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Abstract

We present OpenAWSEM and Open3SPN2, new cross-compatible implementations of
coarse-grained models for protein (AWSEM) and DNA (3SPN2) molecular dynamics simu-
lations within the OpenMM framework. These new implementations retain the chemical
accuracy and intrinsic efficiency of the original models while adding GPU acceleration and
the ease of forcefield modification provided by OpenMM’s Custom Forces software frame-
work. By utilizing GPUs, we achieve around a 30-fold speedup in protein and protein-DNA
simulations over the existing LAMMPS-based implementations running on a single CPU
core. We showcase the benefits of OpenMM’s Custom Forces framework by devising and
implementing two new potentials that allow us to address important aspects of protein fold-
ing and structure prediction and by testing the ability of the combined OpenAWSEM and
Open3SPN2 to model protein-DNA binding. The first potential is used to describe the
changes in effective interactions that occur as a protein becomes partially buried in a mem-
brane. We also introduced an interaction to describe proteins with multiple disulfide bonds.
Using simple pairwise disulfide bonding terms results in unphysical clustering of cysteine
residues, posing a problem when simulating the folding of proteins with many cysteines. We
now can computationally reproduce Anfinsen’s early Nobel prize winning experiments by
using OpenMM’s Custom Forces framework to introduce a multi-body disulfide bonding
term that prevents unphysical clustering. Our protein-DNA simulations show that the binding
landscape is funneled towards structures that are quite similar to those found using experi-
ments. In summary, this paper provides a simulation tool for the molecular biophysics com-
munity that is both easy to use and sufficiently efficient to simulate large proteins and large
protein-DNA systems that are central to many cellular processes. These codes should facili-
tate the interplay between molecular simulations and cellular studies, which have been
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hampered by the large mismatch between the time and length scales accessible to molecu-
lar simulations and those relevant to cell biology.
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Author summary

The cell’s most important pieces of machinery are large complexes of proteins often along
with nucleic acids. From the ribosome, to CRISPR-Cas9, to transcription factors and
DNA-wrangling proteins like the SMC-Kleisins, these complexes allow organisms to rep-
licate and enable cells to respond to environmental cues. Computer simulation is a key
technology that can be used to connect physical theories with biological reality. Unfortu-
nately, the time and length scales accessible to molecular simulation have not kept pace

with our ambition to study the cell’s molecular factories. Many simulation codes also
unfortunately remain effectively locked away from the user community who need to mod-
ify them as more of the underlying physics is learned. In this paper, we present OpenAW-
SEM and Open3SPN2, two new easy-to-use and easy to modify implementations of
efficient and accurate coarse-grained protein and DNA simulation forcefields that can
now be run hundreds of times faster than before, thereby making studies of large biomo-
lecular machines more facile.

This is a PLOS Computational Biology Software paper.

Introduction

In recent decades, experimental methods for studying biological systems have made great
strides providing dynamic and structural information across a range of scales. Nevertheless,
most experimental probes are still very indirect, with a wide gap between what can be mea-
sured directly and what scientists actually want to understand and visualize. Modern theoreti-
cal frameworks for organizing our thinking along with computational simulation codes begin
to allow the detailed mechanisms of biomolecular assemblies to be laid bare. The development
of physical simulation models allows mechanistic ideas that are often only inferred indirectly
from structural biology to be tested rigorously in a quantitative way rather than remaining
attractive but qualitative hypotheses. Biomolecular simulations, in fact, are now beginning to
uncover previously unforeseen mechanisms on the molecular level.

When writing down a mathematical description of the forces acting on biomolecules, an
important first decision to make is what degree of detail is needed to represent the relevant
motions of the biomolecules within their environment. In particular, one must decide which
of the atomic degrees of freedom should be kept and which can be averaged over. Retaining all
of the atomic degrees of freedom gives rise to the popular all-atom models of biomolecules
immersed in a solvent which is also described in atomic detail. While these models are compu-
tationally costly to simulate, they can be quite accurate and have recently been used success-
fully to fold small proteins and even now begin to allow study of the dynamics of larger
systems. [1, 2] The great amount of detail in the all-atom representation often leads us to forget
that all-atom models today still make physical assumptions like the additivity of the
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intermolecular forces, which may not be fully accurate in all situations. Averaging over the sol-
vent degrees of freedom yields tremendous computational cost savings. The gain in efficiency
arises from two factors: first, when we simulate a solvated biomolecule in full atomic detail, the
vast majority of the atoms belong to the solvent. Eliminating them from detailed consideration
then greatly reduces the number of computational operations needed to follow the dynamics.
Second, as parts of the biomolecule move through the solvent they are constantly buffeted by
collisions with the nearby solvent molecules. These collisions dramatically slow down the large
scale motions that usually are of the most interest, yet in the main these frictional effects do
not change the structural character of the motions.

Averaging over all of the solvent degrees of freedom while retaining a fully atomically
detailed representation of the biomolecule thus already yields significant computational
advantages. While solvent averaging alone increases computational efficiency, additional
computational savings can be had by simplifying the representation of the biomolecule itself.
Here again, there are two ways computational time is saved. First, there is a direct savings
related to the need to compute a still smaller number of forces. Second, one can choose to
intentionally speed up certain internal motions that are otherwise slow in a typical all-atom
model by lowering torsional barriers, such as the rotation of backbone Ramachandran dihedral
angles. Opting for a coarse-grained representation of a biomolecule, by facilitating sampling,
greatly expands the number of biological questions that can be effectively studied.

While it is convenient to average over the solvent and detailed side chain degrees of free-
dom, the thermodynamic effects of the solvent and the side chains are subtle—considerably
more subtle than the buried surface area model. In proteins, it is well known that bulk aqueous
solvent gives rise to an effective hydrophobic attraction between non-polar residues. [3] This
effect motivated the buried surface area approximation. It is less widely known that specifically
bound water molecules also mediate interactions between pairs of polar residues; these give
rise to an effective hydrophilic interaction. [4, 5] These water-mediated interactions are quite
important in protein complexes. One efficient way of handling such phenomena is to alias
such interactions back onto the protein degrees of freedom. Doing this leads to strongly non-
additive forces. It is commonly believed that averaging over any of the degrees of freedom low-
ers the reliability of a model. For biomolecules, however, the all-atom force fields have
themselves generally been parameterized by experimental data just as the coarse grained mod-
els are. The greater freedom of formulating coarse grained models however has long encour-
aged the use of machine learning strategies to determine these parameters. Such machine
learning increases the accuracy of the description. [6] The resulting sophisticated coarse
grained models have proved surprisingly effective in describing biomolecular dynamics both
in folding and function, even in a quantitative sense. [7]

Design and implementation

The coarse-grained protein folding force field known as the Associative memory, water-medi-
ated, structure and energy model (AWSEM) is the latest iteration of a series of coarse-grained
models that have been primarily developed in the Wolynes and Papoian groups over the last
several decades [8]. AWSEM employs a detailed backbone representation along with a single
interaction site for each side chain. The AWSEM force field includes an implicit solvent model
with a hydrophobic burial term along with explicit water-mediated nonadditive interactions
between the residues. AWSEM-MD is an implementation of the AWSEM model in the
LAMMPS molecular dynamics package [9]. AWSEM-MD has been successful in predicting
the structures of globular a-helical proteins [8], both designed and natural o/ proteins [10],
and polytopic a-helical membrane proteins [11]. AWSEM-MD has also been used to study
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protein association [12] and aggregation [13]. Recently, AWSEM-MD has been used to predict
the folds of large proteins by incorporating co-evolutionary information [14] and 3D template
information [15]. It has also performed quite well in recent CASP competitions. [16]

Noucleic acids are important partners with proteins in biology and it is desirable to study
their dynamics with compatible computational tools. 3SPN.2 is a Coarse Grained DNA model
developed by the de Pablo group that models the DNA molecule using 3-sites-per-nucleotide:
a particle for the phosphate group, a particle for the sugar and a particle for the nucleobase
[17]. 3SPN.2 provides a flexible representation for the DNA backbone, and employs a detailed
representation of the base pairing interaction and DNA electrostatics. 3SPN.2C also describes
the DNA sequence dependent curvature [18]. 3SPN.2C has already been used in combination
with AWSEM to study protein-DNA complexes, such as the nucleosome [19] and NF-xB
DNA complexes [20].

As the force fields that are used to model protein and protein-DNA systems become more
complicated, and as the systems being studied become larger, the software used to model these
systems must also evolve. The challenges are clear: for example, in a recent study of chromo-
some organization proteins [21], AWSEM combined with co-evolutionary information was
used to study a protein complex having a total of 3964 residues. For these large systems, even
relatively short simulation runs of 100 ns laboratory time took up to 24 hours to obtain using
LAMMPS code. In the present paper, we will show how the OpenMM framework can be used
to speed up such simulations using GPUs and how OpenMM framework allows one to intro-
duce novel interactions in the simulation force field models with relative ease.

The LAMMPS simulation package employs a parallelization scheme that is based on spa-
tial-decomposition, with each CPU handling a separate contiguous region of space. Informa-
tion about the forces that act across the boundaries of these domains is passed between the
processors at each timestep. This parallelization scheme is relatively simple to implement due
to its nearly universal structure with respect to different forcefields. This approach to paralleli-
zation scales very well for simulations of bulk liquids and solids, where the system has a nearly
uniform density. For simulations of biomolecules with an implicit solvent forcefield, like
AWSEM and 3SPN2, however, spatial decomposition can be inefficient because the systems
have highly heterogeneous local densities. Processors that compute the interactions inside of
the mostly empty boxes will ordinarily then be idle while waiting for the processors that com-
pute the interactions inside of those boxes that are full of atoms. A spatial-decomposition
scheme that dynamically adjusts the sizes of the CPU-domains can only partially compensate
for this effect. For implicit solvent models, the force-based parallelization scheme employed by
OpenMM turns out to be much more efficient, especially when implemented on GPUs. [22]
OpenMM was developed with the intention of being compatible with multiple hardware plat-
forms including GPUs. It provides a high level application programming interface (API) that
removes the burden of writing platform specific codes. Traditionally, computational scientists
have designed forcefields for single CPUs and then only later would spend time modifying
their codes to support simulations on multiple CPUs and even more time on adding GPU sup-
port. With OpenMM, one only needs to write down the equations describing the forcefields
once, and the software automatically compiles optimized code that can be run on all platforms
including a single CPU, multiple CPUs, and GPUs (with both CUDA and OpenCL support).

OpenMM provides various flexible custom force templates to ease the implementation of
forcefields with new functional forms. To implement OpenAWSEM and Open3SPN2, we used
the custom force template that best fits each term in the Hamiltonians. For example, the “Cus-
tomNonbondedForce” is the best choice for the excluded volume term, which acts between
every pair of atoms, while the “CustomBondForce” supports a very wide range of functional
forms and is appropriate for terms that involve only a small subset of the system’s atoms.
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Another interesting situation that OpenMM flexibly encodes is AWSEM’s water-mediated
interaction. Since the water-mediated interactions depend on the local density around each
interacting atom, the local density around each residue has to be computed first before com-
puting the mediated interactions. This two stage feature can be implemented using the “Cus-
tomGBForce” template, which was originally intended to support another two stage energy
term: the Generalized Born-type potentials.

The custom force templates allow for rapid prototyping of new potential terms. For each
new potential, only the energy formula needs to be specified, while its derivatives are automati-
cally computed for the purposes of computing the forces. By automating the derivative calcula-
tion, even non-experts can design and implement new force fields readily. In this paper, we
will illustrate this capability of the OpenMM framework by introducing two new features into
AWSEM. The first new feature is a contact term that depends on the degree of burial of a resi-
due in a biological membrane. This energy can be used to describe proteins that have both
cytoplasmic parts that are surrounded by water, and other parts that are buried in a mem-
brane, which are thus surrounded by lipid primarily. The second new nonadditive potential
we introduce and explore is a many-body disulfide bond term that prevents the unphysical
clustering of Cysteines that can occur when disulfide bonds are modeled using a naive pair
potential that must per force be very strong. This potential allows us to recapitulate the early
experiments of Anfinsen on ribonuclease that started the experimental study of protein folding
mechanism. [23, 24]

Results
Benchmark 1: Protein-only simulations

When AWSEM was first implemented using LAMMPS 8 years ago, dynamic studies of pro-
teins mostly focused on proteins having less than a thousand residues. This limited focus was
due both to the computational cost of studying larger system, and partly, to the scarcity of
experimentally solved structures of large biological machines. The structures of larger proteins
and their complexes are now being obtained at an unprecedented pace, thanks especially to
the development of Cryo-EM structure determination methods. One recently solved large pro-
tein, gamma secretase has drawn lots of attention due to its role in Alzheimer’ disease. Gamma
secretase contains 1542 residues. [25] Fig 1 shows comparative benchmark results for
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Fig 1. Benchmark timing results for AWSEM simulations with the LAMMPS and the OpenMM implementations on a linear scale (left) and on a log scale
(right). The x-axis is the number of residues in the proteins that are being simulated. The y-axis shows the number of computer hours needed to run a 1 million-step
simulation. Each protein was simulated 5 times using each implementation. The lines are quadratic fits. The simulation protein set was chosen to have a wide range
of protein sequence lengths ranging from 164 residues to 3724 residues.

https://doi.org/10.1371/journal.pcbi.1008308.g001
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simulations using OpenAWSEM and using LAMMPS for proteins with various lengths. For a
protein with 3724 residues (PDBid: 4qqw), a simulation of 4 million steps corresponding
roughly to 20us in laboratory time took more than 200 hours (8 days) using LAMMPS. The
same simulation takes only about 8 hour using OpenAWSEM, thus making millisecond simu-
lations feasible within a few days.

Benchmark 2: DNA-only simulations

To test the scaling of the runtime of Open3SPN2 for nucleic acids, we ran several random
DNA sequences of different lengths using the 3SPN2.C forcefield. The DNA strands were sim-
ulated using LAMMPS and using OpenMM for 1 hour and, from these test runs, we estimated
the time needed to run 1 million steps. As shown in Fig 2, the OpenMM implementation of
3SPN2.C reduces the simulation time of long DNA strands ranging in size from 250 bp up to
1.5kb DNA strands. For short sequences, the GPU is underutilized and the greater overhead
associated with using the GPU results in longer overall simulation times. For the 1.5 kb case,
we found a fourfold improvement in simulation speed. For longer DNA strands, the speedup
will be greater due to better scaling. This improvement in the simulation speed allows the
study of DNA dynamics on much longer timescales even for more complex systems such as
DNA origamis or small sections of chromosomes.

Benchmark 3: Protein-DNA simulations

To assess the speedup of DNA-protein simulations we selected several protein-DNA com-
plexes that have a diverse range of lengths for both the protein and the DNA sequences. We
included in this test set only structures from the PDB that contained a single protein chain and
a single DNA chain. We simulated each complex 5 times for 1 hour using each implementa-
tion and estimated how much time would be required to run 1 million steps. Fig 3 shows an
improvement of the simulation speed of protein-DNA complexes by 1 to 2 orders of magni-
tude. The largest structure that we simulated was RecA, a protein with 2050 amino acids, in
complex with a 18 nucleotides ssDNA (PDBid: 3cmu). In this case, we obtained a 300-fold

speedup.
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Fig 2. Benchmark timing results for 3SPN2 simulations with the LAMMPS implementation of 3SPN2 and the OpenMM implementation of 3SPN2 on a linear
scale (left) and on a log scale (right). The x-axis is the number of nucleotides in the DNA that is being simulated. The y-axis shows the number of computer hours
that are needed to run a 1 million-timestep simulation. Each DNA length was simulated 5 times using each implementation. The lines are quadratic fits. The DNA
lengths range from 110 nucleotides to 1580 nucleotides.

https://doi.org/10.1371/journal.pcbi.1008308.9002
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Fig 3. Benchmark results for AWSEM-3SPN2 simulations of protein-DNA complexes using the LAMMPS and the
OpenMM implementations of both forcefields on a linear scale (left) and on a log scale (right). The x-axis shows
the PDB ID. The y-axis shows the computer hours needed to simulate for 1 million steps. Each complex was simulated
5 times using each implementation. The protein length ranges from 52 nucleotides to 2050 amino acids, while the
DNA length ranges from 2 to 40 nucleotides.

https://doi.org/10.1371/journal.pchi.1008308.9003

Application 1: Protein-DNA interface prediction

As an example of simulating protein-DNA interactions, we characterized the capability of the
AWSEM-3SPN2 Hamiltonian to predict the correct protein-DNA binding interface of the
sporulation specific transcription factor Ndt80 (PDBid: 1mnn). At a constant temperature of
300K, the protein and DNA in the crystal structure were first pulled 100A apart and run for
2.5 million steps; following this, a weak, non-specific force was used to pull them back together
while being run for another 2.5 millions steps. Following this, the pulling force was released
and the complex was simulated for another 5 million steps to let it relax. To reduce the effects
of binding to only a short length of DNA, we extended the crystallized DNA by adding DNA
made with 100 A/T base pairs to both ends of the double stranded DNA using the 3DNA pack-
age [26].

The OpenAWSEM-Open3SPN2 cross-interaction is given by electrostatic interactions
between the DNA phosphates and charged residues of the protein, as well as excluded volume
terms. The current implementation lacks specific interactions that depend on the nucleotide
type and amino acid type. Therefore, would it not through indirect DNA conformation-medi-
ated effects, the protein would not be expected to prefer binding to any particular stretch of
nucleotides on the DNA. The part of the protein surface that binds to the DNA and the orien-
tation of the bound protein with respect to the DNA, however, is somewhat specific. To evalu-
ate the quality of the DNA-protein interface, while focusing on finding the native binding
pocket of the protein, we quantified the quality of the docking in terms of the number of con-
tacts that the protein makes with any location along the DNA. A residue in the protein is said
to make such a “symmetrized” contact with DNA when the Cg atom in the residue is closer
than 1.8 nm to a Phosphate of DNA in the crystal structure and where also, in the predicted
structure, this Cb atom is found within 1.8nm of a Phosphate of the DNA. For PDB ID Imnn,
there are 135 such native contacts. The interface energy is defined as the sum of protein-DNA
excluded volume energy and the electrostatic interaction energy between the protein and the
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Fig 4. A scatter plot of the interaction energy between the DNA and the protein versus the fraction of the symmetrized native
contacts formed at each time frame during the last 7.5 million steps of simulations from 10 runs. The average energy as a function of
the number of symmetrized native contacts is indicated with blue line. A simulation snapshot showing the overlap of the crystal structure
(colored in red) and the predicted structure (colored in cyan) that has the lowest interface energy. There is a high correlation between the
protein-DNA interface energy and the number of symmetrized contacts, indicating that the binding process is funneled to the correct
interface. The overlap figure was created by aligning only the protein parts of the crystal structure and the predicted structure. We see
that the DNA in both structures turns out to be aligned quite well, showing good structural agreement between the lowest energy
simulated structure and the experimental structure.

https://doi.org/10.1371/journal.pchi.1008308.g004

DNA. As can be seen in Fig 4, there is a strong correlation between the protein-DNA interface
energy and the quality of the protein-DNA interface, and the orientation of bound protein rel-
ative to the DNA matches that found by experiment.

Application 2: Potentials that depend on locations of residues relative to a
membrane

The water-mediated potential introduced by Papoian et al. [8] acknowledged that residues
interact not only when they are directly in contact but also when they perturb the surrounding
water, which in turn changes the energetics of more distant residues. The parameters for this
potential were optimized using an energy landscape theory inspired machine learning
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Globular Gammas

Fig 5. A schematic figure for the Z-dependent contact potential. The residues outside of the membrane, where the
membrane boundary is indicated by the two colored lines, interact using the globular parameters. The residues inside
the membrane interact using the membrane-optimized parameters. If one residue is inside, while another one is
outside, the pair interacts as if they both were in water. In the heat maps on the left side of the figure, red color
indicates a favorable interaction between the pair of residues indicated on the horizontal and vertical axes, whereas
blue color indicates an unfavorable interaction. Separate heat maps are shown for the direct, low-density, and high-
density interaction matrices in the water (globular) and membrane environments.

https://doi.org/10.1371/journal.pcbi.1008308.9005

algorithm [7, 27-30]. Energy landscape theory provides a recipe whereby a transferable energy
function can be learned by searching for the most funnel like landscape in a class of energy
models. The funnel-like character of the landscape is measured by a Z score, Z = (E,,4sive —

E 9)/0(E,g). This quantity is then maximized while maintaining E,,; constant. E,,, is the aver-
age energy of a set of misfolded decoy structures. Using this strategy leads to an optimal set of
parameters to discriminate between properly folded and misfolded structures. In the simplest
model these parameters are the strengths of the interactions for different types of residue pairs
at various distances and how these interactions vary with the local density of protein and by
contrast with the local density of solvent water. The AWSEM potential has proved to be very
successful in structure prediction and has allowed exploration of many aspects of protein func-
tional motions [12, 13]. The water-mediated potential was originally designed for globular pro-
teins, but the same optimization scheme was used also to find a transferable energy function
that would fold membrane proteins, [11] in their membrane environment; the residue pair
interactions then are mediated by lipids instead of by water. Following the same procedures as
used for the globular proteins, the parameters for proteins that are found entirely inside the
membrane were optimized to discriminate proper folds. Many proteins, however, have some
of their parts inside the membrane while other parts of the protein remain outside in the cyto-
plasm. To study such systems we need a potential that can dynamically switch from being
water-mediated to lipid mediated based on the position of the residues relative to the bilayer.
Fig 5 shows the schematic of this potential.

Here, we introduce a z-dependent contact term that allows such dynamic switching. The
interactions smoothly transition between the membrane mediated interactions and water-
mediated interactions depending on the location of the interacting residues with respect to the
membrane as measured by a height z. We define the new contact potential term V,,,14cr
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through the following equations:

Vcantuct = Z Vcontact<i7j) ( 1)

Jj—i>9
anmct(i’j) = (1 - (xiaj)unter(i?j) + krelutiveaiajVmembmne(i’j) (2)
1
%= (tanh(n(z, + b)) + tanh(n(b — z,))) ; (3)

where b = 1.5nm, 1= 10nm". Vyaier(is /) and V,,epmprane(is j) are the contact terms as defined in
previous paper [8, 11].

Since both sets of parameters in the Hamiltonian were previously optimized without
acknowledging the presence of the other terms, we also need to introduce a new parameter k,,_
lative that controls the relative strength of the membrane mediated and the water-mediated
interactions. A high k.. favors forming contacts inside the membrane, while a low k,oj4/ive
favors forming contacts in water. To determine the optimal value of k,j4siv.» We again employ
the energy landscape optimization learning scheme. The decoys for implementing this scheme
were generated by shifting the proteins vertically and rotating them. One then optimizes the
Kyelative While keeping the previously determined parameters fixed. This machine learning
scheme was employed using a test set obtained by downloading the complete Alpha-helical
polytopic database, a total of 1561 proteins, from the Orientations of Proteins in Membranes
(OPM) database. [31]. The advantage of the OPM database over the traditional RCSB protein
data bank is that it also spatially aligns membrane proteins relative to the membrane. The
training proteins must have significant parts both inside and outside the membrane. There-
fore, for each protein, we computed the fraction of the residues that are found inside the mem-
brane

L

L= %Z(abs(z,) < 154), (4)

i=1

where z; is the z coordinate of CA of residue i, L is the protein length. For training we only
kept those proteins with y between 0.2 and 0.8. We also removed those proteins that have
more than 2000 residues in order to speed up the optimization. This yielded a set of 1116 train-
ing proteins. For each protein, we then generated 240 decoys. These were generated first by
rotating them along the x axis with 12 different orientation at: 0, 15, 30, 45, 60, 75, 90, 105, 120,
135, 150, 165 degrees, and then shifting the structure vertically by 20 different displacements:
-40, -36, -32, -28, -24, -20, -16, -12, -8, -4, 0, 4, 8, 12, 16, 20, 24, 28, 32, 36 angstroms along the
z-axis. To carry out this optimization, the total energies are evaluated using the following
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equations:

E = kWﬂt¢Wﬂt + kmem¢mem + kmemb,m‘a, (Zsmemb,m‘u, (5)

NS Z(l - aiaj)vwater(i’j) (6)

j—i>9

(z)mem = Zaiajvmembmnc(i’j) (7)
Onomn = D_A(7)0(2,2,, = 154) (8)
1 1
O(z,z,) = {itanh[km(z,. +z,)+ itanh[km(zm - zi)]} 9)

In these expression the values of A(o;) are the amino acid hydrophobicities on the octanol scale
of Wimley and White. [32-35] We include ¢ here because the membrane burial term

memyyrig]
also depends on the position of protein with respect to the membrane. [36] In the machine
learning algorithm thus we want to find the values of k,,4, Kper, and k  that maximize the

memypyrig,
Z score for the correct positioning and orientations of the proteins with the membrane. Since
some decoys are more similar to the native positioning than are others, we reweighted the
decoys when computing the decoy averages in (¢)

1 N
Dy = 757 21 = 0.)8, (10)
¢ (-0, ;1
where N is the number of decoys. For each decoy, the fraction of residues that have the same
pattern of burial as the native structure is defined to be 6,. Two residues are said to have the
same burial assignment when either they are both inside the membrane or they are both in the

1 if (abs(2’) < 154) = (abs(z,) < 15A
cyoplasm. 0, 15 5.5 — () < 154 = (abs(z) < 154
0 if (abs(z)) < 15A) # (abs(z;) < 154)
the z coordinate of CA of residue i in the native(decoy) structure. The optimal values of the
coefficients that maximize the Z score turn out to be 1, 3.3, 3.3 for ¢,up Prmem> ¢

, where z0(z;) is

mempyrial
respectively.

To demonstrate the effectiveness of the force field obtained in this way, we selected from
the database 15 proteins that have both membrane and globular parts. The folding of mem-
brane proteins is sometimes thought to have two stages. [37] The first stage is imagined to be
the insertion of the transmembrane helices into the membrane. In vivo this process is some-
times helped by the translocon [38]. The second stage of membrane folding is then the rear-
rangement of the now buried helices inside the membrane. To imitate the first stage, we used
PureseqTM [39] first to provide an initial idea of the topology with respect to the membrane.
Based on the PureseqTM prediction result, we wrote a script to assign each residue to three dif-
ferent regions: cytoplasmic, membrane or extracellular. Each residue is then pulled into its pre-
liminarily predicted region according to the resulting initial assignment using a force field that
only contains the backbone terms. Then, a force is applied to the two ends of the protein while
applying a strong membrane term, so that the helices become well separated but still live
within the membrane. Finally, the residue type dependent membrane potential is introduced
along with the contact terms and an annealing protocol of 8 million steps is followed with the
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Fig 6. Structure prediction results using the three contact potential schemes evaluated using Q,, 4, (left) and Q,,,,,, (right). Q,,.., measures the structural
similarity to the native structure using only the residues that are outside of the membrane, whereas Q,,,.,,, measures the structural similarity of the structures for those
residues found inside the membrane. The closer the similarity score is to 1.0, the more native like is the prediction. The hybrid potential in general performs better
than either the pure globular protein model or the pure membrane model.

https://doi.org/10.1371/journal.pcbi.1008308.9006

temperature decreasing from 800 to 200. The results for the structure prediction runs using
the z-dependent contact term are compared with the results using the original contact poten-
tial in the Fig 6.

Fig 7 shows the aligned structures of the native structures and the predicted structures
using the new membrane burial depth dependent contact potential.

The AWSEM annealing yields an improved assignment of the location of the helices relative
to the purely sequence based method PureseqTM that was used for initial structures. In Fig 8,
we see that for 10 out of 15 proteins tested, the fraction of correctly assigned location is
increased after the folding. In this test set, 3kp9, 5xpd, 1ul9 now have more than 10 additional
residues that take on their correct native location assignments compared to what is used ini-
tially based on the PureseqTM results.

Vi

5xpd

e,

1py6

2xov 3kp9 6e67

5d91

4a2n 1pv6

4nv6 4p79

2jot

/ R
}/’ \ @th & (F—_ /'81 =) = @R &
XY 3PP S wvYwey AR

Fig 7. Overlay of the native structures and the best Q,, ., and Q,,.,,, structures using the membrane burial depth
dependent contact potential. For each protein, the upper figure shows the part of the protein that is found buried in
the membrane and the lower part of the figure shows the globular domain.

https://doi.org/10.1371/journal.pcbi.1008308.9007
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Fig 8. The fraction of correct location assignments of the residues relative to the membrane using a purely sequence-based method (PureseqTM) and that
yielded by running OpenAWSEM simulations (AWSEM).

https://doi.org/10.1371/journal.pchi.1008308.9008

Application 3: Describing many-body saturating disulfide bonds

The disulfide bond forms a very strong interaction between two Cysteines. These bonds
restrain the dynamics of the protein and often control protein stability and function. Very
often the smaller extracellular proteins are dominantly stabilized by a large number of disulfide
linkages. If treated as a pair interaction, the strong disulfide bonds tend to condense and clus-
ter. The covalent chemical bond, in contrast to the pair interacting potential, saturates: only
one bond can be formed by each Cysteine, not more. The famous protein ribonuclease A was
originally studied by Christian Anfinsen. It has four disulfide bonds. Monitoring the formation
of these bonds was a key part of Anfinsen’s exploration [24]. Two of the four bonds have been
shown to be important for conformational stability and the other two are needed for catalytic
activity. [40] Because covalent chemical bonds saturate, a simple pair-wise potential cannot
model accurately Anfinsen’s experiment. The saturation effect is critical: when there are only
two cystines, they form a single strong disulfide bond, but when a third Cystine comes near to
the two Cystines that have already formed a bond, the third Cystine shouldn’t feel any strong
attracting force. This is a many body effect. In this study, we tackled this saturation problem
by developing a saturable many body disulfide bond interaction using the open AWSEM
framework. In this potential, displayed in Eq 11, the saturation is accounted for using a density
variable p?* that reflects the number of Cystines around residue i smoothed by a tanh function.
The disulfide interaction term is then a pair interaction that is modulated by two p;* depen-
dent switching functions, 0" and 0;.’”“”. These two switching functions are defined in Eqs 14
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and 15.
Vdisulﬁde = Z Vz] (11)
near nsmall
V=070 a(ry) (12)
1
ot(rij) =3 (tanh(;c(rij —r))—1) (13)
near 1 cys Ccys
0" = (tanh(,(0.2 = |p7" = p")) +1) (14)
o0 = L (tanh(x, (2.2 — p7* — p7) + 1) (15)
i =g anh(x (2. 0; P

pr=> %(1 — tanh(x(r —r,))) (16)

[i—i|>1

where i, j label all the Cystine residues, and 7;; is the Cb distance between residue i and j. x is

set to 20, so that 07" is 0 when the difference between p;” (the Cystine density around residue
i) and p”
of those two densities is larger than 2.4. The parameters introduced to quantify the rapidity of

(the Cystine density around residue j) is larger than 0.4, and 0;"’“” is 0 when the sum

saturation were calibrated using a database search for disulfide bonds in known crystallo-
graphic structures. To determine a reasonable potential well size k for determining the Cystine
density, our survey showed that the Cb-Cb distances between residues that form disulfide
bonds fall in the range of 3.6A to 4.14. We therefore chose a 0.5A interval over which to turn
on the interaction by setting k = 10A™! and r, = 4.2A in Eq 16.

To illustrate the efficiency of using the new nonadditive Cystine density dependent disul-
fide bond term, we simulated the folding of ribonuclease A (1£s3), bovine pancreatic trypsin
inhibitor (1bpi), alpha thrombin (1ppb) and several other cystine rich proteins selected from
[41]. We tested 3 different strengths for the new potential, (k =0, 2, 5), as well as the model
that has the pairwise additive potential, which we call “original”. We can see from Fig 9 that as
the strength of the saturable disulfide bond term increases, the predictions become closer to
the correct structure (as evaluated by the Q value). The saturable disulfide bond term signifi-
cantly improves the structure prediction quality for ribonuclease A. This improvement is
mainly due to the correct formation of the Cys26-Cys84 bond, which was also shown by exper-
iment to be essential for protein stability. [40]

The new disulfide bond term helps specifically to form the native disulfide bonds, rather
than allow the formation of mispaired Cysteines as shown in Fig 10. Even though in some
cases (1tcg, 1lmm and 1ppb), the prediction quality measured by Q was not significantly
affected by using the saturable disulfide interaction, the fraction of correct disulfide bonds was
improved in all six proteins we tested.

When we follow the annealing trajectories for these disulfide rich proteins, we find that,
consistent with the funneled nature of the energy landscape, disulfide bonds do not always
form in a specific unique order, and indeed non-native disulfide bonds occasionally form and
revert back to being unpaired, finally achieving a native like structure. Of course, we must bear
in mind that in the laboratory this process must involve chemically tuning the oxidation of
these bonds. Fig 11 shows the sequence of formation of disulfide bonds from each frame in a
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Fig 9. Structure prediction results for six disulfide rich proteins using various strengths of the saturable disulfide bond interaction. We plot the best Q from 20
simulated annealing runs that started from different random velocity seeds for each different value of the disulfide interaction strength. As the strength of the disulfide
interactions increases, the best Q increases. 1tcg, 1lmm, 1bpi and 1ppb all have 3 disulfide bond. 1fs3 has 4 disulfide bonds, and 1hn4 has 7 disulfide bonds. The
relatively modest best Q for thrombin (1ppb) probably comes from the fact that we have only modeled the main chain of the molecule, but thrombin also has a short
chain that has been experimentally shown to be important for function [42].

https://doi.org/10.1371/journal.pcbi.1008308.9009

simulated annealing trajectory of ribonuclease A. As the extended protein starts to fold from
high temperature, some non-native disulfide bonds do form, but, in the end, the protein is fun-
neled to form the correct native disulfide bonds.

As shown in Fig 12, using the standard AWSEM, only one native disulfide bond (residue 58
and residue 110) ends up being formed in most of the 20 trajectories, while the other native
pairs(26-84, 40-95, 65-72) are rarely formed. In comparison, using the new Cystine density
dependent disulfide bond potential, all the native pairs are finally formed.

Discussion

We have described a new computational simulation framework for carrying out coarse grained
protein-DNA simulations—OpenAWSEM and Open3SPN2. In this new framework, simula-
tions using GPUs can achieve speedups of a factor of thirty for the simulation of proteins that
have more than two thousand residues. Large lengths of DNA also can be studied more effi-
ciently than existing CPU-based implementations. The minimal time scale for protein folding
is at least microseconds [43], which indicates the size of the computational burden required to
study such systems via all-atom simulations. With OpenAWSEM, folding and functional
mechanisms of even very large proteins can be simulated within a reasonable amount of clock
time (hours or days), thereby opening the door for a wide range of functional biomolecular
dynamics studies. The codes are written entirely with Python 3, including the user interfaces.
The computationally costly part of the simulations is handled by the OpenMM library, which
was coded with efficiency in mind. Python 3 provides great code readability and modification
efficiency, and since the codes are automatically compiled while running, the time spent in
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Fig 10. The fractions of correct disulfide bonds in the predictions of several disulfide rich proteins. These fractions are shown for several different strengths of the
saturable interaction. At full strength, nearly all the pairs form correctly.

https:/doi.org/10.1371/journal.pcbi.1008308.9010

IR

Formation of disulfide bonds

| |

il
|

!l 11

|
|

| 1|"|| |

|

Wil

IHIIII-IIIIIII I 58_110

26_110
126_40
26 58
126 _65
26 72
RN N 26 54
26 95
40 65
140 72
40 84

58 72
58 84
58 95
165_110

|
| I 65 _72

65_84
65_95
72_110

0

500

1000

Frames

1500

2000 84_95

Fig 11. The formation of disulfide bonds in a single annealing trajectory with k = 5. Following the trajectory in time, disulfide pairs are darkened in when they are
formed. Red indicates that a native disulfide bond has been formed. Blue indicates that a non-native disulfide bond has formed. The alignment of the best Q structure

from this trajectory with the crystal structure is shown in SI. Its Q value is 0.77.

https://doi.org/10.1371/journal.pchi.1008308.9011

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008308 February 12, 2021

16/21


https://doi.org/10.1371/journal.pcbi.1008308.g010
https://doi.org/10.1371/journal.pcbi.1008308.g011
https://doi.org/10.1371/journal.pcbi.1008308

PLOS COMPUTATIONAL BIOLOGY OpenAWSEM: A fast, flexible, and accessible framework for coarse-grained simulations

26 110
26_40
26 58
2665
2672
26 84
2695
407110
40758
40765
40772
40784
[ 40795
il 10 587110
58765
58772
5884
58795
65_110
1 65 72
65_84
65_95
727110
7284
847110
84795

Formation of disulfide bonds

0 500 1000 1500 2000 0 500 1000 1500 2000
Frames(Standard AWSEM) Frames(with new disulfide bond potential, k=5)

Fig 12. The average formation of disulfide bonds as a function of time over the 20 annealing runs, with the patterns from the standard AWSEM shown on the
left and patterns from the nonadditive disulfide potential runs with k = 5 shown on the right. Red indicates that native disulfide bond has formed. Blue indicates
the formation of a non-native disulfide bond. The darker the color, the larger fraction of the trajectories that form this disulfide bond during this time frame. We see
that, occasionally, even with the full strength saturable interactions, sometimes non-native disulfides persist after the rapid annealings.

https://doi.org/10.1371/journal.pchi.1008308.g012

compilation of the code is eliminated. Also, using the automatic computation of the derivatives
of the Hamiltonian instead of explicitly coding the forces greatly simplifies the introduction
and implementation of new energy terms to accommodate new physics. To illustrate this fea-
ture of OpenAWSEM, we have designed and implemented two sophisticated potentials for
some specialized folding situations. One of these involves the introduction of a membrane
burial dependent contact potential to describe proteins that are only partially buried in mem-
branes. We have demonstrated that using this potential for structure prediction leads to more
accurate structures than when the proteins are treated as uniformly living in one environment
or the other. Another energy term that was easy to code was a density dependent disulfide
bonding potential that mimicks the saturation of chemical bonds. Introducing this term gener-
ally improved structure predictions and also allowed us to computationally recapitulate Anfin-
sen’s Nobel prize winning experiments on ribonuclease. These two new potentials serve to
illustrate the flexibility and extendability of the OpenAWSEM framework, and will encourage
the design of future coarse grained force fields for large biomolecular simulations using this
computational software framework.

Materials and methods
Simulation setup

The default values of the parameters in the annealing protocol for all the simulations per-
formed in this study are given below. We maintained those values as being consistent with
those typically used in the LAMMPS implementation of AWSEM-MD. (listed in S1 Docu-
ment) We point out that for many problems involving very large systems, these run
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parameters should be revised for optimal efficiency. As a default in the structure prediction
runs, we used the langevin integrator with friction of 1ps~', time steps of nominal 5fs, and tem-
perature going from 800K to 200K during simulated annealing. The simulations were carried
out for 8 million steps. This corresponds roughly to 40 us of laboratory time. Default forces
included in our study are the connectivity, chain, chi, exclude volume, rama, rama modulated
by proline, rama modulated by secondary structure input file “ssweight”, contact, beta, pap
and fragment memory terms. Each term can be turned on and off and vary in strength and set-
ting in the force setups.py file. All OpenAWSEM and Open3SPN2 simulations were
carried out with Nvidia V100 and all LAMMPS version simulations were carried out with Intel
Xeon CPU E5-2650 v2 on the Rice NOTS server.

Q-value definition

The Q-value is a measure of how similar a predicted structure is to the correct native structure.
To evaluate the quality of the protein predictions we used the Q value which is defined as:

N2
(rj—ryy)

2 T 262
Q:(N—Q)(N—i%)i;; ’ (17)

where N is the total number of residues, i and j are sequence positions, r;; is the distance
between the CA of residue i and the CA of residue j. r/ is the distance between CA of residue

iand CA of residue j in native structure, o, = (1 + [i —j |""*)A. For Qater» N is the number of
residues outside of the membrane, and the sum is taken over all of those residues. For

Quembranes N is the number of residues outside the membrane, and 0; = 21+ 1i— j|0'15)1?\

Availability and future directions

OpenAWSEM is available at https://github.com/npschafer/openawsem website, and
Open3SPN2 is available at https://github.com/cabb99/open3spn2 website. We plan to study
protein-protein interactions such as the dimerization or oligomerization of membrane protein
in the future.

Supporting information

S1 Document. OpenAWSEM and Open3SPN2 force field description. Detailed description
of the various term in open AWSEM and Open3SPN2 models along with all the parameter val-
ues.

(PDF)
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