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Abstract. We establish the convergence of the forward-backward splitting algorithm based on Breg-
man distances for the sum of two monotone operators in reflexive Banach spaces. Even in Euclidean
spaces, the convergence of this algorithm has so far been proved only in the case of minimization prob-
lems. The proposed framework features Bregman distances that vary over the iterations and a novel
assumption on the single-valued operator that captures various properties scattered in the literature.
In the minimization setting, we obtain rates that are sharper than existing ones.
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1 Introduction

Throughout, X is a reflexive real Banach space with topological dual X*. We are concerned with the
following monotone inclusion problem (see Section 2.1 for notation and definitions).

Problem 1.1 Let A: X — 2% and B: X — 2" be maximally monotone, let f € T'y(X) be essentially
smooth, and let D; be the Bregman distance associated with f. Set C' = (int dom f) N dom A and
. = (int dom f) Nzer(A + B). Suppose that C' C int dom B, . # &, B is single-valued on int dom B,
and there exist §; € [0, 1], d2 € [0, 1], and & € [0, +oc] such that

(Ve e O)(Vy € C)(Vz € &) (Vy" € Ay) (V=" € Az)
<y —x,By — Bz> < kDyg(x,y) + <y —2,01(y" — 2%) + 09 (By - Bz)>. (1.1)
The objective is to

find z € int dom f such that 0 € Az + Bz. (1.2)

The central problem (1.2) has extensive connections with various areas of mathematics and its
applications. In Hilbert spaces, if B is cocoercive, a standard method for solving (1.2) is the forward-
backward algorithm, which operates with the update x,,; = (Id+vyA)~'(x, — vBz,) [17]. This
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iteration is not applicable beyond Hilbert spaces since A maps to X* # X'. In addition, there has been
a significant body of work (see, e.g., [3, 6, 8, 12, 13, 16, 18, 19, 23]) showing the benefits of replacing
standard distances by Bregman distances, even in Euclidean spaces. Given a sequence (y,)nen in
10,400 and a suitable sequence of differentiable convex functions ( f,,),en, We propose to solve (1.2)
via the iterative scheme

(VneN) x4 = (an + ynA)_l(an(xn) — ynBacn), (1.3)

which consists of first applying a forward (explicit) step involving B and then a backward (implicit)
step involving A. Let us note that the convergence of such an iterative process has not yet been
established, even in finite-dimensional spaces with a single function f,, = f and constant parameters
v, = <. Furthermore, the novel scheme (1.3) will be shown to unify and extend several iterative
methods which have thus far not been brought together:

* The Bregman monotone proximal point algorithm
(VR €N) @1 = (Vf +7A4) " (V) (1.4)
of [6] for finding a zero of A in int dom f, where f is a Legendre function.
* The variable metric forward-backward splitting method
(VneN) zp41 = (Un + ’ynA)fl (Unxn — ’yann) (1.5)

of [15] for finding a zero of A + B in a Hilbert space, where (U, ),cn is a sequence of strongly
positive self-adjoint bounded linear operators.

* The splitting method
(Vn eN) zpi1 = (Vin+7109) (Y falwn) — 1mV(2n)) (1.6)

of [18] for finding a minimizer of the sum of the convex functions ¢ and ¢ in int dom f.
* The Renaud—-Cohen algorithm
(Vn€N) @1 = (Vf+74) " (Vf(zn) — vBzy) (1.7)

of [20] for finding a zero of A+ B in a Hilbert space, where f is real-valued and strongly convex.

Problems which cannot be solved by algorithms (1.4)—(1.7) will be presented in Example 2.9 as well
as in Sections 3.2 and 3.4. New results on the minimization setting will be presented in Section 3.3.

The goal of the present paper is to investigate the asymptotic behavior of (1.3) under mild con-
ditions on A, B, and (f,),en. Let us note that the convergence proof techniques used in the above
four frameworks do not extend to (1.3). For instance, the tools of [18] rely heavily on functional
inequalities involving ¢ and . On the other hand, the approach of [15] exploits specific proper-
ties of quadratic kernels in Hilbert spaces, while [6] relies on Bregman monotonicity properties of
the iterates that will no longer hold in the presence of B. Finally, the proofs of [20] depend on the
strong convexity of f, the underlying Hilbertian structure, and the fact that the updating equation is
governed by a fixed operator. Our analysis will not only capture these frameworks but also provide
new methods to solve problems beyond their reach. It hinges on the theory of Legendre functions
and the new condition (1.1), which will be seen to cover in particular various properties such as the
cocoercivity assumption used in the standard forward-backward method in Hilbert spaces [7, 171, as
well as the seemingly unrelated assumptions used in [6, 15, 18, 20] to study (1.4)—(1.7).

The main result on the convergence of (1.3) is established in Section 2 for the general scenario
described in Problem 1.1. Section 3 is dedicated to special cases and applications. In the context of
minimization problems, convergence rates on the worst behavior of the method are obtained.
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2 Main results

2.1 Notation and definitions

The norm of X' is denoted by ||-|| and the canonical pairing between X and X* by (-,-). If X is
Hilbertian, its scalar product is denoted by (- | -). The symbols — and — denote respectively weak
and strong convergence. The set of weak sequential cluster points of a sequence (z,)nen in X is
denoted by 20(z),)nen-

Let M: X — 2% be a set-valued operator. Then graM = {(z,z*) € X x X* | z* € Mz} is the
graph of M, dom M = {z € X | Mz # @} the domain of M,ran M = {z* € X* | (Jz € X)z* € Mz}
the range of M, and zer M = {:c eEX|0eM :c} the set of zeros of M. Moreover, M is monotone if

(V(z1,27) € graM) (V(z2,23) € graM) (z1 — 2,37 — ab) > 0, 2.1)

and maximally monotone if, furthermore, there exists no monotone operator from X to 2%~ the graph
of which properly contains gra M.

A function f: X — ]—o0,+oc] is coercive if limg 4o f(¥) = +oo and supercoercive if
limg o400 f(@)/||z]| = +00. To(X) is the class of lower semicontinuous convex functions f: X —
]—00,+00] such that dom f = {z € X | f(z) < +oo} # @. Now let f € I'((X). The conjugate of f
is the function f* € I'o(X*) defined by f*: X* — |—o0, +00] : * +— sup,cx((z,z*) — f(z)), and the
subdifferential of f is the maximally monotone operator

Af : X = 2%z {zr e X" | (VyeX)(y—aa")+ f(z) < fly)}. (2.2)

In addition, f is a Legendre function if it is essentially smooth in the sense that 9f is both locally
bounded and single-valued on its domain, and essentially strictly convex in the sense that Jf* is
locally bounded on its domain and f is strictly convex on every convex subset of dom df [5]. Suppose
that f is Gateaux differentiable on int dom f # @. The Bregman distance associated with f is

D¢ X x X — [0, 400

gy s [ F@) = IW) = £ =0, VF @), i y & imtdom (2.3)
Y ~+00, otherwise.

Given « € |0, 4+o00[, we define

Cal(f) = {9 €To(X) | dom g = dom f, gis Gateaux differentiable on intdom f, Dy > aDy}. (2.4)

2.2 On condition (1.1)

The following proposition provides several key illustrations of the pertinence of (1.1) in terms of
capturing concrete scenarios.

Proposition 2.1 Consider the setting of Problem 1.1. Then (1.1) holds in each of the following cases:
(1) 01 €[0,1], 62 =1, and (Vz € C)(Vy € C)(Vz € .¥) (z — x, By — Bz) < kDs(x,y).
(i) 9, =0, 62 =1, and B = 01, where ¢ € T'y(X) satisfies

(Ve e O)Vye O)(Vz € ) Dyl(x,y) < 6Ds(x,y) + Dy(z,2) + Dy(2,9). (2.5)



(iii) 91 = 0, 02 = 1, and there exists ¢» € I'o(X) such that B = 0y and (Vx € C)(Vy € C) Dy(z,y) <
kDy¢(x,y).

(iv) dom B = X, there exists 3 € |0, +oo[ such that
(V(z,2*) € gra(A + B)) (V(y,y") € gra(A + B)) (z —y,z* —y*) > B||Bx — By|*, (2.6)

f is Fréchet differentiable on X, V f is a-strongly monotone on dom A for some a € ]0,+o0],

£€]0,28], k =1/(a(28 —¢€)), and §; = 02 = (28 — ¢)/(25).

(v) A + B is strongly monotone with constant y € ]0,+o0c|, B is Lipschitzian on dom B = X with
constant v € ]0,+4o0|, f is Fréchet differentiable on X, V f is a-strongly monotone on dom A for
some o € 0, +00[, € € ]0,2u/v2[, k = v?/(a(2u — ev?)), and 61 = 6 = (2p — ev?)/(2p).

(vi) dom B = X, 8 € ]0,4+cc|, f is Fréchet differentiable on X, V f is a-strongly monotone on dom A
for some « € 10, +oc], € € 10,28, K = 1/(a(28 —€)), 61 = 0, b2 = (28 — €)/(28), and one of the
following is satisfied:

[a] B is S-cocoercive, i.e.,
(Vx e X)(Vy e X) (x—y, Bx — By) 25\|B:U—By||2. 2.7)

[b] B is v-Lipschitzian for some v € ]0,+o00|, and angle bounded with constant 1/(46v), i.e.,

! (x —y, Bx — By). (2.8)

Ve X)(Vye X)(Vze X) (y—z,Bz— Bx) < B

[c] Bis (1/B)-Lipschitzian and there exists i) € I'g(X) such that B = V).

Proof. (): Letz € C,y € C, and z € Y. Then (y—xz,By— Bz) = (z—x,By— Bz) +
(y — 2,By — Bz) < kDy¢(x,y) + (y — 2,62(By — Bz)). In view of the monotonicity of A, we obtain
(1.1).

(i))=-(1): In the light of [9, Proposition 4.1.5 and Corollary 4.2.5], ¢ is Gateaux differentiable on
intdomty and B = V1 on int dom = intdom B D> C. Hence, we derive from (2.5), (2.3), and [6,
Proposition 2.3(ii)] that

(Ve e O)(Vye C)(Vz € .’) kDs(x,y) = Dy(x,y)—Dy(x,2)—Dy(2,y) = (z —x, By — Bz). (2.9)
(iii)=-(ii): Clear.

(iv): It results from [9, Theorem 4.2.10] that V f is continuous. Thus, using the strong monotonicity
of Vf on dom A, we obtain

(Vz € dom A)(Vy € dom A)  (z —y, Vf(z) = VF(y)) > allz -yl (2.10)

Given z and y in dom A, define ¢: R — R: ¢ — f(y + t(z — y)), and observe that, since dom A is
convex [24, Theorem 3.11.12], [z, y] C dom A and therefore (2.10) yields

1
Dy(a.y) = /0 & (1)t — (z — y, V(1))

1
= /0 <x -y, Vily+tlx—y)) - Vf(y)>dt



1
> [ tale -yl
0
o
= Sl — gl (2.11)
In turn, using (2.6) and (2.11), we deduce that

(Vz € O)(V(y,y") € graA) (V(z,2*) € gra A)

y—x
(y —z, By — Bz) < \/ﬁ H\/Zﬁ—e(By—Bz)H
ly —=|®  28-¢ 2
S 525 - ) + 5 |By — Bz|| (2.12)
< kDy(z,y) + (y — 2,01 (y" — 2*) + 62(By — Bz)). (2.13)

(V)=(iv): Set 8 = u/v%. Then
(Y(z,2°) € gra(A + B)) ({3 y") € gra(4 + B))
(o —ya* —y") > e — gl > Bl|Bx - BylP. 214)

(vi): We consider each case separately.

[a]: By arguing as in (2.11), we obtain (Vz € dom A)(Vy € dom A) D¢(z,y) > (a/2)||z — y|?. It
thus follows from (2.12) and (2.7) that

(Vz € O)(V(y,y") € graA) (V(z,2*) € gra A)

ly —=|* 28—« 2
—z,By — Bz) < By—-B
(y — =, By — Bz) 22— T2 |By — Bz||
< kDg(z,y) + (y — 2,02(By — Bz)). (2.15)

[b]=-[a]: We derive from [1, Proposition 4] that B is cocoercive with constant /.
[c]=-[a]: This follows from [1, Corollaire 10]. O

Remark 2.2 Condition (iv) in Proposition 2.1 first appeared in [20] and does not seem to have gotten
much notice in the literature. The cocoercivity condition (vi)[a] was first used in [17] to prove the
weak convergence of the classical forward-backward method in Hilbert spaces. Finally, in reflexive
Banach space minimization problems, (iii) appears in [18]; see also [3] for the Euclidean case.

Remark 2.3 Condition (iii) is satisfied in particular when X is a Hilbert space, f = ||-||?/2, dom ¢ =
X, and Vv is Lipschitzian [7, Theorem 18.15], in which case it is known as the “descent lemma.”
Condition (ii) can be viewed as an extension of this standard descent lemma involving triples (z,y, z)
and an arbitrary Bregman distance Dy in reflexive Banach spaces. Let us underline that (ii) is more
general than (iii). Indeed, consider the setting of Problem 1.1 with the following additional assump-
tions: X is a Hilbert space, 0 € intdom f, A is the normal cone operator of some self-dual cone K,
and there exists a Gateaux differentiable convex function ¢): X — R such that

B =V, Argminy ={0}, and Vy¢(K) C K. (2.16)

Then C' = (intdom f) Ndom A C K and . = {0}. Further, for every z € C and every y € C, (2.16)

yields Dy (z,y) — Dy(z,0) — Dy(0,y) = (—z | Vi(y) — V(0)) = (-2 | Vy(y)) < 0 < Dy(x,y).
Therefore, (2.5) is satisfied. On the other hand, (iii) does not hold in general. For instance, take
X =R,K=[0,400[, f=|-[>/2, and ¢ = |-|3/%.



2.3 Forward-backward splitting for monotone inclusions
The formal setting of the proposed Bregman forward-backward splitting method is as follows.

Algorithm 2.4 Consider the setting of Problem 1.1. Let « € ]0, 40|, let (7, )nen be in ]0, +00[, and
let (fn)nen be in Co(f). Suppose that the following hold:

[a] inanN Tn > 0: SuPneN("VYn) < @, and SupneN(517n+1/7n) <L
[b] There exists a summable sequence (7, )nen in [0, +-00[ such that (Vn € N) Dy, ., < (1 +n,)Dy,.

[c] For every n € N, Vf, is strictly monotone on C and (V f,, — 7, B)(C) C ran(V f,, + 1, A4).
Take 7o € C and set (Vn € N) 2,41 = (Vi + 1 A) "NV fulxn) — Y Bxy).

Let us establish basic asymptotic properties of Algorithm 2.4, starting with the fact that its viability
domain is C.

Proposition 2.5 Let (x,)ncn be a sequence generated by Algorithm 2.4 and let z € .. Then (xy,)nen 1S
a well-defined sequence in C' and the following hold:

() (Dy, (2, zn))nen converges.
() > ,en(l = 8yn/@) Dy, (Tpy1,2n) < +ooand ) (1 — Ky /@) Dy (2n11, 2n) < 400.
i) Y per(@ntt — 270 (Vful@n) = Vful@ns1)) — Ban + B2) < +oc.
(v) >, en(l = 02){(xn — 2, Bxy, — Bz) < 4-00.
(v) Suppose that one of the following is satisfied:

[a] C is bounded.

[b] f is supercoercive.

[c] f is uniformly convex.

[d] f is essentially strictly convex with dom f* open and V f* weakly sequentially continuous.

[e] X is finite-dimensional and dom f* is open.

D
[f] f is essentially strictly convexand p =  inf Dy(@,9) €10, 4o0].

x€int dom f Df(y, 1’)
y€int dom f
TFy
Then (z,)nen is bounded.
Proof. Take n € N, and suppose that (y*,y;) and (y*,y2) belong to gra(Vf, + v,A)~!. Then y* €
(Vfn + Ay and y* € (Vf, + 7,A)y2. However, by virtue of condition [c] in Algorithm 2.4,
V fn + Yn A is strictly monotone. Therefore, since (y; — y2,y* — y*) = 0, we infer that y; = y». Hence

(Vfn +mA) " is single-valued on dom(V f,, + 7, 4) " = ran(V £, + 7, A). (2.17)
Moreover, it follows from [9, Proposition 4.2.2] and (2.4) that

ran(V f, + %LA)_1 = dom V f, Ndom A = (int dom f,,) Ndom A = C. (2.18)



Next, we observe that, since zy € C' C intdom B, V fo(zg) — y0Bxo is a singleton. Furthermore, in
view of condition [c] in Algorithm 2.4, V fo(z¢) — 70Bxo € ran(V fy + vA). We thus deduce from
(2.17) that z1 = (Vfo + v0A) YV fo(zo) — YoBxo) is uniquely defined. In addition, (2.18) yields
r1 € ran(V fo +7A)~! = C. The conclusion that (x,),cn is a well-defined sequence in C follows by
invoking these facts inductively.

(i)—(iv): Condition [a] in Algorithm 2.4 entails that there exists ¢ € |0, 1] such that
617n+1 < (1 — 6)’)/,1. (219)

Now take xj; € Az and set

1‘;+1 = 71;1(vfn(xn) - an(xn-f—l)) — Buy,
Ay = Dy, (2, 25) + 617 (xn — 2,2, + Bz)

(2.20)
On = (1 — kyn/a) Dy, (T4, Tp)
+eVn(@Tng1 — 2,25, + Bz) + (1 — 82)ym{xy — 2, Bx,, — Bz).
In view of (2.20),
(Tps1,25,1) € graA. (2.21)
In turn, since (z, —Bz) € gra A and A is monotone,
(Tpy1 — 2,251 + Bz) > 0. (2.22)

Hence, invoking condition [a] in Algorithm 2.4 and the monotonicity of B, we obtain #,, > 0. Next,
since z € int dom f = int dom f,, by (2.4), we derive from (2.20) and [6, Proposition 2.3(ii)] that

0= (Tnt1 — 2, Vin(zn) = Vin(Tnt1) = Brn — mTp 1)
= <$n+1 — 2, Vin(ry) — an(xn+1)> + {2z = Tny1, Bxn — B2) — (Tns1 — Z’x;k%tl + Bz)
= Dy, (2,@n) = Dy, (2,2n41) = Dy, (Tnt1,Tn) + Yz — &nt1, Ban — B2)
— YlTny1 — 2,254 + Bz). (2.23)

Thus, since (z, —Bz) € gra A and f,, € C,(f), we infer from (2.19), (2.22), (2.21), and (1.1) that

Dy, (2, Tny1) + 619t 1{Tnr1 — 2, x;kz—f—l + Bz)
< Dy, (2,Zn41) + oyt — 2,754 + Bz) — evn(Tni1 — Z’x:rFl + Bz)
=Dy, (2,2n) — Dy, (Tng1, Tn) + V(2 — Tng1, Bop — Bz) — eyp(®ns1 — 2,251 + Bz)
= Dy, (z,2p) — Dy, (®nt1, Tn) + mlTn — Tpy1, Bey — Bz) — v (xy — 2, Bx, — Bz)
— eV (Tps1 — 2,05 + B2)
< Dy, (2,20) — Dy, (wpg1,@0) + 69D (Tni1, Tn) + 619 (Tn — 2,2, + Bz)
+ 0oYn(@n — 2, By — B2z) — yp(xp — 2, Bxp, — Bz) — eyp(@pnq1 — 2,051 + B2)
< Dy, (2, 20) + 6179 (@n — 2,2, + Bz) — (1 — kyn /) Dy, (Tns1,Tn)
— eV (Tps1 — 2, Ty + Bz) — (1 = 62)yn(@n — 2, Bxy, — Bz)
=A, —0,. (2.24)

Consequently, by condition [b] in Algorithm 2.4 and (2.22),

Ant1 =Dy, (2,p41) + 619+1{Tnt1 — 2, 7541 + B2)
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< (L +) (Dy, (2, 2p11) + 019041 {Tnt1 — 2,254, + B2))
< (14 m)(An = 0n)
< (147)A, — 6, (2.25)

Hence, [7, Lemma 5.31] asserts that

(Ay)nen converges and Z 0, < 4o0. (2.26)
neN

In turn, we infer from (2.20) and condition [a] in Algorithm 2.4 that

(> (1= Kkm/0) Dy, (n41,2n) < +00

neN

Z<ﬂjn+1 —2,%5,1 + Bz) < +o0 (2.27)
neN

Z(l — 62)(xp — 2z, Bxy, — Bz) < +00.

neN

Thus, since (fy)nen lies in C,(f), we obtain ) (1 — kvn/a)Dy(Tn41,2,) < +o00. It results from
(2.26) and (2.20) that (Dy, (2, z5))nen converges.

(v): Recall that (x,,)nen lies in C.
[a]: Clear.

[b]: We derive from (i) that (D(z,xy))nen is bounded. In turn, [5, Lemma 7.3(viii)] asserts that
(Zn)nen is bounded.

[c]: It results from [24, Theorem 3.5.10] that there exists a function ¢: [0, +oo] — [0,4oc] that
vanishes only at 0 such that lim;_,, - ¢(¢)/t — 400 and

(Vz € intdom f)(Vy € dom f) (y — =, Vf(2)) + f(z) + ¢(|= — y[|) < f (). (2.28)

Hence, in the light of (i), sup,en ¢(||2n — 2||) < sup,en Dy(z,2n) < (1/a) sup,en Dy, (2, 2n) < +00
and (x;, )nen is therefore bounded.

[d]: Suppose that there exists a subsequence (z, )nen Of (zn)nen such that ||z, | — +oo. We
deduce from [5, Lemma 7.3(vii)] and (i) that

sup D= (Vf (), Vf(2)) = sup D (z,2p) < 1 sup Dy, (2, xy) < 400. (2.29)

neN neN & neN
However, f* is a Legendre function by virtue of [5, Corollary 5.5] and Vf(z) € intdom f* by
virtue of [5, Theorem 5.10]. Thus, [5, Lemma 7.3(v)] guarantees that Ds«(-,V f(z)) is coer-
cive. It therefore follows from (2.29) that (Vf(z,))nen is bounded, and then from the reflex-
ivity of X that W(Vf(xk,))neny # @. In turn, there exist a subsequence (v, )nen Of (T, )nen
and z* € X* such that Vf(x;, ) — 2*. The weak lower semicontinuity of f* and (2.29) yield
Dyp(z*,Vf(2)) < lim Dy« (V f (2, ), Vf(2)) < +oc. Therefore

Vf(x,, ) — z* € dom f* = int dom f*. (2.30)

Moreover, [5, Theorem 5.10] asserts that Vf*(z*) € intdom f and (Vn € N) Vf*(Vf(zn)) = zn.
Hence, (2.30) and the weak sequential continuity of Vf* imply that z;, = Vf*(Vf(x, )) —
V f*(x*). This yields sup,,cy [|7y, || < +oco0 and we reach a contradiction.

[e]: A consequence of [5, Lemma 7.3(ix)] and (i).
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[f]: It results from [5, Lemma 7.3(v)] that Dy(-, z) is coercive. In turn, since sup,cy D¢ (2, 2) <
(1/p)sup,en D¢ (2, 2n) < 400 by (i), (2)nen is bounded. 0

As seen in Proposition 2.5, by construction, an orbit of Algorithm 2.4 lies in C' and therefore in
int dom f. Next, we proceed to identify sufficient conditions that guarantee that their weak sequential
cluster points are also in int dom f.

Proposition 2.6 Let (z,),en be a sequence generated by Algorithm 2.4 and suppose that one of the
following holds:

[a] dom f Ndom A C int dom f.

[b] f is essentially strictly convex with dom f* open and V f* weakly sequentially continuous.

o . . Dy(z,
[c] f isstrictly convex on intdom f and p =  inf Dy(@.y) €10, 4o0].
x€int dom f Df (y, 1’)
y€int dom f
Y

[d] X is finite-dimensional.
Then W (xy,)nen C intdom f.

Proof. Suppose that x € 20(z, )nen, say zr, — z, and fix z € ..

[a]: Since dom f is closed and convex, it is weakly closed [10, Corollary I1.6.3.3(i)]. Hence, since
Proposition 2.5 asserts that (z,,),cn lies in C C dom f, we infer that 20(x,,),eny C dom f. Likewise,
since dom A is a closed convex set [24, Theorem 3.11.12] and (z,)nen lies in C C dom A, we obtain
20 (2, )neny C dom A. Altogether, 25(z,, )neny C dom f Ndom A C int dom f.

[b]: Using an argument similar to that of the proof of Proposition 2.5(v)[d], we infer that there
exist a strictly increasing sequence (I, Jnen in N and z* € int dom f* such that z;, — Vf*(2*). Thus,
appealing to [5, Theorem 5.10], we conclude that x = V f*(z*) € int dom f.

[c]: Proposition 2.5(i) and the weak lower semicontinuity of Dy(-, z) yield
Df(x,2) < lim Dy (x4, 2) < (1/p)lim Df(z,zx,) < (ap)”'lim Dy, (2, a,) < +00. (2.31)

Thus = € dom f. We show that dom f is open. Suppose that there exists y € dom f ~\ intdom f, let
(an)nen be a sequence in |0, 1] such that o, — 1, and set (Vn € N) y,, = apy + (1 — a)z. Then
{yntnen C ly, z[ C (int dom f) \ {z} [10, Proposition II.2.6.16]. Moreover, y,, — y and, by convexity
of f, (Vn € N) Dy(yn, 2) < an(f(y) — f(2) = (y — 2, Vf(2))). Hence

Lim Dy (yn, 2) < f(y) — f(2) = (y — 2,V f(2)) = Dy(y, 2). (2.32)

However, it results from the lower semicontinuity of f that lim D¢(y,,2) = lim(f(yn.) — f(2)) —
lim(y, — 2,V f(2) = f(y) — f(2) = (y — 2,V f(2)) = Ds(y, z). Hence, (2.32) forces

lim D¢ (yn,2) = D¢(y, 2). (2.33)

In addition, by convexity of f, (Vn € N) D¢(z,yn) = an(f(2) — f(y) — (2 — v, Vf(yn))). However, [5,
Theorem 5.6] and the essential smoothness of f entail that

(z =9y, V) = -y, Vily+ (1 —an)(z —y))) = —oc. (2.34)
Thus,

+00 = lim <an(f(2) —fy)—(z—v, Vf(yn)>)) < Lim Dy (2, yn).- (2.35)
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It results from (2.33) and (2.35) that 0 < p < lim D¢(yn, 2)/Ds(2,yn) = 0, so that we reach a
contradiction. Consequently, dom f is open and hence x € dom f = int dom f.

[d]: Proposition 2.5(i) ensures that (zy, )nen is a sequence in int dom f such that (Df(z, xy,))nen is
bounded. Therefore, [4, Theorem 3.8(ii)] and the essential smoothness of f yield € int dom f. [

Definition 2.7 Algorithm 2.4 is focusing if, for every z € .7,

((Dy, (2,20)),, o cONVerges
Z <$n+1 - Z,%?l (vfn(xn) - an(:ﬂn+1)) — Bay + BZ> < +00
neN
Z(l — 62){@y — 2, Bxy, — Bz) < +00 = W(zp)nen C zer(A+B).
neN
Z(l — kY /) Dy, (Tng1,Tn) < 400
neN

(2.36)

Our main result establishes the weak convergence of the orbits of Algorithm 2.4.
Theorem 2.8 Let (z,,)nen be a sequence generated by Algorithm 2.4 and suppose that the following hold:

[a] (zn)nen is bounded.

[b] W(zn)nen C int dom f.

[c] Algorithm 2.4 is focusing.

[d] One of the following is satisfied:

1/ .7 is a singleton.

2/ There exists a function g in I'o(X') which is Gdteaux differentiable on intdomg O C, with
Vg strictly monotone on C, and such that, for every sequence (y,)nen in C' and every y €

W(Yn)nen N C, Y, = ¥ = Vi, (k) = Vg(y).
Then (z,,)nen converges weakly to a point in ..
Proof. It results from [a] and the reflexivity of X’ that
(zn)nen lies in a weakly sequentially compact set. (2.37)

On the other hand, [c] and items (i)—(iv) in Proposition 2.5 yield 20(z,,),en C zer(A + B). In turn, it
results from [b] that

@ # W (xp)neny C & C C. (2.38)

In view of [7, Lemma 1.35] applied in A¥e it remains to show that W (xp)nen is a sin-
gleton. If [d]1/ holds, this follows from (2.38). Now suppose that [d]2/ holds, and take
y1 and yo in W(xy)nen, SAY zk, — y1 and z;, — yo. Then y; € ¥ and y, € &
by virtue of (2.38), and we therefore deduce from Proposition 2.5(i) that (Dy, (y1,%n))nen and
(D¢, (y2,2n))nen converge. However, condition [b] in Algorithm 2.4 and [7, Lemma 5.31] as-
sert that (Dy, (y1,y2))nen converges. Hence, appealing to [6, Proposition 2.3(ii)], it follows that

(1 = y2, Vifn(zn) = Vn(y2)))nen = (Dy, (y2,2n) + Dy, (y1,92) — Dy, (y1,2Zn))nen converges. Set
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¢ =1im(y; — ya2, Vfn(zn) — Vfn(y2)). Since (z,)nen is a sequence in C, we infer from (2.38) and [d]2/
that £ < (y1 — y2, V f1, (x1,,) — Vf1,,(y2)) — (Y1 — y2, Vg(y2) — Vg(y2)) = 0, which yields ¢ = 0. How-
ever, invoking [d]2/, we obtain ¢ < (y1 — y2, V fi, (zk,) — Vi, (y2)) = (Y1 —y2, Vag(y1) — Vg(y2)).
It therefore follows that (y; — y2, Vg(y1) — Vg(y2)) = 0 and hence from the strict monotonicity of Vg
on C that y; = yo.

Example 2.9 We provide an example with operating conditions that are not captured by any of the
methods described in (1.4)-(1.7). Let p € ]1,4o0[, let (xn)nen be a sequence in [1,+oo[ such that
Xn — 1, and let (9, )nen be @ summable sequence in [0, +oo[ such that (Vn € N) x,01 < (1 + 7n)Xn-
We denote by z = ((i)ren a sequence in /P(N). Set X = ¢?(N) x R, hence x* = (?/(~1)(N) x R, and
define the Legendre functions

%IIZ\IP+1—£+£ln£, if € > 0;
(VTL S N) fn: X — ]—OO,—I—OO] : (Z,f) — &qup +1, if £=0; (2.39)
p
+00, if £€<0
and

1 .
SlIlP = & &g, if £ 0;

f=g: X = ]|—00,+0]: (2,&) — 1HZ||pa if €= 0. (2.40)
p
+ 00, if £<0.

Now let 1: X — [0,+o00[: (2,&) > ||2||P/p, set B = V4, and let A: X — 2% be any maximally
monotone operator such that

dom A C P(N) x ]0,400[ and zer(A+ B) # @. (2.41)

Let us check that this setting conforms to that of Theorem 2.8. First, Proposition 2.1(iii) implies that
(1.1) is satisfied with §; = 0 and d2 = x = 1. Next, we note that int dom f = ¢(P(N) x |0, +oo[, that
(fn)nen lies in Ci(f), and that condition [b] in Algorithm 2.4 holds. Furthermore, we derive from
(2.39) that

(Vn € N)  Vf,: P(N) x ]0, +oo] = X*: (2,€) (Xn(sign(gk)ygkypfl) peys 10 g) (2.42)
and we observe that
(VneN) ranVf,=X" and dom(y,A) C domVf,. (2.43)

It therefore follows from the Brézis—Haraux theorem [11, Théoréme 4] that

(Vn e N) ran(Vf, +7,A4) = X7, (2.44)
and hence that condition [c] in Algorithm 2.4 holds. It remains to verify condition [d]2/ in Theo-
rem 2.8. Set ¢: (P(N) — [0,+00[: z — ||z]|?/p and (Vn € N) ¢,,: £P(N) = [0,400[: 2 = xall2|P/p-
Take a sequence (zy, &, )nen in dom A and a point (z,&) € dom A such that (z,,,&,) — (z,£). We have
& — ¢ and (Vk € N) ¢, — (. Now let (ex)ren be the canonical Schauder basis of ¢7(N). Then

(Vk € N) <6ka v@n(zn» = Xn Sign(Cn,k)Kn,Hpil — Sign(Ck)|Ck|p71 = <€ka VSD(Z)> (2.45)

and (V,,(zn))nen is bounded. It therefore follows from [2, Théoreme VIII-2] that Vi, (z,) — V¢(2)
and, in turn, that Vf,(2,,&,) — Vg(z,§) by (2.40) and (2.42). Note that the above setting is not
covered by the assumptions underlying (1.4)—(1.7): the fact that B # 0 excludes [6], the fact that X
is not a Hilbert space excludes [15] and [20], and [18] is excluded because A is not a subdifferential.
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3 Special cases and applications

We illustrate the general scope of Theorem 2.8 by recovering apparently unrelated results and also
by deriving new ones. Sufficient conditions for [a] and [b] in Theorem 2.8 to hold can be found in
Propositions 2.5(v) and 2.6, respectively. As to checking the focusing condition [c], the following fact
will be useful.

Lemma 3.1 [13, Proposition 2.1(iii)] Let M;: X — 2% and My: X — 2% be maximally monotone,
let (an,a’)nen be a sequence in gra My, let (b,,b)nen be a sequence in graM,, let x € X, and let
y* € X*. Suppose that a,, — =z, b} — vy*, a} + b} — 0, and a,, — b, — 0. Then = € zer(M; + My).

3.1 Recovering existing frameworks for monotone inclusions

In this section, we show that the existing results of [6, 15, 20] discussed in the Introduction can be
recovered from Theorem 2.8. As will be clear from the proofs, more general versions of these results
can also be derived at once from Theorem 2.8. First, we derive from Theorem 2.8 the convergence of
the Bregman-based proximal point algorithm (1.4) studied in [6, Section 5.5].

Corollary 3.2 Let A: X — 2% be maximally monotone, let f € T(X) be a supercoercive Legendre
function such that & # zer A C dom A C intdom f and V f is weakly sequentially continuous, and let
(Yn)nen be a sequence in |0, 400 such that inf,en~y, > 0. Suppose that, for every bounded sequence

(yn)neN in int dom f:
Df(yn-i-hyn) — 0 = vf(yn—I—l) - vf(yn) — 0. (31)

Take xy € C and set (Vn € N) 241 = (Vf + 'ynA)fl(Vf(xn)). Then (x,)nen converges weakly to a
point in zer A.

Proof. We apply Theorem 2.8 with B =0, « = 1, kK = §; = d, = 0, and (Vn € N) f,, = f. First,
(1.1) together with conditions [a] and [b] in Algorithm 2.4 are trivially fulfilled. On the other hand,
since f is a Legendre function and dom A C int dom f, condition [c] in Algorithm 2.4 follows from
[6, Theorem 3.13(iv)(d)]. Next, condition [a] in Theorem 2.8 follows from Proposition 2.5(v)[b].
Furthermore, in view of the weak sequential continuity of Vf, condition [d]2/ in Theorem 2.8 is
satisfied with g = f. Next, to show that the algorithm is focusing, suppose that ) Dy (2nt1,2n) <
+oo and take x € W(xy)nen, SAY T, — . Since (z,)nen iS a bounded sequence in int dom f,
we derive from (3.1) that Vf(z,41) — Vf(z,) — 0. In turn, since inf,en7y, > 0, it follows that
Y Y (Vf(2ns1) — Vf(z,)) — 0. However, by construction, (Vn € N) 7;;n1,1(vf(5'3kn—1) —Vf(zg,)) €
Axzy,, . Therefore, upon invoking Lemma 3.1 (with M; = A and M» = 0), we obtain = € zer A and the
algorithm is therefore focusing. This also shows that 23(z;,),en C zer A C int dom f. Condition [b] in
Theorem 2.8 is thus satisfied.

The next application of Theorem 2.8 is a variable metric version of the Hilbertian forward-backward
method (1.5) established in [15, Theorem 4.1].

Corollary 3.3 Let X be a real Hilbert space, let A: X — 2% be maximally monotone, let o and 3 be in
10, +00[, and let B: X — X satisfy

(Vz € X)(Vy € X) (¢ —y| Bz — By) > 5| Bz — By|*. (3.2)

Further; for every n € N, let U,,: X — X be a bounded linear operator which is a-strongly monotone and
self-adjoint. Suppose that zer(A + B) # & and that there exists a summable sequence (1, )nen in [0, +00[
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such that
(VneN)Ve e X) (x| Upt12) < (1+nm,){x | Upx). (3.3)

Let ¢ € ]0,20[ and let (7, )nen be a sequence in |0, +oo[ such that 0 < inf,en v, < sup,ey Yo < (26—¢)o
Define a sequence (xy,)nen via the recursion

xg €domA and (VneN) x,11 = (U, + WnA)fl(Un:Un — Bxy). (3.4)

Then (z,,)nen converges weakly to a point in zer(A + B).

Proof. Set f = ||-]|?/2, C = dom 4, and .¥ = zer(A + B). In addition, for every n € N, define
fon: X = Riz — (x| Uyx)/2. Let us apply Theorem 2.8 with k = 1/(28 —¢), 61 = 0, and Jy =
(28 —¢€)/(2B8) € ]0,1]. First, f € T'y(X) is a supercoercive Legendre function with dom f = X" and,
for every n € N, since Vf,, = U, is a-strongly monotone, f, € C,(f). Furthermore, it follows from
Proposition 2.1(vi)[a] that (1.1) is fulfilled. We also observe that condition [a] in Algorithm 2.4 is
satisfied. Next, by (3.3) and the assumption that the operators (U, ),cn are self-adjoint,

(¥n € N)(¥o € X)(Wy € X) Dy, (r,9) = (& —y | Unia(w — )

1+,
< a —y | Un(z )

= Dy, (z,y) (3.5)

and condition [b] in Algorithm 2.4 therefore holds. Now take n € N. Since Vf,, = U, is maximally
monotone with dom V f,, = X and A is maximally monotone, [7, Corollary 25.5(i)] entails that V f,, +
~vn A is maximally monotone. Thus, since V f,, +7, A is a-strongly monotone, [7, Proposition 22.11(ii)]
implies that ran(V f,, + 7, A4) = X and it follows that condition [c] in Algorithm 2.4 is satisfied. Next,
in view of Proposition 2.5(v)[b], (z,)ren is bounded, while 25(z,,)pen € X = intdom f. Now set
[ = sup,en ||Ux||. For every n € N, since it results from (3.3) and [7, Fact 2.25(iii)] that

tred) o<1 = (o)< (T[a+m)t tho) < ([L0+m0) 0l GO

keN keN

we derive from [7, Fact 2.25(iii)] that |Uy|| < ||[Uo|| [[;en(1 + m%). Hence p < +oo and therefore,
appealing to [14, Lemma 2.3(i)], there exists an a-strongly monotone self-adjoint bounded linear
operator U: X — X such that (Vw € X) U,w — Uw. Define g: X — R: z — (x| Ux)/2. Then
Vg = U is strongly monotone (and thus strictly monotone). Furthermore, given (y,),en in C' and
Y € W(yn)nen N C, say yz, — y, we have

(Vw e X) (w | Ve, (k) = Uk,w [ yr,) = Uw |y) = (w | Uy) = (w | Vg(y)) 3.7

and thus Vi (yx,) — Vg(y). Therefore, condition [d]2/ in Theorem 2.8 is satisfied. Let us
now verify that (3.4) is focusing. Towards this goal, take z € . and suppose that ) (1 —
62)(xn — 2| Bxy — Bz) < +oo and ) (1 — kvn/a)Dy, (n41,2,) < +o00. Since d; < 1 and
sup,en(K1n) < o, we infer from (3.2) that

1
ZHan—BzHQ < —Z(xn—z | Bx,, — Bz) < 400 (3.8)
neN ﬂ neN

and 3, oy lznt1 — 2al? =23 ,en Dy (@ng1, 2n) < (2/0) ey Dy, (@041, 2n) < +oo. It follows that

[Un(@n1 = @n) || < pl|#nsr — 2 — 0. (3.9)
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Now take = € W(xy)nen, say zx, — =, and set (Vn € N) x}, | = Y tUn (2 — wpy1) — By, It results
from (3.4) that (xy, 41, xzn+1)n€N lies in gra A and from (3.9) that zj,,1 — x. Moreover, (3.9) yields
vy . + Bxy, — 0. Altogether, Lemma 3.1 (applied to the sequences (zy,, 41,7}, | 1)nen in gra A and
(xk, , Bxr, )nen in gra B) guarantees that € zer(A + B). Consequently, Theorem 2.8 asserts that
(25 )nen converges weakly to a point in .. [1

Example 3.4 The classical forward-backward method is obtained by setting U,, = Id in Corollary 3.3,
which yields

zo€domA and (VneN) z,.1 = Id+7,4) (2, — WmBxy). (3.10)
The case when the proximal parameters (v, ),en are constant was first addressed in [17].
We now turn to the Renaud-Cohen algorithm (1.7) and recover [20, Theorem 3.4].

Corollary 3.5 Let X be a real Hilbert space, let A: X — 2% and B: X — X be maximally monotone,
and let f: X — R be convex and Fréchet differentiable. Suppose that zer(A + B) # &, that Vf is
1-strongly monotone on dom A and Lipschitzian on bounded sets, and that there exists 3 € |0, +o0o[ such
that

(V(z,2*) € gra(A+ B)) (V(y,y*) € gra(A+ B)) (z—y|2* —y*) > B||Bx — By||*. (3.11)

Let v € ]0,28], take zo € dom A, and set (Vn € N) x,,41 = (Vf +~vA) 1 (Vf(z,) — vBx,). Suppose,
in addition, that V f is weakly sequentially continuous. Then (x,)nen converges weakly to a point in
zer(A + B).

Proof. Let ¢ € ]0,23] be such that v < 28 — . We apply Theorem 2.8 with C = dom 4, a = 1,
k=1/(28—¢),0 =02 = (26 —¢)/(28) €]0,1], and (Vn € N) f,, = f and n,, = 0. Proposition 2.1(iv)
asserts that (1.1) is satisfied. Furthermore, as shown in the proof of Proposition 2.1(iv),

_ S 1
(Vo € dom A)(Vy € dom A) Dy(z,y) = §H~’U —yl*. (3.12)

Next, note that conditions [a] and [b] in Algorithm 2.4 are trivially satisfied. Since V f++A is strongly
monotone and since, by [7, Corollary 25.5(i)], Vf + vA is maximally monotone, it follows from [7,
Proposition 22.11(ii)] that ran(Vf + yA) = X and therefore that condition [c] in Algorithm 2.4
holds. We observe that condition [b] in Theorem 2.8 is trivially satisfied and that condition [a] in
Theorem 2.8 follows from (3.12) and Proposition 2.5(i). Furthermore, since V[ is weakly sequen-
tially continuous and 1-strongly monotone on C, condition [d]2/ in Theorem 2.8 is satisfied with
g = f. Now take z € zer(A + B) and suppose that ) (1 — £7)Dy(Tpny1,2n) < +00, >, (1 —
82)(xy — 2 | Bxp — Bz) < 400, and Y, .y (@1 — 2 | v H(Vf(zn) — Vf(2n41)) — Bay + Bz) < +oo.
Then, since xy < 1 and §, < 1, it follows that

Z D¢(xpg1,2n) < 400 and Z (xn, — z | Bx,, — Bz) < 400, (3.13)
neN neN

and therefore that

Z (Tpi1 — 2 |V HV (@) = VI (@n41)) — Bzn + Brgg1) < +00. (3.14)
neN

Since (z,0) € gra(A+ B) and since the sequence (2, 11,7 {(Vf(2,) = Vf(Tni1)) — Brp+ BTni1)nen
lies in gra(A + B) by construction, it follows from (3.11) and (3.14) that > ||Bz, — Bz|* < +oc.
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On the other hand, since (x,,),en lies in dom A by Proposition 2.5, we deduce from (3.12) and (3.13)
that z,+1 — =z, — 0. In turn, it results from the Lipschitz continuity of Vf on the bounded set
{Zn}nen that Vf(z,) — Vf(xny1) — 0. Now take x € 2(xy)nen, say zx, — =z, and set (Vn €
N) 2. = v YV f(zn) — Vf(zn+1)) — Bz, Then (Tk,+1, 7%, 4 1)nen lies in gra A. Furthermore,
vy . + Bry, = v YV f(zy,) — Vf(zr,11)) — 0 and, since z,, — 2,01 — 0, 2,41 — x. Thus,
applying Lemma 3.1 with the sequences (z, +1, 2}, ,1)nen and (zy,,, Brg, )nen yields x € zer(A + B),
and we conclude that condition [c] in Theorem 2.8 is satisfied as well. O

3.2 The finite-dimensional case

We discuss the finite-dimensional case, a setting in which the assumptions can be greatly simplified
and the results presented below are new.

Corollary 3.6 Let (z,,),en be a sequence generated by Algorithm 2.4. In addition, suppose that the
following hold:

[a] X is finite-dimensional.
[b] f is essentially strictly convex and dom f* is open.
[c] (intdom f)Ndom A C int dom B.

[d] sup,en(rm) < a.

[e] There exists a function g in I'g(X') which is differentiable on int dom g D int dom f, with Vg strictly
monotone on C, and such that, for every sequence (y,)nen in C and every sequential cluster point

y € int dom f of (Yn)nen> Yk, — Y = VS (Ur,) — Vg(y).
Then (x,,)nen converges to a point in ..

Proof. 1t follows from Proposition 2.5(v)[e] that (z,)nen is bounded and from Proposition 2.6[d]
that W(x,)ney C intdom f. In view of Theorem 2.8, it remains to show that Algorithm 2.4
is focusing. Towards this goal, let z € ./, and suppose that (Dy, (2,2,))nen converges and
Y men(I=Kvn/a)Dy, (Tny1, o) < 400, and let 2 be a sequential cluster point of (z,,)nen, say T, — .
Using [d] and the fact that (f,,),en lies in C,(f), we obtain

(D (2,2n)),,cy is bounded and Z Dy (pt1,2n) < +o0. (3.15)
neN

Since (x, )nen lies in int dom f, [4, Theorem 3.8(ii)] and (3.15) imply that

x € int dom f (3.16)
and [5, Theorem 5.10] thus yields

Vf(zy,) = Vf(x) € intdom f*. (3.17)
Next, it results from [b], [5, Lemma 7.3(vii)], and (3.15) that

(Dp(Vf(20), VI(2)),en = (Df(z,20)), o is bounded. (3.18)
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Therefore, since V f(z) € intdom f* [5, Theorem 5.10] and since f* is a Legendre function [5, Corol-
lary 5.5], it results from [5, Lemma 7.3(v)] that (V f(x,+1))nen is bounded. In turn, there exists a
strictly increasing sequence (i, )nen in N and a point z* € X'* such that

Vf(xlkn+1) — x*. (3.19)
By lower semicontinuity of D«(-,V f(z)) and (3.18), * € dom f*. On the other hand, appealing to
[5, Lemma 7.3(vii)] and (3.15), we obtain
1
0< Dy (Vf(z,), V (@, 1) = Dy (@, 4121, ) < =D, (21, 41,21,) = 0. (3.20)

Thus, since (V f(xy,))nen lies in int dom f* by virtue of Proposition 2.5 and [5, Theorem 5.10], we
derive from [4, Theorem 3.9(iii)], (3.17), and (3.19) that * = V f(x) and, hence, from (3.19) that
Vf(xy, +1) — Vf(z). It thus follows from [5, Theorem 5.10] that x;, ;1 — . In turn, by us-
ing respectively [e] with the sequences (7, )neny and (z,11)nen, We get Vfy, (7, ) — Vg(r) and
Vi, (1, +1) = Vg(x). Now set (Vn € N) z}; = v, " (Vfu(2zn) — Vfn(2ny1)) — Brn. Then,
by construction of (z,)nen, (Vn € N) (zp41,25,1) € graA. In addition, since inf,cnv, > 0 and
Vi, @y, ) =V, (i, +1) = Vg(z) — Vg(x) = 0, we deduce that xj, 41+ Bxy,, —0.0n the other

hand, since (x,),en lies in dom A and z;, — z, it follows that € dom A and therefore, by (3.16)
and [c], that x € int dom B. Hence, using [21, Corollary 1.1], we obtain By, — Bux. Altogether,
Lemma 3.1 (applied to the sequence (xlknﬂ, xfknﬂ)neN in gra A and the sequence (z;, , Bxy, )nen in
gra B) asserts that x € zer(A + B). In view of Theorem 2.8, we conclude that (x,,),cn converges to a
point in .. [

3.3 Forward-backward splitting for convex minimization

In this section, we study the convergence of (1.6). Our results improve on and complement those of
[18].

Problem 3.7 Let p € TI'y(&X), let b € T'h(X), and let f € T'x(X) be essentially smooth. Set C' =
(int dom f)Ndom dy and . = (int dom f) N Argmin(y + ¢). Suppose that ¢ + 1 is coercive, & # C C
int dom v, . # &, 1 is Gateaux differentiable on int dom 1), and there exists s € |0, +oc[ such that

(Ve e C)(Vy € C) Dy(x,y) < kDy(z,y). (3.21)
The objective is to find a point in ..

In the context of Problem 3.7, given «y € |0, +oc[ and g € C,(f), we define proxd, = (Vg +v9p) L.

Algorithm 3.8 Consider the setting of Problem 3.7. Let a € ]0, 4+o00|, let (7, )nen be in ]0, +o00[, and
let (fn)nen be in €, (f). Suppose that the following hold:

[a] There exists ¢ € ]0, 1] such that 0 < inf,,cn Y, < SUp,enTn < (1 —€)/k.
[b] There exists a summable sequence (7, )nen in [0, +-00[ such that (vn € N) Dy, . < (14 n,)Dy,.

[c] For every n € N, int dom f,, = dom df,, and V f,, is strictly monotone on C.
Take zp € C and set (Vn € N) a1 = proxf/z¢(an(mn) — VY (zy)).

Theorem 3.9 Let (z,,)nen be a sequence generated by Algorithm 3.8 and suppose that the following hold:
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[a] W(zp)nen C int dom f.
[b] One of the following is satisfied:

1/ .7 is a singleton.

2/ There exists a function g in I'o(X’) which is Gdteaux differentiable on intdomg D C, with
Vg strictly monotone on C, and such that, for every sequence (yn)nen in C' and every y €
W(Yn)nen NC, Y, = Y= Vi, (k) — Vg(y).

Then the following hold:

(i) (2n)nen converges weakly to a point in ..

(i) (2n)nen is @ monotone minimizing sequence: () + 1(zy) L min(p + 1) (X).
(i) Y e (6 + ) () — min(p + ¥)(X)) < +00 and (p + ) (@) — min(p + $)(X) = o(1/n).
(V) S e (D (01, 0) + Dy, (T, @nt1)) < +00.

Proof. (i): We shall derive this result from Theorem 2.8 with A = dp, B = 9, §; = 0, and 0, = 1.
First, appealing to [24, Theorem 2.4.4(i)], B is single-valued on int dom B = intdom and B =
V1 on int dom B. Next, set 6 = ¢ + 1. Since @ # (intdom f) N domdy C int domty, we have
dom ¢Nint dom 1) # &. Hence, [9, Theorem 4.1.19] yields A+ B = 06. Therefore, Argmin 6 = zer 90 =
zer(A+B) and ./ = (int dom f)Nzer(A+ B). Next, in view of Proposition 2.1(iii), (1.1) is fulfilled. On
the other hand, conditions [a] and [b] in Algorithm 2.4 are trivially satisfied. To verify condition [c]
in Algorithm 2.4, it suffices to show that, for every n € N, (Vf, — v,B)(C) C ran(V f, + 1, A), i.e.,
since C' C intdom B and B = V% on int dom B, that (V f,, — v, V¢)(C) C ran(V f,, + 1, A4). To do so,
fix temporarily n € N, let z € C, and set

Ap = Vi + A — Via(2) + 70 Vih(2). (3.22)

Then, since dom df, Ndom A = (int dom f,,) N dom A = (int dom f) N dom A # & by condition [c] in
Algorithm 3.8, it results from [6, Proposition 3.12] that A,, is maximally monotone. Next, we deduce
from condition [a] in Algorithm 3.8 and (3.21) that

(Vue C)(Yv € C) vDy(u,v) < a(l—e)Dy(u,v)/k < a(l—e)Ds(u,v) < (1—¢)Dy, (u,v). (3.23)
In turn,

(Vu € C)(Yo € O)  nfu —v,Vip(u) = Vip(v)) = Y (Dy(u,v) + Dy (v,u))
<(1- 6)(Df(u’v) + Df(v’u))
=1 —-e){u—v,Vf(u) — Vf,(v)). (3.24)

However, by coercivity of 0, there exists p € ]0, +oc[ such that
(VyeX) lyll=p = inf(y,(A+ B)(y+x)) = inf(y,00(y + x)) > 6(y+x)—-0(x) > 0. (3.25)
Now suppose that (y,y*) € gra A,(- + x) satisfies ||y|| > p. Then y + z € domV f, Ndom A =

(int dom f,,) Ndom A = C'and y* =V f(y+ ) + 1V (y +2) + V fu(x) =7V (2) € v (A+ B)(y+x).
Thus, it follows from (3.25) and (3.24) that

0< (y,y") —((W+2) —2,(Vi—mV)(y+2) — (Vi —mVe)(@) < {yy7) (3.26)
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Therefore, in view of [22, Proposition 2] and the maximal monotonicity of A, (- + z), there exists
y € X suchthat0 € A,(y+=). Hence (Vf, —7VY)(z) € Vin([G+z)+71A[G+x) C ran(V fr, + 1 A),
as desired. Since (2,41, 7, L (V fa(2n) =V fr(zn11)) — Vab(x,)) lies in gra dp by construction, we derive
from [6, Proposition 2.3(ii)] that

(Vo € C) p(@) > pl@ns1) = (@ = Tnr, Vi(En)) + 97 @ = Bngt, Vin(En) = Vfn(@nia))
(Tny1) = (= Zpg1, VO(2))

+ ’7;1 (Dfn (7, Zng1) + Dy, (Tpy1,T0) — Dy, (m, xn)) (3.27)

Z
Z

On the other hand, (3.23) and the convexity of v entail that

(Vo € C) (@ns1) < Y(@n) + (Tng1 — an, ViP(an)) + (1 - 5)%71Dfn (Tnt1, Tn)
= (@) + (& — 20, Vib(20)) + (@ns1 — 2, VY (z0))
+ (1 =€)y, Dy, (Tn41, Tn)
< Y(@) + (Tng1 — 2, V(25)) + (1 — 5)%71Dfn (Tnt1, Tn).- (3.28)

Altogether, upon adding (3.27) and (3.28), we obtain

(v € C) O@a) + v Dy (@,us1) + €73 ' Dy, (@ns1,20) < (@) + 77Dy, (w,20).  (3.29)
In particular, since x,, € C,

0(xnt1) + 7 (D (Tny Tns1) + €Dy, (Ti1, 7)) < 0(2). (3.30)
This shows that

(H(xn))neN decreases. (3.31)

In turn, using the coercivity of 0, we infer that (z,,),en is bounded, which secures [a] in Theorem 2.8.
It remains to verify that Algorithm 3.8 is focusing. Towards this end, let z € . and suppose that

(Dy, (2,2n)), o CONVerges (3.32)
and
€ Z Dy, (X1, 2n) < Z(l — KYn/a) Dy, (Tni1, Tn) < 400, (3.33)
neN neN

Set v = inf,en, and ¢ = lim Dy, (2, z,,). It follows from (3.29) applied to z € C that
(Vn e N) y(0(xps1) —mind(X)) + Dy, (2, tnt1) + €Dy, (Tng1, 2n) < Dy, (2, 20) (3.34)
and therefore from condition [b] in Algorithm 3.8 that

(Vn € N)  y(0(zp41) —mind(X)) + Dy, ., (2,2n41) + Dy, (Tny1, Tn)
< (1 +m) (7(9(96n+1) —minf(X)) + Dy, (2, 2p41) + €Dy, (Tnt1, xn))
< (L4 m)Dy, (2, 2n). (3.35)

Hence, lim v(0(7,,41) — min (X)) + ¢ < ¢ and therefore lim(6(x,, 1) — min (X)) = 0. Thus

O(xy) — minO(X). (3.36)
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Now take x € (xy,)nen, say zx, — x. By weak lower semicontinuity of 4, min(X) < 0(x) <
lim f(xg,) = min#(X) and it follows that z € Argminf = zer(A + B). Consequently, Theorem 2.8
asserts that (z,,),en converges weakly to a point in ..

(ii): Combine (3.31) and (3.36).

(iii) &(iv): Fix z € . and set v = inf,,cn 7,. Arguing along the same lines as above, we obtain
(Vn € N) 7(9($n+1) - min@(X)) +Dfii (2, Tp41) + €Dy, (Tng1, @) < (1410) Dy, (2, 25) (3.37)

and therefore [7, Lemma 5.31] guarantees that ) _(6(2,) —minf(X)) < 4-oc. In addition, (0(z,) —
min 0(X)),cn is decreasing by virtue of (3.31). However, recall that if (o, ),en is a decreasing sequence
in [0, +oo[ such that ) a, < 400, then

1
= o<5> and ZN — apy1) < o0, (3.38)
ne

Hence, 0(z,) — min0(X) = o(1/n) and }, .y n(0(xn) — 0(2n41)) < +o00. Consequently, since (3.29)
yields

(Vn € N) 'Y;lDfn (@n, Tpt1) + ngT:lDfn (Tnt1,2n) < 0(2n) — 0(Tn41), (3.39)
we infer that 3~ n(Dy, (i1, 2n) + Dy, (Tn, Tng1)) < 4o00. O
Remark 3.10 Let us relate Theorem 3.9 to the literature.

(i) The conclusions of items (i) and (ii) are obtained in [18, Theorem 1(2)] under more restrictive
conditions on the sequences (v, )nen and (f,)nen. Thus, we do not require in Theorem 3.9 the
additional condition (vVn € N) (1 4+ 7))V — Yn+1 < any/k. Furthermore, we do not suppose
either that — ran V¢ C dom ¢* or that the functions ( f,,),en are cofinite.

(ii) Items (iii) and (iv) are new even in Euclidean spaces. In the finite-dimensional setting, partial
results can be found in [3], where:

(a) A single convex function is used: (vVn € N) f,, = f.

(b) The viability of the sequence (z,),en is a blanket assumption, while it is guaranteed in
Theorem 3.9.

(c) Only the rates ), . Dy(Znt1,2n) < 400 and (¢ +1)(x,) — min(e +¢)(X) = O(1/n) are
obtained.

3.4 Further applications

Theorems 2.8 and 3.9 operate under broad assumptions which go beyond those of the existing
forward-backward methods of [6, 15, 18, 20] described in (1.4)—(1.7). Here are two examples which
do not fit the existing scenarios and exploit this generality.

Example 3.11 Consider the setting of Problem 1.1. Suppose, in addition, that the following hold:

[a] A is uniformly monotone on bounded sets.

[b] There exist ¢ € I'y(X) and k € ]0,+o0[ such that B = 0¢ and (Vz € C)(Vy € C) Dy(z,y) <
kD (z,y).
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[c] f is supercoercive.

[d] zer(A + B) C intdom f.

Let (v, )nen be a sequence in |0, +oo[ such that 0 < inf,cn 7y, < sup,envn < 1/k, take o € C, and set
(Vn €N) 211 = (Vf+7,4) YV f(2,) — 7. V(). Then (x,)en converges strongly to the unique
zero of A+ V.

The next example concerns variational inequalities.

Example 3.12 Let ¢ € T'o(X), let B: X — 2" be maximally monotone, let f € T'o(X') be essentially
smooth, and set C' = (intdom f) N dom dy. Suppose that C' C int dom B and B is single-valued on
int dom B. Consider the problem of finding a point in

S ={xeC|(VyeX) (x—y, Bx)+ o) <o)}, (3.40)

which is assumed to be nonempty. This is a special case of Problem 1.1 with A = 9y and, given
xo € C, Algorithm 2.4 produces the iterations (vVn € N) z,1 = prox£2¢(v fu(zn) — ynBxy,). The
weak convergence of (z,),cn to a point in .# is discussed in Theorem 2.8. Even in Euclidean spaces,
this scheme is new and of interest since, as shown in [3, 13, 18], the Bregman proximity operator
proxf;zw may be easier to compute for a particular f, than for the standard kernel |- ||?/2. Altogether,
our framework makes it possible to solve variational inequalities by forward-backward splitting with

non-cocoercive operators and/or outside of Hilbert spaces.
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