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Abstract

Various strategies are available to construct iteratively a common fixed point of nonexpansive op-
erators by activating only a block of operators at each iteration. In the more challenging class of
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methods require the activation of all the operators at each iteration, and the question of main-
taining convergence while updating only blocks of operators is open. We propose a method that
achieves this goal and analyze its asymptotic behavior. Weak, strong, and linear convergence results
are established by exploiting a connection with the theory of concentrating arrays. Applications to
several nonlinear and nonsmooth analysis problems are presented, ranging from monotone inclu-
sions and inconsistent feasibility problems, to variational inequalities and minimization problems
arising in data science.
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1 Introduction

Throughout, H is a real Hilbert space with power set 2H, identity operator Id, scalar product 〈· | ·〉,
and associated norm ‖ · ‖. Recall that an operator T : H → H is nonexpansive if it is 1-Lipschitzian,
and α-averaged for some α ∈ ]0, 1[ if Id+α−1(T − Id) is nonexpansive [4]. We consider the broad
class of nonlinear analysis problems which can be cast in the following format.

Problem 1.1 Let m be a strictly positive integer and let (ωi)16i6m ∈ ]0, 1]m be such that
∑m

i=1 ωi = 1.
For every i ∈ {0, . . . ,m}, let Ti : H → H be αi-averaged for some αi ∈ ]0, 1[. The task is to find a fixed
point of T0 ◦

∑m
i=1 ωiTi.

A classical instantiation of Problem 1.1 is found in the area of best approximation [8, 38]: given
two nonempty closed convex subsets C and D of H, with projection operators projC and projD, find
a fixed point of the composition projC ◦ projD. Geometrically, such points are those in C at minimum
distance from D, and they can be constructed via the method of alternating projections [8, 26]

(∀n ∈ N) xn+1 = projC(projDxn). (1.1)

This problem was extended in [1] to that of finding a fixed point of the composition proxf ◦ proxg
of the proximity operators of proper lower semicontinuous convex functions f : H → ]−∞,+∞] and
g : H → ]−∞,+∞]. Recall that, given x ∈ H, proxfx is the unique minimizer of the function y 7→
f(y) + ‖x − y‖2/2 or, equivalently, proxfx = (Id+∂f)−1 where ∂f is the subdifferential of f , which
is maximally monotone [6]. A further generalization of this formalism was proposed in [7] where,
given two maximally monotone operators A : H → 2H and B : H → 2H, with associated resolvents
JA = (Id+A)−1 and JB = (Id+B)−1, the asymptotic behavior of the iterations

(∀n ∈ N) xn+1 = JA(JBxn) (1.2)

for constructing a fixed point of JA ◦ JB was investigated. We recall that JA and JB are 1/2-averaged
operators [6]. Now let A0 and (Bi)16i6m be maximally monotone operators from H to 2H and, for
every i ∈ {1, . . . ,m}, let ρiBi = (Id−JρiBi

)/ρi be the Yosida approximation ofBi of index ρi ∈ ]0,+∞[.
Set β = 1/(

∑m
i=1 1/ρi) and (∀i ∈ {1, . . . ,m}) ωi = β/ρi. In connection with the inclusion problem

find x ∈ H such that 0 ∈ A0x+
m∑

i=1

(
ρiBi

)
x, (1.3)

the iterative process

(∀n ∈ N) xn+1 = JβγnA0

(
xn + γn

(
m∑

i=1

ωiJρiBi
xn − xn

))
, where 0 < γn < 2, (1.4)

was studied in [11]. This algorithm captures (1.2) as well as methods such as those proposed in
[31, 32]; see also [45] for related problems. To make its structure more apparent, let us set

(∀n ∈ N) T0,n = JβγnA0 and (∀i ∈ {1, . . . ,m}) Ti,n = (1− γn) Id+γnJρiBi
. (1.5)

Then we observe that, for every n ∈ N, the following hold:

• Problem (1.3) is the special case of Problem 1.1 in which T0 = JβA0 , T1 = Jρ1B1 , . . . , and
Tm = JρmBm . Its set of solutions is

Fix

(
JβA0 ◦

m∑

i=1

ωiJρiBi

)
= Fix

(
T0,n ◦

m∑

i=1

ωiTi,n

)
. (1.6)
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• For every i ∈ {0, . . . ,m}, Ti,n is an averaged nonexpansive operator.

• The updating rule in (1.4) can be written as

xn+1 = T0,n

(
m∑

i=1

ωiti,n

)
, where (∀i ∈ {1, . . . ,m}) ti,n = Ti,nxn. (1.7)

The implementation of (1.7) requires the activation of T0,n and the m operators (Ti,n)16i6m. If the
operators (Ti)06i6m have common fixed points, then Problem 1.1 amounts to finding such a point, and
this can be achieved via block-iterative methods that require activating only subgroups of operators
over the iterations; see, for instance, [2, 5, 10, 24]. In the absence of common fixed points, whether
Problem 1.1 can be solved by updating only subgroups of operators is an open question. In the
present paper, we address it by showing that it is possible to lighten the computational burden of
iteration n of (1.7) by activating only a subgroup (Ti,n)i∈In⊂{1,...,m} of the operators and by recycling
older evaluations of the remaining operators. This leads to the iteration template



for every i ∈ In⌊
ti,n = Ti,nxn

for every i ∈ {1, . . . ,m}r In⌊
ti,n = ti,n−1

xn+1 = T0,n

(
m∑

i=1

ωiti,n

)
.

(1.8)

The proposed framework will feature a flexible deterministic rule for selecting the blocks of indices
(In)n∈N, as well as tolerances in the evaluation of the operators in (1.8). Somewhat unexpectedly,
our analysis will rely on the theory of concentrating arrays, which appears predominantly in the area
of mean iteration methods [13, 15, 29, 33, 34, 40, 41]. In Section 2, we propose a new type of
concentrating array that will be employed in Section 3 to investigate the asymptotic behavior of the
method. Finally, various applications to nonlinear analysis problems are presented in Section 4.

Notation. Let M : H → 2H. Then graM =
{
(x, u) ∈ H ×H

∣∣ u ∈Mx
}

is the graph of M ,
zerM =

{
x ∈ H

∣∣ 0 ∈Mx
}

the set of zeros of M , domM =
{
x ∈ H

∣∣ Mx 6= ∅
}

the domain of
M , ranM =

{
u ∈ H

∣∣ (∃x ∈ H) u ∈Mx
}

the range of M , M−1 the inverse of M , which has graph{
(u, x) ∈ H ×H

∣∣ u ∈Mx
}

, and JM = (Id+M)−1 the resolvent of M . The parallel sum of M and
A : H → 2H is M �A = (M−1 +A−1)−1. Further, M is monotone if

(
∀(x, u) ∈ graM

)(
∀(y, v) ∈ graM

)
〈x− y | u− v〉 > 0, (1.9)

and maximally monotone if, in addition, there exists no monotone operator A : H → 2H such that
graM ⊂ graA 6= graM . If M − ρ Id is monotone for some ρ ∈ ]0,+∞[, then M is strongly monotone.
We denote by Γ0(H) the class of lower semicontinuous convex functions f : H → ]−∞,+∞] such
that dom f =

{
x ∈ H

∣∣ f(x) < +∞
}
6= ∅. Let f ∈ Γ0(H). The subdifferential of f is the maximally

monotone operator ∂f : H → 2H : x 7→
{
u ∈ H

∣∣ (∀y ∈ H) 〈y − x | u〉+ f(x) 6 f(y)
}

. For every x ∈
H, the unique minimizer of the function f+(1/2)‖·−x‖2 is denoted by proxfx. We have proxf = J∂f .
Let C be a nonempty closed convex subset of H. Then projC is the projector onto C, dC the distance
function to C, and ιC is the indicator function of C, which takes the value 0 on C and +∞ on its
complement.
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2 Concentrating arrays

Mann’s mean value iteration method seeks a fixed point of an operator T : H → H via the iterative
process xn+1 = Txn, where xn is a convex combination of the points (xj)06j6n [33, 34]. The notion
of a concentrating array was introduced in [15] to study the asymptotic behavior of such methods.
Interestingly, it will turn out to be also quite useful in our investigation of the asymptotic behavior of
(1.8).

Definition 2.1 [15, Definition 2.1] A triangular array (µn,j)n∈N,06j6n in [0,+∞[ is concentrating if
the following hold:

[a] (∀n ∈ N)
∑n

j=0 µn,j = 1.

[b] (∀j ∈ N) limn→+∞ µn,j = 0.

[c] Every sequence (ξn)n∈N in [0,+∞[ that satisfies

(
∀n ∈ N

)
ξn+1 6

n∑

j=0

µn,jξj + εn, (2.1)

for some summable sequence (εn)n∈N in [0,+∞[, converges.

We shall require the following convergence principle, which extends that of quasi-Fejér monotonic-
ity [10].

Lemma 2.2 Let C be a nonempty subset of H, let φ : [0,+∞[ → [0,+∞[ be strictly increasing and such

that limt→+∞ φ(t) = +∞, let (xn)n∈N be a sequence in H, let (µn,j)n∈N,06j6n be a concentrating array in

[0,+∞[, let (βn)n∈N be a sequence in [0,+∞[, and let (εn)n∈N be a summable sequence in [0,+∞[ such

that

(∀x ∈ C)(∀n ∈ N) φ(‖xn+1 − x‖) 6

n∑

j=0

µn,jφ(‖xj − x‖)− βn + εn. (2.2)

Then the following hold:

(i) (xn)n∈N is bounded.

(ii) βn → 0.

(iii) Suppose that every weak sequential cluster point of (xn)n∈N belongs to C. Then (xn)n∈N converges

weakly to a point in C.

(iv) Suppose that (xn)n∈N has a strong sequential cluster point in C. Then (xn)n∈N converges strongly

to a point in C.

Proof. Let x ∈ C. Let us first show that

(‖xn − x‖)n∈N converges. (2.3)

It follows from (2.2) and Definition 2.1 that (φ(‖xn − x‖))n∈N converges, say φ(‖xn − x‖) → λ.
However, since limt→+∞ φ(t) = +∞, (‖xn − x‖)n∈N is bounded and, to establish (2.3), it suffices
to show that it does not have two distinct cluster points. Suppose to the contrary that there exist
subsequences (‖xkn −x‖)n∈N and (‖xln −x‖)n∈N such that ‖xkn −x‖ → η and ‖xln −x‖ → ζ > η, and
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fix ε ∈ ]0, (ζ − η)/2[. Then, for n sufficiently large, ‖xkn − x‖ 6 η+ ε < ζ − ε 6 ‖xln − x‖ and, since φ
is strictly increasing, φ(‖xkn − x‖) 6 φ(η + ε) < φ(ζ − ε) 6 φ(‖xln − x‖). Taking the limit as n→ +∞
yields λ 6 φ(η + ε) < φ(ζ − ε) 6 λ, which is impossible.

(i) and (iv): Clear in view of (2.3).

(ii): As shown above, there exists λ ∈ [0,+∞[ such that φ(‖xn − x‖) → λ. In turn, [28, The-
orem 3.5.4] implies that

∑n
j=0 µn,jφ(‖xj − x‖) → λ. We thus derive from (2.2) that 0 6 βn 6∑n

j=0 µn,jφ(‖xj − x‖)− φ(‖xn+1 − x‖) + εn → 0.

(iii): This follows from (2.3) and [6, Lemma 2.47].

Several examples of concentrating arrays are provided in [15]. Here is a novel construction which
is not only of interest to mean iteration processes in fixed point theory [13, 15, 29, 33, 34, 41] but
will also play a pivotal role in establishing our main result, Theorem 3.2.

Proposition 2.3 Let K be a strictly positive integer and let (µn,j)n∈N,06j6n be a triangular array in

[0,+∞[ such that the following hold:

(i) (∀n ∈ N)
∑n

j=0 µn,j = 1.

(ii) (∀n ∈ N)(∀j ∈ N) n− j > K ⇒ µn,j = 0.

(iii) infn∈N µn,n > 0.

Then (µn,j)n∈N,06j6n is a concentrating array.

Proof. Properties [a] and [b] in Definition 2.1 clearly hold. To verify [c], let (ξn)n∈N be a sequence in
[0,+∞[ and let (εn)n∈N be a summable sequence in [0,+∞[ such that

(
∀n ∈ N

)
ξn+1 6

n∑

j=0

µn,jξj + εn. (2.4)

Then, in view of (ii), for every integer n > K − 1,

ξn+1 6

K−1∑

k=0

µn,n−kξn−k + εn. (2.5)

Set µ = infn∈N µn,n. If µ = 1, then (i) and (2.5) imply that, for every integer n > K − 1,

0 6 ξn+1 6 ξn + εn, (2.6)

and the convergence of (ξn)n∈N therefore follows from [6, Lemma 5.31]. We henceforth assume
that µ < 1 and, without loss of generality, that K > 1. For every integer n > K − 1, define ξ̂n =
max06k6K−1 ξn−k, and observe that (i) and (2.5) yield ξn+1 6 ξ̂n + εn. Hence,

(∀n ∈ {K − 1,K, . . .}) 0 6 ξ̂n+1 6 ξ̂n + εn (2.7)

and we deduce from [6, Lemma 5.31] that (ξ̂n)n∈N converges to some number η ∈ [0,+∞[. Therefore,
if (ξn)n∈N converges, then its limit is η as well. Let us argue by contradiction by assuming that ξn 6→ η.
Then there exists ν ∈ ]0,+∞[ such that

(∀N ∈ N)(∃n0 ∈ {N,N + 1, . . .}) |ξn0 − η| > ν. (2.8)
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Set

δ = min

{
µK−1

1− µK−1
, 1

}
and ν ′ =

δν

4
. (2.9)

Since ξ̂n → η and
∑

n∈N εn < +∞, let us fix an integer N > K − 1 such that

(∀n ∈ {N,N + 1, . . .}) η − µK−1ν

4
6 ξ̂n 6 η + ν ′ and

∑

j>n

εj 6 (1− µK−1)ν ′. (2.10)

Then

(∀k ∈ {1, 2, . . .})(∀n ∈ {N,N + 1, . . .})
k∑

j=1

µj−1εn+k−j 6
∑

j>n

εj 6 (1− µK−1)ν ′, (2.11)

while (2.5) and (i) imply that

(∀n ∈ {N,N + 1, . . .}) ξn+1 6 µn,nξn +

K−1∑

k=1

µn,n−kξn−k + εn

6 µn,nξn + (1− µn,n)ξ̂n + εn

= µξn + (1− µ)ξ̂n + (µn,n − µ)(ξn − ξ̂n) + εn

6 µξn + (1− µ)ξ̂n + εn

6 µξn + (1− µ)(η + ν ′) + εn. (2.12)

It follows from (2.8) that there exists an integer n0 > N such that |ξn0 − η| > ν, i.e.,

ξn0 > η + ν or 0 6 ξn0 < η − ν. (2.13)

Suppose that ξn0 > η + ν. Then (2.9) and (2.10) imply that ν < ξn0 − η 6 ξ̂n0 − η 6 ν ′ 6 ν/4, which
is impossible. Therefore, 0 6 ξn0 < η − ν and it follows from (2.12) that

ξn0+1 6 µ(η − ν) + (1− µ)(η + ν ′) + εn0 = η + (1− µ)ν ′ − µν + εn0 . (2.14)

Let us show by induction that, for every integer k > 1,

ξn0+k 6 η + (1− µk)ν ′ − µkν +

k∑

j=1

µj−1εn0+k−j. (2.15)

In view of (2.14), this inequality holds for k = 1. Now suppose that it holds for some integer k > 1.
Then we deduce from (2.12) and (2.15) that

ξn0+k+1 6 µξn0+k + εn0+k + (1− µ)(η + ν ′)

6 µη + µ(1− µk)ν ′ − µk+1ν +

k∑

j=0

µjεn0+k−j + (1− µ)(η + ν ′)

= η + (1− µk+1)ν ′ − µk+1ν +

k+1∑

j=1

µj−1εn0+k+1−j, (2.16)
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which completes the induction argument. Since µ ∈ ]0, 1[, we derive from (2.15), (2.11), and (2.9)
that

(∀k ∈ {1, . . . ,K − 1}) ξn0+k 6 η + (1− µk)ν ′ − µkν + (1− µK−1)ν ′

6 η + 2(1− µK−1)ν ′ − µK−1ν

= η + (1− µK−1)
δν

2
− µK−1ν

6 η − µK−1ν

2
. (2.17)

Therefore, by (2.10),

η − µK−1ν

4
6 ξ̂n0+K−1 6 η − µK−1 ν

2
. (2.18)

We thus reach a contradiction and conclude that (ξn)n∈N converges.

We derive from Proposition 2.3 a new instance of a concentrating array on which the main result
of Section 3 will hinge.

Example 2.4 Let I be a nonempty finite set, let (ωi)i∈I be a family in ]0, 1] such that
∑

i∈I ωi = 1,
let (In)n∈N be a sequence of nonempty subsets of I, and let K be a strictly positive integer such that
(∀n ∈ N)

⋃
06k6K−1 In+k = I. Set

(∀n ∈ N)(∀j ∈ {0, . . . , n}) µn,j =





1, if n = j < K;∑

i∈Ijr
⋃n

k=j+1 Ik

ωi, if 0 6 n−K < j;

0, otherwise.

(2.19)

Then the following hold:

(i) (µn,j)n∈N,06j6n is a concentrating array.

(ii) Let N ∋ n > K − 1, let (ξj)06j6n be in [0,+∞[, and, for every i ∈ I, define ℓi(n) =
max

{
k ∈ {n−K + 1, . . . , n}

∣∣ i ∈ Ik
}

. Then

n∑

j=0

µn,jξj =
∑

i∈I

ωiξℓi(n). (2.20)

Proof. Let n ∈ N. If n > K − 1, we have
⋃

06k6K−1 In−k = I and therefore

I is the union of the disjoint sets
(
In, In−1 r In, In−2 r (In ∪ In−1), . . . , In−K+2 r

n⋃

k=n−K+3

Ik, In−K+1 r

n⋃

k=n−K+2

Ik

)
. (2.21)

(i): It is clear from (2.19) that, for every integer j ∈ [0, n −K], µn,j = 0. In turn, we derive from
(2.19) and (2.21) that





n∑

j=0

µn,j = µn,n = 1, if n < K;

n∑

j=0

µn,j =

n∑

j=n−K+1

µn,j =

n∑

j=n−K+1

∑

i∈Ijr
⋃n

k=j+1 Ik

ωi =
∑

i∈I

ωi = 1, if n > K.

(2.22)
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Finally, infn∈N µn,n = infn∈N
∑

i∈In
ωi > mini∈I ωi > 0. All the properties of Proposition 2.3 are

therefore satisfied.

(ii): We have

(
∀j ∈ {n −K + 1, . . . , n}

)
(
∀i ∈ Ij r

n⋃

k=j+1

Ik

)
ℓi(n) = j. (2.23)

Hence, in view of (2.19),

(
∀j ∈ {n −K + 1, . . . , n}

) ∑

i∈Ijr
⋃n

k=j+1 Ik

ωiξℓi(n) =
∑

i∈Ijr
⋃n

k=j+1 Ik

ωiξj = µn,jξj. (2.24)

Consequently, (2.21) yields

n∑

j=0

µn,jξj =

n∑

j=n−K+1

∑

i∈Ijr
⋃n

k=j+1 Ik

ωiξℓi(n) =
∑

i∈I

ωiξℓi(n), (2.25)

which concludes the proof.

3 Solving Problem 1.1 with block updates

We formalize the ideas underlying (1.8) by proposing a method in which variable subgroups of opera-
tors are updated over the course of the iterations, and establish its convergence properties. At iteration
n, the block of operators to be updated is (Ti,n)i∈In . For added flexibility, an error ei,n is tolerated in
the application of the operator Ti,n. We operate under the following assumption, where m is as in
Problem 1.1.

Assumption 3.1 K is a strictly positive integer and (In)n∈N is a sequence of nonempty subsets of

{1, . . . ,m} such that

(∀n ∈ N)

K−1⋃

k=0

In+k = {1, . . . ,m}. (3.1)

For every integer n > K − 1, define

(∀i ∈ {1, . . . ,m}) ℓi(n) = max
{
k ∈ {n −K + 1, . . . , n}

∣∣ i ∈ Ik
}
. (3.2)

The sequences (e0,n)n∈N, (e1,n)n∈N, . . . , (em,n)n∈N are in H and satisfy

∑

n>K−1

‖e0,n‖ < +∞ and (∀i ∈ {1, . . . ,m})
∑

n>K−1

‖ei,ℓi(n)‖ < +∞. (3.3)

Theorem 3.2 Consider the setting of Problem 1.1 together with Assumption 3.1. Let ε ∈ ]0, 1[ and, for

every n ∈ N and every i ∈ {0} ∪ In, let αi,n ∈ ]0, 1/(1 + ε)[ and let Ti,n : H → H be αi,n-averaged.

Suppose that, for every integer n > K − 1,

∅ 6= Fix

(
T0 ◦

m∑

i=1

ωiTi

)
⊂ Fix

(
T0,n ◦

m∑

i=1

ωiTi,ℓi(n)

)
. (3.4)
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Let x0 ∈ H, let (ti,−1)16i6m ∈ Hm, and iterate

for n = 0, 1, . . .

for every i ∈ In⌊
ti,n = Ti,nxn + ei,n

for every i ∈ {1, . . . ,m}r In⌊
ti,n = ti,n−1

xn+1 = T0,n

(
m∑

i=1

ωiti,n

)
+ e0,n.

(3.5)

Let x be a solution to Problem 1.1. Then the following hold:

(i) (xn)n∈N is bounded.

(ii) Let i ∈ {1, . . . ,m}. Then xℓi(n) − Ti,ℓi(n)xℓi(n) + Ti,ℓi(n)x− x→ 0.

(iii) Let i ∈ {1, . . . ,m} and j ∈ {1, . . . ,m}. Then Ti,ℓi(n)xℓi(n)−Tj,ℓj(n)xℓj(n)−Ti,ℓi(n)x+Tj,ℓj(n)x→ 0.

(iv) Let i ∈ {1, . . . ,m}. Then xℓi(n) − xn → 0.

(v) xn − T0,n(
∑m

i=1 ωiTi,ℓi(n)xn) → 0.

(vi) Suppose that every weak sequential cluster point of (xn)n∈N solves Problem 1.1. Then the following

hold:

(a) (xn)n∈N converges weakly to a solution to Problem 1.1.

(b) Suppose that (xn)n∈N has a strong sequential cluster point. Then (xn)n∈N converges strongly

to a solution to Problem 1.1.

(vii) For every n > K − 1 and every i ∈ {0} ∪ In, let ρi ∈ ]0, 1] be a Lipschitz constant of Ti,n. Suppose

that (3.5) is implemented without errors and that, for some i ∈ {0, . . . ,m}, ρi < 1. Then (xn)n∈N
converges linearly to the unique solution to Problem 1.1.

Proof. Let us fix temporarily an integer n > K − 1. We first observe that, by nonexpansiveness of the
operators T0,n and (Ti,ℓi(n))16i6m,

(
∀(y, e0, . . . , em) ∈ Hm+2

) ∥∥∥∥T0,n
( m∑

i=1

ωi
(
Ti,ℓi(n)xℓi(n) + ei

))
+ e0 − T0,n

( m∑

i=1

ωiTi,ℓi(n)y

)∥∥∥∥

6

∥∥∥∥
m∑

i=1

ωiTi,ℓi(n)xℓi(n) −

m∑

i=1

ωiTi,ℓi(n)y +

m∑

i=1

ωiei

∥∥∥∥+ ‖e0‖

6

m∑

i=1

ωi
∥∥Ti,ℓi(n)xℓi(n) − Ti,ℓi(n)y

∥∥+ ‖e0‖+
m∑

i=1

ωi‖ei‖

6

m∑

i=1

ωi‖xℓi(n) − y‖+ ‖e0‖+

m∑

i=1

‖ei‖. (3.6)

We also note that (3.2) and (3.5) yield

(∀i ∈ {1, . . . ,m}) ti,n = Ti,ℓi(n)xℓi(n) + ei,ℓi(n). (3.7)
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It follows from (3.5), (3.7), (3.4), and (3.6) that

‖xn+1 − x‖ =

∥∥∥∥T0,n
( m∑

i=1

ωi
(
Ti,ℓi(n)xℓi(n) + ei,ℓi(n)

))
+ e0,n − T0,n

( m∑

i=1

ωiTi,ℓi(n)x

)∥∥∥∥

6

m∑

i=1

ωi‖xℓi(n) − x‖+ ‖e0,n‖+
m∑

i=1

‖ei,ℓi(n)‖. (3.8)

Now define (µk,j)k∈N,06j6k as in (2.19), with I = {1, . . . ,m}, and set εn = ‖e0,n‖ +
∑m

i=1 ‖ei,ℓi(n)‖.
Then we derive from Example 2.4(ii) that

m∑

i=1

ωi‖xℓi(n) − x‖ =
n∑

j=0

µn,j‖xj − x‖, (3.9)

and it follows from (3.8) and (3.3) that

‖xn+1 − x‖ 6

n∑

j=0

µn,j‖xj − x‖+ εn, where
∑

k>K−1

εk < +∞. (3.10)

Hence, Lemma 2.2(i) guarantees that

(xk)k∈N is bounded. (3.11)

Consequently, using (3.3) and (3.6), we obtain

ν0 = sup
k>K−1

(
2

∥∥∥∥T0,k
( m∑

i=1

ωi
(
Ti,ℓi(k)xℓi(k)+ei,ℓi(k)

))
−T0,k

( m∑

i=1

ωiTi,ℓi(k)x

)∥∥∥∥+‖e0,k‖

)
< +∞ (3.12)

and

ν = sup
k>K−1

(
m∑

i=1

ωi‖ei,ℓi(k)‖+ 2

∥∥∥∥
m∑

i=1

ωi
(
Ti,ℓi(k)xℓi(k) − Ti,ℓi(k)x

)∥∥∥∥

)
< +∞. (3.13)

In addition, for every y ∈ H and every z ∈ H, it follows from [6, Proposition 4.35] that

‖T0,ny − T0,nz‖
2 6 ‖y − z‖2 −

1− α0,n

α0,n
‖(Id−T0,n)y − (Id−T0,n)z‖

2

6 ‖y − z‖2 − ε‖(Id−T0,n)y − (Id−T0,n)z‖
2 (3.14)

and, likewise, that

(∀i ∈ {1, . . . ,m}) ‖Ti,ℓi(n)y−Ti,ℓi(n)z‖
2 6 ‖y− z‖2 − ε‖(Id−Ti,ℓi(n))y− (Id−Ti,ℓi(n))z‖

2. (3.15)
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Hence, we deduce from (3.5), (3.7), (3.4), and [6, Lemma 2.14(ii)] that

‖xn+1 − x‖2 =

∥∥∥∥T0,n
( m∑

i=1

ωi(Ti,ℓi(n)xℓi(n) + ei,ℓi(n))

)
− T0,n

( m∑

i=1

ωiTi,ℓi(n)x

)
+ e0,n

∥∥∥∥
2

6

∥∥∥∥T0,n
( m∑

i=1

ωi(Ti,ℓi(n)xℓi(n) + ei,ℓi(n))

)
− T0,n

( m∑

i=1

ωiTi,ℓi(n)x

)∥∥∥∥
2

+ ν0‖e0,n‖

6

∥∥∥∥
m∑

i=1

ωi
(
Ti,ℓi(n)xℓi(n) − Ti,ℓi(n)x

)∥∥∥∥
2

− ε

∥∥∥∥(Id−T0,n)
( m∑

i=1

ωi(Ti,ℓi(n)xℓi(n) + ei,ℓi(n))

)
− (Id−T0,n)

( m∑

i=1

ωiTi,ℓi(n)x

)∥∥∥∥
2

+ ν0‖e0,n‖+ ν
m∑

i=1

ωi‖ei,ℓi(n)‖

6

m∑

i=1

ωi‖Ti,ℓi(n)xℓi(n) − Ti,ℓi(n)x‖
2

−
1

2

m∑

i=1

m∑

j=1

ωiωj
∥∥Ti,ℓi(n)xℓi(n) − Ti,ℓi(n)x− Tj,ℓj(n)xℓj(n) + Tj,ℓj(n)x

∥∥2

− ε

∥∥∥∥(Id−T0,n)
( m∑

i=1

ωi(Ti,ℓi(n)xℓi(n) + ei,ℓi(n))

)
+ x−

m∑

i=1

ωiTi,ℓi(n)x

∥∥∥∥
2

+ ν0‖e0,n‖+ ν

m∑

i=1

ωi‖ei,ℓi(n)‖

6

m∑

i=1

ωi‖xℓi(n) − x‖2 − ε

m∑

i=1

ωi
∥∥(Id−Ti,ℓi(n))xℓi(n) − (Id−Ti,ℓi(n))x

∥∥2

−
1

2

m∑

i=1

m∑

j=1

ωiωj
∥∥Ti,ℓi(n)xℓi(n) − Ti,ℓi(n)x− Tj,ℓj(n)xℓj(n) + Tj,ℓj(n)x

∥∥2

− ε

∥∥∥∥(Id−T0,n)
( m∑

i=1

ωi(Ti,ℓi(n)xℓi(n) + ei,ℓi(n))

)
+ x−

m∑

i=1

ωiTi,ℓi(n)x

∥∥∥∥
2

+ ν0‖e0,n‖+ ν

m∑

i=1

ωi‖ei,ℓi(n)‖. (3.16)
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It therefore follows from (3.9) that

‖xn+1 − x‖2

6

n∑

j=0

µn,j‖xj − x‖2 − ε

m∑

i=1

ωi
∥∥xℓi(n) − Ti,ℓi(n)xℓi(n) + Ti,ℓi(n)x− x

∥∥2

−
1

2

m∑

i=1

m∑

j=1

ωiωj
∥∥Ti,ℓi(n)xℓi(n) − Ti,ℓi(n)x− Tj,ℓj(n)xℓj(n) + Tj,ℓj(n)x

∥∥2

− ε

∥∥∥∥
m∑

i=1

ωi(Ti,ℓi(n)xℓi(n) + ei,ℓi(n))− T0,n

( m∑

i=1

ωi(Ti,ℓi(n)xℓi(n) + ei,ℓi(n))

)
+ x−

m∑

i=1

ωiTi,ℓi(n)x

∥∥∥∥
2

+ ν0‖e0,n‖+ ν

m∑

i=1

ωi‖ei,ℓi(n)‖. (3.17)

Hence, Example 2.4(i), (3.3), and Lemma 2.2(ii) imply that





max
16i6m

∥∥xℓi(n) − Ti,ℓi(n)xℓi(n) + Ti,ℓi(n)x− x
∥∥→ 0

max
16i6m
16j6m

∥∥Ti,ℓi(n)xℓi(n) − Tj,ℓj(n)xℓj(n) − Ti,ℓi(n)x+ Tj,ℓj(n)x
∥∥→ 0, (3.18)

and that

∥∥∥∥
m∑

i=1

ωi(Ti,ℓi(n)xℓi(n)+ei,ℓi(n))−T0,n

( m∑

i=1

ωi(Ti,ℓi(n)xℓi(n)+ei,ℓi(n))

)
+x−

m∑

i=1

ωiTi,ℓi(n)x

∥∥∥∥→ 0. (3.19)

(i): See (3.11).

(ii)–(iii): See (3.18).

(iv)–(v): It follows from (ii) that

m∑

i=1

ωixℓi(n) −

m∑

i=1

ωiTi,ℓi(n)xℓi(n) +

m∑

i=1

ωiTi,ℓi(n)x− x→ 0. (3.20)

We also derive from (ii) that, for every i and every j in {1, . . . ,m},

xℓi(n) − Ti,ℓi(n)xℓi(n) − xℓj(n) + Tj,ℓj(n)xℓj(n) + Ti,ℓi(n)x− Tj,ℓj(n)x→ 0. (3.21)

Combining (iii) and (3.21), we obtain

(∀i ∈ {1, . . . ,m})(∀j ∈ {1, . . . ,m}) xℓi(n) − xℓj(n) → 0. (3.22)

Now, let ı̄ ∈ {1, . . . ,m} and δ ∈ ]0,+∞[. Then (3.22) implies that, for every j ∈ {1, . . . ,m}, there
exists an integer N δ,j > K − 1 such that

(
∀n ∈

{
N δ,j, N δ,j + 1, . . .

})
‖xℓı̄(n) − xℓj(n)‖ 6 δ. (3.23)

Set N δ = max16j6mN δ,j. Then

(
∀j ∈ {1, . . . ,m}

)(
∀n ∈

{
N δ, N δ + 1, . . .

})
‖xℓı̄(n) − xℓj(n)‖ 6 δ. (3.24)
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Thus, in view of (3.2), for every integer n > N δ, taking jn ∈ In yields ℓjn(n) = n and hence ‖xℓı̄(n) −
xn‖ 6 δ. This shows that

(∀i ∈ {1, . . . ,m}) xℓi(n) − xn → 0. (3.25)

Consequently, it follows from (3.6) that
∥∥∥∥T0,n

( m∑

i=1

(
ωiTi,ℓi(n)xℓi(n) + ei,ℓi(n)

))
− T0,n

( m∑

i=1

ωiTi,ℓi(n)xn

)∥∥∥∥

6

m∑

i=1

ωi‖xℓi(n) − xn‖+
m∑

i=1

‖ei,ℓi(n)‖

→ 0. (3.26)

In turn, we derive from (3.19), (3.20), (3.25), and (3.3) that

xn − T0,n

( m∑

i=1

ωiTi,ℓi(n)xn

)

= T0,n

( m∑

i=1

ωi(Ti,ℓi(n)xℓi(n) + ei,ℓi(n))

)
− T0,n

( m∑

i=1

ωiTi,ℓi(n)xn

)

+

m∑

i=1

ωi(Ti,ℓi(n)xℓi(n) + ei,ℓi(n))− T0,n

( m∑

i=1

ωi(Ti,ℓi(n)xℓi(n) + ei,ℓi(n))

)
+ x−

m∑

i=1

ωiTi,ℓi(n)x

+
m∑

i=1

ωixℓi(n) −
m∑

i=1

ωiTi,ℓi(n)xℓi(n) +
m∑

i=1

ωiTi,ℓi(n)x− x+
m∑

i=1

ωi(xn − xℓi(n))−
m∑

i=1

ωiei,ℓi(n)

→ 0. (3.27)

(vi)(a): This follows from (3.10) and Lemma 2.2(iii).

(vi)(b): By (vi)(a), there exists a solution z to Problem 1.1 such that xn ⇀ z. Therefore, z must be
the strong cluster point in question, say xkn → z. In view of (3.10) and Lemma 2.2(iv), we conclude
that xn → z.

(vii): Set ρ = ρ0
∑m

i=1 ωiρi and note that ρ ∈ ]0, 1[. For every integer n > K − 1 and every
(yi)16i6m ∈ Hm, (3.4) yields

∥∥∥∥T0,n
( m∑

i=1

ωiTi,ℓi(n)yi

)
− x

∥∥∥∥ =

∥∥∥∥T0,n
( m∑

i=1

ωiTi,ℓi(n)yi

)
− T0,n

( m∑

i=1

ωiTi,ℓi(n)x

)∥∥∥∥

6 ρ0

∥∥∥∥
m∑

i=1

ωiTi,ℓi(n)yi −

m∑

i=1

ωiTi,ℓi(n)x

∥∥∥∥

6 ρ0

m∑

i=1

ωi‖Ti,ℓi(n)yi − Ti,ℓi(n)x‖

6 ρ0

m∑

i=1

ωiρi
∥∥yi − x

∥∥. (3.28)

Now let y ∈ Fix (T0 ◦
∑m

i=1 ωiTi). Since (3.28) implies that

‖y − x‖ =

∥∥∥∥T0,K−1

( m∑

i=1

ωiTi,ℓi(K−1)y

)
− x

∥∥∥∥ 6 ρ‖y − x‖, (3.29)
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we infer that y = x, which shows uniqueness. For every integer n > K − 1, (3.28) also yields

‖xn+1 − x‖ =

∥∥∥∥T0,n
( m∑

i=1

ωiTi,ℓi(n)xℓi(n)

)
− x

∥∥∥∥ 6 ρ0

m∑

i=1

ωiρi‖xℓi(n) − x‖. (3.30)

Now set

(∀n ∈ N) ξn = ‖xn − x‖. (3.31)

It follows from (3.30) that

(∀n ∈ {K − 1,K, . . .}) ξn+1 6 ρ0

m∑

i=1

ωiρiξℓi(n) 6 ρξ̂n, where ξ̂n = max
16i6m

ξℓi(n). (3.32)

Let us show that

(∀n ∈ N) ξn 6 ρ
n−K+1

K ξ̂K−1. (3.33)

We proceed by strong induction. We have

(∀k ∈ {0, . . . ,K − 1}) ξk 6 ξ̂K−1 6 ρ
k−K+1

K ξ̂K−1. (3.34)

Next, let N ∋ n > K − 1 and suppose that

(∀k ∈ {0, . . . , n}) ξk 6 ρ
k−K+1

K ξ̂K−1. (3.35)

Since {ℓi(n)}16i6m ⊂ {n − K + 1, . . . , n}, there exists kn ∈ {n − K + 1, . . . , n} such that ξ̂n = ξkn .
Therefore, we derive from (3.32) and (3.35) that

ξn+1 6 ρξ̂n = ρξkn 6 ρρ
kn−K+1

K ξ̂K−1 = ρ
kn+1
K ξ̂K−1 6 ρ

n−K+2
K ξ̂K−1. (3.36)

We have thus shown that

(∀n ∈ N) ‖xn − x‖ 6 ρ
1−K
K ξ̂K−1

(
ρ

1
K

)n
, (3.37)

which establishes the linear convergence of (xn)n∈N to x.

Remark 3.3 In applications, the cardinality of In may be small compared to m. In such scenarios, it
is advantageous to set z−1 =

∑m
i=1 ωiti,−1 and write (3.5) as

for n = 0, 1, . . .

yn = zn−1 −
∑

i∈In

ωiti,n−1

for every i ∈ In⌊
ti,n = Ti,nxn + ei,n

for every i ∈ {1, . . . ,m}r In⌊
ti,n = ti,n−1

zn = yn +
∑

i∈In

ωiti,n

xn+1 = T0,nzn + e0,n,

(3.38)

which provides a more economical update equation.

14



Next, we specialize our results to the autonomous case, wherein the operators (Ti)06i6m of Prob-
lem 1.1 are used directly.

Corollary 3.4 Consider the setting of Problem 1.1 under Assumption 3.1 and the assumption that it has

a solution. Let x0 ∈ H, let (ti,−1)16i6m ∈ Hm, and iterate

for n = 0, 1, . . .

for every i ∈ In⌊
ti,n = Tixn + ei,n

for every i ∈ {1, . . . ,m}r In⌊
ti,n = ti,n−1

xn+1 = T0

(
m∑

i=1

ωiti,n

)
+ e0,n.

(3.39)

Then the following hold:

(i) Let x be a solution to Problem 1.1 and let i ∈ {1, . . . ,m}. Then xn − Tixn → x− Tix.

(ii) (xn)n∈N converges weakly to a solution to Problem 1.1.

(iii) Suppose that, for some i ∈ {0, . . . ,m}, Ti is demicompact [39], i.e., every bounded sequence

(yn)n∈N such that (yn − Tiyn)n∈N converges has a strong sequential cluster point. Then (xn)n∈N
converges strongly to a solution to Problem 1.1.

(iv) Suppose that (3.5) is implemented without errors and that, for some i ∈ {0, . . . ,m}, Ti is a Banach

contraction. Then (xn)n∈N converges linearly to the unique solution to Problem 1.1.

Proof. We operate in the special case of Theorem 3.2 for which (∀n ∈ N)(∀i ∈ {0} ∪ In) Ti,n = Ti. Set
T = T0 ◦ (

∑m
i=1 ωiTi). Then the set of solutions to Problem 1.1 is FixT and T is nonexpansive since

the operators (Ti)06i6m are likewise. In addition, we derive from Theorem 3.2(v) that

xn − Txn → 0. (3.40)

Altogether, [6, Corollary 4.28] asserts that, if z ∈ H is a weak sequential cluster point of (xn)n∈N, then
z ∈ FixT . Thus,

every weak sequential cluster point of (xn)n∈N solves Problem 1.1. (3.41)

Recall from Theorem 3.2(ii) that

(∀x ∈ FixT )(∀i ∈ {1, . . . ,m}) xℓi(n) − Tixℓi(n) → x− Tix (3.42)

and from Theorem 3.2(iv) that

(∀i ∈ {1, . . . ,m}) xℓi(n) − xn → 0. (3.43)

(i): We derive from the nonexpansiveness of Ti, (3.42), and (3.43) that

‖(Id−Ti)xn − (Id−Ti)x‖ 6 ‖(Id−Ti)xn − (Id−Ti)xℓi(n)‖+ ‖(Id−Ti)xℓi(n) − (Id−Ti)x‖

6 2‖xn − xℓi(n)‖+ ‖(Id−Ti)xℓi(n) − (Id−Ti)x‖

→ 0. (3.44)
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(ii): This is a consequence of (3.41) and Theorem 3.2(vi)(a).

(iii): In view of (3.41) and Theorem 3.2(vi)(b), it is enough to show that (xn)n∈N has a strong
sequential cluster point. It follows from (ii) and [6, Lemma 2.46] that (xn)n∈N is bounded. Hence,
if 1 6 i 6 m, we infer from (i) and the demicompactness of Ti that (xn)n∈N has a strong sequential
cluster point. Now suppose that i = 0 and let x ∈ FixT . Arguing as in (3.19), we obtain

(Id−T0)

( m∑

i=1

ωiTixℓi(n)

)
=

m∑

i=1

ωiTixℓi(n) − T0

( m∑

i=1

ωiTixℓi(n)

)
→

m∑

i=1

ωiTix− x. (3.45)

However, we derive from the nonexpansiveness of the operators (Ti)06i6m and (3.43) that

∥∥∥∥(Id−T0)
( m∑

i=1

ωiTixn

)
− (Id−T0)

( m∑

i=1

ωiTixℓi(n)

)∥∥∥∥ 6 2

∥∥∥∥
m∑

i=1

ωiTixn −

m∑

i=1

ωiTixℓi(n)

∥∥∥∥

6 2

m∑

i=1

ωi

∥∥∥∥Tixn − Tixℓi(n)

∥∥∥∥

6 2‖xn − xℓi(n)‖

→ 0. (3.46)

Combining (3.45) and (3.46) yields

(Id−T0)

( m∑

i=1

ωiTixn

)
→

m∑

i=1

ωiTix− x. (3.47)

Therefore, by demicompactness of T0, the bounded sequence (
∑m

i=1 ωiTixn)n∈N has a strong sequential
cluster point and so does (Txn)n∈N = (T0(

∑m
i=1 ωiTixn))n∈N since T0 is nonexpansive. Consequently,

(3.40) entails that (xn)n∈N has a strong sequential cluster point.

(iv): This is a consequence of Theorem 3.2(vii).

In connection with Corollary 3.4(iii), here are examples of demicompact operators.

Example 3.5 Le T : H → H be a nonexpansive operator. Then T is demicompact if one of the follow-
ing holds:

(i) ranT is boundedly relatively compact (the intersection of its closure with every closed ball in H
is compact).

(ii) ranT lies in a finite-dimensional subspace.

(iii) T = JA, where A : H → 2H is maximally monotone and one of the following is satisfied:

(a) A is demiregular [3], i.e., for every sequence (xn, un)n∈N in graA and for every (x, u) ∈
graA, [xn ⇀ x and un → u] ⇒ xn → x.

(b) A is uniformly monotone, i.e., there exists an increasing function φ : [0,+∞[ → [0,+∞]
vanishing only at 0 such that (∀(x, u) ∈ graA)(∀(y, v) ∈ graA) 〈x− y | u− v〉 > φ(‖x−y‖).

(c) A = ∂f , where f ∈ Γ0(H) is uniformly convex, i.e., there exists an increasing function
φ : [0,+∞[ → [0,+∞] vanishing only at 0 such that

(∀α ∈ ]0, 1[)(∀x ∈ dom f)(∀y ∈ dom f)

f
(
αx + (1 − α)y

)
+ α(1 − α)φ(‖x − y‖) 6 αf(x) + (1 − α)f(y). (3.48)
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(d) A = ∂f , where f ∈ Γ0(H) and the lower level sets of f are boundedly compact.

(e) domA is boundedly relatively compact.

(f) A : H → H is single-valued with a single-valued continuous inverse.

Proof. Let (yn)n∈N be a bounded sequence in H such that yn−Tyn → u, for some u ∈ H. Set (∀n ∈ N)
xn = Tyn.

(i): By construction, (xn)n∈N lies in ranT and it is bounded since (∀n ∈ N) ‖xn‖ 6 ‖Tyn − Ty0‖+
‖Ty0‖ 6 ‖yn − y0‖+ ‖Ty0‖. Thus, (xn)n∈N lies in a compact set and it therefore possesses a strongly
convergent subsequence, say xkn → x ∈ H. In turn ykn = ykn − Tykn + xkn → u+ x.

(ii)⇒(i): Clear.

(iii)(a): Set (∀n ∈ N) un = yn − xn. Then un → u. In addition, (∀n ∈ N) (xn, un) ∈ graA. On the
other hand, since (yn)n∈N is bounded, we can extract from it a weakly convergent subsequence, say
ykn ⇀ y. Then xkn = ykn − ukn ⇀ y − u and ukn → u. By demiregularity, we get xkn → y − u and
therefore ykn = xkn + ukn → y.

(iii)(b)–(iii)(f): These are special cases of (iii)(a) [3, Proposition 2.4].

4 Applications

We present several applications of Theorem 3.2 to classical nonlinear analysis problems which will be
seen to reduce to instantiations of Problem 1.1. These range from common fixed point and inconsistent
feasibility problems to composite monotone inclusion and minimization problems. In each scenario,
the main benefit of the proposed framework will lie in its ability to achieve convergence while updating
only subgroups of the pool of operators involved.

4.1 Finding common fixed point of firmly nonexpansive operators

Firmly nonexpansive operators are operators which are 1/2-averaged [6, 25]. This application con-
cerns the following ubiquitous fixed point problem [5, 9, 23, 24, 43].

Problem 4.1 Let m be a strictly positive integer and, for every i ∈ {1, . . . ,m}, let Ti : H → H be firmly
nonexpansive. The task is to find a point in

⋂m
i=1 FixTi.

Corollary 4.2 Consider the setting of Problem 4.1 under Assumption 3.1 and the assumption that⋂m
i=1 Fix Ti 6= ∅. Let (ωi)16i6m ∈ ]0, 1]m be such that

∑m
i=1 ωi = 1. For every n ∈ N and every

i ∈ In, let Ti,n : H → H be a firmly nonexpansive operator such that FixTi ⊂ FixTi,n. Let x0 ∈ H, let

(ti,−1)16i6m ∈ Hm, and iterate

for n = 0, 1, . . .

for every i ∈ In⌊
ti,n = Ti,nxn + ei,n

for every i ∈ {1, . . . ,m}r In⌊
ti,n = ti,n−1

xn+1 =
m∑

i=1

ωiti,n.

(4.1)

Then the following hold:
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(i) Let i ∈ {1, . . . ,m}. Then (Ti,ℓi(n)xℓi(n))n∈N is bounded.

(ii) Suppose that, for every z ∈ H, every i ∈ {1. . . . ,m}, and every strictly increasing sequence (kn)n∈N
of integers greater than K,

{
xℓi(kn) ⇀ z

xℓi(kn) − Ti,ℓi(kn)xℓi(kn) → 0
⇒ z ∈ Fix Ti. (4.2)

Then (xn)n∈N converges weakly to a solution to Problem 4.1.

(iii) Suppose that, for some i ∈ {1, . . . ,m}, (Ti,ℓi(n)xℓi(n))n∈N has a strong sequential cluster point. Then

(xn)n∈N converges strongly to a solution to Problem 4.1.

Proof. Set T0 = Id and (∀i ∈ {1, . . . ,m}) αi = 1/2. In addition, set (∀n ∈ N) T0,n = Id. By assumption,
for every i ∈ {1, . . . ,m} and every integer n > K − 1, FixTi ⊂ FixTi,ℓi(n). Therefore, it follows from
[6, Proposition 4.47] that, for every integer n > K − 1,

Fix

(
T0 ◦

m∑

i=1

ωiTi

)
=

m⋂

i=1

FixTi ⊂

m⋂

i=1

FixTi,ℓi(n) = Fix

(
T0,n ◦

m∑

i=1

ωiTi,ℓi(n)

)
. (4.3)

This shows that (3.4) holds, that Problem 4.1 is a special case of Problem 1.1, and that (4.1) is a
special case of (3.5). Let us derive the claims from Theorem 3.2. First, let x ∈

⋂m
i=1 FixTi. Then, for

every i ∈ {1, . . . ,m} and every integer n > K − 1, x ∈ Fix Ti ⊂ Fix Ti,ℓi(n). This allows us to deduce
from Theorem 3.2(ii) that

(∀i ∈ {1, . . . ,m}) xℓi(n) − Ti,ℓi(n)xℓi(n) = xℓi(n) − Ti,ℓi(n)xℓi(n) + Ti,ℓi(n)x− x→ 0. (4.4)

We also recall from Theorem 3.2(iv) that

(∀i ∈ {1, . . . ,m}) xℓi(n) − xn → 0. (4.5)

(i): This follows from Theorem 3.2(i), (4.4), and (4.5).

(ii): Let i ∈ {1, . . . ,m} and let z ∈ H be a weak sequential cluster point of (xn)n∈N, say xkn ⇀ z.
In view of Theorem 3.2(vi)(a), it is enough to show that z ∈ Fix Ti. We derive from (4.4) that
xℓi(kn)−Ti,ℓi(kn)xℓi(kn) → 0. On the other hand, (4.5) yields xℓi(kn) = (xℓi(kn)−xkn)+xkn ⇀ z. Using
(4.2), we obtain z ∈ FixTi.

(iii): Let z ∈ H be a strong sequential cluster point of (Ti,ℓi(n)xℓi(n))n∈N, say Ti,ℓi(kn)xℓi(kn) → z.
Then (4.4) yields xℓi(kn) → z. In turn, (4.5) implies that xkn → z and the conclusion follows from
Theorem 3.2(vi)(b).

Example 4.3 We revisit a problem investigated in [16]. Let m be a strictly positive integer, let
(ωi)16i6m ∈ ]0, 1]m be such that

∑m
i=1 ωi = 1, and, for every i ∈ {1, . . . ,m}, let ρi ∈ [0,+∞[ and

let Ai : H → 2H be maximally ρi-cohypomonotone in the sense that A−1
i + ρi Id is maximally mono-

tone. The task is to

find x ∈ H such that (∀i ∈ {1, . . . ,m}) 0 ∈ Aix, (4.6)
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under the assumption that such a point exists. Suppose that Assumption 3.1 is satisfied, let ε ∈ ]0, 1[,
let x0 ∈ H, let (ti,−1)16i6m ∈ Hm, and let (∀n ∈ N)(∀i ∈ In) γi,n ∈ [ρi + ε,+∞[. Iterate

for n = 0, 1, . . .

for every i ∈ In⌊
ti,n = xn +

(
1− ρi/γi,n

)(
Jγi,nAi

xn + ei,n − xn
)

for every i ∈ {1, . . . ,m}r In⌊
ti,n = ti,n−1

xn+1 =
m∑

i=1

ωiti,n.

(4.7)

Then the following hold:

(i) (xn)n∈N converges weakly to a solution to (4.6).

(ii) Suppose that, for some i ∈ {1, . . . ,m}, domAi is boundedly relatively compact. Then (xn)n∈N
converges strongly to a solution to (4.6).

Proof. Set

(∀i ∈ {1, . . . ,m})




Ti = Id+

(
1−

ρi
γi

)(
JγiAi

− Id
)
, where γi ∈ ]ρi,+∞[

Mi = (A−1
i + ρi Id)

−1.

(4.8)

Then it follows from [6, Proposition 20.22] that the operators (Mi)16i6m are maximally monotone
and therefore from [16, Lemma 2.4] and [6, Corollary 23.9] that

(∀i ∈ {1, . . . ,m}) Ti = J(γi−ρi)Mi
is firmly nonexpansive and FixTi = zerMi = zerAi, (4.9)

which makes (4.6) an instantiation of Problem 4.1. Now set

(∀n ∈ N)(∀i ∈ In) Ti,n = Id+

(
1−

ρi
γi,n

)(
Jγi,nAi

− Id
)

and e′i,n =

(
1−

ρi
γi,n

)
ei,n. (4.10)

Then (∀i ∈ {1, . . . ,m})
∑

n>K−1 ‖e
′
i,ℓi(n)

‖ 6
∑

n>K−1 ‖ei,ℓi(n)‖ < +∞. In addition, (∀n ∈ N)(∀i ∈ In)

ti,n = Ti,nxn + e′i,n. This places (4.7) in the same operating conditions as (4.1). We also derive from
[16, Lemma 2.4] that

(∀n ∈ N)(∀i ∈ In) Ti,n = J(γi,n−ρi)Mi
is firmly nonexpansive and FixTi,n = zerMi = zerAi. (4.11)

(i): In view of Corollary 4.2(ii), it suffices to check that condition (4.2) holds. Let us take z ∈ H,
i ∈ {1, . . . ,m}, and a strictly increasing sequence (kn)n∈N of integers greater than K such that

xℓi(kn) ⇀ z and xℓi(kn) − Ti,ℓi(kn)xℓi(kn) → 0. (4.12)

Then we must show that 0 ∈ Aiz. Note that

Ti,ℓi(kn)xℓi(kn) ⇀ z. (4.13)

Now set

(∀n ∈ N) uℓi(kn) = (γi,ℓi(kn) − ρi)
−1
(
xℓi(kn) − Ti,ℓi(kn)xℓi(kn)

)
. (4.14)
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Then

‖uℓi(kn)‖ =
‖xℓi(kn) − Ti,ℓi(kn)xℓi(kn)‖

γi,ℓi(kn) − ρi
6

‖xℓi(kn) − Ti,ℓi(kn)xℓi(kn)‖

ε
→ 0. (4.15)

On the other hand, we derive from (4.11) that (∀n ∈ N) Ti,ℓi(kn) = J(γi,ℓi(kn)−ρi)Mi
. Therefore, (4.14)

yields

(∀n ∈ N)
(
Ti,ℓi(kn)xℓi(kn), uℓi(kn)

)
∈ graMi. (4.16)

However, since Mi is maximally monotone, graMi is sequentially closed in Hweak ×Hstrong [6, Propo-
sition 20.38(ii)]. Hence, (4.13), (4.15), and (4.16) imply that z ∈ zerMi = zerAi.

(ii): By (4.11), for every n > K − 1, Ti,ℓi(n)xℓi(n) ∈ ranTi,ℓi(n) = dom (Id+(γi,ℓi(n) − ρi)Mi) =
domMi. However, Corollary 4.2(i) asserts that (Ti,ℓi(n)xℓi(n))n∈N lies in a closed ball. Altogether, it
possesses a strong sequential cluster point and the conclusion follows from Corollary 4.2(iii).

Remark 4.4 Suppose that, in Example 4.3, the operators (Ai)16i6m are maximally monotone, i.e.,
(∀i ∈ {1, . . . ,m}) ρi = 0. Suppose that, in addition, all the operators are used at each iteration, i.e.,
(∀n ∈ N) In = {1, . . . ,m}. Then the implementation of (4.7) with no errors reduces to the barycentric
proximal method of [31].

Example 4.5 As shown in [19], many problems in data science and harmonic analysis can be cast as
follows. Let m be a strictly positive integer and, for every i ∈ {1, . . . ,m}, let Ri : H → H be firmly
nonexpansive and let ri ∈ H. The task is to

find x ∈ H such that (∀i ∈ {1, . . . ,m}) ri = Rix, (4.17)

under the assumption that such a point exists. Let (ωi)16i6m ∈ ]0, 1]m be such that
∑m

i=1 ωi = 1,
suppose that Assumption 3.1 is satisfied, let x0 ∈ H, and let (ti,−1)16i6m ∈ Hm. Iterate

for n = 0, 1, . . .

for every i ∈ In⌊
ti,n = ri + xn −Rixn + ei,n

for every i ∈ {1, . . . ,m}r In⌊
ti,n = ti,n−1

xn+1 =

m∑

i=1

ωiti,n.

(4.18)

Then the following hold:

(i) (xn)n∈N converges weakly to a solution to (4.17).

(ii) Suppose that, for some i ∈ {1, . . . ,m}, Id−Ri is demicompact. Then (xn)n∈N converges strongly
to a solution to (4.17).

Proof. Following [19], (4.17) can be formulated as an instance of Problem 4.1, by choosing (∀i ∈
{1, . . . ,m}) Ti = ri + Id−Ri. A straightforward implementation of (4.1) consists of setting (∀n ∈
N)(∀i ∈ In) Ti,n = Ti, which reduces (4.1) to (4.18).

(i): Since the operators (Ti)16i6m are nonexpansive, [6, Theorem 4.27] asserts that the operators
(Id−Ti)16i6m are demiclosed, which implies that condition (4.2) holds. Thus, the claim follows from
Corollary 4.2(ii).
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(ii): We deduce from (4.4) that xℓi(n) − Tixℓi(n) → 0, and from (4.5) and (i) that (xℓi(n))n∈N is
bounded. Hence, since Ti is demicompact, (xℓi(n))n∈N has a strong sequential cluster point and so
does (Tixℓi(n))n∈N. We conclude with Corollary 4.2(iii).

Remark 4.6 If (4.17) has no solution, (4.18) will produce a fixed point of the operator
∑m

i=1 ωiTi =
Id+

∑m
i=1 ωi(ri −Ri), provided one exists. As discussed in [19], this is a valid relaxation of (4.17).

4.2 Forward-backward operator splitting

We consider the following monotone inclusion problem.

Problem 4.7 Let m be a strictly positive integer and let (ωi)16i6m ∈ ]0, 1]m be such that
∑m

i=1 ωi = 1.
Let A0 : H → 2H be maximally monotone and, for every i ∈ {1, . . . ,m}, let βi ∈ ]0,+∞[ and let
Ai : H → H be βi-cocoercive, i.e.,

(∀x ∈ H)(∀y ∈ H) 〈x− y | Aix−Aiy〉 > βi‖Aix−Aiy‖
2. (4.19)

The task is to find x ∈ H such that 0 ∈ A0x+
∑m

i=1 ωiAix.

Remark 4.8 In Problem 4.7, suppose thatA0 is the normal cone operator of a nonempty closed convex
set C, i.e., A0 = ∂ιC . Then the problem is to solve the variational inequality

find x ∈ C such that (∀y ∈ H)

〈
x− y

∣∣∣∣
m∑

i=1

ωiAix

〉
6 0. (4.20)

If m = 1, a standard method for solving Problem 4.7 is the forward-backward splitting algorithm
[11, 42, 44]. We propose below a multi-operator version of it with block-updates.

Proposition 4.9 Consider the setting of Problem 4.7 under Assumption 3.1 and the assumption that it

has a solution. Let γ ∈ ]0, 2min16i6m βi[, let x0 ∈ H, let (ti,−1)16i6m ∈ Hm, and iterate

for n = 0, 1, . . .

for every i ∈ In⌊
ti,n = xn − γ(Aixn + ei,n)

for every i ∈ {1, . . . ,m}r In⌊
ti,n = ti,n−1

xn+1 = JγA0

(
m∑

i=1

ωiti,n

)
+ e0,n.

(4.21)

Then the following hold:

(i) Let x be a solution to Problem 4.7 and let i ∈ {1, . . . ,m}. Then Aixn → Aix.

(ii) (xn)n∈N converges weakly to a solution to Problem 4.7.

(iii) Suppose that, for some i ∈ {0, . . . ,m}, Ai is demiregular. Then (xn)n∈N converges strongly to a

solution to Problem 4.7.

(iv) Suppose that, for some i ∈ {0, . . . ,m}, Ai is strongly monotone. Then (xn)n∈N converges linearly

to the unique solution to Problem 4.7.
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Proof. We apply Corollary 3.4 with T0 = JγA0 and (∀i ∈ {1, . . . ,m}) Ti = Id−γAi. It follows from
[6, Proposition 4.39 and Corollary 23.9] that the operators (Ti)06i6m are averaged, and hence from
[6, Proposition 26.1(iv)(a)] that Problem 4.7 coincides with Problem 1.1. In addition, (4.21) is an
instance of (3.39).

(i): See Corollary 3.4(i).

(ii): See Corollary 3.4(ii).

(iii): This follows from Corollary 3.4(iii). Indeed, if i = 0, the demicompactness of Ti follows from
Example 3.5(iii)(a). On the other hand, if i 6= 0, take a bounded sequence (yn)n∈N in H such that
(yn − Tiyn)n∈N converges, say yn − Tiyn → u. Then Aiyn → u/γ. On the other hand, (yn)n∈N has a
weak sequential cluster point, say ykn ⇀ y. So by demiregularity of Ai, ykn → y, which shows that Ti
is demicompact.

(iv): If i = 0, we derive from [6, Proposition 23.13] that T0 = JγA0 is a Banach contraction. If
i 6= 0, as in the proof of [6, Proposition 26.16], we obtain that Ti = Id−γAi is a Banach contraction.
The conclusion follows from Corollary 3.4(iv).

Example 4.10 Consider maximally operators A0 : H → 2H and, for every i ∈ {1, . . . ,m}, Bi : H →
2H. The associated common zero problem is [10, 31, 46]

find x ∈ H such that 0 ∈ A0x ∩
m⋂

i=1

Bix. (4.22)

As shown in [12], when (4.22) has no solution, a suitable relaxation is

find x ∈ H such that 0 ∈ A0x+

m∑

i=1

ωi(Bi�Ci)x (4.23)

where, for every i ∈ {1, . . . ,m}, Ci : H → 2H is such that C−1
i is at most single-valued and strictly

monotone, with C−1
i 0 = {0}. In this setting, if (4.22) happens to have solutions, they coincide with

those of (4.23) [12]. Let us consider the particular instance in which, for every i ∈ {1, . . . ,m}, Ci
is cocoercive, and set Ai = Bi�Ci. Then the operators (C−1

i )16i6m are strongly monotone and,
therefore, the operators (Ai)16i6m are cocoercive. In addition, (4.23) is a special case of Problem 4.7,
which can be solved via Proposition 4.9. Let us observe that if we further specialize by setting, for
every i ∈ {1, . . . ,m}, Ci = ρ−1

i Id for some ρi ∈ ]0,+∞[, then (4.23) reduces to (1.3).

We now focus on minimization problems.

Problem 4.11 Letm be a strictly positive integer and let (ωi)16i6m ∈ ]0, 1]m be such that
∑m

i=1 ωi = 1.
Let f0 ∈ Γ0(H) and, for every i ∈ {1, . . . ,m}, let βi ∈ ]0,+∞[ and let fi : H → R be a differentiable
convex function with a 1/βi-Lipschitzian gradient. The task is to

minimize
x∈H

f0(x) +

m∑

i=1

ωifi(x). (4.24)

Proposition 4.12 Consider the setting of Problem 4.11 under Assumption 3.1 and assume that

lim
x∈H

‖x‖→+∞

(
f0(x) +

m∑

i=1

ωifi(x)

)
= +∞. (4.25)
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Let γ ∈ ]0, 2min16i6m βi[, let x0 ∈ H, let (ti,−1)16i6m ∈ Hm, and iterate

for n = 0, 1, . . .

for every i ∈ In⌊
ti,n = xn − γ(∇fi(xn) + ei,n)

for every i ∈ {1, . . . ,m}r In⌊
ti,n = ti,n−1

xn+1 = proxγf0

(
m∑

i=1

ωiti,n

)
+ e0,n.

(4.26)

Then the following hold:

(i) Let x be a solution to Problem 4.11 and let i ∈ {1, . . . ,m}. Then ∇fi(xn) → ∇fi(x).

(ii) (xn)n∈N converges weakly to a solution to Problem 4.11.

(iii) Suppose that, for some i ∈ {0, . . . ,m}, one of the following holds:

(a) fi is uniformly convex.

(b) The lower level sets of fi are boundedly compact.

Then (xn)n∈N converges strongly to a solution to Problem 4.11.

(iv) Suppose that, for some i ∈ {0, . . . ,m}, fi is strongly convex, i.e., it satisfies (3.48) with φ = | · |2/2.

Then (xn)n∈N converges linearly to the unique solution to Problem 4.11.

Proof. We derive from [6, Theorem 20.25] that A0 = ∂f0 is maximally monotone and from [6,
Corollary 18.17] that, for every i ∈ {1, . . . ,m}, Ai = ∇fi is βi-cocoercive. In this setting, it follows
from [6, Corollary 27.3(i)] that Problem 4.7 reduces to Problem 4.11. On the other hand, since
the assumptions imply that f0 +

∑m
i=1 ωifi is proper, lower semicontinuous, convex, and coercive, it

follows from [6, Corollary 11.16(ii)] that Problem 4.11 has a solution. The claims therefore follow
from Proposition 4.9, Example 3.5(iii)(c)&(iii)(d), and [6, Example 22.4(iv)].

An algorithm related to (4.26) has recently been proposed in [35] in a finite-dimensional setting;
see also [36] for a special case.

We illustrate an application of Proposition 4.12 in the context of a variational model that captures
various formulations found in data analysis.

Example 4.13 Suppose that H is separable, let (ek)k∈K⊂N be an orthonormal basis of H, and, for
every k ∈ K, let ψk ∈ Γ0(R) be such that ψk > 0 = ψk(0). For every i ∈ {1, . . . ,m}, let 0 6= ai ∈ H,
let µi ∈ ]0,+∞[, and let φi : R → [0,+∞[ be a differentiable convex function such that φ′i is µi-
Lipschitzian. The task is to

minimize
x∈H

∑

k∈K

ψk(〈x | ek〉) +
1

m

m∑

i=1

φi(〈x | ai〉). (4.27)

Let us note that (4.27) is an instantiation of (4.24) with f0 =
∑

k∈K ψk ◦ 〈· | ek〉 and, for every i ∈
{1, . . . ,m}, fi = φi ◦ 〈· | ai〉 and ωi = 1/m. The fact that f0 ∈ Γ0(H) is established in [18], where it is
also shown that, given γ ∈ ]0,+∞[,

proxγf0 : x 7→
∑

k∈K

(
proxγψk

〈x | ek〉
)
ek. (4.28)
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On the other hand, for every i ∈ {1, . . . ,m}, fi is a differentiable convex function and its gradient

∇fi : x 7→ φ′i(〈x | ai〉)ai (4.29)

has Lipschitz constant µi‖ai‖
2. Let γ ∈

]
0, 2/(max16i6m µi‖ai‖

2)
[

and let (In)n∈N be as in Assump-
tion 3.1. In view of (4.26), (4.28), and (4.29), we can solve (4.27) via the algorithm

for n = 0, 1, . . .

for every i ∈ In⌊
ti,n = xn − γφ′i(〈xn | ai〉)ai

for every i ∈ {1, . . . ,m}r In⌊
ti,n = ti,n−1

yn =

m∑

i=1

ωiti,n

xn+1 =
∑

k∈K

(
proxγψk

〈yn | ek〉
)
ek.

(4.30)

Infinite-dimensional instances of (4.27) are discussed in [17, 18, 20, 21]. A popular finite-dimensional
setting is obtained by choosing H = R

N , K = {1, . . . , N}, (ek)16k6N as the canonical basis, α ∈
]0,+∞[, and, for every k ∈ K, ψk = α| · |. This reduces (4.27) to

minimize
x∈RN

α‖x‖1 +

m∑

i=1

φi(〈x | ai〉). (4.31)

Thus, choosing for every i ∈ {1, . . . ,m} φi : t 7→ |t− ηi|
2, where ηi ∈ R models an observation, yields

the Lasso formulation, whereas choosing φi : t 7→ ln(1+exp(t))−ηit, where ηi ∈ {0, 1} models a label,
yields the penalized logistic regression framework [27].

4.3 Hard constrained inconsistent convex feasibility problems

The next application revisits a model proposed in [14] to relax inconsistent feasibility problems.

Problem 4.14 Letm be a strictly positive integer and let (ωi)16i6m ∈ ]0, 1]m be such that
∑m

i=1 ωi = 1.
Let C0 be a nonempty closed convex subset of H and, for every i ∈ {1, . . . ,m}, let Gi be a real Hilbert
space, let Li : H → Gi be a nonzero bounded linear operator, let Di be a nonempty closed convex
subset of Gi, let µi ∈ ]0,+∞[, and let φi : R → [0,+∞[ be an even differentiable convex function that
vanishes only at 0 and such that φ′i is µi-Lipschitzian. The task is to

minimize
x∈C0

m∑

i=1

ωiφi
(
dDi

(Lix)
)
. (4.32)

The variational formulation (4.32) is a relaxation of the convex feasibility problem

find x ∈ C0 such that (∀i ∈ {1, . . . ,m}) Lix ∈ Di (4.33)

in the sense that, if (4.33) is consistent, then its solution set is precisely that of (4.32); see [14, Sec-
tion 4.4] for details on this formulation and background on inconsistent convex feasibility problems.
Here C0 models a hard constraint. An early instance of (4.33) as a relaxation of (4.32) is Legendre’s
method of least-squares to deal with an inconsistent system of m linear equations in H = R

N [30].
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There, C0 = R
N and, for every i ∈ {1, . . . ,m}, Gi = R, Di = {βi}, Li = 〈· | ai〉 for some ai ∈ R

N such
that ‖ai‖ = 1, ωi = 1/m, and φi = | · |2. The formulation (4.32) can also be regarded as a smooth
version of the set-theoretic Fermat-Weber problem [37] arising in location theory, namely,

minimize
x∈H

1

m

m∑

i=1

dCi
(x). (4.34)

The following version of the Closed Range Theorem will be required.

Lemma 4.15 [22, Theorem 8.18] Let G be a real Hilbert space and let L : H → G be a nonzero bounded

linear operator. Then ranL is closed ⇔ ranL∗ ◦ L is closed ⇔ (∃ ρ ∈ ]0,+∞[)(∀x ∈ (kerL)⊥) ‖Lx‖ >

ρ‖x‖.

Corollary 4.16 Consider the setting of Problem 4.14 under one of the following assumptions:

[a] There exists j ∈ {1, . . . ,m} such that lim‖x‖→+∞

(
ιC0(x) + φj

(
dDj

(Ljx)
))

= +∞.

[b] There exists j ∈ {1, . . . ,m} such that ranLj is closed, C0 ⊂ (kerLj)
⊥, and Dj is bounded.

[c] There exists j ∈ {1, . . . ,m} such that Gj = H, Lj = Id, and Dj is bounded.

[d] C0 is bounded.

Set β = 1/(max16i6m µi‖Li‖
2), let γ ∈ ]0, 2β[, let (In)n∈N be as in Assumption 3.1, let x0 ∈ C0, let

(ti,−1)16i6m ∈ Hm, and iterate

for n = 0, 1, . . .

for every i ∈ In

if Lixn /∈ Di⌊
ti,n = xn − γ

φ′i
(
dDi

(Lixn)
)

dDi
(Lixn)

L∗
i

(
Lixn − projDi

(Lixn)
)

else⌊
ti,n = xn

for every i ∈ {1, . . . ,m}r In⌊
ti,n = ti,n−1

xn+1 = projC0

(
m∑

i=1

ωiti,n

)
.

(4.35)

Then the following hold:

(i) (xn)n∈N converges weakly to a solution to Problem 4.14.

(ii) Suppose that one of the following holds:

[e] Condition [b] is satisfied with the additional assumptions that φj = µj| · |
2/2 and Dj is

compact.

[f] C0 is boundedly compact.

Then (xn)n∈N converges strongly to a solution to Problem 4.14.
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Proof. We first note that (4.32) is an instance of (4.24) with f0 = ιC0 and (∀i ∈ {1, . . . ,m}) fi =
φi ◦ dDi

◦ Li. Next, we derive from [6, Example 2.7] that, for every i ∈ {1, . . . ,m}, fi is convex and
differentiable, and that its gradient

∇fi : H → H : x 7→





φ′i
(
dDi

(Lix)
)

dDi
(Lix)

L∗
i

(
Lix− projDi

(Lix)
)
, if Lix /∈ Di;

0, if Lix ∈ Di

(4.36)

has Lipschitz constant µi‖Li‖
2. Hence (4.35) is an instance of (4.26). Now, in order to apply Proposi-

tion 4.12, let us check that (4.25) is satisfied under one of assumptions [a]–[d].

[a]: We have f0(x) +
∑m

i=1 ωifi(x) > ωj(ιC0(x) + fj(x)) → +∞ as ‖x‖ → +∞.

[b]⇒[a]: In view of [d], we assume that C0 is unbounded. It follows from Lemma 4.15 that there
exists ρ ∈ ]0,+∞[ such that (∀x ∈ (kerLj)

⊥) ‖Ljx‖ > ρ‖x‖. Hence,

(∀x ∈ C0) ‖Ljx‖ > ρ‖x‖. (4.37)

Now let z ∈ Gj. Then, since Dj is bounded, δ = diam(Dj) + ‖projDj
z‖ < +∞ and

(∀y ∈ Gj) ‖y‖ 6 ‖y − projDj
y‖+ ‖projDj

y − projDj
z‖+ ‖projDj

z‖ 6 dDj
(y) + δ. (4.38)

Consequently, dDj
(y) → +∞ as ‖y‖ → +∞ with y ∈ Gj . Thus, since φj is coercive by [6, Proposi-

tion 16.23], we obtain

φj
(
dDj

(y)
)
→ +∞ as ‖y‖ → +∞ with y ∈ Gj. (4.39)

We deduce from (4.37) and (4.39) that

fj(x) → +∞ as ‖x‖ → +∞ with x ∈ C0. (4.40)

[c]⇒[b] and [d]⇒[a]: Clear.
We are now ready to use Proposition 4.12 to prove the assertions.

(i): Apply Proposition 4.12(ii).

(ii)[e]: Let x be the weak limit in (i) and set uj = ∇fj(x)/µj . Then Proposition 4.12(i) asserts
that

L∗
j

(
Ljxn − projDj

(Ljxn)
)
→ uj . (4.41)

We also observe that, since L∗
j ◦ Lj is weakly continuous [6, Lemma 2.41], we have L∗

j (Ljxn) ⇀
L∗
j(Ljx). Therefore, (4.41) yields

L∗
j

(
projDj

(Ljxn)
)
⇀ L∗

j (Ljx)− uj. (4.42)

However, the set L∗
j(Dj) is compact by [6, Lemma 1.20] and it contains (L∗

j (projDj
(Ljxn)))n∈N.

This sequence has therefore L∗
j(Ljx) − uj as its unique strong sequential cluster point. Thus,

L∗
j(projDj

(Ljxn)) → L∗
j(Ljx)− uj and we deduce from (4.41) that

L∗
j (Ljxn) → L∗

j(Ljx). (4.43)

On the other hand, for every n ∈ N, since x and xn lie in C0 ⊂ (kerLj)
⊥, we have xn−x ∈ (kerLj)

⊥ =
(kerL∗

j ◦Lj)
⊥. Hence, we deduce from (4.43) and Lemma 4.15 that there exists θ ∈ ]0,+∞[ such that

θ‖xn − x‖ 6 ‖(L∗
j ◦ Lj)(xn − x)‖ → 0. (4.44)
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We conclude that xn → x.

(ii)[f]: This follows from Proposition 4.12(iii)(b) since the lower level sets of f0 are the compact
sets {∅, C0}.

We conclude by revisiting (1.1) and recovering a classical result on the method of alternating
projections.

Example 4.17 [8, Theorem 4(a)] Let C and D be nonempty closed convex subsets of H such that D
is compact. Let x0 ∈ H and set (∀n ∈ N) xn+1 = projC(projDxn). Then (xn)n∈N converges strongly to
a point in x ∈ C such that x = projC(projDx).

Proof. Apply Corollary 4.16(ii)[e] with m = 1, C0 = C, G1 = H, L1 = Id, D1 = D, γ = 1, and µ1 = 1.
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