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1 Introduction

Throughout, # is a real Hilbert space with power set 2%, identity operator Id, scalar product (- | -),
and associated norm || - ||. Recall that an operator 7: H — H is nonexpansive if it is 1-Lipschitzian,
and a-averaged for some a € ]0,1] if Id +a~ (T — Id) is nonexpansive [4]. We consider the broad
class of nonlinear analysis problems which can be cast in the following format.

Problem 1.1 Let m be a strictly positive integer and let (w;)i<i<m € ]0,1]™ be such that Y ;" | w; = 1.
For every i € {0,...,m}, let T;: H — H be «;-averaged for some «; € ]0,1[. The task is to find a fixed
point of Ty o 37" | wiT;.

A classical instantiation of Problem 1.1 is found in the area of best approximation [8, 38]: given
two nonempty closed convex subsets C' and D of ‘H, with projection operators proj. and projp, find
a fixed point of the composition proj. o proj,. Geometrically, such points are those in C' at minimum
distance from D, and they can be constructed via the method of alternating projections [8, 26]

(Vn € N)  zp41 = proj(projpay,). (1.1)

This problem was extended in [1] to that of finding a fixed point of the composition prox; o prox,
of the proximity operators of proper lower semicontinuous convex functions f: H — |—o0, +oco] and
g: H — |—00,+00]. Recall that, given = € H, prox,z is the unique minimizer of the function y
f(y) + llz — y||*/2 or, equivalently, prox,;z = (Id+0f)~" where df is the subdifferential of f, which
is maximally monotone [6]. A further generalization of this formalism was proposed in [7] where,
given two maximally monotone operators A: H — 2" and B: H — 2%, with associated resolvents
Ja = (Id+A)"!and Jp = (Id +B)~!, the asymptotic behavior of the iterations

(VneN) zp41 = Ja(Jpzn) (1.2)

for constructing a fixed point of .J4 o Jp was investigated. We recall that J4 and Jp are 1/2-averaged
operators [6]. Now let Ay and (B;)1<i<, be maximally monotone operators from # to 2* and, for
everyi € {1,...,m},let ”B; = (Id —J,,p,)/p:; be the Yosida approximation of B; of index p; € ]0, 4+o0[.
Set3=1/(31",1/p;) and (Vi € {1,...,m}) w; = B/p;. In connection with the inclusion problem

find z € # suchthat 0€ Az + Z (7B;)x, (1.3)
=1

the iterative process
m
(Vn €N)  2pi1 = Jpya, (wn + ’yn<2winiBixn - xn> ) where 0 <, <2, (1.4)
i=1

was studied in [11]. This algorithm captures (1.2) as well as methods such as those proposed in
[31, 32]; see also [45] for related problems. To make its structure more apparent, let us set

(Vn €N) Ton=Jgya, and (Vie{l,....m}) Tin=(1—~)1d+yn)5, (1.5)

Then we observe that, for every n € N, the following hold:

* Problem (1.3) is the special case of Problem 1.1 in which Ty = Jga,, T1 = J,,B,, --., and
T = Jp B, - Its set of solutions is

Fix <JBA0 o Zwil]pi]gi> = Fix (TO,n o Z‘Wﬂ,n) . (16)

i=1 =1
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* For every i € {0,...,m}, T;, is an averaged nonexpansive operator.

e The updating rule in (1.4) can be written as
m
Tns1 = Ton < Zwitim), where (Vi€ {1,...,m}) tin=Tintn. 1.7)
i=1

The implementation of (1.7) requires the activation of Tj ,, and the m operators (7} ,)i1<i<m. If the
operators (7;)o<i<m have common fixed points, then Problem 1.1 amounts to finding such a point, and
this can be achieved via block-iterative methods that require activating only subgroups of operators
over the iterations; see, for instance, [2, 5, 10, 24]. In the absence of common fixed points, whether
Problem 1.1 can be solved by updating only subgroups of operators is an open question. In the
present paper, we address it by showing that it is possible to lighten the computational burden of
iteration n of (1.7) by activating only a subgroup (7} )icr, c{1,...,m} Of the operators and by recycling
older evaluations of the remaining operators. This leads to the iteration template

for everyi € I,

L ti,n = LinTn

foreveryi e {1,...,m} \ [,

L t: =t ! (1.8)
1,M i,n—1

m
Tni1 =Topn Zwﬂfz‘,n .
i—1

The proposed framework will feature a flexible deterministic rule for selecting the blocks of indices
(In)nen, as well as tolerances in the evaluation of the operators in (1.8). Somewhat unexpectedly,
our analysis will rely on the theory of concentrating arrays, which appears predominantly in the area
of mean iteration methods [13, 15, 29, 33, 34, 40, 41]. In Section 2, we propose a new type of
concentrating array that will be employed in Section 3 to investigate the asymptotic behavior of the
method. Finally, various applications to nonlinear analysis problems are presented in Section 4.

Notation. Let M: H — 2". Then graM = {(z,u) € HxH | u€ Mz} is the graph of M,
zerM = {z €H | 0€ Mz} the set of zeros of M, domM = {z € H | Mz # @} the domain of
M,ranM = {ueH { (3z € H) u € Mz} the range of M, M~! the inverse of M, which has graph
{(u,2) e H x H | w€ Mz}, and Jy; = (Id+M)~! the resolvent of M. The parallel sum of M and
A:H —»2"is MOA = (M~ + A~1)~L. Further, M is monotone if

(V(z,u) € graM)(V(y,v) e graM) (z—y|u—v) >0, (1.9)

and maximally monotone if, in addition, there exists no monotone operator A: H — 2" such that
graM C graA # graM. If M — pId is monotone for some p € |0, +oo], then M is strongly monotone.
We denote by I'o(#) the class of lower semicontinuous convex functions f: H — |—o0,+oc] such
that dom f = {z € % | f(z) < 400} # @. Let f € To(H). The subdifferential of f is the maximally
monotone operator df: H — 2%: 2z —» {ueH | (VyeH) (y —x | u) + f(z) < f(y)}. For every z €
H, the unique minimizer of the function f+ (1/2)||- —z||* is denoted by prox;x. We have prox; = Ja;.
Let C' be a nonempty closed convex subset of #. Then proj,. is the projector onto C, d¢ the distance
function to C, and ¢¢ is the indicator function of C, which takes the value 0 on C and +oco on its
complement.



2 Concentrating arrays

Mann’s mean value iteration method seeks a fixed point of an operator 7: H — H via the iterative
process z,,1 = 1T,, where Z,, is a convex combination of the points (z;)o<;j<n [33, 34]. The notion
of a concentrating array was introduced in [15] to study the asymptotic behavior of such methods.
Interestingly, it will turn out to be also quite useful in our investigation of the asymptotic behavior of
(1.8).

Definition 2.1 [15, Definition 2.1] A triangular array (i ;)nen,0<j<n in [0,400[ is concentrating if
the following hold:

[a]l (Yn e N) > ;pn,; = 1.
[b] (Vj € N) hmn—)-‘roo Hn,j = 0.
[c] Every sequence (&, )nen in [0, +00[ that satisfies

(Vn € N) &nt1 < Z,uanj + €n, (2.1
=0

for some summable sequence (&, )nen in [0, +00], converges.

We shall require the following convergence principle, which extends that of quasi-Fejér monotonic-

ity [10].

Lemma 2.2 Let C be a nonempty subset of H, let ¢: [0, +oo[ — [0, +o0[ be strictly increasing and such
that lim;_, o (1) = 400, let (x,)nen be a sequence in H, let (fin, j)nen,0<j<n be a concentrating array in
[0, +00], let (Bn)nen be a sequence in [0,4oc[, and let (,,)nen be a summable sequence in [0, +oo[ such
that

(o € ) eN) o(lanr — ) < pngb(la; — o) = Bu + n. 2.2)
7=0

Then the following hold:

(1) (zn)nen is bounded.
G B, — 0.

(iii) Suppose that every weak sequential cluster point of (z,,)nen belongs to C. Then (x,)nen converges
weakly to a point in C.

(iv) Suppose that (xy,)nen has a strong sequential cluster point in C. Then (z,,)nen converges strongly
to a point in C.

Proof. Let x € C'. Let us first show that
(l|xy, — || )nen converges. (2.3)

It follows from (2.2) and Definition 2.1 that (¢(||x, — z||))nen converges, say ¢(||z, — x|) — A.
However, since lim; 4o ¢(t) = 400, (||xn — z||)nen is bounded and, to establish (2.3), it suffices
to show that it does not have two distinct cluster points. Suppose to the contrary that there exist
subsequences (||zk, — z||)neny and (||z;, — z||)nen such that ||z, — x| — n and ||z, — x| — ¢ > n, and
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fix e € ]0, (¢ — n)/2[. Then, for n sufficiently large, ||z, — x| < n+e < (—e < ||z, — x| and, since ¢
is strictly increasing, ¢(||zx, — z||) < ¢(n+¢) < ¢(¢ —¢) < ¢(||x;,, — «||). Taking the limit as n — 400
yields A < ¢(n+¢) < ¢(¢ — ) < A, which is impossible.

(i) and (iv): Clear in view of (2.3).

(ii): As shown above, there exists A € [0,+oo] such that ¢(||z,, — z|]) — A. In turn, [28, The-
orem 3.5.4] implies that > 7 un j¢(lz; — x[) — A. We thus derive from (2.2) that 0 < 3, <

> i=o tnj¢(llzj — zl) = ¢([|Tn+1 — 2[) + 5 — 0.
(iii): This follows from (2.3) and [6, Lemma 2.47]. 0

Several examples of concentrating arrays are provided in [15]. Here is a novel construction which
is not only of interest to mean iteration processes in fixed point theory [13, 15, 29, 33, 34, 41] but
will also play a pivotal role in establishing our main result, Theorem 3.2.

Proposition 2.3 Let K be a strictly positive integer and let (i, j)nen0<j<n be a triangular array in
[0, +o0 such that the following hold:

(D (Vn€N) 37 g pn; =1
() (VvneN)(VjeN)n—j>K = p,;=0.

(iii) infpen pn,n > 0.
Then (fin,j)neN,0<j<n IS a concentrating array.

Proof. Properties [a] and [b] in Definition 2.1 clearly hold. To verify [c], let (&,),en be a sequence in
[0, 400 and let (¢, )nen be a summable sequence in [0, +oo[ such that

n
(\V/TL € N) Ent1 < Z,U/n,jgj + en. 2.4)
=0
Then, in view of (ii), for every integer n > K — 1,
K—1

§n+1 < Z Mn,nfkfnfk + en. (2.5)
k=0

Set i = infpen pinn. If p =1, then (i) and (2.5) imply that, for every integer n > K — 1,
0< §n+1 < gn + én, (26)

and the convergence of (§,)nen therefore follows from [6, Lemma 5.31]. We henceforth assume
that 4 < 1 and, without loss of generality, that X > 1. For every integer n > K — 1, define ¢, =
maxo<kg<k—1&n—k, and observe that (i) and (2.5) yield &,4; < &, + €,,. Hence,

(Vne{K—-1,K,...}) 0< &1 <& +en 2.7)

and we deduce from [6, Lemma 5.31] that (En)neN converges to some number 7 € [0, +oco[. Therefore,
if (£, )nen converges, then its limit is n as well. Let us argue by contradiction by assuming that &,, /4 7.
Then there exists v € |0, +o00[ such that

(VN eN)3no e {N,N+1,...}) |n, — 1| > 1. 2.8)



Set

K-1
5:mln{#,l} and I//:%. (2.9)

Since En —mnand ) _nen < 400, let us fix an integer N > K — 1 such that

(Yne {N,N+1,...}) n-— ,uK_lg <& <n+v and Zej < (1= pBhH (2.10)
jzn
Then
k -
(VEe{L,2,. . Nne{N,N+1,..}) Y @/ lepnp; <D g5 <(1—pf, (2.11)
Jj=1 jzn

while (2.5) and (i) imply that

K-1

(Vn € {N7 N+ 17 . }) §n+1 < Mn,nfn + Z ,U'n,nfk‘gnfk +én
k=1

< Pnnén + (1- ,Un,n)gn +én

= ptn + (1 = w)én + (ttnin — 1) (En — &) + £n

< pln + (1 — p)én + en

< pbn + (1= p)(n+v') +en. (2.12)

It follows from (2.8) that there exists an integer ny > N such that |£,, — n| > v, i.e.,
€ng >n+v or 0< &, <n—vr. (2.13)

Suppose that &,, > n + v. Then (2.9) and (2.10) imply that v < §,, —n < Eno —n < v < v/4, which
is impossible. Therefore, 0 < &,, < n — v and it follows from (2.12) that

no1 S p(n —v)+ (L= p)(n+v) +eng =0+ (1= p)v' — pv +ep,. (2.14)

Let us show by induction that, for every integer k > 1,
k .
otk <N+ (L= "W — v+ 0w en k. (2.15)
j=1

In view of (2.14), this inequality holds for £ = 1. Now suppose that it holds for some integer & > 1.
Then we deduce from (2.12) and (2.15) that

§n0+k+1 g N§n0+k + Eno+k + (1 - M)(Tl + V/)

k
<wntp(l=pW =i ) pengreg + (1= + )
=0
k+1 A
=0+ (1—pFth — 4 ZM]_%"OJF’“H_J” (2.16)
j=1



which completes the induction argument. Since p € ]0,1[, we derive from (2.15), (2.11), and (2.9)
that

(Vke{l,...,K =1}) &p <n+(1—p" W —pbv+ (1 —p )/
<420 —pf ) =
<n—uK_1g- (2.17)
Therefore, by (2.10),
n—MK‘lz < Engrk—1 < n—uK‘lg- (2.18)

We thus reach a contradiction and conclude that (¢,),cn converges. [

We derive from Proposition 2.3 a new instance of a concentrating array on which the main result
of Section 3 will hinge.

Example 2.4 Let / be a nonempty finite set, let (w;);c; be a family in )0, 1] such that ), ;w; = 1,
let (I,)nen be a sequence of nonempty subsets of I, and let K be a strictly positive integer such that
(vn € N) Upcher—1 Intr = I. Set

1, if n=j<K;
e N
(Vn € N)(Vj € {0,...,n}) pin; = >, wn fO<n-K < (2.19)
Z'GI]'\UZ:j+1 Iy
0, otherwise.

Then the following hold:

(D) (ftn,j)nen,0<j<n is @ concentrating array.

(i) Let N > n > K — 1, let (§)o<j<n be in [0,+o00|, and, for every ¢ € I, define ¢;(n) =
maX{kE{n—K—i—l,...,n}|i€Ik}.Then

Z Fin,j&5 = Z Wik, (n)- (2.20)
=0

icl
Proof. Letn € N. If n > K — 1, we have UogkgK—l I,,_;. = I and therefore

I is the union of the disjoint sets

n n

<In,1n1 I Iyo~ (InUIn1), ..., Tu_gao ~ U /N SEEEN U Ik>. (2.21)
k=n—K+3 k=n—K+2

(i): It is clear from (2.19) that, for every integer j € [0,n — K], u, ; = 0. In turn, we derive from
(2.19) and (2.21) that

n

Zﬂn,j:,un,nzla if n<Kj;

=0

T n n (2.22)
Dtng= DL Hng= ) > owi=Ywi=1, ifnzK

J=0 j=n—K+1 jEn—K+1 iel\Up_; 1 In icl
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Finally, inf,en pin,n = infren) ;e; wi > minierw; > 0. All the properties of Proposition 2.3 are
therefore satisfied.

(ii): We have
(Vie{n—K+1,...,n}) (w eI~ U [k> li(n) = j. (2.23)
k=j+1

Hence, in view of (2.19),

(V] S {TL -K+1,... ,TL}) Z wi&i(n) = Z wlfj = ,un,jfj. (2.24)

Z'GI]'\UZ:J-+1 Iy iEIJ\UZ:j+1 Iy

Consequently, (2.21) yields

n

Zﬂn,jfj = Z Z wilp;(n) = sz’&i(n), (2.25)
=0

j=n—K+1 ielUp_; 4 I i€l

which concludes the proof. [1

3 Solving Problem 1.1 with block updates

We formalize the ideas underlying (1.8) by proposing a method in which variable subgroups of opera-
tors are updated over the course of the iterations, and establish its convergence properties. At iteration
n, the block of operators to be updated is (7 ,,)icr,. For added flexibility, an error e; ,, is tolerated in
the application of the operator 7;,. We operate under the following assumption, where m is as in
Problem 1.1.

Assumption 3.1 K is a strictly positive integer and (I,),en IS a sequence of nonempty subsets of
{1,...,m} such that

K-1
(VneN) | I ={1,...,m}. (3.1)
k=0

For every integer n > K — 1, define
(vie{l,....m}) Li(n)=max{ke{n—K+1,...,n}|i€I}. (3.2)
The sequences (€9.n)neN> (€1,n)neNs - - -5 (Emn)nen are in H and satisfy

> eonll <400 and (Vie{l,...,m}) D llesnmll < +oo. (3.3)

n>K-—1 n>K-—1

Theorem 3.2 Consider the setting of Problem 1.1 together with Assumption 3.1. Let ¢ € ]0,1] and, for
every n € Nand every i € {0} U I, let o, € 10,1/(1 +¢)[ and let T;,,: H — H be «; ,-averaged.
Suppose that, for every integer n > K — 1,

10} 75 Fix <T0 o Zwﬂ}) C Fix <T0,n o szﬂ7gl(n)> . (3.4)
=1

i=1



Let g € H, let (t; —1)1<i<cm € H™, and iterate

forn=0,1,...
forevery i € I,
L ti,n =1inTn + €in
foreveryie {1,...,m} I, (3.5)
[ tin = tin-1
m

Tnt1 = Ton Zwiti,n> + eon-

L i=1

Let x be a solution to Problem 1.1. Then the following hold:

(i) (xn)nen is bounded.
(i) Leti € {1,...,m}. Then zy, () — T; 0,0)Te;(n) + Tits(y® — = — 0.
(iii) Leti € {1,...,m}andj € {1,...,m}. Then T y,(n)Te,(n) — T} ;(n)Te; (n) — Tt ()T + T,y — 0
(iv) Leti € {1,...,m}. Then zy, () — vpn — 0.
W zn —To.>0m, WiTz‘,zi(n)l"n) — 0.
(vi) Suppose that every weak sequential cluster point of (x,,)nen Solves Problem 1.1. Then the following
hold:

(@) (zn)nen converges weakly to a solution to Problem 1.1.
(b) Suppose that (x,)nen has a strong sequential cluster point. Then (x,)nen converges strongly
to a solution to Problem 1.1.

(vii) For everyn > K — 1 and every i € {0} U I, let p; € ]0,1] be a Lipschitz constant of T; ,. Suppose
that (3.5) is implemented without errors and that, for some i € {0,...,m}, p; < 1. Then (z,,)neN
converges linearly to the unique solution to Problem 1.1.

Proof. Let us fix temporarily an integer n > K — 1. We first observe that, by nonexpansiveness of the
operators Tp , and (7T g, (n)) 1<i<m

Ton ( Z Wi (T 0, () Tey(n) + 6i)> +eo—Ton ( Z wiTi,Zi(n)y> H

(V(y,eo, ceyem) € Hm+2) ‘
i=1 =1

< i WiT} 0, (n) Tty (n) — i wiT} 4, (n)Y + i wiei|| + lleoll
i=1 i=1 i=1

< iwiHT’i,Ei(n)x&(n) — T, 0,myy| + lleoll + iwz‘HBz‘H
i=1 i=1

< Zm:wz‘!!xei(n) — yll + lleol +§:H€iH- (3.6
i=1 i=1

We also note that (3.2) and (3.5) yield
(Vie{l,....m}) tin="Ti0m)Tem) + €itm) 3.7)



It follows from (3.5), (3.7), (3.4), and (3.6) that

Ton ( Z wi (T 0, () Tes(n) + ez,zi(n))> +eon —Ton ( Z W@'Ti,éi(n)x>
i—1

st — ] = \

i=1
m m

<Y willze,my — 2l + leonll + D leiemll- (3.8)
i=1 i=1

Now define (u j)reno0<j<k as in (2.19), with I = {1,...,m}, and set e, = |leonll + D i% Il ,0m)lI-

Then we derive from Example 2.4(ii) that

m n
> willzgmy =zl =D pngllas — |, (3.9)
i=1 7=0
and it follows from (3.8) and (3.3) that
n
|zn1 — 2| <Y pnjllzj — zll + €0, where ) g < +oo. (3.10)
3=0 k>K—1

Hence, Lemma 2.2(i) guarantees that
(zk)ken is bounded. (3.11)

Consequently, using (3.3) and (3.6), we obtain

TO,k<Zwi(Tz‘,£i(k)x€i(k)+ei,£ (k) ) Tw(Z% i (k)T )H‘H’%k”) < +o0 (3.12)
i=1

vgp= sup |2
E>K—1

and

= sup (szHezz Il +2 (T 00y es ) — T () %)

k>K-1

) < +o0. (3.13)

In addition, for every y € H and every z € H, it follows from [6, Proposition 4.35] that

l-«
(1 =Ty )y — (1d ~Ty,n)2?

0,n

|1 To.0y — Tonzll* < [ly — 2[* =
<y — 27 — el (1d =To.n)y — (Id =T ) 2| (3.14)
and, likewise, that

Vie{l,....m}) |Tnmy—Tiomzll” < ly—zI1” =l (1d =T 4,m))y — (1d =T} ¢,(n))2[1*. (3.15)
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Hence, we deduce from (3.5), (3.7), (3.4), and [6, Lemma 2.14(ii)] that

m 2
Tn1 — z|* = TO,n(ZWi(ﬂ,Zi(n)xéi( ) T €iti(n > T(M(sz 3,03 ) + €on
< (sz i,8;(n)Te; (n)+ez£ (n) > TOn(ZWZ 3,05 n)x> +V0H60,nH
2
< Zwi (ﬂ,éi(n)wéi(n) - Ti,éi(n)x)
=1
m m 2
—e||(Id =T ) ( Z Wi(Ti,0;(n) Tty (n) + ez‘,zi(n))) — (Id =Tp.n) < ZwiTi,éi(n)x>
=1 =1
+volleonll + 1> willes ol
i=1
< ZWZH n)Le;(n) — EZ xHQ
~3 Z Zwi%‘!!ﬂ,zxn)xex Tyt ® = Ty @esm) + Treyom
i=1 j=1
m m 2
—¢e||(Id =Ton) ( > Wil T )T () + ei,&(n))) tr = Wil me
i—1 i=1
+volleonll + > willes o, l
i=1
m m 9
< sz‘\\%(n) —a|® =& wil|Id =T, 4, n)) 0, () — A =T} .02
] i=1
2
—5 Z Z wits || Tty esn) = Titi(m)® = Tity(m)esm) + Tty my |
i=1 j=1
m m 2
—¢e||(Id =To,n) ( > Wil T )T () + ei,&(n))) tr = Wil me
i—1 i=1
+wolleonll + > willes ol (3.16)

=1
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It therefore follows from (3.9) that

01— 2?
2
Z/‘m]”x] - xHQ - 52‘% ‘xé Zz (n)%e; (n) + Ti,&(n)x — x”
2

9 Z Zw’wﬂ H n)Te;(n) — TZE&'(H)x - Tj,éj(n)xgj(n) + Tj,éj(n)xH

=1 j=1

m m m 5
€ Zwi(Tivfi(N)xfi(n) +€itm) — Ton ( Zwi(Ti,zi(n)xzi(n) + ei,zi(n))> +z - ZwiTi,&(n)x

=1 i=1 i=1

m

+wolleonll + > willer o l- (3.17)

=1

Hence, Example 2.4(i), (3.3), and Lemma 2.2(ii) imply that

max ||zg,(m) — T 0,(n)Te,n) + Tits ()@ — || = 0

1<i<m
3.18
X ([T rimy@en) = Ty ey = Titatm@ + Ty = 0, 318
1<j<m
and that
Z Wi T 0,y Tty () F€i05(n)) — Toon ( Z Wi T 0,(n) Tty (n) +ei,€i(n))> +r— Z wiT; ¢,(n)™
i=1 i=1 i=1
(i): See (3.11).
(ii)—(iii): See (3.18).
(iv)—(v): It follows from (ii) that
szxg Zwl i0i(n) Ty (n) T ZwiTi,gi(n)x —z—0. (3.20)
i=1
We also derive from (ii) that, for every i and every j in {1,...,m},
Teyn) ~ Titim)Tei(n) = Ty ) + Tj;00T05n) + Tits(n)® — Ty — 0. (3.21)
Combining (iii) and (3.21), we obtain
(Vl S {1, . ,m})(Vj S {1, .o ,m}) Zg(n) — Tej(n) — 0. (3.22)

Now, let 7z € {1,...,m} and § € ]0,+oo[. Then (3.22) implies that, for every j € {1,...,m}, there
exists an integer N(;’j > K — 1 such that

(VTL € {N&j,ﬁ&j +1,... }) Hx&(n) — .%'g](n)” <. (3.23)
Set N(; = Mmaxigi<m N(g,j. Then

(Vj € {1,...,m}) (VTL S {N(;,N(;—}— 1,... }) ngi(n) —xgj(n)H <. (3.29)
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Thus, in view of (3.2), for every integer n > Ny, taking j, € I,, yields ¢;, (n) = n and hence 126 (n) —
Zn|| < 0. This shows that

(Vie{l,....,m}) Zgm) —Tn — 0. (3.25)

Consequently, it follows from (3.6) that

Ton ( Z (@WiT} 0, () e (n) + ei,&(n))) —Ton ( Z wiﬂ,@@)%)

i=1 i=1
m m
<Y willzemy = zall + ) lleisiml
i=1 i=1
— 0. (3.26)

In turn, we derive from (3.19), (3.20), (3.25), and (3.3) that
TO,n ( Z wiﬂ,éi(n)xn>
i=1
= Ton < Z Wi (T 0, (n) e, (n) + ez,zi(n))> —Ton ( Z Wl'T’i,Zi(n)xn>
i=1 i=1

+ Zwi(Ti,&(n)w&(n) + €it;tn)) — Ton < Z Wi T 0, (m) Tty (n) + ei,&(n))) +x— Z wiT5 p;(n) T
=1 3

i=1

m m
+Zwix2~(n sz i,;(n)Te;(n +sz i, ( .%'—1‘4—2&%( Tn — Lyy(n sz €i,l;(n)
i=1 =1
— 0. (3.27)

(vi)(a): This follows from (3.10) and Lemma 2.2(iii).

(vi)(b): By (vi)(a), there exists a solution z to Problem 1.1 such that z,, — z. Therefore, z must be

the strong cluster point in question, say x;, — 2. In view of (3.10) and Lemma 2.2(iv), we conclude
that z,, — z.

(vii): Set p = po > i~  wip; and note that p € ]0,1[. For every integer n > K — 1 and every
(Yyi)1<icm € H™, (3.4) yields

m
Ton ( Z wiﬂ,&(n)%) -z

i=1

m m
Tom ( > wiTi,Ki(n)yi> — Ton ( > WiTz‘,ﬁi(n)x>
i=1 i=1
m
- Z wili g, ()T

PozwzH i) ¥i — Tigy )|

épozwzﬂi“yi—w”- (3.28)

Now let y € Fix (Tp o )", w;iT;). Since (3.28) implies that

To,k 1 ( Z W@'Tz‘,zi(Kl)y> -

i=1

ly -zl = \ < plly - =l (3.29)
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we infer that y = x, which shows uniqueness. For every integer n > K — 1, (3.28) also yields

[@n41 — x| = ‘T0n<zwz 0 (n) T (n> -z pozwzszxe —al|. (3.30)
=1

Now set

(VneN) & =z, —z|. (3.31)
It follows from (3.30) that

(Vn S {K — 1,K, .. }) §n+1 < Lo szplgfz(n) < pgn, where fn = 1I<niX gg (332)

i=1 i

Let us show that

(WneN) &<p * &xo1. (3.33)
We proceed by strong induction. We have

—~ k—K —~

(k€ {0,....K —1}) & <Ex_1<p K &k, (3.34)
Next, let N 5 n > K — 1 and suppose that

(Yke{0,....n}) & <p & Exor. (3.35)

Since {£;(n)}1<jcm C {n — K +1,...,n}, there exists k, € {n — K + 1,...,n} such that &, = &, .
Therefore, we derive from (3.32) and (3.35) that

kn— K-HA n— K+2A

Eni1 < pln = Pk, < Erk—1= ,0 §KR—1 (3.36)
We have thus shown that
(VneN) o, —all <p F Ex_1(p¥)", 3.37)

which establishes the linear convergence of (x,),en to x. [

Remark 3.3 In applications, the cardinality of I,, may be small compared to m. In such scenarios, it
is advantageous to set z_; = Y ;" ; w;t; —1 and write (3.5) as

forn=0,1,...

Yn = Zn—1— Z witin-1
i€l

for everyi € I,

L ti,n = ,I%,nxn + €ein

foreveryic {1,...,m}~ I, (3.38)

[ tin = tin-1
Zn = Yn + Z witi,n
i€ly,

L Tn+1 = TO,nZn + €o,n,

which provides a more economical update equation.
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Next, we specialize our results to the autonomous case, wherein the operators (7;)o<;<m of Prob-
lem 1.1 are used directly.

Corollary 3.4 Consider the setting of Problem 1.1 under Assumption 3.1 and the assumption that it has
a solution. Let zg € H, let (t; —1)1<i<m € H™, and iterate

forn=0,1,...

forevery i€ I,

L ti,n = Exn + €in

foreveryie {1,... , m}~1I, (3.39)
L ti,n = ti,n—l

m
Tny1 = Tp <Z Witz',n) +eon-

=1

Then the following hold:

(i) Let x be a solution to Problem 1.1 and leti € {1,...,m}. Then x,, — T;x,, — x — T;x.
(ii) (xn)nen converges weakly to a solution to Problem 1.1.

(iii) Suppose that, for some i € {0,...,m}, T; is demicompact [39], i.e., every bounded sequence
(Yn)nen such that (y, — Tiyn)nen converges has a strong sequential cluster point. Then (z,)nen
converges strongly to a solution to Problem 1.1.

(iv) Suppose that (3.5) is implemented without errors and that, for some i € {0, ..., m}, T; is a Banach
contraction. Then (x,,)nen converges linearly to the unique solution to Problem 1.1.

Proof. We operate in the special case of Theorem 3.2 for which (Vn € N)(Vi € {0} U I,,) T}, = T;. Set
T =Tpo (37", wT;). Then the set of solutions to Problem 1.1 is FixT" and T is nonexpansive since
the operators (7;)o<i<m are likewise. In addition, we derive from Theorem 3.2(v) that

T, — Tz, — 0. (3.40)

Altogether, [6, Corollary 4.28] asserts that, if z € 7 is a weak sequential cluster point of (z,),en, then
z € FixT. Thus,

every weak sequential cluster point of (z,),ecn solves Problem 1.1. (3.41)
Recall from Theorem 3.2(ii) that

(Vo € FixT)(Vi € {1,...,m}) x4y — Tizg,n) = ¢ — Tiw (3.42)
and from Theorem 3.2(iv) that

(Vie{l,...,m}) wpm) —xn — 0. (3.43)

(i): We derive from the nonexpansiveness of T}, (3.42), and (3.43) that

[(dd =T3)zn, — (Id =T))z|| < ||(Id =T;)xy — (Id =T3) 2y, (n)l| + [|(Id =T3) 24, () — (Id =T) |
< 2l|zn — 2oyl + [[(Ad =T5) 2, () — (Id =T5) |
%

0. (3.44)
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(ii): This is a consequence of (3.41) and Theorem 3.2(vi) (a).

(iii): In view of (3.41) and Theorem 3.2(vi)(b), it is enough to show that (z,),cn has a strong
sequential cluster point. It follows from (ii) and [6, Lemma 2.46] that (z,,),en is bounded. Hence,
if 1 < i < m, we infer from (i) and the demicompactness of T; that (z,,),en has a strong sequential
cluster point. Now suppose that i = 0 and let « € FixT". Arguing as in (3.19), we obtain

(Id —Tp) <ZMT zy, n)> ZwlT Tgy(n) — T(](iwiﬂx&(n)) — iwﬂ}x —x. (3.45)
i=1 i=1

However, we derive from the nonexpansiveness of the operators (7;)o<;<m and (3.43) that

H(Id—To)<Zi:wﬂ}xn> (Id —Tp) <ZWZTCQ )H ZWZT% szTﬁﬂe
sz‘

Tixn — Ex&(n)

<220 — 24,
— 0. (3.46)

Combining (3.45) and (3.46) yields

(Id —Tp) (ZMT xn> — sz’Tz‘ﬂf —z. (3.47)
i=1

Therefore, by demicompactness of 7Tp, the bounded sequence (3" | w; Tz, )nen has a strong sequential
cluster point and so does (T'zy,)neny = (To(d i~ wiTizy))nen since Ty is nonexpansive. Consequently,
(3.40) entails that (x,),cn has a strong sequential cluster point.

(iv): This is a consequence of Theorem 3.2 (vii). [

In connection with Corollary 3.4(iii), here are examples of demicompact operators.

Example 3.5 Le T: H — H be a nonexpansive operator. Then 7" is demicompact if one of the follow-
ing holds:

(i) ranT is boundedly relatively compact (the intersection of its closure with every closed ball in H
is compact).

(i) ranT lies in a finite-dimensional subspace.
(iii) T = J4, where A: H — 2% is maximally monotone and one of the following is satisfied:
(a) A is demiregular [3], i.e., for every sequence (x,,u,)nen in gra A and for every (z,u) €
graA, [z, — xand u, — u] = z, = x.

(b) A is uniformly monotone, i.e., there exists an increasing function ¢: [0, +o0o[ — [0, +00]
vanishing only at 0 such that (V(z,u) € gra A)(V(y,v) € graA) (x —y | u —v) = ¢(||[z—y])).

(c) A = 0f, where f € I'g(H) is uniformly convex, i.e., there exists an increasing function
¢: [0,400[ — [0, +0o0] vanishing only at 0 such that

(Vo € ]0,1[)(Vz € dom f)(Vy € dom f)
Flaz+ (1 - a)y) +a(l — a)p(ls — yl) < af(@) + (1 — ) f(y). (3.48)
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(d) A=0f,where f € Ty(H) and the lower level sets of f are boundedly compact.
(e) dom A is boundedly relatively compact.
(f) A: H — H is single-valued with a single-valued continuous inverse.

Proof. Let (yn)nen be a bounded sequence in H such that y,, — Ty,, — u, for some u € H. Set (vVn € N)
Tp = Tyn.

(i): By construction, (x,),en lies in ran T and it is bounded since (Vn € N) ||z, || < |[Tyn — Tyol| +
ITyoll < |lyn — woll + [|Tyol|- Thus, (x,)nen lies in a compact set and it therefore possesses a strongly
convergent subsequence, say xy, — = € H. In turn yy, = yr, — Tk, + Tr, — v+ 2.

(i)=(1): Clear.
(iii) (a): Set (Vn € N) w,, = y,, — z,. Then w,, — u. In addition, (Vn € N) (z,,,u,) € gra A. On the
other hand, since (y,)nen is bounded, we can extract from it a weakly convergent subsequence, say

Y, — y. Then xp, = yx, —up, — y —uand ug, — u. By demiregularity, we get =3, — y — v and
therefore yi, = x, + ug, — y.

(iii) (b)—(iii) (f): These are special cases of (iii)(a) [3, Proposition 2.4].

n

4 Applications

We present several applications of Theorem 3.2 to classical nonlinear analysis problems which will be
seen to reduce to instantiations of Problem 1.1. These range from common fixed point and inconsistent
feasibility problems to composite monotone inclusion and minimization problems. In each scenario,
the main benefit of the proposed framework will lie in its ability to achieve convergence while updating
only subgroups of the pool of operators involved.

4.1 Finding common fixed point of firmly nonexpansive operators

Firmly nonexpansive operators are operators which are 1/2-averaged [6, 25]. This application con-
cerns the following ubiquitous fixed point problem [5, 9, 23, 24, 43].

Problem 4.1 Let m be a strictly positive integer and, for everyi € {1,...,m}, let T;: H — H be firmly
nonexpansive. The task is to find a point in ", Fix 7;.

Corollary 4.2 Consider the setting of Problem 4.1 under Assumption 3.1 and the assumption that
Nit, FixT; # @. Let (w;)i<i<m € ]0,1]™ be such that > " w; = 1. For every n € N and every
i € Iy, let T;,,: H — H be a firmly nonexpansive operator such that FixT; C FixT; . Let xo € H, let
(ti,—1)1<i<m € H™, and iterate

forn=0,1,...
forevery i € I,
L ti,n =1inTn + €in
foreveryie {1,...,m} I, 4.1)
L tin = tin-1

m
Tpil = E witi n.
L i=1

Then the following hold:
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(i) Leti e {1, e ,m}. Then (Ti,&(n)xéi(n))neN is bounded.

(ii) Suppose that, for every z € H, every i € {1....,m}, and every strictly increasing sequence (ky)nen
of integers greater than K,

Loi(kn) — % e FiT. 4.2)
L0, (kn) — Lits (k) Tt; (k) — O

Then (x,,)nen converges weakly to a solution to Problem 4.1.

(iii) Suppose that, for somei € {1,...,m}, (T} s,(n)Z¢,(n) Jnen has a strong sequential cluster point. Then
(21 )nen converges strongly to a solution to Problem 4.1.

Proof. Set Ty = Id and (Vi € {1,...,m}) o; = 1/2. In addition, set (Vn € N) T} ,, = Id. By assumption,
for every i € {1,...,m} and every integer n > K — 1, FixT; C FixT; 4,(,). Therefore, it follows from
[6, Proposition 4.47] that, for every integern > K — 1,

m m m m
Fix (TO o) wiTl-> = (\FixT; C (| Fix T}, = Fix <T0,n oY wimi(n)> . (4.3)
i=1

i=1 1=1 1=1

This shows that (3.4) holds, that Problem 4.1 is a special case of Problem 1.1, and that (4.1) is a
special case of (3.5). Let us derive the claims from Theorem 3.2. First, let € (", Fix 7;. Then, for
every i € {1,...,m} and every integer n > K — 1, x € FixT; C FixT; (). This allows us to deduce
from Theorem 3.2(ii) that

(Vie{l,....,m}) wp,m) — Tig;0)Tti(n) = Tesn) — Titstn)Tts(n) + Tigs(my@ — @ — 0. 4.4)
We also recall from Theorem 3.2(iv) that

(Vie{l,....,m}) xym) —zn — 0. 4.5)

(i): This follows from Theorem 3.2(i), (4.4), and (4.5).

(ii): Lets € {1,...,m} and let z € H be a weak sequential cluster point of (z,,)nen, say g, — 2.
In view of Theorem 3.2(vi)(a), it is enough to show that z € Fix7;. We derive from (4.4) that
T, (k) = T3 01(kn) Tt (k) — 0. On the other hand, (4.5) yields =y, ) = (%4, (k,) — Tk,) + Tk, — 2. Using
(4.2), we obtain z € Fix T;.

(iii): Let z € H be a strong sequential cluster point of (T} ¢, (n)%¢,(n))neN> SAY T ¢, (k) T, (k) — 2-

Then (4.4) yields Ty, (k,) — 2. In turn, (4.5) implies that x;, — 2z and the conclusion follows from
Theorem 3.2(vi)(b). O

Example 4.3 We revisit a problem investigated in [16]. Let m be a strictly positive integer, let
(wi)i<i<m € ]0,1]™ be such that >, w; = 1, and, for every i € {1,...,m}, let p; € [0,+o00[ and
let A;: H — 2" be maximally p;-cohypomonotone in the sense that A; ' + p; Id is maximally mono-
tone. The task is to

find x € H suchthat (Vie {1,...,m}) 0e Az, (4.6)
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under the assumption that such a point exists. Suppose that Assumption 3.1 is satisfied, let ¢ € |0, 1],
let zg € H, let (t;—1)1<i<m € H™, and let (Vn € N)(Vi € I,,) vin € [pi + €, +00[. Iterate

forn=0,1,...

for everyi € I,

L ti,n =z, + (1 - pi/'Yi,n) (J7¢7nAixn + €éin — xn)

foreveryie {1,...,m} \ I, 4.7)
[ tin = tin-1

m
Tpil = E witi n.
i=1

Then the following hold:

(1) (zn)nen converges weakly to a solution to (4.6).

(ii) Suppose that, for some i € {1,...,m}, dom A; is boundedly relatively compact. Then (z,,)nen
converges strongly to a solution to (4.6).

Proof. Set

)

TZ-:Id+<1—&>(J%AZ.—Id), where ~; € |p;, +oof
it

(Vi e {1,...,m}) (4.8)

M; = (A;l + p; Id)_l.

Then it follows from [6, Proposition 20.22] that the operators (M;);<;<m are maximally monotone
and therefore from [16, Lemma 2.4] and [6, Corollary 23.9] that

(Vie{l,...,m}) T;= Jn,_p,)m, is firmly nonexpansive and FixT; = zer M; = zer A;,  (4.9)

which makes (4.6) an instantiation of Problem 4.1. Now set

(VneN)(Viel,) T,,= Id+<1 S >(J%Ai ~1d) and ¢, = (1 - ﬁ>em. (4.10)
Yi,n ’ ' ©,n

Then (Vi€ {1,...,m}) >~k 1 \|e;7£i(n)|| <D skt €@l < +oo. In addition, (Vn € N)(Vi € I,)
tin = Tinxn + e;m. This places (4.7) in the same operating conditions as (4.1). We also derive from
[16, Lemma 2.4] that

(Yn e N)(Vie I,) Tin=J , is firmly nonexpansive and Fix T} ,, = zer M; = zer A;. (4.11)

Yi,n—pi)

(i): In view of Corollary 4.2(ii), it suffices to check that condition (4.2) holds. Let us take z € H,
i € {1,...,m}, and a strictly increasing sequence (k, ),cn of integers greater than K such that

To(kyy) — 7 A0 2,y = Ty () Tty () = O- (4.12)

Then we must show that 0 € A;z. Note that

Tty (k) Tty (k) — 2 (4.13)
Now set
(" €N) gy = Vit k) — P1) " (@t (ton) — T () T (o)) - (4.14)
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Then

26, (k) — T (en) T (o) l 3 26, (k) = T (en) T (o)

[, (k) | = 0. (4.15)
Yiki(kn) — Pi €
On the other hand, we derive from (4.11) that (Vn € N) T 0, (kn) = J(%,z-(knrm)Mr Therefore, (4.14)
yields
(Vn S N) (Ti,fi(kn)x&(kn)’ufi(kn)) € gra M;. (4.16)

However, since M, is maximally monotone, gra M; is sequentially closed in "2k x #{str"& [6, Propo-
sition 20.38(ii)]. Hence, (4.13), (4.15), and (4.16) imply that z € zer M; = zer A;.

(i): By (4.11), for every n > K — 1, T} y,(n)Te,(n) € 10T} 4,y = dom (Id +(v; ,(n) — pi)Mi) =
dom M;. However, Corollary 4.2(i) asserts that (7} y,(n)T¢,(n))nen lies in a closed ball. Altogether, it
possesses a strong sequential cluster point and the conclusion follows from Corollary 4.2(iii). O

Remark 4.4 Suppose that, in Example 4.3, the operators (A4;)i<i<» are maximally monotone, i.e.,
(Vi € {1,...,m}) p; = 0. Suppose that, in addition, all the operators are used at each iteration, i.e.,
(Vn € N) I, = {1,...,m}. Then the implementation of (4.7) with no errors reduces to the barycentric
proximal method of [31].

Example 4.5 As shown in [19], many problems in data science and harmonic analysis can be cast as
follows. Let m be a strictly positive integer and, for every i € {1,...,m}, let R;: H — H be firmly
nonexpansive and let r; € H. The task is to

find z € H suchthat (Vie{l,...,m}) r = Rz, “4.17)

under the assumption that such a point exists. Let (w;)1<i<m € ]0,1]™ be such that ", w; = 1,
suppose that Assumption 3.1 is satisfied, let zp € #, and let (¢; _1)1<i<m € H'". Iterate

forn=0,1,...

for everyi € I,

L ti,n =7, +Tpn — Rixn + €in

foreveryi e {1,...,m} \ I, (4.18)
L ti,n = ti,n—l

m
Tyl = g witi n.
L i=1

Then the following hold:

(1) (zn)nen converges weakly to a solution to (4.17).

(ii) Suppose that, for some i € {1,...,m}, Id —R; is demicompact. Then (x,,),cn converges strongly
to a solution to (4.17).

Proof. Following [19], (4.17) can be formulated as an instance of Problem 4.1, by choosing (Vi €
{1,...,m}) T; = r; + Id —R;. A straightforward implementation of (4.1) consists of setting (Vn €
N)(Vi € I,) T; 5, = T;, which reduces (4.1) to (4.18).

(i): Since the operators (7;)1<;<nm are nonexpansive, [6, Theorem 4.27] asserts that the operators
(Id —T;)1<i<m are demiclosed, which implies that condition (4.2) holds. Thus, the claim follows from
Corollary 4.2(ii).
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(ii): We deduce from (4.4) that Ty,tn) — Tiwgn) — 0, and from (4.5) and (i) that (I'gi(n))neN is
bounded. Hence, since T; is demicompact, (zy,(n))nen has a strong sequential cluster point and so
does (T;x,(n))nen. We conclude with Corollary 4.2(iii). U
Remark 4.6 If (4.17) has no solution, (4.18) will produce a fixed point of the operator } ;" | w;T; =
Id+ >~ wi(r; — R;), provided one exists. As discussed in [19], this is a valid relaxation of (4.17).

4.2 Forward-backward operator splitting
We consider the following monotone inclusion problem.

Problem 4.7 Let m be a strictly positive integer and let (w;)1<;<m € ]0,1]™ be such that > /" | w; = 1.
Let Ag: H — 27 be maximally monotone and, for every i € {1,...,m}, let 3; € ]0,4oo[ and let
A;: H — H be ;-cocoercive, i.e.,

(Ve e H)(Vy € H) (x—y| Ax — Asy) = Bil| Asx — Ayl (4.19)
The task is to find z € H such that 0 € Apz + > 1" | w; A;x.

Remark 4.8 In Problem 4.7, suppose that A is the normal cone operator of a nonempty closed convex
set C, i.e., Ag = dic. Then the problem is to solve the variational inequality

find 2z € C suchthat (YyeH) <x -y

i=1
If m = 1, a standard method for solving Problem 4.7 is the forward-backward splitting algorithm
[11, 42, 44]. We propose below a multi-operator version of it with block-updates.

Proposition 4.9 Consider the setting of Problem 4.7 under Assumption 3.1 and the assumption that it
has a solution. Let vy € ]0,2min<i<m B3, let o € H, let (t; —1)1<i<m € H™, and iterate

forn=0,1,...
forevery i€ I,
L ti,n = Tp — ’Y(Azxn + ei,n)
foreveryie {1,...,m} \ I, (4.21)
L ti,n = ti,n—l
m

Tyl = Jya, <sztzn> + €eon-

L i=1

Then the following hold:

(i) Let x be a solution to Problem 4.7 and let i € {1,...,m}. Then A;x,, — A;z.
(ii) (xn)nen converges weakly to a solution to Problem 4.7.

(iii) Suppose that, for some i € {0,...,m}, A; is demiregular. Then (x,)n,en converges strongly to a
solution to Problem 4.7.

(iv) Suppose that, for some i € {0,...,m}, A; is strongly monotone. Then (x,)ncn converges linearly
to the unique solution to Problem 4.7.
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Proof. We apply Corollary 3.4 with Ty = J,4, and (Vi € {1,...,m}) T; = Id —yA;. It follows from
[6, Proposition 4.39 and Corollary 23.9] that the operators (7;)o<i<m are averaged, and hence from
[6, Proposition 26.1(iv)(a)] that Problem 4.7 coincides with Problem 1.1. In addition, (4.21) is an
instance of (3.39).

(i): See Corollary 3.4(i).
(ii): See Corollary 3.4(ii).

(iii): This follows from Corollary 3.4(iii). Indeed, if 7 = 0, the demicompactness of T; follows from
Example 3.5(iii)(a). On the other hand, if i # 0, take a bounded sequence (y,),cn in H such that
(Yn — Tyyn)nen converges, say vy, — T;y, — u. Then A;y, — u/~. On the other hand, (y,),en has a
weak sequential cluster point, say yx, — y. So by demiregularity of A4, yi, — y, which shows that 7;
is demicompact.

(iv): If ¢ = 0, we derive from [6, Proposition 23.13] that 7y = .J, 4, is a Banach contraction. If
i # 0, as in the proof of [6, Proposition 26.16], we obtain that 7; = Id —yA; is a Banach contraction.
The conclusion follows from Corollary 3.4(iv). [

Example 4.10 Consider maximally operators Ag: # — 2" and, for every i € {1,...,m}, B;: H —
2", The associated common zero problem is [10, 31, 46]

find z € H such that 0 € Agz N ﬂ B;x. (4.22)
i=1

As shown in [12], when (4.22) has no solution, a suitable relaxation is

find x € suchthat 0€ Az + ) wi(BOC)z (4.23)
=1

where, for every i € {1,...,m}, C;: H — 2% is such that C; !'is at most single-valued and strictly
monotone, with C; *0 = {0}. In this setting, if (4.22) happens to have solutions, they coincide with
those of (4.23) [12]. Let us consider the particular instance in which, for every i € {1,...,m}, C;
is cocoercive, and set A; = B;0C;. Then the operators (C; 1)1<i<m are strongly monotone and,
therefore, the operators (A;)1<;<m are cocoercive. In addition, (4.23) is a special case of Problem 4.7,
which can be solved via Proposition 4.9. Let us observe that if we further specialize by setting, for

everyi € {1,...,m}, C; = p; ' 1d for some p; € |0, +oc|, then (4.23) reduces to (1.3).
We now focus on minimization problems.

Problem 4.11 Let m be a strictly positive integer and let (w;)i<i<m € ]0,1]™ be such that > " | w; = 1.
Let fo € I'o(#H) and, for every i € {1,...,m}, let §; € |0,4o00[ and let f;: H — R be a differentiable
convex function with a 1/;-Lipschitzian gradient. The task is to

mlnlmlze fo(z) + Z w; fi(w (4.24)

Proposition 4.12 Consider the setting of Problem 4.11 under Assumption 3.1 and assume that

iler% (fo(:v) + ;Mﬁ(x)) = +o0. (4.25)

llz]|—=+o0
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Let v € 10,2 mini<i<m Bi, let g € H, let (t;—1)1<i<m € H™, and iterate

formn=0,1,...

forevery i € I,

L ti,n = x‘n - ’Y(vfz(xn) + ei,n)

ff; everytz e{l,....m}~1I, (4.26)
in — lin—1

m
Tp+1 = prOX,ny <Z witm) + €0,n-
L i=1

Then the following hold:

(i) Let x be a solution to Problem 4.11 and leti € {1,...,m}. Then V f;(zy,) — V fi(x).
(ii) (zn)nen converges weakly to a solution to Problem 4.11.

(iii) Suppose that, for some i € {0,...,m}, one of the following holds:

(a) f; is uniformly convex.
(b) The lower level sets of f; are boundedly compact.

Then (x,,)nen converges strongly to a solution to Problem 4.11.

(iv) Suppose that, for some i € {0,...,m}, f; is strongly convex, i.e., it satisfies (3.48) with ¢ = | -|*/2.
Then (zy,)nen converges linearly to the unique solution to Problem 4.11.

Proof. We derive from [6, Theorem 20.25] that Ay = Jf, is maximally monotone and from [6,
Corollary 18.17] that, for every i € {1,...,m}, A; = Vf; is B;-cocoercive. In this setting, it follows
from [6, Corollary 27.3(i)] that Problem 4.7 reduces to Problem 4.11. On the other hand, since
the assumptions imply that fy + >_.", w; f; is proper, lower semicontinuous, convex, and coercive, it
follows from [6, Corollary 11.16(ii)] that Problem 4.11 has a solution. The claims therefore follow
from Proposition 4.9, Example 3.5(iii) (¢) &(iii) (d), and [6, Example 22.4(iv)]. O

An algorithm related to (4.26) has recently been proposed in [35] in a finite-dimensional setting;
see also [36] for a special case.

We illustrate an application of Proposition 4.12 in the context of a variational model that captures
various formulations found in data analysis.

Example 4.13 Suppose that H is separable, let (e;)rcxcn be an orthonormal basis of H, and, for
every k € K, let ¢, € T'o(R) be such that ¢ > 0 = 1(0). For every i € {1,...,m}, let 0 # a; € H,
let pu; € 0,400, and let ¢;: R — [0,+oo[ be a differentiable convex function such that ¢} is ;-
Lipschitzian. The task is to
L 1 &
minimize > k(e | er)) + p— > ol | ai)). (4.27)

keK i=1

Let us note that (4.27) is an instantiation of (4.24) with fy = >, cx ¥ o (- | e) and, for every i €
{1,...,m}, fi = ¢;o (- | a;) and w; = 1/m. The fact that f, € I'o(H) is established in [18], where it is
also shown that, given v € |0, +oc],

ProxX. ; : Z (prox.,, (z | ex))ex. (4.28)
keK
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On the other hand, for every i € {1,...,m}, f; is a differentiable convex function and its gradient
Vi x— &i((z ] a;))a; (4.29)

has Lipschitz constant y;|a;||>. Let v € ]0,2/(maxi<i<m pil|ai[|?)| and let (I,,),en be as in Assump-
tion 3.1. In view of (4.26), (4.28), and (4.29), we can solve (4.27) via the algorithm

forn=0,1,...

for everyi € I,

L ti,n =Tn — ’Wb;((wn ‘ ai>)ai

foreveryi e {1,...,m} I,

L ti,n = ti,n—l (430)

m
Yn = E Witi,n
i=1

P Z (prox.,;, (un | ex))er.-
L kEK

Infinite-dimensional instances of (4.27) are discussed in [17, 18, 20, 21]. A popular finite-dimensional
setting is obtained by choosing H = R, K = {1,..., N}, (ex)i<r<n as the canonical basis, o €
10, +00], and, for every k € K, ¢, = «/ - |. This reduces (4.27) to

minimize «ol|x||; + i((x | a;)). 4.31
nimize aleli+ 3 oi(e | a) (43D
Thus, choosing for every i € {1,...,m} ¢;: t + |t — n;|2, where 1; € R models an observation, yields
the Lasso formulation, whereas choosing ¢;: ¢ — In(1+exp(t)) — n;t, where n; € {0, 1} models a label,
yields the penalized logistic regression framework [27].

4.3 Hard constrained inconsistent convex feasibility problems
The next application revisits a model proposed in [14] to relax inconsistent feasibility problems.

Problem 4.14 Let m be a strictly positive integer and let (w;)i<i<m € ]0,1]™ be such that > " | w; = 1.
Let Cy be a nonempty closed convex subset of / and, for every i € {1,...,m}, let G; be a real Hilbert
space, let L;: H — G; be a nonzero bounded linear operator, let D; be a nonempty closed convex
subset of G;, let u; € |0, +oc[, and let ¢;: R — [0, +oco[ be an even differentiable convex function that
vanishes only at 0 and such that ¢/ is u;-Lipschitzian. The task is to

minimize Zl w;i¢i (dp, (Liz)). (4.32)

The variational formulation (4.32) is a relaxation of the convex feasibility problem
find x € Cp suchthat (Vie{l,...,m}) Lx€ D (4.33)

in the sense that, if (4.33) is consistent, then its solution set is precisely that of (4.32); see [14, Sec-
tion 4.4] for details on this formulation and background on inconsistent convex feasibility problems.
Here Cy models a hard constraint. An early instance of (4.33) as a relaxation of (4.32) is Legendre’s
method of least-squares to deal with an inconsistent system of m linear equations in H = R”" [30].

24



There, Cy = RY and, for everyi € {1,...,m}, Gi =R, D; = {B;}, L; = (- | a;) for some a; € R" such
that |a;|| = 1, w; = 1/m, and ¢; = | - |>. The formulation (4.32) can also be regarded as a smooth
version of the set-theoretic Fermat-Weber problem [37] arising in location theory, namely,

1 m
inimi — deo (). 3
mliue%me m; o () (4.34)

The following version of the Closed Range Theorem will be required.

Lemma 4.15 [22, Theorem 8.18] Let G be a real Hilbert space and let L: H — G be a nonzero bounded
linear operator. Then ran L is closed < ran L* o L is closed < (3 p € 10, +oo[)(Va € (ker L)1) || Lz| >

pllz |

Corollary 4.16 Consider the setting of Problem 4.14 under one of the following assumptions:

[a] There exists j € {1,...,m} such that lim,_, oo (v, (z) + ¢j(dp, (L)) = +oc.

[b] There exists j € {1,...,m} such that ran L; is closed, Cy C (ker L;)*, and D; is bounded.
[c] There exists j € {1,...,m} such that G; = H, L; = 1d, and D; is bounded.

[d] Cy is bounded.

Set B = 1/(maxicicm pil|Li||?), let v € 10,283], let (I,)nen be as in Assumption 3.1, let g € Cy, let
(ti—1)1<i<cm € H™, and iterate

forn=0,1,...

forevery i € I,

if Liz, & D;
¢;(dp;(Lizn)) .

{ tin = Tn — WQ’ (Lizy — projp, (Lizy))
else (4.35)
L ti,n = Tn

foreveryie {1,... , m}~1I,

L ti,n = ti,n—l

Tpt1 = Projg, <Z witi,n> .

L i=1

Then the following hold:

(i) (xn)nen converges weakly to a solution to Problem 4.14.
(ii) Suppose that one of the following holds:

[e] Condition [b] is satisfied with the additional assumptions that ¢; = p;| - 12/2 and D;j is
compact.
[f] Cy is boundedly compact.

Then (zy,)nen converges strongly to a solution to Problem 4.14.
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Proof. We first note that (4.32) is an instance of (4.24) with fy = t¢, and (Vi € {1,...,m}) f; =
¢; odp, o L;. Next, we derive from [6, Example 2.7] that, for every ¢ € {1,...,m}, f; is convex and
differentiable, and that its gradient

(b; (dDi (le))

ViitH—>H: x— dp,(L;x)
0, if L,z € D;

has Lipschitz constant ;| L;||>. Hence (4.35) is an instance of (4.26). Now, in order to apply Proposi-
tion 4.12, let us check that (4.25) is satisfied under one of assumptions [a]-[d].

[a]: We have fo(z) + >0 wifi(z) = wiio, () + f(x)) — +oo as ||lz]| — +oo.

[b]=-[a]: In view of [d], we assume that Cj is unbounded. It follows from Lemma 4.15 that there
exists p € ]0, +oo[ such that (Vz € (ker L;)*) || L;z|| = pl|z||. Hence,

(Vo € Co) | Ljz|| = pllz]- (4.37)
Now let z € G;. Then, since D; is bounded, § = diam(D;) + [|projp, z|| < +oc and
(Vy € G;) llyll < lly —projp,yll + llprojp,y — projp, 2|l + [[projp 2|l < dp, (y) + 6. (4.38)

Consequently, dp,(y) — +o0 as |ly|| — +oo with y € G;. Thus, since ¢; is coercive by [6, Proposi-
tion 16.23], we obtain

¢j(dp,(y)) — 400 as |[ly| - +oco with yeg;. (4.39)
We deduce from (4.37) and (4.39) that

fi(x) = +o0 as |z|| = +oo with z € Cy. (4.40)

[c]=[b] and [d]=-[a]: Clear.
We are now ready to use Proposition 4.12 to prove the assertions.

(i): Apply Proposition 4.12(ii).

(i) [e]: Let x be the weak limit in (i) and set u; = V f;(x)/p;. Then Proposition 4.12(i) asserts
that

L;k (le'n — pI'Oij (le'n)) — Uj. (441)

We also observe that, since L; o L; is weakly continuous [6, Lemma 2.41], we have L;(ijn) —
L;(Lj:c). Therefore, (4.41) yields

Lj (projp, (Ljzn)) — Lj(Ljz) — uj. (4.42)

However, the set L}(D;) is compact by [6, Lemma 1.20] and it contains (Lj(proij(ijn)))neN.
This sequence has therefore Lj(L;z) — u; as its unique strong sequential cluster point. Thus,
L3(projp, (Ljzn)) = Lj(Ljz) — u; and we deduce from (4.41) that

On the other hand, for every n € N, since = and =, lie in Cy C (ker L;)*, we have z,, —x € (ker L;)* =
(ker L7 o L;)*. Hence, we deduce from (4.43) and Lemma 4.15 that there exists 6 € |0, +oo[ such that

Ol — 2| < (L 0 Lj)(@n — )]| = 0. (4.44)
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We conclude that z,, — x.

(ii) [f]: This follows from Proposition 4.12(iii) (b) since the lower level sets of f; are the compact
sets {@,Cp}. O

We conclude by revisiting (1.1) and recovering a classical result on the method of alternating
projections.

Example 4.17 [8, Theorem 4(a)] Let C and D be nonempty closed convex subsets of # such that D
is compact. Let zp € H and set (Vn € N) z,,41 = proj-(projpz,). Then (z,)nen converges strongly to
a point in x € C such that x = proj.(projpz).

Proof. Apply Corollary 4.16(ii)[e] withm =1, Cy=C, G, =H, L1 =1d, Dy =D,~v=1,and pu; = 1.

]
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