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Distributed Networked Learning with Correlated Data
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Abstract— This paper considers a learning problem with
heteroscedastic and correlated data that is distributed
across nodes. We propose a distributed learning scheme
where each node asynchronously implements stochastic
gradient descent updates and exchanges their current
models with neighbors. We ensure the similarity among
the local models and the ensemble average by having
a network regularization penalty to the least squares
problem. This penalty is associated with weights that are
proportional to the relative accuracy of local models. We
further provide finite time characterization of the disparity
between local models and the ensemble average model
based on the penalty constants and network connectivity.
We compare the proposed method with generalized least
squares and logistic regression in the prediction of activities
of individuals based on head movement data.

I. INTRODUCTION

In many applications, like cell phones, sensors, or
other computing devices, data is inherently collected
from spatially distributed sources. Given the volume of
data, communication limitations, and security and pri-
vacy issues, a distributed architecture may be preferred
over centralized storage and processing. However, an
isolated architecture, where processing is solely based
on available (local) data, may create vast disparities in
performance across computing nodes. Moreover, local
datasets can be correlated and heteroscedastic. In such a
scenario, a simple averaging of local models can perform
significantly worse than a centralized model built at a
fusion center. If a centralized architecture is not desirable
and a fully distributed architecture may be lacking in
performance, it is of interest to study alternatives that
make use of possible network structure in data and
communication capabilities among nodes.

In addressing the shortcomings of centralized and
isolated settings mentioned above, we consider a net-
work of local learners. Each learner accesses to a local
dataset and solves a distributed estimation problem with
a network regularization penalty, which enforces the
model to be similar to its neighbors. This penalization
method that reduces performance disparity among local
models is similar to methods known as Network Lasso
[1]-[3] and graph Laplacian regularization [4]. Both
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existing methods aim to improve local learners’ esti-
mates by making use of neighboring models. However,
the underpinning modeling assumption in these studies
is that local datasets are independent and identically
distributed.

Unlike these approaches, here we consider local
datasets that suffer from both global and local noise.
In such a setting, one node may have “better” data
than the other, we cannot assume all neighbors to be
equal. Two relevant approaches are model averaging
[5], [6] and ensemble learning [7], [8], e.g., “bagging”
in statistics that aim to find a weighted averaging of
models to reduce variance and increase forecast robust-
ness against measurement errors. In some settings, local
computing nodes weight the neighboring models by their
data fidelity. However, often in the ensemble learning
methods, e.g., “divide and conquer” [9], averaging is
done at a single step after all local models are identified
in isolation. This synchronous updating scheme does
not provide a good working model for local nodes and
assumes aggregation at a fusion center. Instead in this
paper, we propose an updating scheme where nodes
implement an asynchronous distributed stochastic gradi-
ent descent algorithm [10]-[13]. The proposed approach
can not be interpreted as consensus-based optimization
(see e.g. [11] and [14]). We are not aiming to find a
common linear estimate for all the nodes but to maintain
sufficiently cohesion among diverse local models that
the ensemble solution is (eventually) arbitrarily close to
that of the generalized least squares problem.

In stochastic gradient with network regularization
(SGN), the network regularization penalty requires
nodes to exchange their current models with each other
after each update. We show that SGN updates converge,
and provide a finite time bound for the disparity between
local models (Theorem 1). In the analysis, we assume
the regression model is linear. Thus, given heteroscedas-
tic and correlated data, the centralized regression prob-
lem is generalized least squares (GLS). Our method ap-
proximates the centralized GLS by assuming a network
structure in data and imposing the smoothness of models
across nodes. We characterize finite-time bounds for the
optimality of the ensemble (weighted average) model
(Theorem 2). Similar to Federated Learning approaches
[15]-[17], we locally process data, iteratively average
local models, and our analysis focuses on the ensem-
ble average. Unlike Federated Learning, this ensemble
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model is not kept at any single location (fusion center)
and is only a measure of the method’s robustness.

We compare the performance of SGN to the central-
ized GLS solution on a head movement dataset collected
via Google Glass [18]. In the numerical implementation,
local data fidelity is not known. We compound our
method with mini-batching for stochastic gradient com-
putation, and a fading memory update rule to compute
local data accuracy. Our distributed approach compares
well against both GLS and logistic regression (LR).

II. NETWORK OF LOCAL LEARNERS

There are N > 1 nodes each with access to its
local dataset (X;,y;), where X; € R™*? is the input
matrix with d features, y; € R™ is the associated output
vector. Node ¢ would like to find the best linear model
with coefficients w; € R? by minimizing the following
function,

1 T-1
fi(wi) = E(Yz = Xow;)' Q7 (yi —
where €; is the covariance matrix of the error term in
a linear model for y;.

The set of nodes V := {1,..., N} is connected via
a communication network G = (V, £) with edge set .
We use «; ; to denote the ij-th element of the adjacency
matrix. Nodes ¢ and j can exchange information, if there
is an edge between them, i.e., if a;; = 1. In particular,
we assume neighboring agents exchange their models
with each other. Each node solves the problem

Hvlvm (filws) + Api(wy)), 2

Xiw;), (D)

where

1

wi) =3 Z -wil* ®
j=1,j

is the network regularization penalty with parameter A >
0. In (3), each neighboring node’s model is weighted
by the trace of the covariance matrix. The larger the
trace of the covariance matrix of j is, the smaller is the
weight ¢ has on j’s model. That is, each node prioritizes
neighboring nodes with better data fidelity. As A\ gets
larger, node ¢’s model gets closer to a weighted sum of
its neighbors’ models.

In the following we specify the assumptions on the
dataset. There exists a ground truth coefficient vector
w* € R%. The output vector model for node i is given
as follows,

:XiW*—FEi-FAZ‘f, iEVZ:{l,...,N}, @)

where g; € R™*! is an individual noise vector specific
to data subset i, and ¢ € R™*! is a common noise
which affects different subsets differently according to

the matrices A; € R™*". We assume A; is a diagonal
matrix with possibly different diagonal entries.

We assume the individual noise vector is zero-mean
and independent across different nodes, i.e., E[e; eT] =
0, % for all i and j 75 i, and Elleel|| = 021, Also,
E[¢] = 0, and E[||¢||*] = I,,.. From the model in (4),
it follows the covariance matrlx of the error term in the
model for y; as

Qi == E|le; + Mé|)® = 02T+ A2 e R™™. (5)

Throughout the analysis, we assume {1,Qs,...,Qn}
is known by all nodes. In Section IV, we consider an
update rule to estimate (5).

Given the model in (4), the centralized problem at
a fusion center node that have access to all the data

{(Xyy) : X = [X],... aX.]rV]Tvy = [y, vy;rV]T}
and solves a GLS problem:
1
min (i(y — XW)TQ_l(y — Xw))7 (6)

where Q = E(e + A) (s + AT = X + AAT € RP*P,
with A = [Aq,...,AN]T, e = [¢],...,eN]T, and ¥ as
a block-diagonal matrix with the ¢-th block as UfIm.
While the problem afforded by minimizing (1) is a
weighted least squares problem, the local minimization
problem in (2) approximates the GLS problem (6) by
assuming a network-structure among local datasets.

III. DISTRIBUTED STOCHASTIC GRADIENT
DESCENT

Each local node is implementing a stochastic gradient
descent algorithm to solve the least squares problem
with network regularization (2). For k =1,2,...,

Wikt1 =Wir —D(Vfik +AVpix), keENT (7)

where I' > 0 is the step size, and V f; ,, and r; j, are the
gradient of f; ; and p; ; written respectively as

Vfik = XTI (Xwi g

Tik = Zai,j(wi,k — wj,k)/tr(Qj). (8)
J#i
The update in (7) assumes nodes exchange their current
estimates with their neighbors, i.e., node i receives
{wjr:a;;=1,j €V}, as per the gradient in (8).
In the following, we analyze the convergence prop-
erties by focusing on the continuous time stochastic
approximation of SGN.

—yi), and

A. Continuous time approximation

We embed the discrete-time process in (7) into a
continuous-time domain. Let At(; ;) be the random time
needed by node ¢ to calculate V f; ;, and Vp;; and to
complete the update from w;; to w; ;1. We assume
that At(; 1y’s are i.i.d. with E[At(; )] = At and w; .
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is obtained at time £(; xy = >, At(; ;). The process
{wi, : t > 0} is defined as follows: w;; = w;y, if
te [t(i,k)7 t(i,k+1)). Then the corresponding continuous
expression of (7) is as follows:

Witiurn™ Wit F(vfiat(i,k+1)+ )\vpi:t(i,k+1)) &)
To simplify the notation we set w;; = w;/I. We
rewrite the scheme (9) in the form of the summation
of previous steps, and approximate the noise terms by
standard m-dimensional Brownian motions and the rest
by integrals. Then dw;, can be approximated by the
differential form of a stochastic Ito integral—see Section
5.2 in [19] for a detailed derivation. The continuous time
dynamics of w;; is as follows:

dw; s = — (gt + Ari)dt

_ (10)

+ XTI (ndBi,t + gAl-dBt>7
where g; ; := XZTQi_lXi(wiyt —w*) and r;; is defined
as in (8) with k replaced by ¢; v = 1/At, 7; = o; VT At,
and ¢ = VI'At. Here B;; and B; are the standard
m dimensional Brownian Motion approximating the
local noise associated with node ¢ and the common
noise, respectively. We note that in deriving (10), we
do not assume a specific distribution, e.g., Gaussian. Our
results follow by central limit theorem, which means the
approximation holds for general error distributions.

We make use of the following definitions and relations
to characterize the convergence of (10).

B. Preliminaries

We define the Laplacian matrix of G as L = A —
A, where A is a diagonal matrix whose ith diagonal
entry is equal to the degree of ith node and A =
[a,5/tr(Q4)tr(2;)]; ; is the corresponding adjacency
matrix. Let ao be the second smallest eigenvalue of L.

The continuous-time gradient g; ; defined above is a
function of w; ;. In our analyses, we denote g; (W) =
XTQ; X, (W — w*). Note that g; (w*) = 0 for all
i €V and t, to simplify notation we will write g(w™)
instead. Similarly, when a property holds for all ¢, we
drop ¢ and write g; ; as g;.

We note that g;’s are p-Lipschitz continuous and the
corresponding loss function is strongly convex with .
To see this, we note that ;! is positive definite, and
can be expressed as Qi_l = PTP, where P is the
matrix resulting from the eigendecomposition. Let w; ;
and w; o be two input vectors taken from the function
domain, then

— gi(wio)|| = ||XTQ; ' X, (wi

< plwin — wisll,

gi(wi1) —wis)|

where ¢ = ||PX,|| and ||| » is the Frobenius norm.
Furthermore,
(gi(wi,l) - gi(wi,2))T(Wi,1 - Wi,2)

9 5 (D)

= [PXi(win —wi2)|” = £ llwin — wis”,
for some 0 < Kk < ||PX2H2F Note that g, is strongly
convex with x and the corresponding loss function is
Lipschitz continuous with constant .

C. Regularity and Consistency

To characterize convergence we define measures for
regularity and consistency. Let w, denote the weighted
average solution at time ¢, i.e.,

where v = Zi:1 1 /tr(Qi) is a normalization constant.
We also refer to the above solution as the ensemble
model. Let V;; = ||ei’t||2/2, where €;; = wW;; —
w¢. Regularity is defined as the weighted sum of the
differences between the ensemble model and the solution
at each node:

(12)

<

N

szt—WII 1 Vit
Z 2tr(Q 7512

-1 tI'(QZ') '

Consistency is the distance between the ensemble model
and the ground truth,

1.
Ut = 5 HWt *W*||2

Via standard algebra, we have

= i Iwi =g
20— tr(€Q;) o -

In what follows, we obtain upper bounds on the
expectations of regularity V; and consistency U; pro-
cesses in Theorems 1 and 2, respectively. Given (13),
these bounds provide a bound on the average error of
individual estimates generated by the SGN algorithm
with respect to the ground truth w*.

13)

D. Convergence: Regularity

The following result provides an upper bound on the
expected regularity of the estimates at a given time.

Theorem 1 Let w;; evolve according to (10). Then

7 ’)/01 _ ’Ycl —2(k+Aaz)vt
EV]| < ——Mm— Vy— —1—— 2)Y
Vil = 2(k + Aag) + (% 2(k + Aag) ¢
(14)
where Cy is the summation of constant terms,
N
Ch = 165 (15)

1 1
2 ; tr(Qi)C
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with Cy; for i € V deﬁned as,

Ci; = 71»2( — QZ ) H ;1HF
+i§:i 1 17(X]Q Ak o XTQTTA )
2 == tr(Q)1r(25) pil Ak TOS A,

k=1
R i
(16)
In the long run, lim;_,., E[V;] < Z(TC;@)
Proof: See Appendix V. [ ]

It is not surprising that the expected difference in esti-
mates in (14) decreases with growing A which penalizes
disagreement with neighbors. Similarly, the larger the
algebraic connectivity of the network as or the strong
convexity constant « is, the smaller is the expected Vi.

Finally, the constant term C; is determined by data
X and the matrices A;. In particular, C; is small when
we have nodes that are less affected by the noise.
Intuitively, with increasing network size, nodes with less
exposure to noise are given increasing weight which then
increases regularity across estimates.

E. Convergence: Consistency

The consistency measure {U;,t > 0} captures the
performance of the average solution w. The following
theorem provides a characterization of the performance
of the collective effort.

Theorem 2 Let w;; evolve according to (10). Then

E[U;] < e 2"y + ( v Cl+02)(

where Cy is defined in (15)-(16) and

1 N
@:W<Zwm>

1602 |+

k=1
2 TO—1 TO—14A .
lel " Qk ) 1T(XTQ Ay 0 XTQ; AJ)1>
with “o” denoting the Hadamard product. In the long
run,
hm E[Ut] << C1 + CQ)
Aag

The proof (see [19] for details) follows a similar
outline as Theorem 1. We apply Ito’s Lemma to get
the stochastic dynamics form of dU; and then introduce

72/1'yt)
’

an auxiliary variable Wy = U; 4+ 5= Vt We obtain d;
in a similar fashion as that of dUt “Then we use the -
Lipschitz continuity of the gradient g; and the properties
of the Laplacian matrix to obtain an upper bound for
dW;. By integrating and taking the expectation of the
bound, we obtain the desired upper bound for E(U;)
since E[U}] < E[W].

Similar to the regularity measure bound, the penalty
constant A and the algebraic connectivity as reduce the
bound on the expected consistency. However, the long-
run expected difference between the collective estimate
and the ground truth does not reduce to zero as Aay —
oo. Indeed, we cannot expect the collective performance
to improve above a given level by increasing connectiv-
ity or increasing regularity among different models. The
constant Cs, determined by the data X and matrices A;,
captures the performance gap in the long run due to
available data. According to C3, we can only improve
performance by the addition of new nodes that have
access to more reliable data.

IV. NUMERICAL IMPLEMENTATION

We consider a real-world problem of predicting
the activity of individuals from head movement data
GLEAM [18]. The data contains 2-hour head motions of
38 participants’ activities recorded by Google glass. We
use the records of 37 participants as the training dataset
and the remaining one as the test. There are 96,829
data points in the training set and 2,617 in the test set.
We are only interested in two types of activities: eating
and working (including study and operating electrical
devices, e.g., iPad, computer, and phone). We denote
“eating” as 0 and “working” as 1, and the response
variable activity (act) is binary. The activity ‘“eating”
constitutes 20% of the entries in the training set and 10%
of that in the test set. We use 18 predictors to represent
the readings (gyroscope, accelerometer, magnetic field,
rotation, linear acceleration, and gravity) from the 3 axis
of the glass sensors. We use 37 computing nodes and
construct a [N-node complete network (lower connectiv-
ity may reduce the prediction accuracy slightly) in the
following experiment.

A. SGN with Mini-Batch and Unknown Covariance

We use the mini-batch process to approximate the
gradient at each step and set the mini-batch size as 100.

The covariance matrix is unknown and need to be
estimated by each node. In this example, it is computed
as the diagonals of the empirical covariance matrix of
50 mini-batch samples. We use a fading memory update
rule to compute the trace of the covariance matrix tr(€2;)

( [20D):

tr(Q 1) = otr(Qig) + (1 — @)t (i pr1),
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where tr(€2; p41) is the i-th covariance matrix trace
computed at the (k + 1)-th iteration, and ¢ € (0,1)
is the fading parameter that controls the memory of the
past covariance values.

B. Numerical results

We set the fading parameter ¢ = 0.9, the step size
I" = 300, and the regularization penalty A = 100.

We denote node i’s estimate with w; = [wy, . .., wig],
and the activity estimate of the ¢-th node is given by

act; = X;w;.

At step k, we predict act; = 0 if x;wy, < 0.5 and
act; = 1 otherwise. The prediction accuracy of SGN is
given by

HYtest - 1{X[es[v‘vk>0.5} ||2

accuracy, = 1 — o ,

where (Xiest, Yeest) 18 the test set, Wy, is the weighted
estimation (12) from SGN, and 1(-) is the indicator
function. We define the average prediction accuracy as
the mean prediction accuracy at step k£ over 10 runs.
Figure 1(a) shows that the average prediction accuracy
of SGN converges after 50 iterations. At the final step
T = 300, the average prediction accuracy of SGN
(0.8972) is close to that of LR (0.9079) and GLS
(0.8991). Figure 1(b) presents the Receiver operating
characteristic (ROC) curve of the three approaches. The
Area under the curve (AUC) of SGN is 0.7037, and
GLS and LR have the same AUC at 0.7014. Though
this example is a binary classification problem and
potentially violate the assumption in (4), our approach
has comparable classification accuracy to LR, which
suggests that SGN is robust.

V. CONCLUSION

The ever-increasing dimension and the size of data
have introduced new challenges to centralized estima-
tion. For example, limited bandwidth in current net-
working infrastructure may not satisfy the demands for
transmitting high-volume datasets to a central location.
Hence, it is of interest to study alternatives to centralized
estimation. In this paper, we considered a distributed
architecture for learning a linear model via generalized
least squares by relying on a network of interconnected
“local” learners. In the proposed distributed scheme,
each local learner is assigned a dataset, and asyn-
chronously implements stochastic gradient updates based
upon a sample (or a mini-batch sample). To ensure
robust estimation, a network regularization term that
penalizes models with high local variability is used.
Unlike other model averaging schemes based upon a
synchronized step, the proposed scheme implements
local model averaging continuously and asynchronously.

o
)

Average Prediction Accuracy
o o
iS o

o
[N)

100 200 300
Iteration

o

(a)

o o
) ©

True positive rate
o
N

0 0.2 0.4 0.6 0.8 1
False positive rate

()
Figure 1. (a) SGN average prediction accuracy at each
iterations. (b) The ROC curve of LR, GLS, and SGN.

We provided finite-time performance guarantees on the
consistency of the ensemble model. We illustrated the
robustness of the proposed method in the detection of
activities from head movement data.

APPENDIX

In the following, we first provide the differential form
of the regularity measure (Lemma 1), and then obtain
an upper bound of dV;. By integrating and taking the
expectation of the upper bound we obtain desired result.

Lemma 1 The regularity measure V; satisfies
N

_ ~y 1
v, =— 1
t v 4 tr(Qi)

gl eiqdt + Y K1dBy + *Chdt

a7

where K 1dBt is the summation of Ito terms,
o1& _
K\B; = > ; mKl,idBta
with Kl’idBt for v € V defined as,
Ky,idB, = <XTQ; ' NidBJe; s + 7;(X]Q; ') dB] e; ;.

Proof: See [19] for the proof. [ ]
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A. Proof of Theorem 1

Consider the first term of (17), let h;, =
min;ey gi+(We). We can add a zero-valued term
(h]/v) Zf\;l e;/tr(€;) to the equation, where we de-
fine e; ; := w;; — W;. By the strong convexity of g; in
(11), we can obtain the following inequality,

N N

1 1 1 1
- T it — T ) h T 7
UZZ tr(Q)g” ¢ fuztr(ﬂ)(g ¢ )Teis

1
<- 472{: Heth

Now we consider the last term in (17). Define the
vector e, = [ef,,...,e},]” and the matrix L =
L® I,,, where ® is the Kronecker product. Using these
definitions, we can express it as follows,

= —2xkV}.

N N

Qij T _
o) 4_2 @(Wut —Wjt) €=

N N

Z Z ﬁ(ei i—ei) e = —el'Le,

c tr(Qi)tr(Qj) ’ 7 ’ ¢ ’
(18)

where the first equality follows by adding and subtract-
ing w; and the second equality is by the definition of
L. Note that the second largest eigenvalue ao satisfies
ming, o, 17,—o (#7 Lz)/||z||” = az [21]. Thus, we have

N
< a2 lles?
=1

Combining (18) and (19), an upper bound for v,
follows :

—etTfjet (19)

v, < —29(k + /\ag)f/tdt + ’}/201dt + ’}/K1dét (20)

Next we consider the derivative of e2("+2a2)7ty by
applying chain rule and substituting in the inequality
for (20), we obtain an upper bound. By integrating both
sides of the obtained inequality, we obtain

7Ch
2(k + Aag)

t
+672(K+)\a2)"/t/ 62(n+)\a2)'ysK1dBS'
0

V, < e—2(m+)\a2)'yt% + (1 _ e—2(fc+)\a2)'yt)

2n

Since the stochastic integral is a martingale,
t

B| / A0 0B, | = 0.
0

We obtain the desired upper bound by taking the expec-
tation on both sides of (21). In the long run, as ¢t — oo,
the exponential terms will vanish, and the upper bound
of the regularity measure follows.
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