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ABSTRACT: Recently several techniques have emerged that significantly
enhance the quality of predictions of protein tertiary structures. In this
study, we describe the performance of AWSEM-Suite, an algorithm that
incorporates template-based modeling and coevolutionary restraints with a
realistic coarse-grained force field, AWSEM. With its roots in neural
networks, AWSEM contains both physical and bioinformatical energies
that have been optimized using energy landscape theory. AWSEM-Suite
participated in CASP13 as a server predictor and generated reliable
predictions for most targets. AWSEM-Suite ranked eighth in both the free-
modeling category and the hard-to-model category and in one case
provided the best submitted prediction. Here we critically discuss the
prediction performance of AWSEM-Suite using several examples from
different categories in CASP13. Structure prediction tests on these selected
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targets, two of them being hard-to-model targets, show that AWSEM-Suite can achieve high-resolution structure prediction after
incorporating both template guidances and coevolutionary restraints even when homology is weak. For targets with reliable
templates (template-easy category), introducing coevolutionary restraints sometimes damages the overall quality of the predictions.
Free energy profile analyses demonstrate, however, that the incorporations of both of these evolutionarily informed terms effectively
increase the funneling of the landscape toward native-like structures while still allowing sufficient flexibility to correct for
discrepancies between the correct target structure and the provided guidance. In contrast to other predictors that are exclusively
oriented toward structure prediction, the connection of AWSEM-Suite to a statistical mechanical basis and affiliated molecular
dynamics and importance sampling simulations makes it suitable for functional explorations.

1. INTRODUCTION

The structures of proteins largely determine protein function in
vivo. Understanding the structures of proteins enables many
applications in protein engineering and in the pharmaceutical
field." Due to the limitation and costs of experimental structure
determination, computational structure prediction can play a
significant role in practical work. Based on Anfinsen’s studies it
has long been held that, given the sequence of amino acids for
a specific protein, we should be able to predict the native
folded structure without any additional experimental input.”
Our modern understanding of Anfinsen’s experiment, i.e., how
proteins fold to their stable states, has been clarified through
the notion that folding energy landscapes are funneled and that
this funneling is the result of evolution.” > Ab initio protein
structure prediction using only sequence information starting
from extended peptide chains to simulate the folding process
has been verified to be feasible for the smallest proteins, but
such fully atomistic approaches still entail significant computa-
tional expense.

CASP (critical assessment of structure prediction) is an
experiment that aims to assess the state of the art in predicting
protein structure every two years. Although the quality of
predicted structures without evolutionary guidance has been

© 2020 American Chemical Society

\ 4 ACS Publications

3977

increasing with each generation of CASP, the accuracy of the
ab initio protein structure prediction is not satisfactory for
many practical purposes.” Template-based modeling is the
most reliable and time-efficient way to predict protein structure
if a high sequence identity homologue can be found.”® If two
sequences are sufficiently similar, it can be inferred that they
must have descended from a common ancestor and must
therefore share similar tertiary structures. The template
structures that are used for modeling are usually found by
sequence—sequence comparison methods such as PSI-BLAST
or by sequence—structure threading methods that, even in the
absence of an obvious template, sometimes reveal more distant
evolutionary relationships among related sequences.”” > Using
sequence coevolutionary information is also helpful."® Strong
covariance between a pair of residues suggests these residues
are in contact using this idea. Coevolutionary-based
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predictions have been used with success to predict not only the
three-dimensional structures of proteins but also multiprotein
complexes."* Due to the conservative nature of protein
evolution, many diverse homologous proteins share the same
global fold. Early methods of coevolutionary analysis used
mean-field direct-coupling analysis (mfDCA), and Gremlin
uses a pseudolikelihood approach (pImDCA) to predict the
contact pairs.'”'® Global statistical methods have more
recently attempted to build models using whole protein
sequence alignment rather than simply analyzing pairs of sites
separately, which can improve the accuracy of contact
prediction."”

Neural network ideas have been used to predict protein
tertiary structure for quite a while."*™*° Since the last CASP
held in 2016, machine learning based algorithms have
developed rapidly and performed very well in the free-
modeling area. Nonetheless, the physics based methods also
have displayed their power in some cases. Here we describe a
prediction method that we have employed that combines
elements of all these successful ideas. This method, the
Associative memory, Water-mediated, Structure and Energy
Model (AWSEM), is optimized based on the principles of the
energy landscape theory of protein folding which provide a
quantitative machine learning strategy.”'® AWSEM has
witnessed success in a comprehensive set of applications
including monomer ab initio gredictions21 and prediction of
protein—protein associations,”” and by joining it with coarse-
grained DNA models.”” By coupling to coarse-grained DNA
models, AWSEM has been used to study nucleosomes.”*
AWSEM-Suite is presently being used in many functional
investigations ranging from exploring the mechanisms of
chromosome extrusion”” to the formation of memory through
actin network reorganization.”> AWSEM-Suite is a realistic
coarse-grained force field that employs transferable tertiary
interactions along with homology modeling and knowledge-
based local-in-sequence interaction terms with carefully
optimized parameters based on experimentally determined
protein structures.”’ AWSEM-Suite is a hybrid of earlier
versions of the AWSEM force field including AWSEM-
Template and AWSEM-ER, which have been used in structure
prediction.””” Here the abbreviation ER reflects the use of
“evolutionary restraints”. Across the more than 100 blind tests
in CASP13, AWSEM-Suite outperforms the simpler versions,
AWSEM-Template and AWSEM-ER, in most domains.
AWSEM-Suite stands as eighth in the free-modeling and
hard-to-model categories among all the server predictors in the
last CASP experiment. In this paper, we describe the
predictions of AWSEM-Suite and their critical evaluation in
the recent CASP13 competition. This study shows that
AWSEM-Suite predicts protein structures with relatively high
accuracy especially for proteins where the only available
templates are in the “twilight zone” of sequence identity. We
also highlight how AWSEM-Suite provides better predictions
than other physics based algorithms in those cases where
water-mediated contacts in structures are structurally impor-
tant.

2. METHOD

2.1. The AWSEM-Suite Force Field. AWSEM is a
predictive, coarse-grained, protein folding force field that
represents the conformation of each type of amino acid residue
except glycine by using only three explicit atomic centers (C,,
Cp and O) and by employing an ideal peptide geometry
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assumption to locate three other implicit atoms (N, C’, and H
atom attached to N).*' A review by Schafer et al. describing
how AWSEM incorporates the principles of energy landscape
theory can be consulted by readers who are interested in
details of the model.”®* The AWSEM-Suite Hamiltonian also
includes a template bias term and a coevolutionary term along
with the transferable AWSEM force field.”*” These terms are
combined as detailed in eq 1. The backbone term restricts the
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peptide backbone through a harmonic potential and also
contains excluded volume terms for all atomic centers. The
contact term describes direct contact interactions and water/
protein-mediated interactions of somewhat longer range. The
fragment memory term is a bioinformatically informed term
that biases the formation of local structure based on the known
structures of overlapping sequences of peptide fragments, while
the hydrogen bond term allows helical structures and f-sheets
to form. The newly added terms in AWSEM-Suite, the
template term and the coevolutionary term, guide the
formation of global tertiary interactions in the folding process
along with the purely physical interactions which are short
range in space.

2.2. Constructing Template Guidance from Protein
Databases. In the present instantiation of the software, a
template of presumed homologous structure is first sought by
HHpred using a minimum threshold confidence score of 95%.
Structure—sequence matching has previously been employed
in the associative memory Hamiltonian framework.'"””?
Templates found by HHpred usually have sequence identity
of more than 10% to the predicted sequence with an e-value
lower than 1. The e-value estimates the statistical significance
of a match. It indicates how many chance hits with a score
better than this would be expected if the database were to
contain only hits that are actually unrelated to the query.”’ The
aligned regions from the templates were renumbered according
to their corresponding regions in the query sequence. Then, a
pairwise distance matrix is created and the entries in the matrix
are used to define the interresidue distance rY used in the
definition of Qiemplate-

A collective variable, Qemplae (€9 2), which ranges between 0
and 1, is used, then, to measure the structural similarity of
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structures to the template by comparing the pairwise distances
between a structure and the template. This collective variable
then is used for a soft bias in Vienpiace-

The Qiemplate 18 computed only from the aligned region of the
template. ©(rj'—2 A) is 1 for rj > 2.0 A and 0 otherwise, rj is
the residue—residue distance in the templates, and r; is the
corresponding pairwise distance in the simulation snapshot to
which the template refers. The strength of the template term
can be scaled to allow a desired balance with other energy
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Figure 1. Protocol of structure prediction using AWSEM-Suite. The template term and the coevolutionary term are added to the transferable
AWSEM force field. The template term uses tertiary information from a selected template based on HHpred multiple sequence alignment. The
coevolutionary term uses coevolutionary information from an online server such as RaptorX-contact or DeepContact. The initial structures are
chosen to be either an annealed extended structure generated by Pymol or a homology structure that is generated by Modeller if a template with an
e-value less than 1 was found. Simulated annealing then starts from 600 K if the initial structure is an extended chain or from 400 K if the initial
structure is based on an homologous model to cooling finally to 200 K. Twenty parallel jobs that have different initial velocity seeds were run. The
lowest energy frames from each trajectory were chosen and clustered based on mutual-Qw values so as to pick five structures that are then rebuilt
with side chains by Modeller. The final all-atom models were submitted to CASP13.

terms. The strength is scaled based on the strength and average
length of protein sequence based on test cases using the
following equation. The exponent of 1.5 was found to fit the
increasing of ¢;; along with the sequence.

13
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2.3. Coevolutionary Contact Restraints Inferred by
RaptorX-Contact or DeepContact. The V_,, term is a
pairwise additive contact term, which stabilizes any choice of
contacts that can be specified as input. The location of the well
centers for each contact pair were identified by specifying the
expected contact length between two residues. The reference
distance for each possible pair of amino acid types is based on
a survey of thousands of Protein Data Bank (PDB) structures.”
While any choice of contacts can be used, residue—residue
contact gairs are generally Eredicted by either RaptorX-
contact’® or DeepContact.”> The predicted pairs are
incorporated into the force field using a restraint potential:

protein length

ktemplate = 200( 120

V.

1
ey = —Ekmevz ©(coev — predictions)
i)j

exp[_(rij _ V;Sﬁmate)z/ijz], o |} _ i|0.15

ij (4)

In eq 4, the coefficient k., is used to scale the strength of
this term relative to the other terms; here it is 1. ®(coev —
predictions) is 1 for the contact pairs that have been selected
for use from the coevolutionary algorithms and 0 otherwise.
The term r,-ejmmate is the predicted location of the well centers.

The algorithms for contact pair prediction that were used
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depended on its availability when we submitted the jobs in the
CASP competition.””*> Both of the contact prediction
algorithms employ deep convolutional neural networks to
learn structural interaction motifs from experimentally solved
structures. A confidence score for each predicted contact pair is
generated, reflecting the probability that it is correct. All
predicted contacts with an estimated probability over 0.5 were
used in the AWSEM-Suite prediction. Coevolutionarily
inferred contacts tend to be less reliable with the decreasing
estimation probability.

2.4. Obtaining Associative Memories from Frag-
ments Based on Sequence Homology. The fragment
memory term in the present instantiation utilizes the local-in-
sequence structure information from known experimental
structures to aid the prediction by applying a local bias. The
database we used was the April 2018 version of the PDB
database with the default culling threshold in PISCES Protein
Sequence Culling Server.”* The short peptide fragments were
filtered by BLAST matrix to find the local match in sequence.
In setting up the associative memory term, the fragments are
taken both from the homologous sequences with more than
95% local sequence identity and from fragments of the
nonhomologous sequences in places where there was poor
coverage by the template. The 20 best matching fragments in
the databases with a threshold of e-value over 0.0005 for the
nonhomologous sequence database are selected.”’ The two
sources of fragment memories are balanced to be weighted
equally in the fragment memory term.

2.5. Simulation Protocol of AWSEM-Suite. The overall
pipeline for predicting protein tertiary structures using

https://dx.doi.org/10.1021/acs.jctc.0c00188
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Table 1. Summary of Structure Prediction Results for AWSEM-Suite in CASP13 Competition®

evaluation matrix

target information GDT-TS Qw RMSD CE-RMSD
target name category length AWSEM Rosetta AWSEM Rosetta AWSEM Rosetta AWSEM Rosetta
T0950-D1 FM 342 19.66 33.26 0.198 0.235 35.428 30.000 6.85/37% 3.29/44%
T0951-D1 TBM-easy 266 82.33 93.80 0.838 0916 2.595 1.660 1.699/99% 1.118/99%
T0953s1-D1 FM 67 27.24 48.88 0.234 0.329 14.710 13.710 8.041/60% 3.594/60%
T0953s2-D1 FM/TBM 44 41.48 56.25 0.257 0.407 13.350 7.750 5.118/73% 4.258/73%
T0953s2-D2 M 111 61.26 45.27 0.573 0.307 4.738 13.520 3.182/94% 3.535/72%
T0953s2-D3 FM 93 39.52 21.77 0.280 0.224 12.890 13.038 2.69/34% 10.822/60%
T0954-D1 TBM-hard 336 48.36 69.87 0.514 0.711 9.741 3.910 3.980/93% 2.902/98%
T0955-D1 FM/TBM 41 64.02 NaN 0.531 NaN 4.800 NaN 4.32/78% NaN
T0957s1-D1 EM 108 35.42 39.35 0.294 0.361 13.850 11.970 6.125/59% 5.826/67%
T0957s1-D2 TBM-hard 54 52.78 65.28 0.369 0.525 6.900 4.950 4.408/89% 3.933/89%
T0957s2-D1 FM 155 43.55 45.81 0.430 0.465 9.110 6.180 5.375/83% 5.693/88%
T0958-D1 FM/TBM 77 74.03 66.56 0.653 0.588 3.480 3.750 2.396/94% 2.943/94%
T0960-D2 M 84 3542 56.55 0.260 0.458 9.820 8.030 5.054/67% 4.303/76%
T0960-D3 TBM-hard 89 54.21 73.88 0.449 0.670 10.050 5.190 5.210/72% 4.426/99%
T0960-DS TBM-easy 105 62.86 70.24 0.550 0.652 4.780 4.060 2.931/91% 3.381/91%
T0963-D2 FM 82 36.28 3841 0.306 0.337 10.046 7.520 6.621/68% 4.416/68%
T0963-D3 TBM-hard 93 59.68 55.65 0.520 0.463 5.747 9.330 3.966/95% 3.204/77%
T0963-DS TBM-easy 94 61.97 70.21 0.566 0.553 4.480 4.940 2.989/94% 2.525/94%
T0965-D1 TBM-hard 313 63.90 66.05 0.651 0.665 5.213 4.390 3.467/97% 3.292/97%
T0966-D1 TBM-hard 492 54.22 61.08 0.608 0.685 5.530 4.080 4.013/93% 3.248/96%
T0967-D1 TBM-easy 79 81.01 93.67 0.765 0.908 3.090 1.540 1.841/91% 1.126/91%
T0968s1-D1 FM 119 44.49 66.74 0.409 0.668 7.835 3.890 5.587/87% 2.949/94%
T0968s2-D1 M 116 41.74 71.30 0.385 0.708 9.878 4.700 4.619/69% 2.739/97%
T0969-D1 M 354 23.38 30.30 0.194 0.255 29.195 22.450 5.278/34% 5.743/43%
T0970-D1 FM/TBM 97 64.41 57.65 0.564 0.439 5.432 8.490 4.993/99% 3.117/66%
T0971-D1 TBM-easy 130 83.85 96.35 0.803 0.951 2.740 1.520 2.087/92% 0.709/98%
T0976-D1 TBM-easy 120 70.83 77.92 0.669 0.721 3.737 6.310 2.718/93% 1.365/87%
T0976-D2 TBM-easy 124 72.18 73.59 0.714 0.654 3.861 6.520 2.426/97% 3.405/90%
T0980s1-D1 M 105 32.69 40.14 0.304 0.332 13.394 14.360 6.679/69% 3.178/69%
T0984-D1 TBM-easy 504 40.68 60.10 0.490 0.628 6.910 5.360 4.586/86% 4.418/90%
T0984-D2 TBM-easy 147 44.03 71.27 0.480 0.649 6.850 4.580 3.384/87% 4.314/87%
T0986s1-D1 FM/TBM 92 49.19 68.21 0.492 0.660 7.040 6.400 4.761/87% 2.102/87%
T0986s2-D1 M 15§ 36.77 25.32 0.369 0.225 7.480 15.540 5.364/83% 4.396/41%
T0990-D1 M 76 61.18 39.80 0.546 0.381 5.126 11.780 4.283/95% 6.471/74%
T0990-D2 FM 231 27.38 18.61 0.232 0.200 27.261 26.820 5.822/59% 6.583/45%
T0990-D3 M 213 18.07 16.90 0.218 0.187 16.449 20.840 6.975/41% 11.157/34%
T1003-D1 TBM-easy 437 68.89 89.17 0.706 0.846 5911 8.550 3.174/94% 1.195/94%
T1005-D1 FM/TBM 326 42.33 55.83 0.444 0.512 10.131 8.480 5.134/71% 4.120/74%
T1006-D1 TBM-easy 77 86.69 92.53 0.867 0912 2277 1.810 1.219/94% 0.941/94%
T1008-D1 FM/TBM 77 45.45 68.18 0.436 0.619 8.440 3.610 7.839/94% 2.556/94%
T1011-D1 TBM-hard 302 38.12 65.36 0.446 0.596 7.342 5.220 4.907/85% 4.299/72%
T1016-D1 TBM-easy 202 70.55 81.56 0.701 0.782 3.696 3.640 2.217/95% 1.885/95%
T1018-D1 TBM-easy 334 71.26 88.10 0.744 0.880 3.540 2.090 2.637/98% 1.346/98%
T1021s1-D1 TBM-hard 149 48.32 66.44 0.462 0.632 7.070 4.750 3.858/86% 2.584/91%
T1021s2-D1 TBM-hard 349 47.28 66.26 0.537 0.644 6.210 9.720 4.38/94% 3.317/92%
T1021s3-D1 FM 178 33.28 40.66 0.324 0.333 10.620 8.600 6.82/67% 4.467/76%
T1021s3-D2 FM 101 29.90 25.00 0.218 0.228 14.750 12.900 8.189/71% 8.241/55%
T1022s1-D1 FM 156 22.76 34.78 0.223 0.295 16.720 15.090 6.658/36% 5.065/41%
T1022s1-D2 TBM-hard 67 71.27 69.03 0.568 0.634 8.400 5.800 6.929/96% 4.976/96%
T1022s2-D1 M 525 39.38 62.10 0.473 0.683 8.011 5.850 5.283/64% 5.241/58%

“Bold rows show AWSEM-Suite has a better performance than Baker-RosettaServer in GDT-TS.

AWSEM-Suite is sketched in Figure 1. The initial structures for
annealing the proteins are generated through the Modeller
program when a homologue has been found; otherwise the
initial structures are generated through Pymol as an extended
structure.” f-Sheet secondary structure is difficult to form
during a simple simulated annealing process. Bioinformatics
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tools do a generally good job in predicting the correct
secondary structures without any templates, but of course they
are not perfect.’® We use a bias from the predicted secondary
structures. The secondary structure predictions using the three
states secondary structure output from RaptorX-property
provides additional restraints to the backbone ¢ and y angles

https://dx.doi.org/10.1021/acs.jctc.0c00188
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biasing peptide fragments toward either a-helical or f-strand
conformations in the backbone.*®

AWSEM-Suite relies on the framework of the Large-Scale
Atomic/Molecular Massively Parallel Simulator (LAMMPS)
open source software package and serves as an open source
add-on.”” Annealing simulations using AWSEM were carried
out from 600 to 200 K if the initial structure was extended, or
from 400 to 200 K if the initial structure was generated by
Modeller cooling over 4 million steps. The total energy of each
frame was calculated, and the lowest energy frame was picked
out for further analysis. The resulting structures were then
clustered based on mutual-Qw value, leading up to five
representative structures from the three largest clusters that
were finally picked. The output structures from AWSEM
simulation include only three atoms, so rebuilding of the side
chains on these coarse-grained structures was performed using
Modeller version 9.18 with the default parameters.’”® The
rebuilt structures were finally submitted to the CASP13
competition.

2.6. Free Energy Computed through Umbrella
Sampling and Weighted Histogram Analysis Method.
To study the landscapes of the models, we used umbrella
sampling along an order parameter, Qw, with respect to the
crystal structure of this protein to project the free energy
landscapes of the proteins onto a single dimension. Qw is a
metric with the form given by the following equation.

2 N2 2
V= N3 ,._Z,»Z:Z L= =) /2]
o, = lj — PIBE )

Qw measures structural similarity by comparing pairwise
distances between two structures. While emphasizing contacts,
Qw resembles the root-mean-square deviation (RMSD) in
depending on global accuracy but is less sensitive to the
misprediction of dangling disordered segments. N is the total
number of residues. The harmonic biasing potential used for
constant temperature umbrella sampling simulations for 4
million steps was scaled to 200 kcal/mol. The biasing center
values were chosen to be equally spaced from 0 to 1 with an
increment of 0.02. The weighted histogram analysis method
(WHAM) method is used to reconstruct the unbiased free
energy landscapes from the umbrella sampling data.”® The free
energy landscapes can also be extrapolated to temperatures
other than the temperature at which the simulation was
performed.

2.7. Structure Prediction Accuracy Metrics. Four
metrics are used to evaluate the accuracy of the structure
predictions provided by the AWSEM-Suite protocol and by the
other online server’s algorithms: RMSD, CE-RMSD, Qw, and
GDT-TS. All of these quantities measure the structural
similarity between two structures, but they behave differently
in different situations. These metrics can be used to judge the
accuracy of each predicted model based on the corresponding
native structure. RMSD describes the root-mean-square
deviation of all atoms between the predicted and native
structures when ideally aligned. CE (combinatorial extension)-
RMSD calculates the RMSD of the best aligned regions of
proteins after using an algorithm called CE alignment that
discards those regions that would give a low match.”” CE-
RMSD reports also the percentage of aligned residues. GDT-
TS (global distance test total score) is another matrix that is
often associated with CASP to assess the quality of structure
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prediction.”” GDT-TS is defined as the percentage of C,
carbons falling within 1, 2, 4, and 8 A distances. These four
scores are then added up and divided by 4.

Another metric, called Qo, is used to evaluate the formation
of direct contacts with various distance cutoffs and compared
to the reference structure. The Qo value evaluates the contacts
with sequence separation of more than 4 under a distance
cutoff D.

2

RS e

j—ix4

Q =

N _ |- _ 4015
when ry <D, 0= lj — il (6)

Separate Qo values can be calculated based on the type of
contact being considered. Short-range, long-range, and water-
mediated contacts are separate types of interactions that are
defined in previous papers.”’

3. RESULTS

3.1. Performance of Tertiary Structure Prediction by
AWSEM-Suite. To better understand the performance of the
AWSEM-Suite relative to other cutting-edge physics based
models, the complete set of best submitted structures from
AWSEM-Suite (Group ID:124) and Baker-RosettaServer
(Group ID:368)*" in the CASP13 competition, segmented as
domains, are summarized in Table 1 using four structure
quality metrics: GDT-TS, Qw, RMSD, and CE-RMSD.
Domains for which AWSEM-Suite has better performance
are shown in bold in Table 1. The domain sequences were
divided into three categories based on the modeling difficulty.
These categories are the template-based-modeling (TBM)
category which contains those targets where one or more
structure templates can be identified from the sequence, the
free-modeling (FM) category for sequences that do not have
such templates, and the category TBM/FM which bridges
these two categories.”” The summary of 50 domains presents
an analysis with deposited coordinates of the solved structures.
Twenty of these domains belong to FM, seven of them belong
to FM/TBM, and the remaining 23 domains belong to the
TBM category. In the TBM groups, 13 of these domains were
categorized as TBM-easy and the other 10 domains were
categorized as TBM-hard. For both the FM/TBM category
and the FM category, AWSEM-Suite ranked eighth among all
39 server predictors in the competition and yielded in several
cases the best or second best structures among all server group
algorithms. The performance indicates that using AWSEM-
Suite is most advantageous when no good template
information is available. We computed the average percentage
of the GDT-TS value ratio from the AWSEM-Suite model to
the best GDT-TS of the server predicted model to determine
for which category AWSEM-Suite is the most optimal. The
TBM-easy category shows the highest average GDT-TS ratio
value (0.802), followed by FM/TBM (0.765), then TBM-hard
(0.761), and last FM (0.666). The GDT-TS value ratio shows
that, although the ranking of AWSEM-Suite in the TBM-easy
category is not very high, nevertheless the models predicted by
it are still quite reliable among all predictors.

3.2. Evaluation of Contact Accuracies for Different
Contact Types. The performance of AWSEM-Suite depends
on the resolution which is sought. To quantify this, we
calculated the GDT values using 2, 4, 6, 8 and 10 A as RMS
cutoffs. The kernel density estimation of the histogram of these
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Figure 2. Distribution of GDT and Qo values from the AWSEM-Suite and from the Baker-RosettaServer predicted structures using different
distance cutoffs. The histograms are calculated based on the 49 domains shown in Table 1 (except for one T0955-D1 for which Baker-
RosettaServer group apparently did not submit a structure). A univariate or bivariate kernel density estimate is fitted based on the histogram that
was separated into 10 bins. The GDT values are calculated using 2, 4, 6, 8, and 10 A cutoffs. The Qo values are calculated using S, 6, 7, 8, and 9 A

as defining a contact.

measurements from AWSEM-Suite and from Baker-Rosetta-
Server are shown in Figure 2A,B. At short distances, the
Rosetta-BakerServer pure fragment based approach works
better. The GDT value distribution of AWSEM predicted
structures of 2 A resolution has a peak at around 0.2 compared
to Rosetta’s peak at 0.6. The peak of GDT distribution shifts to
around 0.8 at the moderate resolution value of 6 A, indicating
AWSEM has good performance at medium ranges. AWSEM-
Suite performance displays that one-third of the structures that
AWSEM predicted have better quality than Baker-Rosetta-
Server at 4 A. This is also true at 8 A resolution.

Next, we plotted the contact Qo values for various distance
cutoffs for AWSEM-Suite and for Baker-RosettaServer. The
Qo value provides a different perspective than comes from
GDT-TS since it quantifies contact formation. The Qo values
for both AWSEM-Suite and Rosetta show different distribu-
tions in Figure 2C,D. Again the distribution of Qo values from
Baker-RosettaServer is bivariate, but the results for AWSEM-
Suite display a univariate distribution that is nearly Gaussian.
The different distributions indicate that in the range 5—7 A
there are some structures where AWSEM-Suite performs
better than Baker-RosettaServer. From Figure S1, we see there
are multiple domains, such as T0953s2-D3 and T0990-D2, for
which AWSEM-Suite achieves a higher Qo value than Baker-
RosettaServer. Most of these cases correspond to systems
having a high Qo value coming from the water-mediated
contacts. Water-mediated interactions are especially relevant in
domain interactions. The Qo distributions for different
distance cutoffs ranging from 4 to 12 A are shown in Figure
S1. While the performance of A7D (Google’s Alphafold
algorithm)™* is best in most cases, the Qo values provided by
AWSEM-Suite, Baker-RosettaServer, and RaptorX-DeepMod-
eller* are comparable.
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The water-mediated interactions described by Papoian et al.
are most important for providing a funneled landscape for
protein—protein binding.”>** The water degrees of freedom
are usually averaged out in simulations because distant solvent
structure relaxes rapidly compared with protein motions. Some
water molecules however are directly involved with protein
structure. These bound waters move very slowly compared
with the bulk water molecules.”® Waters near the surface of the
protein are referred to as forming the hydration shell. Surface
residues thus interact through the influence of water molecules
in this shell giving rise to sometimes unexpected correlations.
The water-mediated intermonomeric contacts are more distant
than the direct protein residue contacts. Their threshold is
within 6.5 A based on previous calculation.*> The Qo values
were computed corresponding to the three different types of
contacts—water-mediated, long-range, and short-range—for
the results of AWSEM-Suite and Baker-RosettaServer. These
are displayed in Table S1. There are several examples in the
CASP13 where water-mediated protein association is clearly
critical. For example, T0953s2-D2, which is a part of an
adhesin protein in the fibers, involves the interplay with water
molecules guiding the interactions with another trimeric -
helical tip.47 T0970-D1, a homotetramer, has a clear water
shell providing the interaction surface between two dimers.
When we look at the water-mediated contacts, we see there are
27 domains for which the AWSEM-Suite has a higher Qo value
than does Baker-RosettaServer (Table 2). AWSEM-Suite
clearly has a better performance specifically for the water-
mediated interaction, which is encoded by the multibody
contact energy term in the AWSEM-Suite Hamiltonian.

3.3. Surveying the Performance of AWSEM-Suite by
Using Selected Examples. The final structural results from
AWSEM-Suite for eight selected domains are displayed in
Figure 3. These models employed templates in the “twilight
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Table 2. Statistics of Better Qo Value between AWSEM-
Suite and Baker-RosettaServer
short contact long contact water-mediated contact

AWSEM Rosetta AWSEM AWSEM
18 32 13 37 27 23

Rosetta Rosetta

zone” of low sequence identity. This class is one of the
challenging parts of CASP13. The performance of AWSEM-
Suite for these ordinarily difficult-to-predict domains shows the
power of the AWSEM-Suite algorithm. Two of these were the

best performance cases, T0958-D1 and T0970-D1, that belong
to the TBM/FM modeling category. In order to visualize
which regions of protein structure are predicted well, we show
the contact maps of the AWSEM-Suite best predicted structure
and the crystal structure for these domains. AWSEM-Suite
most successfully predicts folds with almost all a-helix
secondary structure pattern or where mostly one finds f-
sheet secondary structure patterns. For those structures that
are not well-predicted, an incorrect order or wrong alignment
of the f-sheets hurts the quality of the structures. We note that
in the laboratory such misaligned f-strands relax slowly, so it is
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Figure 3. Prediction quality for eight targets using AWSEM-Suite in the CASP13 competition. The contact maps on the left side of each panel
highlight any difference in structure with the crystal. Green squares correspond to contacts in the AWSEM predicted structure, while orange
squares correspond to the crystal structure. The cutoff distance for contacts between C, atoms has been set to 9.5 A. The structural alignments of
the submitted AWSEM structures with the corresponding X-ray crystal structures are shown on the right side of each panel. The best AWSEM-
Suite predicted structures are shown in red, the best other server group structures are shown in green, and the corresponding X-ray crystal
structures are shown in white. For these structures with RMSDs over 5, we marked the regions dissimilar to the crystal with black dashed—dotted

squares.
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possible that more extended simulation annealing would be
helpful in these cases.

To evaluate whether the selection of the lowest energy frame
structures in the simulation is effective, the Qw values for the
best Qw frame, for the lowest energy frame, and for the ending
frame for each of 20 simulations of several selected domains
are shown in Figure S2. The difference in Qw value between
that for the best Qw frame and that for the lowest energy frame
is usually as low as 0.05 or less. The ending frame resembles
very much the lowest energy frame since the energy generally
decreases with the reduction of temperature. The lowest
energy frame usually occurs in the last part of the simulation.
In general, picking the lowest energy frame yields a reasonable
result.

3.4. Analysis of the Contributions of Different Energy
Terms to Structure Prediction Using AWSEM-Suite.
Depending on the availability of an appropriate quality
template and predicted coevolutionary contact information,
AWSEM-Suite can emphasize the transferable interactions or
add either or both of the template terms and the coevolu-
tionary terms. To compare the performances of the different
enhancements of previous AWSEM algorithms, we also carried
out predictions using AWSEM-Template and using AWSEM-
ER separately as controls in Figure 4. When compared with
AWSEM-Suite, AWSEM-Template is missing the coevolu-
tionary constraint term while AWSEM-ER does not contain
the template term. The results indicate that different ones of
these three AWSEM versions can yield the highest prediction
quality. There are, however, two cases where AWSEM-Suite
showed a worse performance, indicating that coevolutionary
information sometimes conflicts with the template informa-
tion. Both of these examples belong to the TBM-hard category,
which means their predicted coevolutionary contact informa-
tion contains some false-positive results or failed somehow to
generate a sufficient number of accurate contacts and thus
incorrectly guided the protein folding during the simulations.
In T0976-D2, we also found the performance of AWSEM-ER
is better than those of the other two algorithms. Table S2
shows the true positive rate of the predicted contacts and the
sequence identity of the template used. Having a high true
positive rate for predicted contacts greatly improves the
performance of the AWSEM-Suite prediction. The same is true
for the high sequence identity template. DeepContact
performs somewhat worse than the RaptorX-contact prediction
which displays many incorrect positive hits.

3.5. Comparing Different Combinations of Structural
Guidance with AWSEM-Suite. As stated under Method,
AWSEM-Suite is a Hamiltonian that combines many different
energy contributions. In order to see how each part of the
energy contributes to the process of simulated annealing, in
Figure S we display a stacked bar plot for the different energy
terms for 29 domains. The differences in energy contribution
from the initial extended structure to the ending frame
representing the final folded structure are calculated. For
domains where there is a template term, the fragment library
term contributes the largest part of the reduction of the energy,
indicating the peptide structure at short sequence lengths plays
the main role in the AWSEM-Suite force field. The
contributions of the coevolutionary term and the template
term are similar in magnitude, demonstrating the balance of
the two parts is reasonable in the current pipeline. The
coevolutionary term becomes the major contributor to the
energy loss when there is no template information. This may
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Figure 4. Comparison of the performances of different enhancements
in AWSEM-Suite. In each case, the Qw value of the best energy frame
from each of 20 simulated annealings with AWSEM-Suite (blue),
AWSEM-Template (orange), and AWSEM-ER (green) force fields is
plotted in descending order. In general, AWSEM-Template+ER
compares favorably with AWSEM-Template.

suggest that sometimes the coevolutionary term is too strong
and distorts the local structure in free-modeling predictions.

4. DISCUSSION

4.1. Funneling of the Folding Landscape of T0958
Enhanced by Differing Structural Guidance. Template-
based modeling has provided the most successful structure
prediction in several CASP competitions. Template-free targets
or low sequence identity template targets are especially

https://dx.doi.org/10.1021/acs.jctc.0c00188
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Figure S. Contributions to the energy change from each energy term
during the process of simulated annealing. The energy difference is
calculated based on the difference of the initial extended structure and
the ending frame of the submitted trajectory which is then divided by
the total energy change. The hydrogen bonding term (green), contact
term (orange), coevolutionary term (purple), fragment library term
(red), and template term (pink) are shown in different colors in a
stacked bar plot. Twenty-nine simulated proteins were evaluated. Ten
of these did not have any available template information when the
simulation was performed.

important because they may stand as pioneer members of new
protein families.

T0958 has 96 residues, but only residues 5—81 are
sufficiently resolved to be counted for domain 1. T0958-D1
includes two a-helices and a short antiparallel $-sheet in the C-
terminal. These form a winged helix—turn—helix domain.**
The template used for T0958 was the chain B of 3gva. This
chain has a 20% sequence identity to T0958. The e-value of the
template is 9.90 X 107, which indicates however that this is a
reliable template with a likely similar folding pattern. The
GDT-TS for the template itself is 64.83, and the Qw value for
its aligned region is 0.508. The upper left of Figure S3 shows
the template only provides partial secondary structure, as its a-
helices are not complete, and the whole fS-sheet part is lost.
The AWSEM-Suite force field folds the secondary structure
which is not formed in the template in this case. The
backbones are predicted with very high quality, but far-range
side chains are not predicted very well. Comparison of the
AWSEM-Suite prediction structure with the A7D and Baker-
RosettaServer’s best models is highlighted in Figure S3. We
found that the AWSEM-Suite model has a better formed
antiparallel -sheet.

To highlight the role of the transferable AWSEM-Suite
energy potential, we developed free energy profiles for T0958
as a function of different energy components using umbrella
sampling simulations. The computed energy profiles were
plotted as a function of Qw at 300 K. As shown in Figure 6, the
combined AWSEM-Template+ER free energy shows the best
equilibrium Qw value (around 0.53) at the energy minimum.
AWSEM without template and coevolutionary bias has a lower
Qw value at the minimum (around 0.35). The profiles for
AWSEM with template bias and AWSEM with coevolutionary
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Figure 6. Restraints from both templates and coevolutionary
information guiding the folding of T0958 toward a native-like basin.
Free energy profiles for T0958 as a function of Qw are shown for four
different prediction force fields at 300 K: AWSEM (blue circles),
AWSEM-Template (gray circles), AWSEM-ER (orange circles), and
AWSEM-Template+ER (red circles). AWSEM-Template+ER has the
highest Qw value at the lowest free energy point, which indicates the
force field prefers a higher accuracy model.

bias lie in the middle. These free energy profiles demonstrate
that the incorporation of template and coevolutionary guided
funneling of the landscape more strongly to a native-like basin.
To evaluate the effect of varying the folding temperature, we
also plotted the free energy profile of AWSEM force field at
200 K and at 400 K in Figure S4. For 200 K, the energy
minimum has a Qw value similar to the one at 300 K. AWSEM
force field in 400 K is predicted to be less favorable to the
current native state at 300 K, suggesting that 400 K would be
too high a temperature to use for simulation.

The variations of the different energy terms in the simulation
of T0958 are plotted as a function of Qw in Figure S5. We
found that the energy terms in the standard AWSEM force
field are well funneled to a Qw value around 0.35 but level out
at higher Qw values. The template bias term and coevolu-
tionary term still fall at higher Qw values, so the total energy
decreases monotonically to a higher Qw value. Thus, the
adding of these two terms improves the performance of the
structure prediction of standard AWSEM and helps the system
sample structures closer to the native structure.

4.2. Future Prospects of AWSEM-Suite Tools for
Structure Prediction. What factors influence the perform-
ance of AWSEM-Suite? The ratio of correctly predicted
contacts to the domain length is plotted in Figure S6. The
sequence identity of the template displays a stronger positive
correlation to the structure quality as indicated in the same
figure. AWSEM-Suite performs more favorably than Baker-
RosettaServer does when the water-mediated contacts are
specifically considered. It is clear however that contact distance
prediction improves ab initio modeling. Unlike template
information, coevolutionary constraints only provide partial
contact information; this information is not as complete as the
contact information inherent in template-based approaches.
There is a strong correlation between the number of contacts
correctly predicted versus the Qw or GDT-TS value in Figure
S7. Clearly, more reliable inferences of the coevolutionary
contacts will greatly improve the quality of predictions. Based
on the analysis of these eight selected structures, we found the
true positive rates from different algorithms of inference could
differ. Currently, we suggest using RaptorX-contact as the best
choice. We also noticed that using a higher probability
threshold to incorporate the contact pairs into the coev term
would decrease the false positive rate. We must point out that

https://dx.doi.org/10.1021/acs.jctc.0c00188
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sometimes the mutations of pairs of residues display
correlation without the residues being in close proximity
because they are involved in function. This phenomenon can
hurt the performance of the coevolutionary information in
pure structure prediction. Poor template information can also
hurt the performance of prediction because proteins can have
both open and closed forms, for example, for an ion channel.
The energy contributions from different parts of the
Hamiltonian are similar to each other, indicating perhaps a
stronger weight should be applied to the template term once
the sequence identity of the template is sufficiently high. In
CASP13, the server provided relatively unrefined predictions.
We have shown new types of refinement technologies such as
PCA-guided refinement are able to improve significantly the
quality of the final predicted structure for most CASP cases,
even when contact information is not completely correct.*’
Another indicator of expected prediction quality is the
preponderance of specific secondary structures.”’ The GDT-
TS value from AWSEM-Suite correlates well with the fraction
of specific secondary structures. The results showing a strong
positive correlation to the percent of helix and f$-strand in the
crystal structure can be seen in Figure S8. Since the currently
used secondary structure prediction prescribes only three
categories (helix, sheet, and coil), converting from SS3 to SS8
may help AWSEM-Suite perform better especially for the
barrel-like structures and when there are helix kinks in the
native structure. The AWSEM-Suite algorithm has been
implemented as an online server at https:// awsem.rice.edu.>’
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