each neighboring node’s model is weighted

by the trace of the covariance matrix. The larger the

trace of the covariance matrix of j is, the smaller is the

weight i has on j’s model. That is, each node prioritizes

neighboring nodes with better data fidelity. As λ gets

larger, node i’s model gets closer to a weighted sum of

its neighbors’ models.

In the following we specify the assumptions on the

dataset. There exists a ground truth coefficient vector

w∗ ∈ R
d. The output vector model for node i is given

as follows,

yi = Xiw
∗ + εi + Λiξ, i ∈ V := {1, . . . , N}, (4)

where εi ∈ R
m×1 is an individual noise vector specific

to data subset i, and ξ ∈ R
m×1 is a common noise

which affects different subsets differently according to

the matrices Λi ∈ R
m×m. We assume Λi is a diagonal

matrix with possibly different diagonal entries.

We assume the individual noise vector is zero-mean

and independent across different nodes, i.e., E[εiε
ᵀ

j ] =
0m×m for all i and j 6= i, and E ‖εiεᵀi ‖ = σ2

i Im. Also,

E[ξ] = 0m and E[‖ξ‖2] = Im. From the model in (4),

it follows the covariance matrix of the error term in the

model for yi as

Ωi := E ‖εi + Λiξ‖2 = σ2
i I+ Λ2

i ∈ R
m×m. (5)

Throughout the analysis, we assume {Ω1,Ω2, . . . ,ΩN}
is known by all nodes. In Section IV, we consider an

update rule to estimate (5).

Given the model in (4), the centralized problem at

a fusion center node that have access to all the data

{(X,y) : X = [Xᵀ

1 , . . . ,X
ᵀ

N ]ᵀ,y = [yᵀ

1 , . . . ,y
ᵀ

N ]ᵀ}
and solves a GLS problem:

min
w

(1
2
(y −Xw)TΩ−1(y −Xw)

)
, (6)

where Ω = E(ε + Λξ)(ε + Λξ)ᵀ = Σ + ΛΛT ∈ R
p×p,

with Λ = [Λ1, . . . ,ΛN ]ᵀ, ε = [εᵀi , . . . , ε
ᵀ

N ]ᵀ, and Σ as

a block-diagonal matrix with the i-th block as σ2
i Im.

While the problem afforded by minimizing (1) is a

weighted least squares problem, the local minimization

problem in (2) approximates the GLS problem (6) by

assuming a network-structure among local datasets.

III. DISTRIBUTED STOCHASTIC GRADIENT

DESCENT

Each local node is implementing a stochastic gradient

descent algorithm to solve the least squares problem

with network regularization (2). For k = 1, 2, . . . ,

wi,k+1 = wi,k − Γ(∇fi,k + λ∇ρi,k), k ∈ N
+ (7)

where Γ > 0 is the step size, and ∇fi,k and ri,k are the

gradient of fi,k and ρi,k written respectively as

∇fi,k = X
ᵀ

i Ω
−1
i (Xiwi,k − yi), and

ri,k =
∑

j 6=i

αi,j(wi,k −wj,k)/tr(Ωj). (8)

The update in (7) assumes nodes exchange their current

estimates with their neighbors, i.e., node i receives

{wj,k : αi,j = 1, j ∈ V}, as per the gradient in (8).

In the following, we analyze the convergence prop-

erties by focusing on the continuous time stochastic

approximation of SGN.

A. Continuous time approximation

We embed the discrete-time process in (7) into a

continuous-time domain. Let ∆t(i,k) be the random time

needed by node i to calculate ∇fi,k and ∇ρi,k and to

complete the update from wi,k to wi,k+1. We assume

that ∆t(i,k)’s are i.i.d. with E[∆t(i,k)] = ∆t and wi,k
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is obtained at time t(i,k) =
∑

l<k ∆t(i,l). The process

{wi,t : t > 0} is defined as follows: wi,t , wi,k, if

t ∈ [t(i,k), t(i,k+1)). Then the corresponding continuous

expression of (7) is as follows:

wi,t(i,k+1)
= wi,t(i,k)

− Γ(∇fi,t(i,k+1)
+ λ∇ρi,t(i,k+1)

) (9)

To simplify the notation we set wi,t := wi,t/Γ. We

rewrite the scheme (9) in the form of the summation

of previous steps, and approximate the noise terms by

standard m-dimensional Brownian motions and the rest

by integrals. Then dwi,t can be approximated by the

differential form of a stochastic Ito integral—see Section

5.2 in [19] for a detailed derivation. The continuous time

dynamics of wi,t is as follows:

dwi,t =− γ(gi,t + λri,t)dt

+ γXᵀ

i Ω
−1
i

(
τidBi,t + ςΛidBt

)
,

(10)

where gi,t := X
ᵀ

i Ω
−1
i Xi(wi,t −w∗) and ri,t is defined

as in (8) with k replaced by t; γ = 1/∆t, τi = σi

√
Γ∆t,

and ς =
√
Γ∆t. Here Bi,t and Bt are the standard

m dimensional Brownian Motion approximating the

local noise associated with node i and the common

noise, respectively. We note that in deriving (10), we

do not assume a specific distribution, e.g., Gaussian. Our

results follow by central limit theorem, which means the

approximation holds for general error distributions.

We make use of the following definitions and relations

to characterize the convergence of (10).

B. Preliminaries

We define the Laplacian matrix of G as L = ∆̂ −
A, where ∆̂ is a diagonal matrix whose ith diagonal

entry is equal to the degree of ith node and A =
[αi,j/tr(Ωi)tr(Ωj)]i,j is the corresponding adjacency

matrix. Let a2 be the second smallest eigenvalue of L.

The continuous-time gradient gi,t defined above is a

function of wi,t. In our analyses, we denote gi,t(ŵt) =
X

ᵀ

i Ω
−1
i Xi(ŵt − w∗). Note that gi,t(w

∗) = 0 for all

i ∈ V and t, to simplify notation we will write g(w∗)
instead. Similarly, when a property holds for all t, we

drop t and write gi,t as gi.

We note that gi’s are µ-Lipschitz continuous and the

corresponding loss function is strongly convex with κ.

To see this, we note that Ω−1
i is positive definite, and

can be expressed as Ω−1
i = P ᵀP , where P is the

matrix resulting from the eigendecomposition. Let wi,1

and wi,2 be two input vectors taken from the function

domain, then

‖gi(wi,1)− gi(wi,2)‖ =
∥∥Xᵀ

i Ω
−1
i Xi(wi,1 −wi,2)

∥∥
≤ µ ‖wi,1 −wi,2‖ ,

where µ = ‖PXi‖F and ‖·‖F is the Frobenius norm.

Furthermore,

(gi(wi,1)− gi(wi,2))
ᵀ(wi,1 −wi,2)

= ‖PXi(wi,1 −wi,2)‖2 ≥ κ ‖wi,1 −wi,2‖2 ,
(11)

for some 0 < κ < ‖PXi‖2F . Note that gi is strongly

convex with κ and the corresponding loss function is

Lipschitz continuous with constant µ.

C. Regularity and Consistency

To characterize convergence we define measures for

regularity and consistency. Let ŵt denote the weighted

average solution at time t, i.e.,

ŵt =
1

v

N∑

i=1

wi,t

tr(Ωi)
, (12)

where v =
∑N

i=1 1/tr(Ωi) is a normalization constant.

We also refer to the above solution as the ensemble

model. Let Vi,t = ‖ei,t‖2/2, where ei,t := wi,t −
ŵt. Regularity is defined as the weighted sum of the

differences between the ensemble model and the solution

at each node:

V̄t =
1

v

N∑

i=1

‖wi,t − ŵ‖2
2tr(Ωi)

=
1

v

N∑

i=1

Vi,t

tr(Ωi)
.

Consistency is the distance between the ensemble model

and the ground truth,

Ut =
1

2
‖ŵt −w∗‖2 .

Via standard algebra, we have

1

2v

N∑

i=1

‖wi,t −w∗‖2
tr(Ωi)

= V̄t + Ut. (13)

In what follows, we obtain upper bounds on the

expectations of regularity V̄t and consistency Ut pro-

cesses in Theorems 1 and 2, respectively. Given (13),

these bounds provide a bound on the average error of

individual estimates generated by the SGN algorithm

with respect to the ground truth w∗.

D. Convergence: Regularity

The following result provides an upper bound on the

expected regularity of the estimates at a given time.

Theorem 1 Let wi,t evolve according to (10). Then

E[V̄t] ≤
γC1

2(κ+ λa2)
+ (V̄0 −

γC1

2(κ+ λa2)
)e−2(κ+λa2)γt,

(14)

where C1 is the summation of constant terms,

C1 =
1

2v

N∑

i=1

1

tr(Ωi)
C1,i, (15)
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with C1,i for i ∈ V defined as,

C1,i = τ2i

(
1− 2

vtr(Ωi)

)∥∥Xᵀ

i Ω
−1
i

∥∥2
F

+
ς2

v2

N∑

k=1

N∑

j=1

1

tr(Ωk)tr(Ωj)
1ᵀ(Xᵀ

kΩ
−1
k Λk ◦Xᵀ

jΩ
−1
j Λj)1

− 2ς2

v

N∑

k=1

1

tr(Ωk)
1ᵀ(Xᵀ

i Ω
−1
i Λi ◦Xᵀ

kΩ
−1
k Λk)1

+ ς2
∥∥XiΩ

−1
i Λi

∥∥2
F
+

1

v2

N∑

k=1

τ2k
tr(Ωk)

2

∥∥Xᵀ

kΩ
−1
k

∥∥2
F
.

(16)

In the long run, limt→∞ E[V̄t] ≤ γC1

2(κ+λa2)
.

Proof: See Appendix V.

It is not surprising that the expected difference in esti-

mates in (14) decreases with growing λ which penalizes

disagreement with neighbors. Similarly, the larger the

algebraic connectivity of the network a2 or the strong

convexity constant κ is, the smaller is the expected V̄t.

Finally, the constant term C1 is determined by data

X and the matrices Λi. In particular, C1 is small when

we have nodes that are less affected by the noise.

Intuitively, with increasing network size, nodes with less

exposure to noise are given increasing weight which then

increases regularity across estimates.

E. Convergence: Consistency

The consistency measure {Ut, t ≥ 0} captures the

performance of the average solution ŵ. The following

theorem provides a characterization of the performance

of the collective effort.

Theorem 2 Let wi,t evolve according to (10). Then

E[Ut] ≤ e−2κγtU0 +
γ

2κ

(µ− κ

λa2
C1 + C2

)(
1− e−2κγt

)
,

where C1 is defined in (15)-(16) and

C2 =
1

2v2

(
N∑

k=1

τ2k
tr(Ωk)

2

∥∥XkΩ
−1
k

∥∥2
F
+

ς2
N∑

k=1

N∑

j=1

1

tr(Ωk)tr(Ωj)
1ᵀ(Xᵀ

kΩ
−1
k Λk ◦Xᵀ

jΩ
−1
j Λj)1

)

with “◦” denoting the Hadamard product. In the long

run,

lim
t→∞

E[Ut] ≤
γ

2κ

(
µ− κ

λa2
C1 + C2

)
.

The proof (see [19] for details) follows a similar

outline as Theorem 1. We apply Ito’s Lemma to get

the stochastic dynamics form of dUt and then introduce

an auxiliary variable Wt = Ut+
µ−κ
λa2

V̄t. We obtain dWt

in a similar fashion as that of dUt. Then we use the µ-

Lipschitz continuity of the gradient gi and the properties

of the Laplacian matrix to obtain an upper bound for

dWt. By integrating and taking the expectation of the

bound, we obtain the desired upper bound for E(Ut)
since E[Ut] ≤ E[Wt].

Similar to the regularity measure bound, the penalty

constant λ and the algebraic connectivity a2 reduce the

bound on the expected consistency. However, the long-

run expected difference between the collective estimate

and the ground truth does not reduce to zero as λa2 →
∞. Indeed, we cannot expect the collective performance

to improve above a given level by increasing connectiv-

ity or increasing regularity among different models. The

constant C2, determined by the data X and matrices Λi,

captures the performance gap in the long run due to

available data. According to C2, we can only improve

performance by the addition of new nodes that have

access to more reliable data.

IV. NUMERICAL IMPLEMENTATION

We consider a real-world problem of predicting

the activity of individuals from head movement data

GLEAM [18]. The data contains 2-hour head motions of

38 participants’ activities recorded by Google glass. We

use the records of 37 participants as the training dataset

and the remaining one as the test. There are 96, 829
data points in the training set and 2, 617 in the test set.

We are only interested in two types of activities: eating

and working (including study and operating electrical

devices, e.g., iPad, computer, and phone). We denote

“eating” as 0 and “working” as 1, and the response

variable activity (act) is binary. The activity “eating”

constitutes 20% of the entries in the training set and 10%
of that in the test set. We use 18 predictors to represent

the readings (gyroscope, accelerometer, magnetic field,

rotation, linear acceleration, and gravity) from the 3 axis

of the glass sensors. We use 37 computing nodes and

construct a N -node complete network (lower connectiv-

ity may reduce the prediction accuracy slightly) in the

following experiment.

A. SGN with Mini-Batch and Unknown Covariance

We use the mini-batch process to approximate the

gradient at each step and set the mini-batch size as 100.

The covariance matrix is unknown and need to be

estimated by each node. In this example, it is computed

as the diagonals of the empirical covariance matrix of

50 mini-batch samples. We use a fading memory update

rule to compute the trace of the covariance matrix tr(Ωi)
( [20]):

tr(Ωi,k+1) = ϕtr(Ωi,k) + (1− ϕ)tr(Ω̂i,k+1),
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where tr(Ω̂i,k+1) is the i-th covariance matrix trace

computed at the (k + 1)-th iteration, and ϕ ∈ (0, 1)
is the fading parameter that controls the memory of the

past covariance values.

B. Numerical results

We set the fading parameter ϕ = 0.9, the step size

Γ = 300, and the regularization penalty λ = 100.

We denote node i’s estimate with wi = [w0, . . . , w18],
and the activity estimate of the i-th node is given by

âcti = Xiwi.

At step k, we predict âctj = 0 if x
ᵀ

j ŵk < 0.5 and

âctj = 1 otherwise. The prediction accuracy of SGN is

given by

accuracyk = 1−
∥∥ytest − 1{Xtestŵk>0.5}

∥∥2

m
,

where (Xtest,ytest) is the test set, ŵk is the weighted

estimation (12) from SGN, and 1(·) is the indicator

function. We define the average prediction accuracy as

the mean prediction accuracy at step k over 10 runs.

Figure 1(a) shows that the average prediction accuracy

of SGN converges after 50 iterations. At the final step

T = 300, the average prediction accuracy of SGN

(0.8972) is close to that of LR (0.9079) and GLS

(0.8991). Figure 1(b) presents the Receiver operating

characteristic (ROC) curve of the three approaches. The

Area under the curve (AUC) of SGN is 0.7037, and

GLS and LR have the same AUC at 0.7014. Though

this example is a binary classification problem and

potentially violate the assumption in (4), our approach

has comparable classification accuracy to LR, which

suggests that SGN is robust.

V. CONCLUSION

The ever-increasing dimension and the size of data

have introduced new challenges to centralized estima-

tion. For example, limited bandwidth in current net-

working infrastructure may not satisfy the demands for

transmitting high-volume datasets to a central location.

Hence, it is of interest to study alternatives to centralized

estimation. In this paper, we considered a distributed

architecture for learning a linear model via generalized

least squares by relying on a network of interconnected

“local” learners. In the proposed distributed scheme,

each local learner is assigned a dataset, and asyn-

chronously implements stochastic gradient updates based

upon a sample (or a mini-batch sample). To ensure

robust estimation, a network regularization term that

penalizes models with high local variability is used.

Unlike other model averaging schemes based upon a

synchronized step, the proposed scheme implements

local model averaging continuously and asynchronously.

(a)

(b)
Figure 1. (a) SGN average prediction accuracy at each
iterations. (b) The ROC curve of LR, GLS, and SGN.

We provided finite-time performance guarantees on the

consistency of the ensemble model. We illustrated the

robustness of the proposed method in the detection of

activities from head movement data.

APPENDIX

In the following, we first provide the differential form

of the regularity measure (Lemma 1), and then obtain

an upper bound of dV̄t. By integrating and taking the

expectation of the upper bound we obtain desired result.

Lemma 1 The regularity measure V̄t satisfies

dV̄t =− γ

v

N∑

i=1

1

tr(Ωi)
gᵀi,tei,tdt+ γK1dB̃t + γ2C1dt

− λγ

v

N∑

i=1

1

tr(Ωi)
rᵀi,tei,tdt,

(17)

where K1dB̃t is the summation of Ito terms,

K1B̃t =
1

v

N∑

i=1

1

tr(Ωi)
K1,idB̃t,

with K1,idB̃t for i ∈ V defined as,

K1,idB̃t = ςXᵀ

i Ω
−1
i ΛidB

ᵀ

t ei,t + τi
(
X

ᵀ

i Ω
−1
i

)
dBᵀ

i,tei,t.

Proof: See [19] for the proof.
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A. Proof of Theorem 1

Consider the first term of (17), let ht =
mini∈V gi,t(ŵt). We can add a zero-valued term

(hᵀ

t /v)
∑N

i=1 ei,t/tr(Ωi) to the equation, where we de-

fine ei,t := wi,t − ŵt. By the strong convexity of gi in

(11), we can obtain the following inequality,

−1

v

N∑

i=1

1

tr(Ωi)
gᵀi,tei,t = −1

v

N∑

i=1

1

tr(Ωi)
(gi,t − ht)

ᵀei,t

≤ −κ
1

v

N∑

i=1

‖ei,t‖2
tr(Ωi)

= −2κV̄t.

Now we consider the last term in (17). Define the

vector et = [eT1,t, . . . , e
T
N,t]

T and the matrix L̂ =
L⊗ Im, where ⊗ is the Kronecker product. Using these

definitions, we can express it as follows,

−
N∑

i=1

1

tr(Ωi)

N∑

j=1,j 6=i

αij

tr(Ωj)
(wi,t −wj,t)

T ei,t =

N∑

i=1

N∑

j 6=i

−αij

tr(Ωi)tr(Ωj)
(ei,t − ej,t)

T ei,t = −eTt L̂et,

(18)

where the first equality follows by adding and subtract-

ing ŵt and the second equality is by the definition of

L̂. Note that the second largest eigenvalue a2 satisfies

minx 6=0, 1T x=0 (x
TLx)/‖x‖2 = a2 [21]. Thus, we have

−eTt L̂et ≤ −a2

N∑

i=1

‖ei,t‖2 . (19)

Combining (18) and (19), an upper bound for dV̄t

follows :

dV̄t ≤ −2γ(κ+ λa2)V̄tdt+ γ2C1dt+ γK1dB̃t (20)

Next we consider the derivative of e2(κ+λa2)γtV̄t by

applying chain rule and substituting in the inequality

for (20), we obtain an upper bound. By integrating both

sides of the obtained inequality, we obtain

V̄t ≤ e−2(κ+λa2)γtV̄0 +
γC1

2(κ+ λa2)
(1− e−2(κ+λa2)γt)

+ e−2(κ+λa2)γt

∫ t

0

e2(κ+λa2)γsK1dB̃s.

(21)

Since the stochastic integral is a martingale,

E
[ ∫ t

0

e2(κ+λa2)γsK1dB̃s

]
= 0.

We obtain the desired upper bound by taking the expec-

tation on both sides of (21). In the long run, as t → ∞,

the exponential terms will vanish, and the upper bound

of the regularity measure follows.
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[13] S. S. Ram, A. Nedić, and V. V. Veeravalli, “Distributed stochas-
tic subgradient projection algorithms for convex optimization,”
Journal of optimization theory and applications, vol. 147, no. 3,
pp. 516–545, 2010.

[14] W. Shi, Q. Ling, G. Wu, and W. Yin, “Extra: An exact first-
order algorithm for decentralized consensus optimization,” SIAM

Journal on Optimization, vol. 25, pp. 944–966, 2015.
[15] H. B. McMahan, E. Moore, D. Ramage, S. Hampson et al.,

“Communication-efficient learning of deep networks from de-
centralized data,” arXiv preprint arXiv:1602.05629, 2016.

[16] J. Konecny, H. B. McMahan, F. X. Yu, P. Richtarik, A. T. Suresh,
and D. Bacon, “Federated learning: Strategies for improving
communication efficiency,” arXiv preprint arXiv:1610.05492,
2016.

[17] C. He, T. Xie, Y. Zhengyu, Z. Hu, and S. Xia, “Federated
multi-task learning with decentralized periodic averaging sgd,”
2019. [Online]. Available: https://fl.chaoyanghe.com/

[18] S. A. Rahman, C. Merck, Y. Huang, and S. Kleinberg, “Un-
intrusive eating recognition using google glass,” in 2015 9th

International Conference on Pervasive Computing Technologies

for Healthcare (PervasiveHealth). IEEE, 2015, pp. 108–111.
[19] L. Hong, A. Garcia, and C. Eksin, “Distributed estimation via

network regularization,” arXiv preprint arXiv:1910.12783, 2019.
[20] J. Nocedal and S. Wright, Numerical optimization. Springer

Science & Business Media, 2006.
[21] C. Godsil and G. Royle, “Algebraic graph theory,” Springer, New

York, 2001.

5928

Authorized licensed use limited to: Texas A M University. Downloaded on June 02,2021 at 12:59:16 UTC from IEEE Xplore.  Restrictions apply. 


