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Abstract
We present a reduced order method based on proper orthogonal decomposition for the vis-
cous Burgers’ equation and the incompressible Navier–Stokes equations discretized using
an implicit-explicit hybrid discontinuousGalerkin/discoutinuousGalerkin (IMEXHDG/DG)
scheme. A novel closure model, which can be easily computed offline, is introduced. Numer-
ical results are presented to test the proposed POD model and the closure model.

Keywords HDG · DG · POD · Burgers’ equation · Navier–Stokes equations

Mathematics Subject Classification 65N30 · 65N12 · 76S05 · 76D07

1 Introduction

Reduced order modeling has been widely used in flow control and optimization problems
to alleviate the huge computational cost needed in many-query solutions of the large-scale
dynamical systems associated to these problems [2,13,14,19]. To achieve the high computa-
tional efficiency, model reduction methods construct from data a numerical surrogate model
with the dimension greatly reduced from the original system. To build such a low-dimensional
model, one can use non-intrusive approaches such as operator learning [3,18], or intrusive
approaches such as projection-based methods [7]. The method to be used in this paper falls
into the second category. In particular, we consider the proper orthogonal decomposition
(POD) method—one of the most popular snapshot-based model reduction techniques. The
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general POD model reduction methodology splits the overall calculation into offline and
online stages. At the offline stage, a handful of reduced basis vectors are determined and a
low-dimensional, reduced order model (ROM) is constructed by learning algorithms or by
projecting equations to the space spanned by the reduced basis. At the online stage, the ROM
is used alternative to the original system for simulations that can be finished in short time
or even real time. When the system contains non-polynomial nonlinearities, hyper-reduction
has to be used in order to guarantee the online computational complexity to be independent
of the dimension of the original system [9,10].

The ROM can be discretized by any conventional numerical method. In particular, when
continuous Galerkin finite elements are used, each nodal value will be shared by several
elements. If an interpolation type of hyper-reduction methods is applied, such as discrete
empirical interpolation method (DEIM) or its variants [10], although the nonlinear functions
need only to evaluate at few selected points, many elements that share these nodes have to
be looped. This would cause expensive online computations. Thus, the finite element with
interpolated coefficients method was developed in [26], in which the nonlinear functions in
the ROM are replaced with their finite element interpolants so that the DEIM can be applied
directly on the finite element coefficients. However, if a discontinuous Galerkin (DG)method
is applied, there is no such issue thanks to the local nature of the DGmethod. There has been
several work that uses POD in the context of DG. In [23] hybridizable discontinuous Galerkin
(HDG) PODmodel has been developed for heat equation. It is shown that highly accurate flux
approximation can be recovered in the HDG-POD approximation at a low cost. In [25], POD
is applied in the context of symmetric interior penalty DG for solving Allen-Cahn equation.
For parametric problems, DG has also been applied together with reduced basis method for
elliptic problems [1] and with empirical quadrature procedure for nonlinear conservation
laws in [27].

As a first step for investigating reduced order modeling on flow control and optimization
applications, we focus on the computational fluid dynamics of incompressible fluid flows in
this work. When the POD approximation is sought for such problems, there are two common
ways to deal with the incompressibility constraint. One only keeps velocity in the reduced
system, which is based on the argument that the POD basis is weakly divergence-free since
it is a combination of snapshots and snapshots are weakly divergence-free, thus the pres-
sure term would vanish after projection; the other keeps both velocity and pressure in the
reduced system, because either the application at hand needs pressure information or numer-
ical methods for computing snapshots may not provide pointwise divergence free flow fields.
Indeed, the discretely divergence-free property does not hold for many popular discretization
of the Navier–Stokes equations. A new velocity and pressure ROM is proposed in [5] while
introducing a supremizer stabilization to fulfill an equivalent inf-sup condition. In [8], one
velocity ROM and two velocity-pressure ROMs are compared that shows the accuracy of
snapshots does have a big impact on the performance of velocity ROM. Therefore, in this
work, we use the divergence-free HDG method developed in [15] for the full order model
(FOM), which ensures the velocity snapshots are exactly pointwise divergence free. As a
consequence, we can use the velocity ROM since the POD basis generated from these snap-
shots would have the same divergence-free property. Furthermore, because the convective
term involves upwinding numerical flux in the FOM that can not be precomputed offline,
we replace it with an (offline-computable) linear central flux in the ROM. We then add a
linear convective stabilization term in the ROMwhich mimics the upwinding stabilization in
the FOM. This yields an efficient implementation while keeping stabilization effects of the
numerical flux. However, the introduced stabilization might not be enough for convection-
dominated problems, because the jumps across elements of the POD basis are small when

123



Journal of Scientific Computing (2020) 85 :24 Page 3 of 20 24

snapshots are obtained from high fidelity simulations. Therefore, we include extra dissipation
following the closure model developed in [20] to diminish the numerical oscillations.

The rest of paper is organized as follows. In Sect. 2, the full order model is presented. In
Sect. 3, the POD reduced order model is derived. Several numerical experiments including
the Burgers’ equation, the Navier–Stokes equations and the incompressible Euler equations
are discussed in Sect. 4. We conclude in Sect. 5 with some future work.

2 Full Order Model via IMEX HDG/DG

Next, we first describe the FOM that is employed for generating snapshots and provides the
benchmark solutions in our numerical experiments.

2.1 Notation

Let Th be a conforming simplicial triangulation of the domain � ⊂ R
d , d = 1, 2, 3. For any

element K ∈ Th , we denote by hK its diameter and by h : Th → R the mesh size function
with h|K = hK . The collection of element boundaries is ∂Th := {∂K : K ∈ Th}. Denote
by Eh the set of facets of Th (vertices in 1D, edges in 2D, faces in 3D), and by E ih = Eh\∂�

the set of interior facets. For any element K , denote nK : ∂K → R
d to be the unit outward

normal direction on ∂K from the element K . Let n : ∂Th → R
d be the unit normal direction

on the collection of element boundaries ∂Th with n|∂K = nK .
We collect the following set of finite element spaces:

V k
h := {v ∈ H(div,�) : v|K ∈ [Pk(K )]d , ∀K ∈ Th, (v · n)|∂� = 0}, (1a)

̂V
k
h := {̂v ∈ [L2(Eh)]d : v̂|F ∈ [Pk(F)]d , (̂v · n)|F = 0, ∀F ∈ Eh, v̂|∂� = 0}, (1b)

Wk
h := {w ∈ L2(�) : w|T ∈ P

k(K ), ∀K ∈ Th}, (1c)

̂Wk
h := {ŵ ∈ L2(Eh) : ŵ|F ∈ P

k(F), ŵ|∂� = 0}, (1d)

where P
k is the space of polynomials up to degree k ≥ 0. In 1D, Pk(F) is simply point

evaluation for the vertex F . Note that functions in ̂V
k
h and ̂Wk

h are defined only on the mesh
skeleton Eh .

2.2 TheModel Problems

Two mathematical models are considered in this work, namely the 1D viscous Burgers’
equation

∂u

∂t
+ u · ∇u − ν�u = 0 in � ⊂ R, (2)

and the 2D incompressible Navier–Stokes equations (3):

∂u
∂t

+ u · ∇u + ∇ p − ν�u = 0 in � ⊂ R
2, (3a)

∇ · u = 0 in �, (3b)

where ν > 0 is a positive viscosity parameter. It becomes the incompressible Euler equa-
tions when ν = 0. For simplicity of presentation, we use homogeneous Dirichlet boundary

123



24 Page 4 of 20 Journal of Scientific Computing (2020) 85 :24

conditions for both problems to derive the FOM IMEX HDG/DG schemes. Other standard
boundary conditions will be applied in the numerical experiments presented in Sect. 4.

We remark that the proposed scheme for 2D incompressible Navier–Stokes equations can
be directly applied to the 3D case, although we focus on the former in this paper. Detailed
numerical study of our POD-(H)DG scheme for 3D incompressible Navier–Stokes is a topic
of our on-going work.

2.3 The Semidiscrete HDG/DG Scheme: Burgers’ Equation

The semidiscrete HDG/DG scheme for the 1D Burgers’ equation (2) reads as follows: Given
initial data uh(0) ∈ Wk

h , for all t ∈ (0, T ], find (uh, ûh) = (uh(t), ûh(t)) ∈ Wk
h × ̂W 0

h such
that

Mh

(

∂uh
∂t

, v

)

+ Cdgh (uh, uh, v) + νBhdg
h ((uh, ûh), (v, v̂)) = 0, ∀(v, v̂) ∈ Wk

h × ̂W 0
h .

(4)

HereMh(·, ·) is the mass operator, Cdgh (·, ·, ·) is the nonlinear (DG) convection operator, and
Bhdg
h (·, ·) is the (HDG) diffusion operator, which are given as follows:

Mh(u, v) =
∑

K∈Th

∫

K
u v dx, (5a)

Cdgh (w, u, v) = − 1

2

∑

K∈Th

(∫

K
(wu) · ∇v dx −

∫

∂K
{{w}}u− · n v ds

)

, (5b)

Bhdg
h ((u, û), (v, v̂)) =

∑

K∈Th

(

∫

K
∇u · ∇v dx −

∫

∂K
∇u · n(v − v̂)ds

−
∫

∂K
∇v · n(u − û)ds +

∫

∂K

4k2

h
(u − û)(v − v̂)ds

)

, (5c)

where {{w}} in (5b) is the standard average operator on element boundaries, and u− is the
upwinding numerical flux, with u−|F = (u|K−)|F for any facet F shared by two elements
K±, and K− is the element such that ({{w}} · nK−)|F ≥ 0.

2.4 The Semidiscrete HDG/DG Scheme: Navier–Stokes Equations

The divergence-free HDG/DG scheme in [15,16] is used for the Navier–Stokes equations (3).
The semidiscrete scheme reads as follows: Given initial data uh(0) ∈ V k

h , for all t ∈ (0, T ],
find (uh, ûh, ph) = (uh(t), ûh(t), ph) ∈ V k

h × ̂V
k
h × Wk−1

h such that

Mh

(

∂uh
∂t

, v

)

+ Cdg
h (uh, uh, v) + νBhdg

h ((uh, ûh), (v, v̂)) − Dh(uh, q)

− Dh(v, ph) = 0, (6)

for all (v, v̂, q) ∈ V k
h × ̂V

k
h × Wk−1

h , where the operators are given as follows:

Mh(u, v) =
∑

K∈Th

∫

K
u · v dx, (7a)
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Cdg
h (w, u, v) = −

∑

K∈Th

(∫

K
(w ⊗ u) : ∇v dx −

∫

∂K
(w · n)(u− · v) ds

)

, (7b)

Dh(u, q) =
∑

K∈Th

∫

K
(∇ · u)q dx, (7c)

Bhdg
h ((u, û), (v, v̂)) =

∑

K∈Th

(

∫

K
∇u : ∇v dx −

∫

∂K
(∇un) · tang(v − v̂)ds

−
∫

∂K
(∇vn) · tang(u − û)ds

+
∫

∂K

4k2

h
tang(u − û) · tang(v − v̂)ds

)

, (7d)

where u− in (7b) is the upwinding numerical flux, with u−|F = (u|K−)|F for any facet
F shared by two elements K±, and K− is the element such that (w · nK−)|F ≥ 0, and
tang(v)|F := v − (v · n)n is the tangential component of the vector v. Notice that the
convective operator (7b) introduces numerical dissipation along element boundaries:

Cdg
h (uh, uh, uh) =1

2

∑

K∈Th

∫

∂K
|uh · n|([[uh]])2 ds ≥ 0,

∀uh ∈ V k
h ∩ H(div0,�), (8)

where
H(div0,�) := {v ∈ H(div,�) : ∇ · v = 0},

which is beneficial in the convection-dominated regime.
We remark that the scheme (6) produces an exactly divergence-free velocity approxima-

tion, i.e. uh ∈ V k,0
h := V k

h ∩ H(div0,�), which is a desired property for the POD model

we consider in the next section. In particular, the velocity field (uh, ûh) ∈ V k,0
h × ̂V

k
h can be

directly computed without pressure approximation by solving the following equations:

Mh

(

∂uh
∂t

, v

)

+ Cdg
h (uh, uh, v) + νBhdg

h ((uh, ûh), (v, v̂)) = 0,

∀(v, v̂) ∈ V k,0
h × ̂V

k
h . (9)

2.5 The Fully Discrete HDG Schemes

For the time discretization, we use the second-order Crank–Nicolson–Adams–Bashforth
(CNAB) method [4], which treats the nonlinear convective term explicitly, and other terms
implicitly. For simplicity, a uniform time partition is applied. Let 0 = t0 < t1 < · · · < tM =
T be the partition of the interval [0, T ] and the time step �t = T

M .
The fully discrete scheme for the Burgers’ equation (2) is given as follows: Given initial

data (u0h, û
0
h) ∈ Wk

h × ̂W 0
h , for each integer n = 1, . . . , M , find (unh, û

n
h) ∈ Wk

h × ̂W 0
h such

that

Mh

(

unh − un−1
h

�t
, v

)

+ Cdgh (̃un−1/2
h , ũn−1/2

h , v) + νBhdg
h ((un−1/2

h , ûn−1/2
h ),

(v, v̂)) = 0, (10)
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for all (v, v̂) ∈ Wk
h × ̂W 0

h , where

un−1/2
h := 1

2
(unh + un−1

h ), ûn−1/2
h := 1

2
(̂unh + ûn−1

h ), ũn−1/2
h := 3

2
un−1
h − 1

2
un−2
h .

Here in the first step (n = 1) we simply take ũ1/2h = u0h .

Similarly, the fully discrete scheme for the Navier–Stokes equations (3) is given as fol-

lows: Given initial data (u0h, û
0
h) ∈ V k

h × ̂V
k
h , for each integer n = 1, . . . , M , find

(unh, û
n
h, p

n−1/2
h ) ∈ V k

h × ̂V
k
h × Wk−1

h such that

Mh

(

unh − un−1
h

�t
, v

)

+ Cdg
h (̃un−1/2

h , ũn−1/2
h , v) + νBhdg

h ((un−1/2
h , ûn−1/2

h ), (v, v̂))

− Dh(v, pn−1/2
h ) − Dh(u

n−1/2
h , q) = 0, (11)

for all (v, v̂, q) ∈ V k
h × ̂V

k
h × Wk−1

h .
Efficient implementation of the HDG linear systems (10) and (11) via static condensation

were discussed, for example, in [11,15].

3 The PODModel

In this section, we present the POD model based on the FOM IMEX HDG/DG schemes
presented in Sect. 2 using the method of snapshots [24]. We focus on the discussion for the
Navier–Stokes equations as the results forBurgers’ equation are identical. Since the generated
POD basis functions are global, we do not see any advantage of formulating a POD-HDG

ROM constructed using both variables uh and ûh . Hence, we only use the field variable
uh to construct the POD model, and the resulting ROM is a DG scheme.

3.1 Computing POD Basis Functions

The method of snapshots is used to construct the POD bases. To this end, let {uih}S−1
i=0 be

snapshots obtained from a full order model simulation (11). The POD bases are obtained by
the following steps:

(i) Decompose the data uih into the mean part (ūh) and the fluctuating part (uih):

uih = ūh + uih, ūh = 1

S

S−1
∑

i=0

uih .

(ii) Build the (symmetric positive definite) correlation matrix C ∈ R
S×S with Ci j =

Mh(uih, u
j
h).

(iii) Solve the eigenvalue problem:
CW = W�,

where � = diag[λ1, . . . , λS], W = [w1, . . . , wS], λi is the i th eigenvalue and wi is
the corresponding normalized i th eigenvector.
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(iv) Given an integer r � S, return the first r POD basis functions {φ j }rj=1, where

φ j = 1
√

λ j

r−1
∑

i=0

w
j
i u

i
h, j = 1, . . . , r .

Denote the space Srh = span{φ1, . . . φr }. Since φ j ’s are L2-orthonormal, the mass matrix
associated with the space Srh is the identity matrix.

3.2 The Plain POD-DG Scheme

To construct the POD-DG scheme, we first replace the HDG diffusion operator (7d) by a DG
operator:

Bdg
h (u, v) =

∑

K∈Th

(

∫

K
∇u : ∇v dx −

∫

∂K
({{∇u}}n) · tang(v)ds

−
∫

∂K
({{∇v}}n) · tang(u)ds +

∫

∂K

4k2

h
tang([[u]]) · tang([[v]])ds

)

, (12)

where on each internal facet F ∈ E ih , [[v]]|F = (v+ − v−) is the standard jump operator, and
[[u]]|∂� = 0. Next, we notice that the upwinding convection operator (7b) is linear in the first
and third arguments, but nonlinear in the second argument, due to the upwinding numerical
flux u−. This nonlinearity is quite troublesome for ROM in the sense that it can not be
computed using an offline procedure. We mention that it is precisely this nonlinear term that
provides the upwindingmechanism for theDGoperator (7b), which produces extra numerical
dissipation to stabilize the scheme (11) in the under-resolved convection-dominated regime.
To seek for an efficient implementation, we replace the (nonlinear) upwinding flux by the
(linear) central flux:

˜Cdg
h (w, u, v) = − 1

2

∑

K∈Th

(∫

K
(w ⊗ u) : ∇v dx −

∫

∂K
(w · n)({{u}} · v) ds

)

. (13)

This creates a trilinear operator that satisfies the following energy conservation property:

˜Cdg
h (uh, uh, uh) =0, ∀uh ∈ V k

h ∩ H(div0,�). (14)

Finally, the pressure field can be directly eliminated from the POD scheme because all POD
basis functions are globally divergence-free, inherited from the snapshots. The semidiscrete
plain POD-DG scheme reads as follows: Given initial data uh(0) = ūh + u0h with u0h ∈ Srh ,
for all t ∈ (0, T ], find uh = ūh + uh(t) with uh(t) ∈ Srh such that

Mh

(

∂uh
∂t

, v

)

+ ˜Cdg
h (uh, uh, v) + νBdg

h (uh, v) = 0, ∀v ∈ Srh . (15)

We again use the CNAB time discretization, and the fully discrete plain POD-DG scheme
reads as follows: Given initial data u0h = ūh + u0h with u0h ∈ Srh , for each integer n =
1, . . . , M , find unh = ūh + unh with unh ∈ Srh such that

Mh

(

unh − un−1
h

�t
, v

)

+ ˜Cdg
h (̃un−1/2

h , ũn−1/2
h , v) + νBdg

h (un−1/2
h , v) = 0, ∀v ∈ Srh .

(16)
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Remark 3.1 (Offline-online decomposition) The POD-DG schemes (15) and (16) can be effi-
ciently implemented via a standard offline-online decomposition. Thus, we introduce the
offline-precomputable vectors C0, B0 ∈ R

r , matrices C1, B ∈ R
r×r , and third order tensor

C ∈ R
r×r×r :

C0 j = ˜Cdg
h (ūh, ūh,φ j ),

B0 j = Bdg
h (ūh,φ j ),

C1i, j = ˜Cdg
h (ūh,φi ,φ j ) + ˜Cdg

h (φi , ūh,φ j ),

Bi, j = Bdg
h (φi ,φ j ),

Ci, j,k = ˜Cdg
h (φi ,φ j ,φk).

Denote uh = ∑r
j=1 a j (t)φ j , then the semi-discrete scheme (15) is given in the following

form:

∂a j

∂t
+ C0 j + C1i j ai + Cik j ai ak + νB0 j + νBi j ai = 0 (17)

Denoting an = [an1 , . . . , anr ] ∈ R
r , the fully discrete scheme (16) is then given in the

following form, which can be be computed efficiently online,
(

I d

�t
+ 1

2
νB

)

an = an−1

�t
−

(

C0 + C1̃an−1/2 + ãn−1/2C̃an−1/2 + νB0 + 1

2
νBan−1

)

,

(18)

where ãn−1/2 = 3
2 a

n−1 − 1
2 a

n−2.

3.3 The Closure Model

Due to the use of linear central numerical flux for the convection operator, the plain POD-DG
scheme (16) does not inherit the extra (upwinding) convective stabilization property of the
original HDG/DG scheme (11) that, however, is the key for the stability of the scheme in
the under-resolved convection dominated regime. Hence, it is natural to introduce a linear
stabilization term that mimics such upwinding mechanism in the POD setting. We further
include a standard eddy viscosity closure model originally proposed in [20], in order to
improve accuracy/stability of the POD-DG scheme. To this end, we denote the following
non-negative matrices CX, BX ∈ R

r×r :

CXik = 1

2

∑

K∈Th

∫

∂K
[[φi ]] · [[φk]] ds, (19a)

BXik = Bdg
h (φi , (k/r)

2φk), (19b)

and define the POD-DG closure model as follows:
(

I d

�t
+ 1

2
˜B
)

an = an−1 −
(

C0 + C1̃an−1/2 + ãn−1/2C̃an−1/2 + νB0 + 1

2
˜Ban−1

)

, (20)

where˜B = νB+ c1CX+ c2BX, with c1, c2 ≥ 0 being two tunable constants that are problem
dependent. Here the matrix BX corresponds to an eddy viscosity model with a quadratic
viscosity kernel [20], and the matrix CX can be interpreted as an upwinding stabilization term
(compared with DG upwinding in (8)). We call the term with BX a diffusive stabilization, and
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the term with CX a convective stabilization. We remark that if we take c1 = max |uh |, then
the convective stabilization term scales similarly as the full order model case. However, our
numerical results in the next section indicates that taking c1 = max |uh | is too small to make
such convective stabilization term effective in the POD setting. Actually, in a case for the
Burgers’ equation, we need to take c1 = 2× 108 (see Example 1 in Sect. 4 below) to see the
positive impact of this stabilization term. This observation also partially justify our choice of
linear central numerical flux in the convection operator (13) over the nonlinear upwinding
numerical flux for the plain POD-DG scheme (16).

Finally, we remark that the two parameters c1 and c2 are tuned purely at the online stage,
such tuning cost is negligible comparing to the computational cost of the full order model
(10).

4 Numerical Results

In this section, we present some numerical examples for the POD-DG closure model (20).
The NGSolve software [22] is used for the simulations. In all the numerical examples below,
we collect enough snapshots at equidistant time instances to capture the flow dynamics. The
number of snapshots are chosen such that further increasing it will not produce better results
for the POD models. But other approaches such as the ones based on incremental ideas in
[12,17] can be applied for better efficiency.

4.1 Example 1. Burgers’ Equation: Discontinuous Initial Condition

We consider the Burgers’ equation (2) with ν = 10−4 and the periodic boundary conditions.
The initial condition is taken to be a step function

u(0) =
{

1 i f x < 0.5,

0 i f x ≥ 0.5.
,

and the final time is T = 1. Two cases of the full order model (10) are tested here that
associate with different discretization parameters, including mesh size h of the uniform
mesh, polynomial degree k, and the uniform time step size �t .

(i) Slightly resolved case: h = 10−4, k = 2,�t = 0.1h.

(ii) Fully resolved case: h = 10−4, k = 6,�t = 0.04h.

To build the PODbasis, we collect 501 snapshots in the time interval [0, 1] taken at equidistant
time instances. The numerical solutions for the fully resolved case (k = 6) at t = 0.5 and
t = 1 are shown in Fig. 1. We observe the sharp gradient is resolved within 2 cells.

The eigenvalues of the correlation matrix C are shown in Fig. 2, where we do not observe
any significant difference for both cases.

Figure 3 visualizes three POD basis functions φ1(x), φ2(x), and φ10(x) for both cases.
Again, we observe no significant difference between these two cases.

To build the POD model, we use r = 20 basis functions, which capture about 97.87% of

the total energy for both cases, that is,
∑r

i=1 λi
∑S

i=1 λi
≈ 0.9787 with λi being the i th eigenvalue

of the correlation matrix C ∈ R
S×S . Numerical results for the plain POD-DG scheme (18),

along with the computed L2- and L1-errors for uromh − u f om
h at time t = 0, 0.5, 1, where

u f om
h is the solution to the full order model (10), and uromh is the solution to the POD-DG
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Fig. 1 Example 1. Numerical solution at t = 0.5 (left) and t = 1 (right). Black line: uh . Red dots: ûh (Color
figure online)

Fig. 2 Example 1. First 400 eigenvalues of the correlation matrix C . Left: slightly resolved case k = 2. Right:
fully resolved case k = 6

Fig. 3 Example 1. Illustrative examples of POD basis functions. Left: slightly resolved case k = 2. Right:
fully resolved case k = 6

model (18), are shown in Fig. 4. It is clearly seen that the plain POD-DG model produces
very oscillatory results, with the associated error for t = 0.5 and t = 1 being an order of
magnitude larger than the initial projection error at t = 0.

Next, we consider the POD-DG closure model (20) with only convective stabilization
(c1 > 0, c2 = 0). We refer to the resulting model as the POD-DG-C model. We tune the
parameter c1 = 104 for k = 2, and c1 = 2 × 108 for k = 6 to produce satisfactory results.
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Fig. 4 Example 1. Numerical solution uromh for the POD-DG model along with full order model solution

u f om
h . Top: t = 0. Middle: t = 0.5. Bottom: t = 1. Left: slightly resolved case k = 2. Right: fully resolved

case k = 6

Note that for the classical upwinding DG scheme (4), the parameter c1 corresponds to the
magnitude of the solution |{{uh}}| ≈ 1, which is too small for the POD-DG model to suppress
numerical oscillation. We don’t have a physical interpretation for the parameter c1, but argue
that our global POD DG basis functions are very smooth across element boundaries (which
is especially true for the fully resolved case k = 6), and one needs to have a large weighting
coefficient c1 to make the convective stabilization term effective. The associated numerical
results at t = 0.5 and t = 1 are shown in Fig. 5. Significant improvement over the results of
the plain POD-DG model can be clearly observed. We also found that the errors at t = 0.5
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Fig. 5 Example 1. Numerical solution uromh for the POD-DG-C model along with full order model solution

u f om
h . Top: t = 0.5. Bottom: t = 1. Left: slightly resolved case k = 2, c1 = 104. Right: fully resolved case

k = 6, c1 = 2 × 108

and t = 1 for the POD-DG-C closure model are of similar magnitude to the POD projection
error at t = 0 in Fig. 4. However, the POD solution is still oscillatory behind the shock.

Furthermore, we consider the POD-DG closure model (20) with both convective and dif-
fusive stabilizations, which is referred to the POD-DG-CDmodel.We use the same parameter
c1 as the POD-DG-C model, i.e. c1 = 104 for k = 2, and c1 = 2 × 108 for k = 6; and
set c2 = 0.01. The associated numerical results at t = 0.5 and t = 1 are shown in Fig. 6.
We observe that the errors at t = 0.5 and t = 1 for the POD-DG-CD model is similar and
slightly smaller than those for the POD-DG-Cmodel, and the post-shock oscillations are also
diminished.

Finally, the time evolution of the threemodels alongwith the full ordermodel are presented
in Fig. 7 for k = 2. The results for k = 6 are similar and are omitted to save space.

4.2 Example 2. Burger’s Equation: Smooth Initial Condition

We consider the same problem as Example 1, but with the following smooth initial condition:

u(0) = exp
(−200(x − 0.3)2

)

.

Very similar results as those for Example 1 are observed. In particular, we need to take
c1 = 104 for the case k = 2, and c1 = 108 for the case k = 6 to make the POD-DG-C
model produce satisfactory results, and use the POD-DG-CDmodel with c2 = 0.01 to further
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Fig. 6 Example 1. Numerical solution uromh for the POD-DG-CD model along with full order model solution

u f om
h . Top: t = 0.5. Bottom: t = 1. Left: slightly resolved case k = 2, c1 = 104, c2 = 0.01. Right: fully

resolved case k = 6, c1 = 2 × 108, c2 = 0.01

improve the results. We present in Fig. 8 the numerical solution of different POD-DGmodels
at final time t = 1 for the slightly resolved case k = 2. It is again clear that the POD-DG-C
model produce better results than the plain POD-DG model, and the POD-DG-CD model
further improves the results of POD-DG-C model by suppressing post-shock oscillations.

4.3 Example 3. Navier–Stokes: 2D Flow Past a Cylinder, Re = 100

We consider the classical flow past a cylinder benchmark problem [21]. The domain is a
rectangular channel with an almost vertically centered circular obstacle, c.f. Fig. 9,

� := [0, 2.2] × [0, 0.41]\{‖(x, y) − (0.2, 0.2)‖2 ≤ 0.05}.
The boundary is decomposed into 	in := {x = 0}, the inflow boundary, 	out := {x = 2.2},
the outflowboundary, and	wall := ∂�\(	in∪	out ), thewall boundary.On	out weprescribe
natural boundary conditions (−ν∇u+ pI )n = 0, on	wall homogeneous Dirichlet boundary
conditions for the velocity (no-slip) and on 	in the inflow Dirichlet boundary conditions

u(0, y, t) = 6ū y(0.41 − y)/0.412 · (1, 0),

with ū = 1 the average inflowvelocity. The viscosity is taken to be ν = 10−3, henceReynolds
number Re = ūD/ν = 100, where D = 0.1 is the disc diameter.
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Fig. 7 Example 1. Time evolution of numerical solutions. Top left: full order model. Top right: POD-DG.
Bottom left: POD-DG-C. Bottom right: POD-DG-CD. Slightly resolved case k = 2

Fig. 8 Example 2. Numerical solution at final time t = 1. Left: POD-DG model. Middle: POD-DG-C model
with c1 = 104, c2 = 0. Right: POD-DG-CD model with c1 = 104, c2 = 0.01. 20 POD bases are used.
Slightly resolved case k = 2, h = 10−4

For this Reynolds number, the flow turns into a time-periodic behaviour with a vortex
shedding behind the cylinder. For the FOM, we consider the scheme (11) with polynomial
degree k = 3 on a (curved) unstructured triangular mesh with 292 triangular elements, and
take time step size �t = 0.001. A precomputed fully developed velocity profile is used for
the initial condition; see Fig. 9 for the geometry, the mesh and the initial velocity field.

To build the POD bases, we collect 401 snapshots in the time interval [0, 2] taken at
equidistant time instance. To build the PODmodel, we use 6 POD bases which capture about
99.81% of the total energy and run the simulation up to time T = 20. We consider the plain
POD-DG model and the POD-DG-C model with c1 = 5. The constant c1 is tuned to yield
relatively the smallest L2-error between FOM and ROM solutions at final time for a range of
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Fig. 9 Example 3: the initial velocity field (color corresponding to velocity magnitude ‖uh‖2 from 0 to 2.17)

Fig. 10 Example 3: time evolution of the L2-velocity error ‖u f om
h − uromh ‖

Fig. 11 Example 3: x-component of velocity field along cut line y = 0.25 at time t = 20

choices. Taking c1 too big or too small leads to less accurate approximations. It is interesting
to observe that this time c1 is close to the maximum velocity magnitude vmax ≈ 2.17, which
is very different to the scaling in the Burgers’ equation cases in Examples 1–2. Here, probably
due to the relative small Reynolds number, we find that adding extra diffusive stabilization
in (20) does not improve the results. Hence, results for the POD-DG-CD model will not be
shown. The time evolution of the L2 velocity error ‖u f om

h − uromh ‖ is plotted in Fig. 10. We
observe that the error for the POD-DG-C model is an order of magnitude smaller than that
for the plain POD-DG model at time t = 20.

We plot the x-component of the velocity field along the cut line y = 0.25 at time t = 20
in Fig. 11. Clearly the result for the POD-DG-C model is closer to FOM than that for the
plain POD-DG model, which produces a visible phase shift.

Finally, the velocity magnitude contour lines at time t = 5 and t = 20 for different models
are shown in Fig. 12. Here we observe that at time t = 5, both POD-DG and POD-DG-C
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Fig. 12 Example 3 (ROMs are 6-dimensional): velocity contour at time t = 5 (top) and t = 20 (bottom). 10
equispaced contour lines from 0 to 2.17. Black: FOM. Blue: POD-DG. Red: POD-DG-C with c1 = 5 (Color
figure online)

Fig. 13 Example 4: the initial velocity field (color corresponding to velocity magnitude ‖uh‖2 from 0 to 2.4)

models produce similar results as the FOM. On the other hand, visible phase shift, especially
behind the cylinder, is observed for the POD-DG model (in blue) at time 20, while the result
for POD-DG-C (in red) is still in good agreement with FOM.

4.4 Example 4. Navier–Stokes:2D Flow Past a Cylinder, Re = 500

We consider the same problem as Example 3, but with a larger Reynolds number Re = 500.
For the FOM, we consider the scheme (11) with polynomial degree k = 6 on the mesh used
in Example 3. The initial (fully developed) velocity field is shown in Fig. 13.

To build the POD bases, we collect 501 snapshots in the time interval [0, 2] taken at
equidistant time instance. To construct the POD model, we use 10 POD bases which capture
about 99.90% of the total energy and run the simulation up to time T = 20. We consider
the plain POD-DG model and the POD-DG-C model with c1 = 12, which is tuned to yield
relatively smallest L2-error between FOM and ROM solutions at final time. Again, we find
that adding extra diffusive stabilization in (20) does not improve the results. Hence, results
for the POD-DG-CD model will not be shown. The time evolution of the L2 velocity error
‖u f om

h − uromh ‖ is plotted in Fig. 14. We observe that the error for the POD-DG-C model is
again an order of magnitude smaller than that for the plain POD-DG model at time t = 20.

We plot the x-component of the velocity field along the cut line y = 0.25 at time t = 20
in Fig. 15, and velocity contour lines at time t = 5 and t = 20 in Fig. 16. Similar results
as those in Example 3 is observed. In particular, while both models produces similar results
at time t = 5. Significant improvement from POD-DG-C model over the plain POD-DG
model is observed for the velocity magnitude contour lines at time t = 20. This indicates
our POD-DG-C model is more accurate than POD-DG model for long time simulations.
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Fig. 14 Example 4: time evolution of the L2-velocity error ‖u f om
h − uromh ‖

Fig. 15 Example 4: x-component of velocity field along cut line y = 0.25 at time t = 20

Fig. 16 Example 4 (ROMs are 10-dimensional): velocity contour at time t = 5 (top) and t = 20 (bottom). 10
equispaced contour lines from 0 to 2.4. Black: FOM. Blue: POD-DG. Red: POD-DG-C with c1 = 12 (Color
figure online)

4.5 Example 5. Incompressible Euler: Double Shear Layer Problem

In our last example, we consider the classical double shear layer problem [6]. We solve the
Euler equation (3)with ν = 0 on a periodic domain [0, 2π]×[0, 2π]with an initial condition:

u1(x, y, 0) =
{

tanh((y − π/2)/ρ) y ≤ π

tanh((3π/2 − y)/ρ) y > π,
(21)

u2(x, y, 0) = δ sin(x), (22)

with ρ = π/15 and δ = 0.05.
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Fig. 17 Example 5: time evolution of the L2-velocity error ‖u f om
h − uromh ‖

Fig. 18 Example 5 (ROMs are 10-dimensional): Left: 10 equispaced velocity magnitude contour lines from
0 to 1.5. Right: 10 equispaced vorticity contour lines from −4.9 to 4.9. Black: FOM. Blue: POD-DG. Red:
POD-DG-C with c1 = 40 (Color figure online)

For the FOM (11), we useP3 approximation on fixed uniform structured triangular meshes
withmesh size 2π/64 and run the simulation up to time t = 8with time step size�t = 0.001.
To build the PODbases,we collect 401 snapshots in the time interval [0, 8] taken at equidistant
time instance. To build the POD model, we use 10 POD bases which captures about 99.95%
of the total energy and run the simulation up to time T = 8. We consider the plain POD-DG
model and the POD-DG-C model. The parameter c1 in the POD-DG-C model is tuned to be
c1 = 40. The time evolution of the L2 velocity error ‖u f om

h − uromh ‖ is plotted in Fig. 17. In
contrast to Examples 3–4, we observe that the error for both models are very similar, which
indicates that our current convective stabilization approach is not effective for the current
problem. We further remark that we also observe no accuracy improvement by considering
the POD-DG-CD model.

Finally, we plot velocity magnitude (‖uh‖) and vorticity (∇×uh) contour lines for the two
models alongwith the results for the FOMat final time t = 8 in Fig. 18. It can be observed that
the results for both models are very similar and are close to the FOM results. This is a rather
surprising result as the POD-DGmodel does not introduce any spatial numerical dissipation,
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Fig. 19 Example 5: Left: 10 equispaced velocity magnitude contour lines from 0 to 1.5. Right: 10 equispaced
vorticity contour lines from −4.9 to 4.9. Results for (conservative) C-FOM

yet its vorticity approximation is still free from large oscillations. For comparison, we also
plot in Fig. 19 the vorticity approximations for the FOM (11) with the upwinding convection

operator Cdg
h replaced by the conservative version ˜Cdg

h in (13), which we denote as C-FOM. It
is clear that the (conservative) POD-DGmodel has better stability property than C-FOM.We
conjecture the reason for the superior performance of POD-DG model over C-FOM is that
the global POD bases obtained from FOM (11) might have some extra built-in stabilization
properties.

5 Conclusion

We have presented a POD-DG reduced order model for the viscous Burgers’ equation and the
incompressible Navier–Stokes equations discretized using an IMEX HDG/DG scheme. A
novel offline-computable closure model was introduced for the POD-DGROMwhich further
improves its stability and accuracy. Numerical results show the superior performance of the
proposed closure model compared with a plain POD-DG scheme without the closure model.
In future work, we will pursue in the same direction and investigate the proposed model in
the parametrized flow problems with applications in flow control and optimization.

Data Availibility Statement The datasets generated during and/or analysed during the current study are avail-
able from the corresponding author on reasonable request
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