

¹ **VHF imaging radar observations and theory of banded
² midlatitude sporadic *E* ionization layers**

D. L. Hysell¹ and M. F. Larsen²

¹Earth and Atmospheric Sciences, Cornell

University, Ithaca, NY, USA

²Physics and Astronomy, Clemson

University, Clemson, SC, USA

Key Points.

1. Quasiperiodic (QP) sporadic *E* layers observed under the midlatitude trough using coherent scatter radar.
2. Radar imagery shows secondary bands of irregularities normal to the primary QP bands.
3. The secondary bands are attributed to secondary Kelvin Helmholtz instability in the lower thermosphere

3 Abstract.

4 Observations of backscatter from field-aligned plasma density irregularities
5 in sporadic *E* (E_s) layers made with a 30-MHz coherent scatter radar imager in
6 Ithaca, New York are presented and analysed. The volume probed by the radar
7 lies at approximately 54° geomagnetic latitude, under the midlatitude trough and
8 at the extreme northern edge of the zone where E_s layers are prevalent. Nonethe-
9 less, the irregularities exhibit many of the characteristics of quasiperiodic echoes
10 observed commonly at lower middle latitudes. These include a tendency to oc-
11 cur in elongated bands stretching from northwest to southeast in the northern
12 hemisphere separated by tens of kilometers and propagating to the southwest.
13 In addition, the irregularities were found to exhibit finer-scale structures with
14 secondary bands oriented nearly normally to the primary bands. We investigate
15 the proposition that the primary bands are telltale of E_s -layer structuring caused
16 by neutral Kelvin Helmholtz (KH) instability in the lower thermosphere and that
17 the secondary bands signify secondary KH instability. Results from a 3D nu-
18 merical simulation of KH support this proposition.

Introduction

19 The altitude range in the mesosphere/lower thermosphere where the turbopause occurs, i.e.,
20 near an altitude of 100 km, is particularly important because of the rapid changes in dynamics,
21 electrodynamics, and chemistry that occur there. The transition from the negative lapse rates
22 in the mesosphere to isothermal and even positive lapse rates in the lower thermosphere is a
23 natural inhibitor to significant vertical transport across that region due to the inherently more
24 stable air overlying the less stable air in the mesosphere. Layers in the mesosphere frequently
25 show evidence of shear instabilities of the Kelvin-Helmholtz type, as shown in the case studies
26 presented by *Hecht et al.* [2021] and *Chau et al.* [2020], for example. See also their discussion
27 of other past observations from that region.

28 Observations from higher altitudes near the critical turbopause transition are much more lim-
29 ited, but the available data indicate that the region is characterized by frequent and persistent
30 shears associated with the large winds that occur there. The shears often meet the criteria for
31 shear instability, as shown by *Larsen* [2002] using an extensive set of rocket-based wind mea-
32 surements and by *Sherman and She* [2006] using a long time series of lidar wind measurements
33 that extended to altitudes of 105 km. *Liu* [2017] was able to reproduce the essential character-
34 istics of the observed winds and shears in that altitude range and discussed their implications
35 for diffusion and transport. Recently *Mesquita et al.* [2020] presented an example of a K-H
36 billow observed directly with chemical tracer measurements in the transition altitude where the
37 more stable isothermal lapse rate occurs. One conclusion was that this type of instability can
38 contribute significantly to vertical transport into the more stable portions of the atmosphere in
39 the lower thermosphere, which would otherwise inhibit strong vertical motions.

40 Data from the lower thermosphere are much more limited than data from lower altitudes in
41 the mesosphere, but a long series of observations from the Caribbean have shown that there is
42 a strong relationship between the development of coherent scatter radar echoes associated with
43 sporadic E layers and upward displacements of the ionization layers. Furthermore, the quasi-
44 periodic (QP) scattering structures that are now known to be a common characteristic of SpE
45 layers have been tied to unstable shears in many of the observations. The vertical displacements
46 associated with the billow structures are therefore the likely driver for the plasma instabilities
47 responsible for the quasi-periodic structure in the radar scatter.

48 The sporadic E coherent scatter has a much stronger seasonal dependence than the occurrence
49 of the strong shear layers as shown by the statistical analyses of *Larsen* [2002] and *Sherman*
50 and *She* [2006] cited above. A strong shear is therefore not sufficient to produce the scattering
51 layers, but the layers can provide another source of data related to the characteristics of the shear
52 instabilities in that altitude range when the layers are present.

53 We report here on observations of coherent scatter from plasma density irregularities in spo-
54 radic *E* (E_s) layers over the Great Lakes region of North America made with 30 MHz radar
55 imager located in Ithaca, New York. The E_s -layer echoes have the characteristics of the so-
56 called quasiperiodic (QP) echoes made famous in a series of studies conducted at the 50-MHz
57 MU radar in Japan (e.g. *Yamamoto et al.* [1991, 1992, 1994]). In range-time-intensity format,
58 the echoes appear as multiple, narrow, parallel striations. The echoes are not truly periodic, but
59 the multiplicity of slanted striations sometimes gives them a quasiperiodic character depending
60 on their range rate or slope. The echoes typically appear in clusters, with episodes lasting for
61 about 30–60 min. QP echoes and related E_s -layer ionospheric irregularities have been observed
62 with coherent scatter radars in numerous midlatitude locations as described, for example, by

63 *Ecklund et al. [1981]; Riggin et al. [1986]; Bourdillon et al. [1995]; Haldoupis et al. [1996];*
64 *Chu and Wang [1997]; Tsunoda et al. [1998]; Chau and Woodman [1999]; Hysell and Burcham*
65 *[2000]; Rao et al. [2008].*

Background

66 The echoes discussed in this paper are most directly comparable to those observed by a coher-
67 ent scatter radar deployed on St. Croix in a campaign in 2002 and then continuously between
68 2008–2018 – see for example *Larsen et al. [2007]; Hysell et al. [2004, 2009, 2010, 2012]*. The
69 St. Croix radar was functionally similar to the Ithaca radar and also had its main beam directed
70 to the northwest which affects the presentation of the echoes in RTDI format. The St. Croix
71 radar used imaging techniques to resolve certain spatio-temporal ambiguities otherwise in the
72 data and to yield a plan view of the E_s -layer irregularities. The St. Croix studies moreover ben-
73 efited from close proximity to the Arecibo Radio Observatory where plasma and neutral state
74 parameters could be measured in a common volume. Here, we summarize the salient findings
75 of the St. Croix/ Arecibo experiments.

76 1. QP echoes arise from bands of E -region ionization tens or hundreds of km long, separated
77 typically by about 30 km, and propagating to the southeast at about 50 m/s while maintaining
78 approximately constant altitude. The streaks in coherent scatter range-time-Doppler-intensity
79 (RTDI) plots reflect the proper line-of-sight motion of the bands and discrete features within
80 them. The ionization bands were observed routinely using Arecibo incoherent scatter modes
81 and, on one occasion, in 557.7 nm airglow imagery [Hysell et al., 2012].

82 2. Fine structure in the Doppler shifts of the coherent scatter are indicative of $E \times B$ electron
83 drifts and the underlying polarization electric field arising in regions where the background
84 conductivity is inhomogeneous. In one study, variations in the Doppler shift were shown to

85 be highly correlated with variations in E_s layer height, i.e., with variations in the local Hall
86 conductivity [Hysell *et al.*, 2010]. When the electron drift speed exceeds the ion-acoustic speed,
87 so-called type I echoes indicative of Farley Buneman waves result.

88 3. The ionization bands are embedded in neutral flows exhibiting strong vertical shear. Not
89 only is the shear thought to create the E_s layers, it has been found to be Kelvin-Helmholtz un-
90 stable in the Richardson number sense, implying that it can also create the bands. Unmistakable
91 Kelvin-Helmholtz cats eyes have been observed in an irregular E_s layer over Arecibo. The mo-
92 tion of the ionization bands has furthermore been found to be consistent with the neutral wind
93 velocity at the shear node in unstable MLT wind profiles measured over Arecibo [Hysell *et al.*,
94 2012].

95 4. One or more gradient drift-type plasma instabilities are thought to be responsible for gen-
96 erating additional structuring in E_s layers and ultimately for producing the field-aligned irregu-
97 larities detected by coherent scatter radars (e.g. Seyler *et al.* [2004]). A drift wave-type insta-
98 bility was shown to be able to produce kilometric plasma density irregularities starting from the
99 larger banded irregularities seen in ISR data [Hysell *et al.*, 2013].

100 A distinguishing feature of the Ithaca radar is its high magnetic latitude. The E -region vol-
101 ume from where field-aligned backscatter is expected lies to the east of Lake Huron at lati-
102 tudes between 44.5 – 45.5° N or between 53.65 – 54.65° geomagnetic. This is higher than even
103 the Valensole radar in the south of France located at 43.8° geographic and just 37.1° geomag-
104 netic [Haldoupis *et al.*, 2001]. The region furthermore falls under the midlatitude trough where
105 F -region densities have a minimum (e.g. Yang *et al.* [2015]). Yu *et al.* [2019] mapped the global
106 climatology of E_s layers using GPS radio occultation measurements from the COSMIC satel-
107 lites, finding a steep decline in intensity above about 50° geomagnetic latitude. The authors

108 attributed this to the failure of the wind shear mechanism for creating E_s layers at higher dip
109 latitudes. However, recent observations of QP echoes made during ionospheric modification
110 experiments at the HAARP facility suggest that at least some of the processes at work at lower
111 latitudes also take place in the subauroral E region [Hysell *et al.*, 2018b]. One of the objectives
112 of the present research is to explore the latitude extent of midlatitude E_s -layer formation and
113 instability.

114 The central question in QP-echo research, however, is the mechanism responsible for pro-
115 ducing large-scale irregularities and bands in E_s layers in the first place. Neutral wind shear
116 is an obvious source of free energy and so is suspected to play a key role. A plasma instabil-
117 ity similar in some respects to the one proposed by Perkins [1973] except in the E region was
118 suggested by Cosgrove and Tsunoda [2002]. The background forcing in that case is provided
119 by vertical wind shear in the MLT region. The winds drive currents with opposing directions
120 in the crests and troughs of a wavelike perturbation. The resulting polarization electric fields
121 cause electron convection that intensifies the initial layer perturbation (while the ions follow
122 suit to preserve quasineutrality). As with Perkins' instability, the E_s layer instability prefers
123 waves that propagate at oblique directions with respect to cardinal magnetic coordinates. The
124 instability can be robust since conductivity gradients in patchy E_s layers can be exceptionally
125 steep. The fastest-growing waves are expected to have a wavelength of a few to a few tens of
126 km [Cosgrove, 2007].

127 Larsen [2000] proposed instead that the vertical wind shears were unstable in the Richardson-
128 number sense to Kelvin Helmholtz instability. In this theory, the ionization bands underlying
129 the QP echoes represent plasma drawn from E_s layers and entrained in the Kelvin Helmholtz
130 billows. Evidence for the theory came from wind profile measurements made with chemical

releases from sounding rockets demonstrating that the instability criterion could be met in the midlatitude MLT as well as from Arecibo ISR observations seemingly demonstrating the entrainment process in action [Miller and Smith, 1978]. Numerical simulations in two dimensions lent additional support to the theory [Bernhardt, 2002]. The aforementioned studies from St. Croix and Arecibo, providing incisive observations of the bands in profile and plan view together with vector neutral wind profile estimates. In the studies, the dispersion characteristics for Kelvin Helmholtz waves matched the observations.

Below, we test the *Larsen* [2000] theory further. In particular, theory predicts secondary waves associated with neutral Kelvin Helmholtz instabilities. Imaging data from the Ithaca radar offer a means of testing this theory while also investigating QP-echo behavior at latitudes near the midlatitude trough.

Observations

We report here on observations of coherent scatter from plasma density irregularities in sporadic E (E_s) layers made with a 30 MHz radar imager located near Ithaca, New York (42.444° N, 283.498° E, 51.64° geomagnetic). The radar is similar to the one deployed on St. Croix, USVI, over the past two decades – see *Hysell et al.* [2018a] and references therein for description. It employs arbitrary waveform synthesis for transmission and software-defined receivers for reception. Transmission is performed using an array of eight five-element Yagi antennas with a gain of approximately 20 dBi and a main beam directed at 330° azimuth angle. The expected range to E region scatterers is between about 850–1100 km.

The nominal transmit waveform is a 28-bit maximal length binary phase coded pulse with a baud width of $10\mu\text{s}$. The nominal pulse repetition frequency (PRF) is 250 Hz, implying an

₁₅₂ interpulse period (IPP) of 4 ms (600 km) and a duty cycle of 7%. Doppler shifts between ± 625
₁₅₃ m/s can be unambiguously resolved using this PRF. The peak transmitter power is 8 kW.

₁₅₄ Reception uses six groups of Yagi antennas composing 15 nonredundant interferometry base-
₁₅₅ lines, the longest of which being approximately 15 wavelengths long. For the data shown below,
₁₅₆ processing involved computing spectra and cross-spectra from 24-point samples and incoher-
₁₅₇ ently integrating the results in groups of 31, yielding an overall experimental cadence of one
₁₅₈ every three seconds. Imaging is performed using aperture-synthesis methods (see below).

₁₅₉ The radar is deployed sufficiently close to the Millstone Hill Observatory to permit common-
₁₆₀ volume coherent and incoherent scatter observations. Simultaneous observations were not un-
₁₆₁ dertaken for the experiments described here but are planned for the future. An ionosonde lo-
₁₆₂ cated in Alpena, Mi. (45.1°N , 276.4°E , 54.1°N geomagnetic) ran throughout the operations of
₁₆₃ the Cornell radar, however, and sporadic *E* layers in the Alpena ionograms proved to be reliable
₁₆₄ indicators of coherent scatter from the volume probed by the radar. See *Reinisch and Galkin*
₁₆₅ [2011] for a description of the ionosonde.

₁₆₆ The radar became operational in mid July, 2020, toward the end of sporadic *E* season. Co-
₁₆₇ herent scatter from sporadic *E* layers was observed shortly after sunset on the nights of July
₁₆₈ 16, July 19, August 5, and August 11 (UT dates). The F10.7 solar flux index increased almost
₁₆₉ linearly from 71 to 76 during this interval which was geomagnetically quiet.

₁₇₀ Fig. 1 shows backscatter received by the radar on July 16, August 5, and August 11, 2020 (UT
₁₇₁ dates) in range-time-Doppler-intensity format. Here, UT = EST + 5 = EDT + 4. The ordinate
₁₇₂ of each panel is the apparent range to the target. This is the true range for echoes from aircraft
₁₇₃ seen at short ranges as well as for specular and non-specular meteor echoes which predominate

₁₇₄ below about 300 km. Note that August 11, 2020, was near the peak of the Perseid meteor
₁₇₅ shower, explaining the high incidence of strong meteor echoes.

₁₇₆ The values of FoEs measured by the ionosonde in Alpena are shown in the panel in the
₁₇₇ lower-right corner of the figure (see <http://https://hpde.io/SMWG/Observatory/GIRO>).
₁₇₈ Sporadic *E* layers were obviously present over Alpena at the dates and times in question, al-
₁₇₉ though peak E_s -layer densities do not correspond closely to the times when the most intense
₁₈₀ echoes were being received by the radar. Experience from the Caribbean showed that strong co-
₁₈₁ herent scatter generally occurs when the difference between FoEs and the blanketing frequency
₁₈₂ is large, i.e., when the E_s layer is patchy.

₁₈₃ Echoes from E_s layer irregularities are range aliased in these observations, their true range
₁₈₄ equal to their apparent range plus the IPP. The IPP was changed from 750 km on July 16 to 600
₁₈₅ km thereafter due to interference that was pulsed and synchronous with the former IPP. This
₁₈₆ interference is evident in the RTDI panel for July 16, 2020 **where it appears as stray vertical**
₁₈₇ **bands at all ranges simultaneously. This should not be confused with the meteor echoes**
₁₈₈ **which are sometimes strong enough to have visible range sidelobes.**

₁₈₉ The brightness, hue, and saturation of the pixels reflect the signal-to-noise ratio, Doppler shift,
₁₉₀ and spectral width according to the legends shown. Signal-to-noise ratios exceeded 20 dB at
₁₉₁ times. The range rates of the echoes were both positive and negative at times and approximately
₁₉₂ matched their Doppler shifts which were limited to about ± 60 m/s. Large Doppler shifts
₁₉₃ indicative of type I echoes and Farley Buneman waves of the kind described by *Schlegel and*
₁₉₄ *Haldoupis* [1994] were not seen in these preliminary data.

₁₉₅ Aperture synthesis images of the coherent backscatter can be formed from all the pairwise in-
₁₉₆ terferometry measurements afforded by the spaced-receiver data collected in Ithaca. Six spaced

197 receiver groups imply fifteen nonredundant interferometry baselines. Interferometry is per-
198 formed in the frequency domain, and images for each Doppler frequency are then combined
199 to form composites. One image is available every 3 s here, and animating the images reveals
200 the dynamics behind the RTDI images. The imaging methodology used here was described by
201 *Hysell and Chau* [2006].

202 Fig. 2 shows images representative of the backscatter shown in the RTDI plots. The dashed
203 contours in the images give the altitude where the condition for field-aligned backscatter is
204 exactly met assuming straight-line propagation. The contours actually give only rough altitude
205 estimates as the 30 MHz rays can undergo significant bending as they penetrate the E_s -layer
206 irregularities in question [*Hysell et al.*, 2002].

207 The images show that the backscatter arrived from bands separated by about 20–40 km, ex-
208 tending from northwest to southeast and propagating to the southwest. The propagation speed
209 is about 60 m/s, giving a period of 5–10 min. There are persistent bright spots in the bands, and
210 these give rise to the closely-spaced streaks evident in the RTDI plots. These findings are all
211 consistent with prior results from St. Croix and elsewhere. Since the radar beam is directed to
212 the northwest from Ithaca, echoes from bands propagating to the southwest should and do ex-
213 hibit modest range rates which can be positive or negative. (Note that the MU radar most often
214 observes E_s -layer irregularities looking northward so that bands propagating to the southwest
215 predominantly result in echoes with negative range rates.) The lifetimes of the bands are less
216 than 30 min. which is shorter than the time it would take them to traverse the radar-illuminated
217 volume.

218 The most novel and remarkable features of the Ithaca observations are depicted in Fig. 3. The
219 figures represent intervals when the scattering bands exhibited significantly horizontal broad-

220 ening. The broadening possibly reflects the emergence of secondary bands oriented nearly
221 normally to the original, primary band or bands. The secondary bands are not quite normal to
222 the primaries but appear to be tilted or threaded like a screw. This is particularly obvious in the
223 images from August 11, 2020, where eight oblique secondary bands can be seen. The distance
224 between adjacent secondary bands is approximately 10 km. These features are the focus of this
225 paper and the subject of the discussion to follow.

226 The Ithaca observations differ from the St. Croix observations in a number of respects. For
227 example, the range to the targets is approximately three times larger for the former than the
228 latter. As the scatterers are not beam filling, we might expect the received signal intensity to
229 scale with range as r^{-4} , implying a ~ 20 dB relative deficit in intensity for the former. That the
230 strongest signals received from Ithaca so far are within 10–13 dB of the strongest echoes ever
231 received from St. Croix suggests that the instabilities at work over the Great Lakes are, in some
232 respects, **more** intense as those over the Caribbean.

233 Conversely, the QP echo events reported here were few in number and short in duration com-
234 pared to what has typically been seen from St. Croix and at the MU radar. The Doppler shifts
235 were also confined to small values, well below the threshold for Farley Buneman instability in
236 particular, whereas Farley Buneman waves are fairly common features of radar observations
237 from St. Croix. The Ithaca dataset is **not** yet very extensive, and we do not know whether
238 QP echoes are typically less robust at the dip latitudes in question here than at lower middle
239 latitudes.

240 Most importantly for this paper, we have two examples of secondary striations in the initial
241 Ithaca radar dataset. While examples of this phenomenon can be found in the St. Croix data

²⁴² (see for example *Hysell et al.* [2012]), the examples presented here are by far the clearest. We
²⁴³ consequently turn our attention to a possible explanation for this phenomenon.

Theory and analysis

²⁴⁴ Secondary instabilities in stratified media are important in any number of geophysical con-
²⁴⁵ texts because they represent an intermediate state between laminar and turbulent flow and can
²⁴⁶ significantly affect transport and dissipation (see *Thorpe* [2012] for review.) Secondary insta-
²⁴⁷ bility in two-dimensional sheared flows were recognized first by *Corcos and Sherman* [1976]
²⁴⁸ who identified instability on the thin braids between billows where the shears are the strongest.
²⁴⁹ Billow pairing or ‘amalgamation instability’ was also found to occur in two dimensions. The
²⁵⁰ first secondary instability in three dimensions was modeled by *Klaassen and Peltier* [1985], a
²⁵¹ convective instability in the overturning billows. Three-dimensional structuring was also shown
²⁵² to accompany billow pairing [*Smyth*, 1999].

²⁵³ Subsequently, four types of three-dimensional instabilities were identified using numerical
²⁵⁴ simulations [*Martinez et al.*, 2006]. Two of these occur on the braids, and the other two occur
²⁵⁵ near or within the billow cores. *Mashayek and Peltier* [2012] determined the parameter spaces
²⁵⁶ (in terms of the Richardson, Reynolds, and Prandtl numbers) where instabilities occur, finding
²⁵⁷ generally that large Reynolds numbers, small Richardson numbers, and intermediate Prandtl
²⁵⁸ numbers are most conducive to growth. *Thorpe* [1987] identified two additional 3D instabilities
²⁵⁹ on the basis of laboratory experiments. These include knot instabilities, which occur when
²⁶⁰ billows intersect, and tubes, which connect billows together.

²⁶¹ *Fritts et al.* [2021] carried out a series of state-of-the-art numerical simulations of K-H in-
²⁶² stability structures for conditions appropriate to the less stable mesosphere region with the goal
²⁶³ of explaining some of the features observed by *Hecht et al.* [2021] in their ground-based imager

264 data. Structures in their simulations are reminiscent of the structures observed in the radar scat-
 265 ter. In particular, the radar images for all three days presented here show the banded structure
 266 associated with secondary instabilities in the *Fritts et al.* [2021] simulations. The radar image
 267 for August 11 in Figure 2 also shows a structure similar to the new tube formation in Figure 9
 268 of the latter paper. The radar image for later in the same night (Figure 3) shows evidence of
 269 structure similar to the twist waves in Figure 9 of that paper.

270 To further investigate secondary instabilities in the MLT region, we consider a simple numer-
 271 ical simulation of dynamical instability in three dimensions with parameters that directly match
 272 the conditions in the altitude range of the sporadic E layers. We consider incompressible motion
 273 in the Boussinesq limit, neglect thermodynamic effects, and impose the conservation of neutral
 274 momentum and mass density:

$$\frac{\partial \mathbf{u}}{\partial t} = -\nabla P - R_i \rho \hat{z} + \frac{1}{R_e} \nabla^2 \mathbf{u} \quad (1)$$

$$\nabla \cdot \mathbf{u} = 0 \quad (2)$$

$$\frac{\partial \rho}{\partial t} + \mathbf{u} \cdot \nabla \rho = \frac{1}{R_e S_c} \nabla^2 \rho \quad (3)$$

275 where $\mathbf{u}(x, y, z)$ is the velocity, $\rho(x, y, z)$ is the perturbed mass density, and $P(x, y, z)$ is the gen-
 276 eralized pressure. We regard ρ as a perturbation to the background mass density which is in
 277 hydrostatic balance, the underlying force balance having already been removed from Eq. 1.
 278 The perturbed density will also serve as a tracer in this problem.

279 The model is stated in terms of three dimensionless parameters: the Reynolds number
 280 $R_e \equiv UL/\nu$, Richardson number $R_i \equiv N^2/U'^2$, and Schmidt number $S_c \equiv \nu/D$. Here, ν is the
 281 kinematic viscosity, U is the flow differential across the shear layer, U' the maximum gradient
 282 of U , L the depth of the shear layer, N the Brunt Vaisala frequency, and D is the diffusivity.

283 The simulation encloses a volume in rectangular coordinates two unit lengths wide in both
 284 horizontal dimensions $L_x = 2, L_y = 2$ and one unit length wide in the vertical $L_z = 1$. The initial
 285 conditions are:

$$u = F \tanh(z/a) \quad (4)$$

$$w = A \sin(4\pi x/L_x) \exp(-z^2/\sigma^2) \quad (5)$$

$$\rho = \exp(-(z/4a)^2) \quad (6)$$

286 where z is measured from the vertical center of the volume and with $F = 0.5, A = -0.2, a =$
 287 0.05, and $\sigma = 0.2$ here. Adopting a characteristic length scale of 30 km and a timescale of 300 s
 288 implies a simulation 60 km \times 60 km \times 30 km in size, wind speeds $u \in \pm 50$ m/s, and a vertical
 289 shear length scale of 1.5 km **which is a in dimensional units**. The quantity ν is initialized with
 290 Gaussian noise at the level of 5.0×10^{-3} .

291 Neglecting buoyancy and boundary effects, the fastest-growing eigenmode is expected to have
 292 a wavelength given by $\lambda_x \gtrsim 4\pi a \sim 0.65$ in non-dimensional units in this case [Hazel, 1972]. We
 293 initialize the simulation here with a vertical velocity (w) perturbation intended to seed billows
 294 with a horizontal wavelength of unity, close roughly to the size of the most unstable normal
 295 mode.

296 Initial boundary value simulations of the system were conducted using the Dedalus numeri-
 297 cal package [Burns *et al.*, 2020]. The gridding for the problem is spectral, employing a Fourier
 298 basis in the horizontal directions and a Chebychev basis in the vertical in this case. The pack-
 299 age uses a tau method for discretization to enforce generalized boundary conditions and to
 300 produce sparse banded matrices for efficient computation. Time integration is performed with
 301 mixed implicit-explicit multistep integrators with timesteps set by the **Courant-Friedrichs-**
 302 **Lewy (CFL) condition that the displacement of a fluid parcel during a time step must be**

³⁰³ **smaller than the grid size.** The number of grid points in the streamwise, spanwise, and vertical
³⁰⁴ directions are 94, 48, and 128, respectively.

³⁰⁵ Fig. 4 shows results for nondimensional simulation time $T = 10$ following the formation of
³⁰⁶ a pair of billows and the onset of secondary instability. In dimensional time, the figure depicts
³⁰⁷ 50 min. of instability evolution. By this time, secondary instability is seen to have created
³⁰⁸ structure in the billow cores as well as in the intervening braids. Of most significance for the
³⁰⁹ present problem is the production of secondary irregularities in the spanwise direction, mainly
³¹⁰ at the core boundaries. Their location and morphology of the irregularities indicates that they
³¹¹ are convective in nature. The irregularities appear as protrusions from the billow cores that
³¹² alternate from one side to the other in a plan view. Six protrusions can be seen on either side
³¹³ of the cores, implying that the secondary instabilities have a primary wavenumber three times
³¹⁴ that of the main instability. In dimensional units, the secondary instabilities have a wavelength
³¹⁵ of about 10 km.

³¹⁶ Additional insight comes from viewing the simulation results in three dimensions as shown
³¹⁷ in Fig. 5. This figure shows that the secondary irregularities have a helical configuration sur-
³¹⁸ rounding the billow cores. As time progresses, tracer mixing associated with the secondary
³¹⁹ instabilities obscures the billow structure which becomes disorganized, diffuse, and harder to
³²⁰ discern. Meeting the CFL condition becomes increasingly difficult after $T=10$ in practice, and
³²¹ we have not explored the very late stages of instability.

³²² **Note that relating the 50 min. simulation time depicted here to the 30 min. observed**
³²³ **lifetime of the banded echoes is not straightforward as we do not know the moment in**
³²⁴ **the instability chronology when echoes become detectable. The simulation furthermore**

325 **lacks ionospheric chemistry and transport and cannot be used to assess the mechanism**
326 **that causes echoes to cease. This will be the subject of future work.**

Summary

327 We have presented VHF coherent scatter radar imagery of plasma density irregularities in spo-
328 radic E layers at geomagnetic latitudes of about 54° , under the midlatitude ionospheric trough
329 and at the extreme northerly range of latitudes where E_s layers are statistically prolific. Radar
330 images show that the echoes come from elongated, banded structures separated by tens of kilo-
331 meters and propagating predominately to the southwest. This behavior is similar to what has
332 been observed for many years at lower middle latitudes.

333 Quasiperiodic echoes such as those considered here are sometimes attributed to coupled E/F
334 region plasma instabilities (e.g. *Cosgrove and Tsunoda* [2004]; *Tsunoda* [2006]). That QP
335 echoes occur under the midlatitude trough argues that coupled instabilities cannot be uniquely
336 responsible for the phenomena. Observations of QP echoes in the subauroral zone further sup-
337 port the point [*Hysell et al.*, 2018b].

338 **There is extensive evidence that Kelvin-Helmholtz instabilities are a common feature**
339 **in the MLT region since the region is characterized by large winds and associated large**
340 **shears. There are other instabilities in the region, however, that can lead to significant neu-**
341 **tral upwelling of the type required to produce coherent radar echoes. *Larsen et al.* [2004]**
342 **and *Hurd et al.* [2009] pointed out the similarities between conditions in the atmospheric**
343 **boundary layer and the MLT region, including strong rotational shears, wind profile in-**
344 **flexion points, and a region of higher static stability overlying a region of lower static**
345 **stability, which are all conditions required for convective roll, i.e., an Ekman-type, insta-**
346 **bility to form. More recently, *Chkhetiani and Shalimov* [2013] have suggested specifically**

347 **that the convective rolls may be responsible for the frontal structures in sporadic E layers**
348 **underlying the QP echoes. The Ekman instability theory predicts that the convective roll**
349 **axes will be aligned at a horizontal angle between 10° and 20° relative to the wind direc-**
350 **tion. When observed from a fixed location, the overturning structures therefore appear to**
351 **have a long period since the advective wind component perpendicular to the roll structure**
352 **is small. Ground-based lidar observations show characteristic periods of 1 to 3 hours for**
353 **the large-scale overturning in sodium layers. A more extensive discussion of the theoret-**
354 **ical predictions and the observations can be found in the articles by *Larsen et al. [2004]***
355 **and *Hurd et al. [2009]*. Since the Ekman-type instability and associated overturning struc-**
356 **tures occur in the same altitude range as the strong sporadic E layers and coherent scatter**
357 **structures, it is reasonable to expect that such instabilities can modulate the longer-term**
358 **variation in the scattering layers when they are present, as suggested by *Chkhetiani and***
359 ***Shalimov [2013]*. Since the orientation of the convective rolls depends only on the wind di-**
360 **rection at the height of the inflection point in the wind profile, the instability can account**
361 **for observations of frontal structures propagating over a wide range of azimuth angles,**
362 **something that the coupled plasma instability theory cannot.**

363 Here, we have explored further another mechanism whereby neutral Kelvin Helmholtz insta-
364 bility is responsible for the E_s-layer structuring. Earlier studies based on radar observations in
365 the Caribbean have shown that the wavelength, propagation speed, and propagation direction of
366 the bands underlying the QP echoes are consistent with expectations for KH instabilities in the
367 lower thermosphere where the neutral winds frequently meet the Richardson number criterion
368 for instability.

369 In this paper, we have found that the primary QP-echo bands can be accompanied by sec-
370 ondary bands oriented nearly normally to the primaries with separation distances of a few km.
371 Radar images of the secondary bands resemble the secondary KH instabilities found in 3D nu-
372 merical simulations. Our surmise is that the neutral flows surrounding the instabilities entrain
373 the unmagnetized sporadic *E*-layer ions within them.

374 Once so structured, the *E*-layer plasma would become unstable to one of a number of possible
375 gradient-type instabilities, ultimately producing the meter-scale irregularities from which the
376 radar signals scatter. This last link in the causality chain has not been demonstrated theoretically
377 or computationally and remains a subject for further study.

378 The observations analyzed here are somewhat reminiscent of the those of *Hecht et al.* [2021]
379 who observed interactions between adjacent KH billow cores in airglow imagery of mesospheric
380 OH layers. They observed secondary KH instabilities including convective instabilities near in-
381 dividual billows along with what appeared to be the “tubes” and “knots” identified by *Thorpe*
382 [1985, 1987]. These features represent mergers between adjacent billow cores that are mis-
383 aligned or otherwise deformed. *Fritts et al.* [2021] were able to recover these features in nu-
384 matical simulations, arguing that they should occur wherever KH instabilities are modulated by
385 forcing at larger scales due, for example, to gravity wave propagation. Their numerical simula-
386 tion results resembled the radar images presented here in some respects. The authors concluded
387 that secondary KH instabilities are widespread in the upper atmosphere and may be important
388 factors in the overall transport and dissipation.

389 **Acknowledgments.** This paper uses ionospheric data from the USAF NEXION Digisonde
390 network; the NEXION Program Manager is Annette Parsons. The GIRO ionosonde data re-
391 source is available through <https://hpde.io/SMWG/Observatory/GIRO>. The work was sup-

³⁹² ported by NSF awards AGS-2011304 to Cornell University and AGS-2012994 to Clemson Uni-
³⁹³ versity. Data discussed in this paper can be accessed through the Cornell eCommons repository
³⁹⁴ through <https://doi.org/10.7298/8sxf-b977>.

References

³⁹⁵ Bernhardt, P. A., The modulation of sporadic-E layers by Kelvin-Helmholtz billows in the neu-
³⁹⁶ tral atmosphere, *J. Atmos. Sol. Terr. Phys.*, *64*(12-14), 1487–1504, 2002.

³⁹⁷ Bourdillon, A., C. Haldoupis, and J. Delloue, High-frequency Doppler radar observations of
³⁹⁸ magnetic aspect sensitive irregularities in the midlatitude *E* region ionosphere, *J. Geophys.
399 Res.*, *100*, 21,503, 1995.

⁴⁰⁰ Burns, K. J., G. M. Vasil, J. S. Oishi, D. Lecoanet, and B. P. Brown, Dedalus: A flexible
⁴⁰¹ framework for numerical simulations with spectral methods, *Phys. Rev. Res.*, pp. 1–39, 2643–
⁴⁰² 1564/2020/2(2)/023,068, 2020.

⁴⁰³ Chau, J. L., and R. F. Woodman, Low-latitude quasi-periodic echoes observed with the Piura
⁴⁰⁴ VHF radar in the *E* region, *Geophys. Res. Lett.*, *26*, 2167, 1999.

⁴⁰⁵ Chau, J. L., J. M. Urco, V. Avsarkisov, J. P. Vierinen, R. Latteck, C. M. Hall, and
⁴⁰⁶ M. Tsutsumi, Four-dimensional quantification of Kelvin-Helmholtz instabilities in the
⁴⁰⁷ polar summer mesosphere using volumetric radar imaging, *Geophys. Res. Lett.*, *47*,
⁴⁰⁸ <https://doi.org/10.1029/2019GL086,081>, 2020.

⁴⁰⁹ Chkhetiani, O. G., and S. L. Shalimov, Mechanism by which frontal structures in the ionospheric
⁴¹⁰ sporadic *E* layers are formed, *Geomagnetism and Aeronomy*, *53*, 177–187, 2013.

⁴¹¹ Chu, Y. H., and C. Y. Wang, Interferometry observations of 3-dimensional spatial structures of
⁴¹² sporadic *E* using the Chung-Li VHF radar, *Radio Sci.*, *32*(2), 817–832, 1997.

413 Corcos, G., and F. S. Sherman, Vorticity concentration and the dynamics of the unstable free
414 shear layer, *J. Fluid Mech.*, 73, 241–264, 1976.

415 Cosgrove, R. B., Wavelength dependence of the linear growth rate of the *Es* layer instability,
416 *Ann. Geophys.*, 25, 1311–1322, 2007.

417 Cosgrove, R. B., and R. T. Tsunoda, A direction-dependent instability of sporadic- *E*
418 layers in the nighttime midlatitude ionosphere, *Geophys. Res. Lett.*, 29(18), 1864,
419 doi:10.1029/2002JA009728, 2002.

420 Cosgrove, R. B., and R. T. Tsunoda, Instability of the *E–F* coupled nighttime midlatitude iono-
421 sphere, *J. Geophys. Res.*, 109, doi:10.1029/2003JA010243, 2004.

422 Ecklund, W. L., D. A. Carter, and B. B. Balsley, Gradient drift irregularities in mid-latitude
423 sporadic *E*, *J. Geophys. Res.*, 86, 858, 1981.

424 Fritts, D. C., S. A. Wieland, T. S. Lund, S. A. Thorpe, and J. H. Hecht, Kelvin-Helmholtz billow
425 interactions and instabilities in the mesosphere over the Andes Lidar Observatory: 2. Model-
426 ing and interpretation, *J. Geophys. Res. Atmos.*, 126, <https://doi.org/10.1029/2020JD033412>,
427 2021.

428 Haldoupis, C., A. Bourdillon, M. Six, and J. Delloue, Midlatitude *E* region coherent backscatter
429 observed simultaneously at two HF radar frequencies, *J. Geophys. Res.*, 101, 7961, 1996.

430 Haldoupis, C., G. C. Hussey, A. Bourdillon, and J. Delloue, Azimuth-time-intensity striations
431 of quasiperiodic radar echoes from the midlatitude *E* region ionosphere, *Geophys. Res. Lett.*,
432 28, 1933–1936, 2001.

433 Hazel, P., Numerical studies of the stability of inviscid stratified shear flows, *J. Fluid Mech.*,
434 51(1), 39–61, 1972.

435 Hecht, J. H., D. C. Fritts, L. J. Gelinas, R. J. Rudy, R. L. Walterscheid, A. Z. Liu, and
436 S. A. Thorpe, Kelvin-Helmholtz billow interactions and instabilities in the mesosphere
437 over the Andes Lidar Observatory: 1. Observations, *J. Geophys. Res. Atmos.*, 119, 9359
438 9375, doi:10.1002/2014JD021,833, 2021.

439 Hurd, L., M. F. Larsen, and A. Z. Liu, Overturning instability in the mesosphere and lower
440 thermosphere: analysis of instability conditions in lidar data, *Ann. Geophys.*, 27, 2937–2945,
441 2009.

442 Hysell, D. L., and J. Burcham, The 30 MHz radar interferometer studies of midlatitude *E* region
443 irregularities, *J. Geophys. Res.*, 105, 12,797, 2000.

444 Hysell, D. L., and J. L. Chau, Optimal aperture synthesis radar imaging, *Radio Sci.*, 41,
445 10.1029/2005RS003,383, RS2003, 2006.

446 Hysell, D. L., M. Yamamoto, and S. Fukao, Imaging radar observations and theory of type I and
447 type II quasi-periodic echoes, *J. Geophys. Res.*, 107 (A11), 1360, 2002.

448 Hysell, D. L., M. F. Larsen, and Q. H. Zhou, Common volume coherent and incoherent scat-
449 ter radar observations of mid-latitude sporadic *E*-layers and QP echoes, *Ann. Geophys.*, 22,
450 3277–3290, 2004.

451 Hysell, D. L., E. Nossa, M. F. Larsen, J. Munro, M. P. Sulzer, N. Aponte, and S. A. González,
452 Sporadic *E* layer observations over Arecibo using coherent and incoherent scatter radar:
453 Assessing dynamic stability in the lower thermosphere, *J. Geophys. Res.*, 114, A12303,
454 doi:10.1029/2009JA014,403, 2009.

455 Hysell, D. L., T. Yokoyama, E. Nossa, R. B. Hedden, M. F. Larsen, J. Munro, S. Smith, M. P.
456 Sulzer, and S. A. González, Radar and optical observations of irregular midlatitude sporadic
457 *E* layers beneath MSTIDs, in *IAGA Special Sopron Book Series, Aeronomy of the Earth's*

458 Atmosphere and Ionosphere, edited by B. Hultqvist, M. A. Abdu, D. Pacheva, and A. Bhat-
459 tacharyya, Springer publisher, 2010.

460 Hysell, D. L., E. Nossa, M. F. Larsen, J. Munro, S. Smith, M. P. Sulzer, and S. A. González,
461 Dynamic instability in the lower thermosphere inferred from irregular sporadic layers, *J. Geo-*
462 *phys. Res.*, 117, A8, doi:10.1029/2012JA017,910, 2012.

463 Hysell, D. L., E. Nossa, H. C. Aveiro, M. F. Larsen, J. Munro, M. P. Sulzer, and S. A. González,
464 Fine structure in midlatitude sporadic *E* layers, *J. Atmos. Sol. Terr. Phys.*, 103, 16–23, DOI:
465 10.1016/j.jastp.2012.12.005, 2013.

466 Hysell, D. L., M. F. Larsen, D. C. Fritts, B. Laughman, and M. P. Sulzer, Major upwelling
467 and overturning in the mid-latitude F region ionosphere, *Nature Comm.*, 9, 10.1038/s41,467–
468 018–05,809–x, 2018a.

469 Hysell, D. L., J. Munk, and M. McCarrick, VHF radar images of artificial field-
470 aligned ionospheric irregularities in the subauroral *E* region, *Radio Sci.*, 53, 334–343,
471 <https://doi.org/10.1002/2017RS006,497>, 2018b.

472 Klaassen, G. P., and W. R. Peltier, The onset of turbulence in finite amplitude Kelvin-Helmholtz
473 billows, *J. Fluid Mech.*, 155, 1–35, 1985.

474 Larsen, M. F., A shear instability seeding mechanism for quasi-periodic radar echoes, *J. Geo-*
475 *phys. Res.*, 105(A11), 24,931–24,940, 2000.

476 Larsen, M. F., Winds and shears in the mesosphere and lower thermosphere: Results from
477 four decades of chemical release wind measurements, *J. Geophys. Res.*, 107(A8), 1216,
478 doi:10.1029/2001JA000,218, 2002.

479 Larsen, M. F., A. Z. Liu, C. S. Gardner, M. C. Kelley, S. Collins, J. Friedman, and J. H. Hecht,
480 Observations of overturning in the upper mesosphere and lower thermosphere, *J. Geophys.*

481 *Res.*, 109, D02S04, 10.1029/2002JD003,067, 2004.

482 Larsen, M. F., D. L. Hysell, Q. H. Zhou, S. M. Smith, J. Friedman, and R. L. Bishop,
483 Imaging coherent scatter radar, incoherent scatter radar, and optical observations of
484 quasiperiodic structures associated with sporadic *E* layers, *J. Geophys. Res.*, 112, A06321,
485 doi:10.1029/2006JA012,051, 2007.

486 Liu, H.-L., Large wind shears and their implications for diffusion in regions with enhanced
487 static stability: The mesopause and the tropopause., *J. Geophys. Res. Atmos.*, 122, 9579–
488 9590, <https://doi.org/10.1002/2017JD026,748>, 2017.

489 Martinez, D. M. V., E. B. C. Schettini, and J. H. Silvestrini, Secondary Kelvin-Helmholtz insta-
490 bility in a 3D stably stratified temporal mixing layer by direct numerical simulation, *Mecánica
491 Computational*, 25, 217–229, 2006.

492 Mashayek, A., and W. R. Peltier, The 'zoo' of secondary instabilities precursory to stratified
493 shear flow transition. Part 2 Effects of stratification, *J. Fluid Mech.*, 708, 45–70, 2012.

494 Mesquita, R. L. A., M. F. Larsen, I. Azeem, M. H. Stevens, B. P. Williams, and R. L. Collins,
495 In situ observations of neutral shear instability in the statically stable high-latitude meso-
496 sphere and lower thermosphere during quiet geomagnetic conditions, *Geophys. Res. Lett.*,
497 125, <https://doi.org/10.1029/2020JA027,972>, 2020.

498 Miller, K. L., and L. G. Smith, Incoherent scatter radar observations of irregular structure in
499 mid-latitude sporadic *E* layers, *J. Geophys. Res.*, 83, 3761, 1978.

500 Perkins, F., Spread *F* and ionospheric currents, *J. Geophys. Res.*, 78, 218, 1973.

501 Rao, N. V., A. K. Patra, and S. V. B. Rao, Some new aspects of low-latitude *E*-region QP echoes
502 revealed by Gadanki radar: Are they due to Kelvin-Helmholtz instability or gravity waves?,
503 *J. Geophys. Res.*, 113, doi:10.1029/2007JA012,574, 2008.

504 Reinisch, B. W., and I. A. Galkin, Global ionospheric radio observatory (GIRO), *Earth, Planets,*
505 *and Space*, **63**, 377–381, doi:10.5047/eps.2011.03.001, 2011.

506 Riggan, D., W. E. Swartz, J. Providakes, and D. T. Farley, Radar studies of long-wavelength
507 waves associated with mid-latitude sporadic *E* layers, *J. Geophys. Res.*, **91**, 8011, 1986.

508 Schlegel, K., and C. Haldoupis, Observation of the modified two-stream instability in the mid-
509 latitude *E* region, *J. Geophys. Res.*, **99**, 6219, 1994.

510 Seyler, C. E., J. M. Rosado-Roman, and D. T. Farley, A nonlocal theory of the gradient-drift
511 instability in ionospheric plasmas at mid-latitudes, *J. Atmos. Sol. Terr. Phys.*, **66**(17), 1627–
512 1637, 2004.

513 Sherman, J. P., and C. Y. She, Seasonal variation of mesopause region wind shears, convective
514 and dynamic instabilities above Fort Collins, CO: A statistical study, *J. Atmos. Sol. Terr.
515 Phys.*, **68**, 1061–1074, 2006.

516 Smyth, W. D., Dissipation range geometry and scalar spectra in sheared, stratified turbulence,
517 *J. Fluid Mech.*, **401**, 209–242, 1999.

518 Thorpe, S. A., Laboratory observations of secondary structures in Kelvin-Helmholtz billows
519 and consequences for ocean mixing, *Geophys. Astrophys. Fluid Dyn.*, **34**, 175–199, 1985.

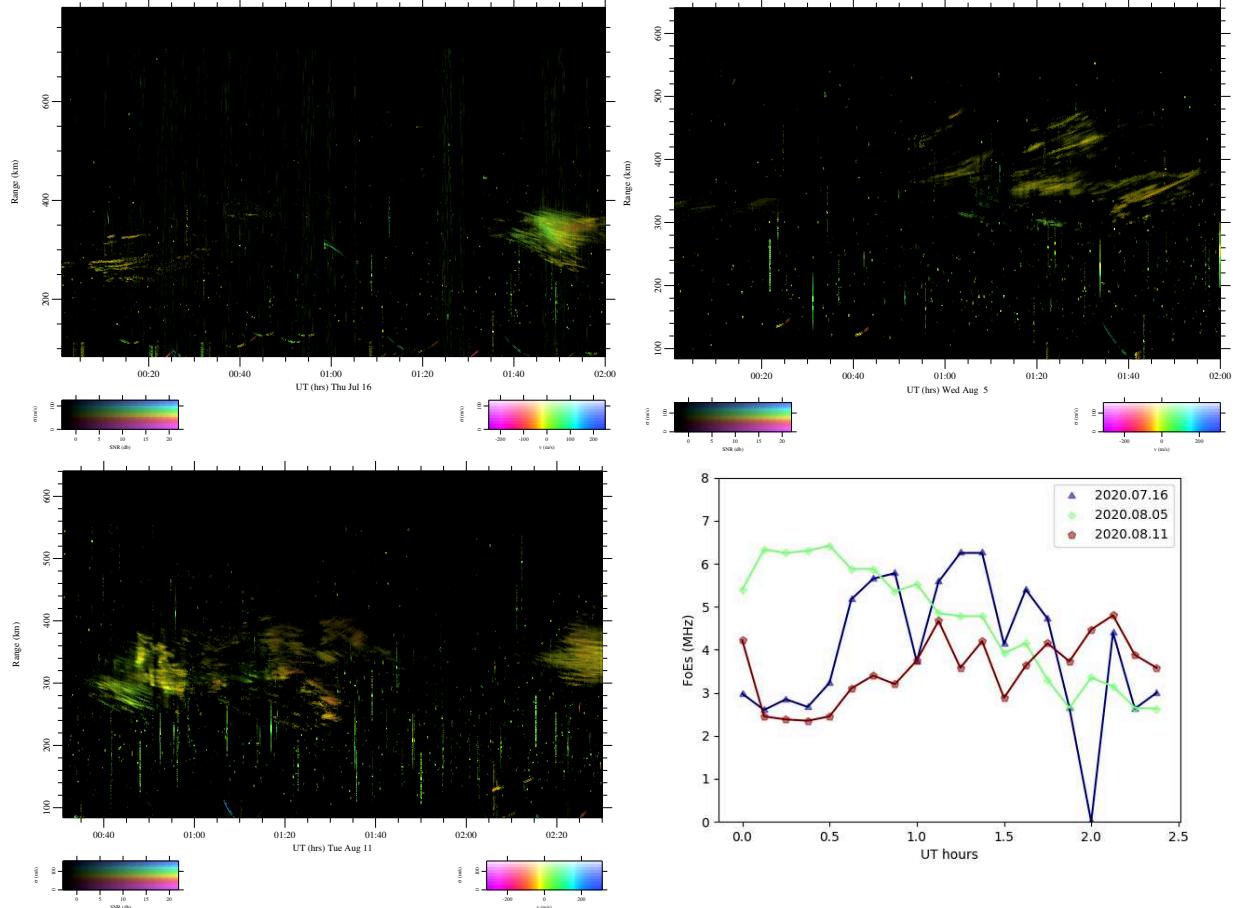
520 Thorpe, S. A., Transitional phenomena and the development of turbulence in stratified fluids: a
521 review, *J. Geophys. Res.*, **92**, 5231–5248, 1987.

522 Thorpe, S. A., On the Kelvin-Helmholtz route to turbulence, *J. Fluid Mech.*, pp. 1–4, 2012.

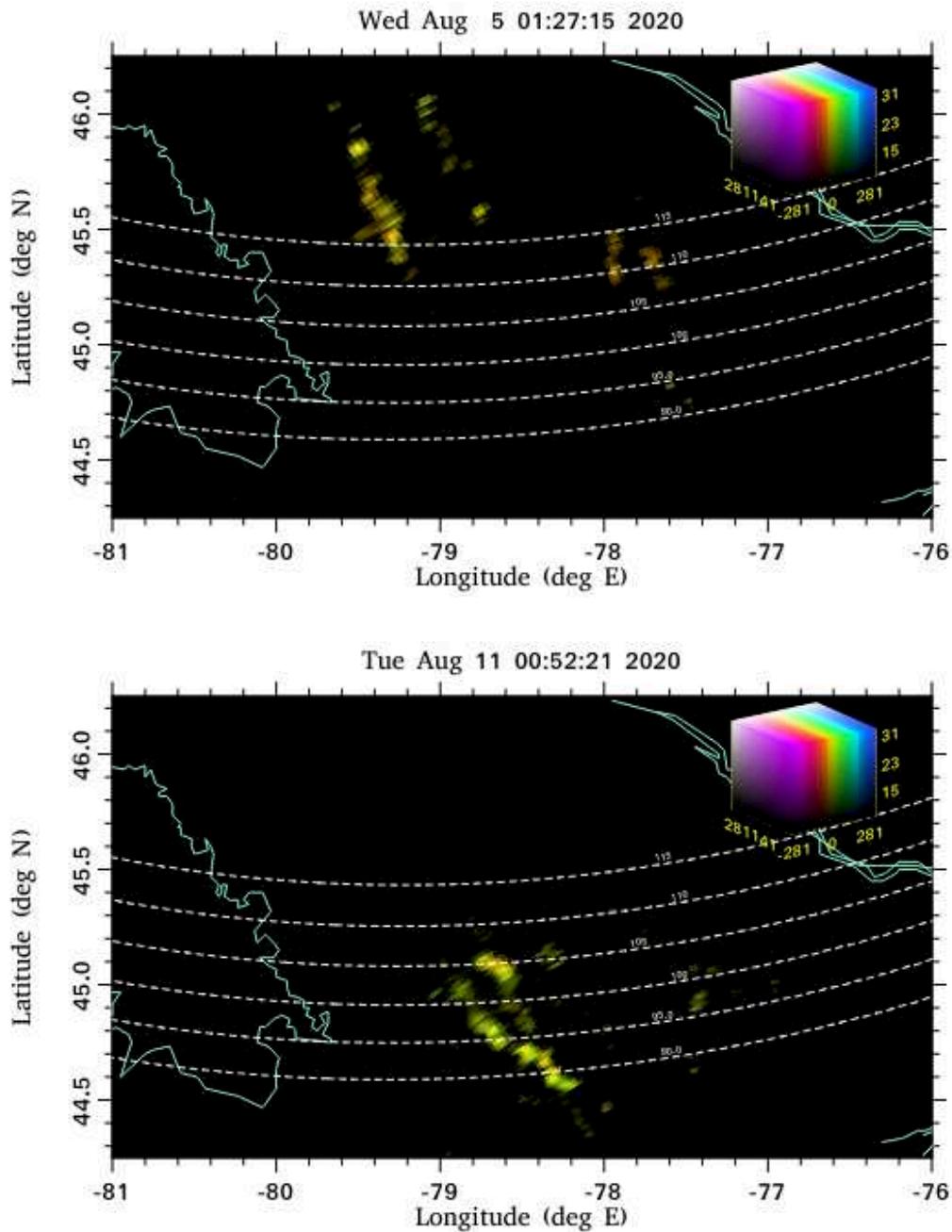
523 Tsunoda, R. T., On the coupling of layer instabilities in the nighttime midlatitude ionosphere, *J.*
524 *Geophys. Res.*, **111**, A11304, doi:10.1029/2006JA011,630, 2006.

525 Tsunoda, R. T., S. Fukao, M. Yamamoto, and T. Hamaoka, First 24.5 MHz radar measure-
526 ments of quasiperiodic backscatter from field-aligned irregularities in midlatitude sporadic *E*,

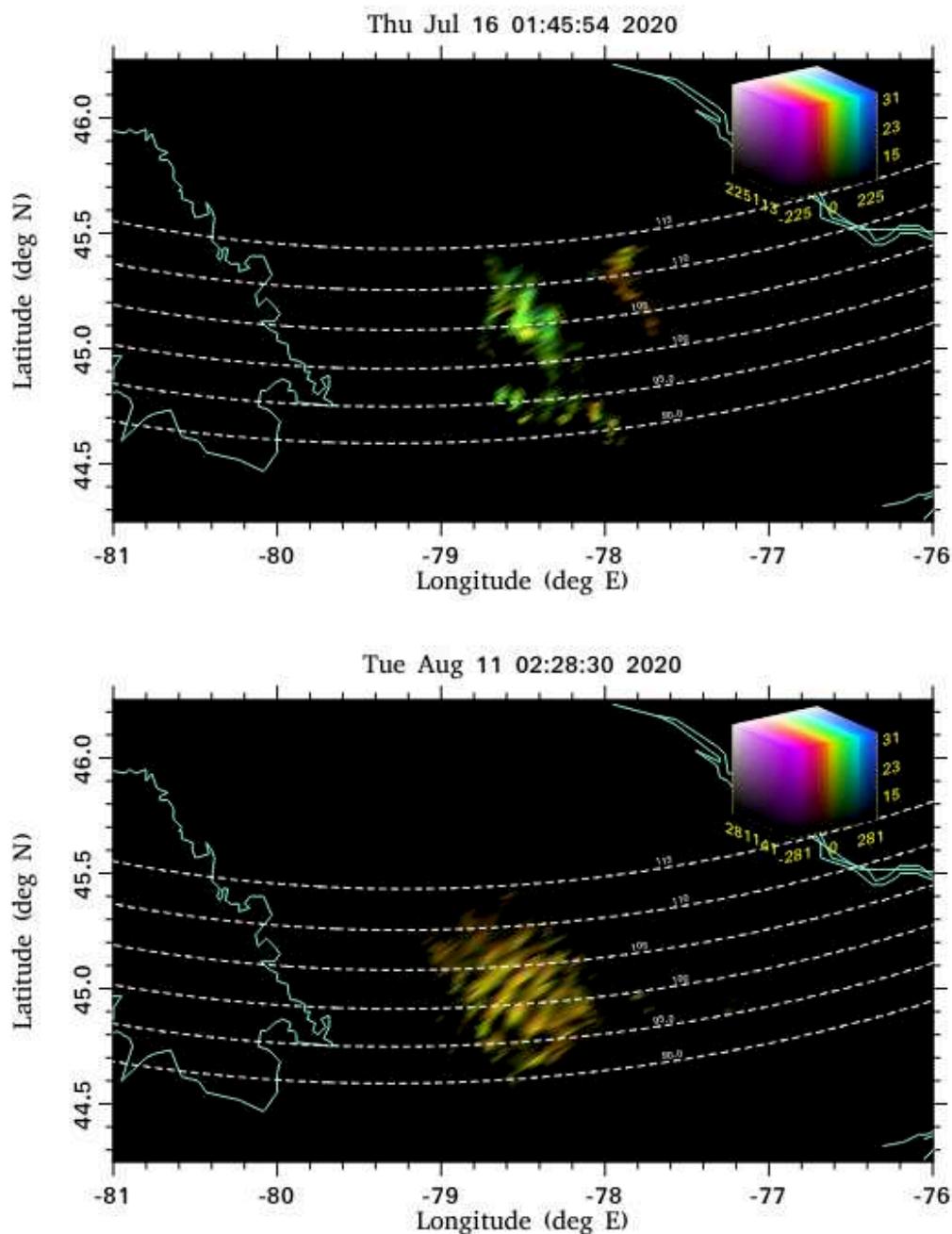
527 *Geophys. Res. Lett.*, 25, 1765, 1998.

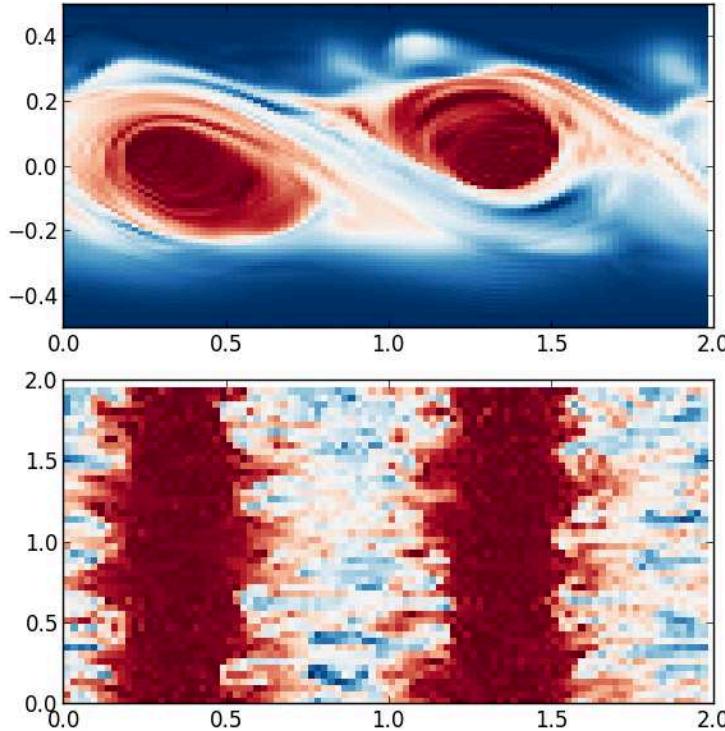

528 Yamamoto, M., S. Fukao, R. F. Woodman, T. Ogawa, T. Tsuda, and K. Kato, Mid-latitude E
529 region field-aligned irregularities observed with the MU radar, *J. Geophys. Res.*, 96, 15,943,
530 1991.

531 Yamamoto, M., S. Fukao, T. Ogawa, T. Tsuda, and S. Kato, A morphological study of mid-
532 latitude E-region field-aligned irregularities observed with the MU radar, *J. Atmos. Terr. Phys.*,
533 54, 769, 1992.


534 Yamamoto, M., N. Komoda, S. Fukao, R. T. Tsunoda, and T. Ogawa, Spatial structure of the E
535 region field-aligned irregularities revealed by the MU radar, *Radio Sci.*, 29, 337, 1994.

536 Yang, N., H. Le, and L. Liu, Statistical analysis of ionospheric midlatitude trough over the
537 Northern Hemisphere derived from GPS total electron content data, *Earth, Planets, and*
538 *Space*, 67, <https://doi.org/10.1186/s40623-015-0365-1>, 2015.


539 Yu, B., X. Xue, X. Yue, C. Yang, C. Yu, X. Dou, B. Ning, and L. Hu, The global climatology
540 of the intensity of the ionospheric sporadic E layer, *Atmos. Chem. Phys.*, 19, 4139–4151,
541 <https://doi.org/10.5194/acp-19-4139-2019>, 2019.


Figure 1. Range-time-Doppler-intensity (RTDI) plots for July 16, August 5, and August 11, 2020 (UT dates). The brightness, hue, and saturation of the pixels indicate the signal-to-noise ratio, Doppler shift, and spectral width of the backscatter according to the legends shown. The IPP was 750 km on July 16 and 600 km thereafter. Echoes from E_s-layer irregularities are range aliased, and their true range is the apparent range shown plus the IPP. Note that UT = EST + 5 = EDT + 4. The panel in the lower-right corner shows FoEs measured by the Alpena Digisonde for the three nights in question.

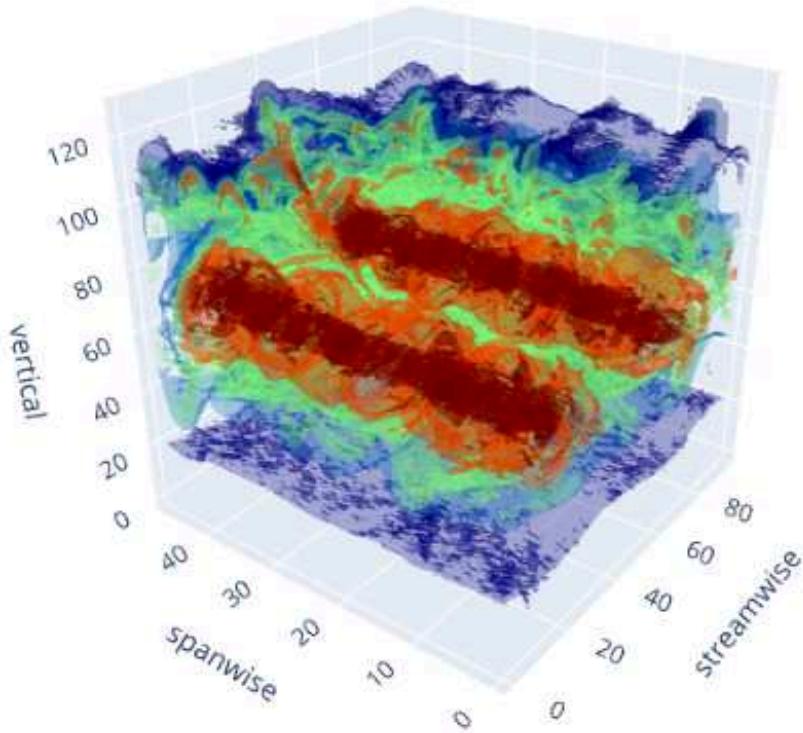

Figure 2. Radar images for August 5 (above) and August 11 (below), 2020, at the UT times indicated. The incoherent integration times for the images was 3 s. The color scales for the pixels in the images is the same as in the RTDI plots described above. White dashed contours are the loci of perpendicularity for various altitudes assuming straight-line propagation. The main features in both images are long banded structures which can be seen over time to propagate to the southwest.

Figure 3. Same as in the previous figure except for July 16 and Aug. 11, 2020. The main features this time are broadened bands with transverse braided structure.

Figure 4. Numerical results at simulation time $T=10$. The horizontal axes of both panels represent the streamwise direction. The vertical axis of the top panel is the vertical direction, and the vertical axis of the bottom panel is the spanwise direction. The color scale represents the quantity ρ which is regarded as a tracer of the flow. Secondary instability and structuring in the billow cores in the spanwise direction is evident.

Figure 5. Same as in Fig. 4 except in three dimensions. Axis indices represent grid points.

Here, the secondary structuring around the billow cores appears to be helical.