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Abstract In this work, we propose a trajectory gen-
eration method for robotic systems with contact kine-

matics and force constraints based on optimal control
and reachability analysis tools. Normally, the dynamics

and constraints of a contact-constrained robot are non-

linear and coupled to each other. Instead of linearizing

the model and constraints, we solve the optimal con-

trol problem directly to obtain feasible state trajecto-

ries and their corresponding control inputs. A tractable

optimal control problem is formulated and subsequently

addressed by dual approaches, which rely on sampling-

based dynamic programming and rigorous reachability

analysis tools. In particular, a sampling-based method

together with a Partially Observable Markov Decision

Process (POMDP) solution approach are used to break

down the end-to-end trajectory generation problem by

generating a sequence of subregions that the system’s

trajectory will have to pass through to reach its final

destination. The distinctive characteristic of the pro-

posed trajectory optimization algorithm is its ability to

handle the intricate contact constraints, coupled with

the system dynamics, in a computationally efficient

way. We validated our method using extensive numeri-
cal simulations with a legged robot.
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1 Introduction

This paper considers the issue of trajectory optimiza-
tion problems for robotic systems with state, input,
and contact force constraints. Often, it is required that

legged or humanoid robots maintain stable foot or body

contacts while executing given tasks. In such cases,

contact forces constrain and determine the robot’s

state reachability together with other state and in-

put constraints. Therefore, we seek to devise control

algorithms that can generate trajectories for contact-

constrained robots via formal state reachability analy-
sis. Frequently, control studies for robotics assume that
task trajectories are predefined Khatib [1987], Sentis

and Khatib [2005], Mansard et al. [2009], Righetti et al.

[2011], then attempt to find an instantaneously optimal

solution to accomplish them. However, the desired tra-
jectories are frequently infeasible and it is not straight-

forward to check the feasibility of trajectories under
contact constraints a priori. Many motion planning and
trajectory generation approaches for humanoid robots
use very simple models that rely on the dynamics of the

center of mass under contact constraints Kajita et al.

[2003], Stephens and Atkeson [2010], Liu et al. [2015],

Lee and Oh [2016]. However, these methods result in

lower performance of the robots due to their inability
to accurately capture the robot’s kinematics and input
constraints.

Our paper formulates a problem considering com-

plex robotic systems constrained by contact forces cou-

pled with the system dynamics, state, and input con-

straints. Before trajectory optimization, it can be ben-
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eficial for end-users to check whether desired goals are

reachable. Using reachability analysis is one way to

guarantee the existence of feasible state trajectories. It

can provide useful guidance for high level planning for

instance. However, for our purpose, it is very difficult

to check that the desired goal is reachable using meth-
ods that rely on the solution of the Hamilton-Jacobi-

Bellman partial differential equation (PDE), since the
contact force is time varying and the robots we consider
in our problem are nonlinear and high-dimensional sys-

tems. Linearization of dynamics and core approxima-

tion of reachable sets with convex sets is not applicable

to our problem because reachable sets of constrained

nonlinear systems may not be convex. Thus, we devise

a new method consisting of propagating system states

to obtain the reachable set. After confirming that the

goal is reachable via the proposed reachability analy-

sis, we generate an optimal trajectory by using Nonlin-

ear Programming (NLP) tools. Although nonlinear op-

timization tools and in particular, Sequential Quadratic

Programming (SQP) have been utilized for trajectory

optimization for robotic systems with contacts in the

literature (see Posa et al. [2014]), the use of such meth-

ods poses significant computational challenges for high-

dimensional systems. Nonlinear programming requires

the use of many decision variables and constraints when

incorporating both state of the full-body system and

the constraint forces. Therefore, we aim to solve tra-
jectory optimization problems for robotic systems with

contact constraints based on NLP methods, but in a

more computationally efficient way than state-of-the-

art methods in the field.

Concretely, we propose an approach that com-
bines sampling-based methods, quadratic programming

(QP), NLP tools, and approximation techniques, which

are based on the propagation of samples at boundary

points of reachable sets to solve our problem. More

specifically, we divide the end-to-end trajectory genera-

tion problem into small tractable sub-problems by using

a sampling-based approach combined with quadratic

programming (QP). Then, we reformulate the trajec-

tory optimization problem as a Partially Observable

Markov Decision Process (POMDP) with full-body dy-

namics of the robots considering obstacles in the sys-

tem’s output space. An optimal Markov policy result-

ing from the application of a dynamic programming
(DP) algorithm provides a sequence of output subre-
gions that the system’s output has to visit while avoid-

ing unsafe output regions, such as regions comprised

of the locations of obstacles in the output space. In

the next step, we utilize rigorous reachability analysis

tools to determine whether given pairs of subregions

can be connected with each other by means of feasible

trajectories. In our proposed approach, we propagate

the reachable sets of the system starting from a given
initial state by propagating the boundary states of the
reachable sets corresponding to previous time instances.

In this way, we achieve a significant improvement of the

algorithmic efficiency of our method, which is one of its

distinctive features compared with other state-of-the-

art techniques.

We summarize the main contributions of our work

in this paper as follows:

– To the best of our knowledge, the proposed method

is the first one in making the end-to-end trajec-

tory generation problem with Contact Wrench Cone

(CWC) constraints tractable.

– Thus, our method allows end-users to quickly verify

that goal output states are reachable via the pro-

posed reachability tool prior to execution of robot

behaviors.

– Our method enables to consider a wide vari-

ety of robotic constraints, such as joint posi-

tion/velocity/torque constraints, collision avoid-

ance, contact kinematics and CWC constraints.
– We demonstrate the efficiency of our method by ap-

plying it to a 23-DOF humanoid robot.

This paper is organized as follows. We summarize
prior work related to trajectory optimization and reach-

ability analysis in Section 2. Section 3 defines our prob-

lem and the target class of systems. A sampling-based

algorithm for obtaining approximations of the reach-

able set of constrained systems is proposed in Section
4, and a POMDP-based approach for obtaining an opti-

mal Markov policy of the output sequence is described
in Section 5. In Section 6, we propose an approach to

obtain the reachable sets that we leverage in Section

7 to design an optimal controller based on NLP tech-

niques. The proposed approach is validated by exten-

sive simulations of a robotic legged system with contact

force constraints in Section 7.

2 Related Work

2.1 Motion Planning and Trajectory Optimization

There is a rich literature on motion planning and tra-

jectory optimization for robotic systems. In particular,
kinodynamic motion planning has been widely studied
and used for the computation of trajectories that sat-
isfy constraints arising from both the kinematics and

dynamics of robots. For instance, Rapidly exploring

Random Tree (RRT) Kuffner and LaValle [2000], Kara-
man et al. [2011] and Probabilistic Road Map (PRM)

Kavraki et al. [1996] algorithms are employed to solve
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motion planning problems of robots. RRT?-smart is an

improved version of RRT?, which is based on the com-
bination of optimization techniques and an intelligent

sampling strategy Islam et al. [2012]. In Sakcak et al.

[2019], a variation of RRT? is proposed in which optimal

trajectories are synthesized based on a pre-computed
database of motion primitives. A semi-stochastic tech-

nique for generating a trajectory fulfilling kinodynamic
constraints to reach a goal state is proposed in Sintov

[2019]. However, these methods are not suitable for tra-

jectory optimization problems for non-holonomic sys-

tems Wieber [2006] or for robotic systems with contact

constraints, which are key attributes of various types of
robots.

Optimal control is a widely used approach to solv-
ing motion planning problems. For instance, Lyapunov

functions are utilized to track desired walking trajec-
tories under significant physical perturbations Nguyen

and Sreenath [2015], Nguyen et al. [2016]. Several stud-

ies have used Linear Quadratic Regulators (LQR), for

instance to synthesize local controllers and compute the

cost-to-go while fulfilling contact kinematic constraints
Posa et al. [2016], or to robustly control trajectories un-

der disturbances Manchester and Kuindersma [2019],
or to achieve optimal momentum control under multi-

ple contacts Herzog et al. [2015]. Reference Carius et al.

[2018] leverages the iterative LQR algorithm to handle

hard contacts with computational efficiency. Although

these methods based on LQR are computationally ef-

ficient, they require preliminary steps to obtain nom-

inal trajectories and rely on linear system approxima-

tions. In contrast, our method generates from scratch

the robot trajectories using nonlinear whole-body dy-

namic models of the robot.

Nonlinear optimization methods are capable of di-

rectly handling complicated nonlinear dynamics with

contact constraints Tassa et al. [2012], Posa et al. [2014],

Mastalli et al. [2019]. In these works, contact kinematics

and force constraints are expressed using inelastic im-

pact and Coulomb friction in the form of Linear Com-

plementary Problems (LCP) Tassa et al. [2012], Posa

et al. [2014]. However, these state-of-the-art methods
do not account for CWC constraints Caron et al. [2015]

which better describe the contact states of robots by

including horizontal and vertical moments with respect

to the contact surfaces. Another difference with respect

to these methods is that our proposed method pro-

vides a framework for computational efficiency based

on sampling methods which the above references don’t

provide. In addition, Budhiraja et al. [2018], Mastalli

et al. [2019] propose computationally efficient optimal

control methods for robots with contacts via Differen-

tial Dynamic Programming (DDP) but at the cost of

ignoring inequality or CWC constraints as we consider

in our problem. As a result our method aims at provid-

ing a more comprehensive trajectory generation tool

that includes more realistic models and a richer set of

constraints.

Many studies on legged robots have employed sim-

plified models, e.g., the Linear Inverted Pendulum

Model (LIPM) or the Reaction Mass Pendulum Model

(RMPM) based on centroidal dynamics, to plan walk-

ing motions instead of using full-body models. LIPM-

based planners generate Center of Mass (CoM) behav-

ior efficiently due to employing a low-dimensional state,

and the planned CoM is tracked via Whole-Body Con-

trol (WBC) for both bipedal Kim et al. [2019] and
quadrupedal Mastalli et al. [2020] robots. In addition,

the centroidal dynamics model accounts for the cen-

troidal momentum to describe upper-body behaviors

or to make robots more robust against push distur-

bances Wensing and Orin [2016]. Based on the cen-
troidal dynamics model, approximated CoM proxy and

CWC constraints are employed to generate legged loco-
motion behaviors by sampling CoM states Carpentier

and Mansard [2018]. Also, Fernbach et al. [2020] lever-

ages the centroidal dynamics model to guarantee that

CoM trajectories fulfill constraints while making con-

tact transitions.

Although the above methods are practical and com-

putationally efficient, two significant issues arise Lee

et al. [2020]. First, there exists a discrepancy between

simplified models and more complex full-body models

of robots. These methods cannot guarantee that the de-

sired CoM behaviors and contact locations are feasible

because simplified models do not explicitly handle joint
position/velocity/torque constraints that occur in real
robots. Secondly, using simplified models prevents con-

trollers to verify whether multiple task trajectories can

be simultaneously executed.

In our approach, in order to strictly enforce the ex-
plicit constraints and account for the nonlinearities of

the full-body model of robots, thus ensuring our abil-

ity to generate feasible trajectories, we propose to di-

rectly solve the resulting optimal control problem after

converting it to a Nonlinear Programming (NLP) prob-

lem. Although many NLP solvers, such as SNOPT Gill

et al. [2005] and IPOPT Wächter and Biegler [2006],
they involve complex computations that prevent them

from being practical for robotic systems. One of the

main contributions of this work is the significant mit-

igation of the computational burden of the nonlinear

trajectory generation process based on NLP applied to

various robotic systems.
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2.2 Reachability Analysis

Reachability or feasibility tools are beneficial to plan

complex and dynamic motions of robotic systems ful-
filling constraints such as loco-manipulation Jorgensen

et al. [2020], Burget and Bennewitz [2015], Yang et al.

[2017]. In optimal control studies, reachability analysis

is frequently implemented by solving Hamilton-Jacobi-

Bellman (HJB) PDE Asarin et al. [2000], Mitchell et al.

[2005], Kariotoglou et al. [2013]. Although these meth-

ods are effective for low-dimensional dynamical sys-
tems, it is hard to perform the HJB-based reachability
analysis for high-dimensional constrained systems such

as humanoid robots. Other than the HJB-based meth-

ods, many approaches have been proposed to compute

reachable sets by exploiting mathematical techniques,

optimization, inherent characteristics of systems, etc.

The logarithmic norm of a type of system’s Jacobian is

utilized to obtain over-approximated reachable sets for

nonlinear continuous-time systems Maidens and Arcak

[2015] and that norm is utilized for simulation-based

reachability analysis Arcak and Maidens [2017]. Reach-
ability analysis for uncertain nonlinear systems based

on conservative approximations can be found in Rung-
ger and Zamani [2018]. Also, for continuous-time piece-

wise affine systems, linear matrix inequalities (LMI) are

employed to characterize the bounds of reachable re-

gions in Hamadeh and Goncalves [2008]. Another class

of reachability analysis uses convex approximations of
the reachable sets in terms of ellipsoidal sets Kim [2008],

polytopes, zonotopes Girard [2005], and support func-
tions Le Guernic and Girard [2010]. In Liebenwein et al.

[2018], a sampling-based method is employed to approx-

imately compute reachable sets. However, the method

proposed in this reference is not applicable to contact-

constrained robotic systems.

Although these approaches are capable of applying

nonlinear dynamical systems, they are not suitable for

complex robots due to the high-dimensional state space
dynamics and intricate constraints. Instead, the reach-

ability analysis is typically carried out on the configu-

ration space of robots. Reachability space is merely em-

ployed to speed up an inverse kinematics solver for dex-

terous manipulation Vahrenkamp et al. [2009]. Reacha-
bility indices of a mobile manipulator at potential poses

of the base in SE(2) are computed to find the suit-
able base pose for a given grasping mission Vahrenkamp

et al. [2013]. For humanoid robots, a simple sampling

method is utilized to generate a sparse reachable area

of end-effector with joint limit and self-collision avoid-

ance Lofaro et al. [2012]. Also, a reachability map of a
full-body humanoid is proposed to select a stance pose

for achieving a grasping task Burget and Bennewitz

[2015]. Furthermore, Yang et al. [2017] combines both

an upper-body inverse dynamic reachability map and a
lower-body dynamic reachability map to generate loco-
manipulation behavior. Guan et al. [2008] obtains the

reachable space of a humanoid robot using optimiza-

tion and the Monte-Carlo method. After solving the

inverse kinematics of legged parts, random configura-

tions of the upper-body are tested to check whether

the CoM position belongs to the support polygon. Jor-

gensen et al. [2020] proposes a method to find the loco-

manipulability region based on the readability of both

manipulation and locomotion contact transition.

Reachability has contributed to improving the per-
formance of motion planning in robotics. Nevertheless,

most approaches rely on robots’ kinematics and sim-

ple constraints in position or velocity levels. We need

to exploit not only kinematics but also the dynamics

of robots to properly handle contact constraints in the

reachability tools. However, it is well known that it is

difficult to do reachability analysis for high-dimensional

systems due to the computational complexity. There-

fore, in this paper, we will employ optimal control meth-
ods, which will be applied to nonlinear models of the
robotic systems and will also implement the reachabil-
ity analysis of contact-constrained robots in a compu-

tationally efficient way, namely through the boundary-

states propagation method.

3 Problem Formulation

3.1 Notation

We denote the set of real n-dimensional vectors and
the set of real n×m matrices by R

n and R
n×m, respec-

tively. The set of natural numbers and the set of integer

numbers are denoted by N and Z, respectively. The set

of positive definite and positive semi-definite n×n ma-

trices are denoted by S
n
>0 and S

n
≥0. When considering

z1, z2 ∈ N with z2 > z1, the discrete interval between z1
and z2 is defined as [z1, z2]N := {z1, z1+1, . . . , z2−1, z2}.
In case that z1 and z2 are non-negative real numbers,

[z1, z2]
∆
d := {z1, z1 + ∆, . . . , z2 − ∆, z2} denotes a dis-

crete interval with ∆ being the increment. When n real

numbers a1, . . . , an are consider, Vec[ai]
n
i=1 ∈ R

n repre-

sents a vector whose i-th element is ai. Given n×m real

numbers a11, . . . , amn, a matrix whose (i, j) element is

aij is denoted by Mat[aij ]
n,m
i,j=1 ∈ R

n×m. Given a square
matrix A ∈ R

n×n, tr(A) denotes its trace. σ(A) and

σ(A) represent the largest and smallest singular val-

ues of A, respectively. Given matrices Ai ∈ R
ni×m

i ∈ [1, z]N, Vertcat(A1, . . . ,Az) ∈ R
(nq+···+nz)×m in-

dicates a block matrix constructed by vertically con-

catenating the matrices Ai i ∈ [1, z]N. Given a set of
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real vectors A ⊆ R
n, card(A) denotes its cardinality.

When considering particular cases such that A ⊂ R
n

with n ∈ [1, 3]N, ghull(A) and gbd(A) represent the

general hull and the set of vectors closest the bound-

ary of A. E[.] represents the probabilistic expectation

operator.

3.2 Nonlinear Robotic System with Contacts

We characterize the equation of motion for general
robotic systems with contact forces and assuming rigid
body linkages as follows:

M(q)q̈ + b(q̇, q) = S>u+ J>
c (q)Fc (1)

where q ∈ R
nq , M(q) ∈ S

nq

>0, b(q̇, q) ∈ R
nq , S ∈ R

nu×nq ,

u ∈ R
nu , Jc(q) ∈ R

nc×nq , and Fc ∈ R
nc denote the joint

variable, sum of Coriolis/centrifugal and gravitational
forces, selection matrix for the actuation, input actuat-
ing joint torques, contact Jacobian matrix, and contact

force, respectively. We can bring the differential equa-

tion (1) into a state space form by defining the state

x := [x>
1 x

>
2 ]

> ∈ R
nx where x1 = q and x2 = q̇:

ẋ =

[

x2

M−1(x1)
(

S>u+ J>
c (x1)Fc − b(x2, x1)

)

]

= f(x, u, Fc).

(2)

The continuous state space model of the robot can be

discretized as follows:

x(tk+1) = fD (x(tk), u(tk), Fc(tk)) (3)

where x(tk), u(tk), and Fc(tk) denote the state, in-

put and contact force at time tk. In addition, fD :
R

nx+nu+nc 7→ R
nx is continuous and ∆t = tk+1 − tk.

Since the robotic systems are controlled in operational

space, the output of the system is a function of the

state, y(t) = fy(x(t)), where fy : Rnx 7→ Rny
is C2.

For instance, we can set the output of the system as

the position and orientation of the end-effector, that

is y ∈ SE(3), then the robot would be controlled to
achieve the desired output at specific time instance:

y(tf ) = yg where yg and tf represent the goal output

vector and final time, respectively.

3.3 Constraints of the System

We refer to he and hi as the equality constraint func-

tion and the inequality constraint function, respec-

tively, where we assume that he(x) = 0 and hi(x) ≤ 0.

The state equality constraint function, he, should con-

tain the contact kinematics constraints as follows:

φi(q) = 0

φ̇i(q, q̇) =
dφr

dt
= Jφi

(q)q̇ = 0

φ̈i(q, q̇, q̈) =
d2φi

dt2
=

dJφi
(q)

dt
q̇ + Jφi

(q)q̈ = 0

(4)

where φi : R
nq 7→ R

6 denotes a continuous mapping for

position and orientation errors of the i-th body with
respect to the planned contact location and Jφi

= Jci .

Also, we consider multiple inequality constraints in

joint space as follows:

qLB ≤ q ≤ qUB , q̇LB ≤ q̇ ≤ q̇UB ,

uLB ≤ u ≤ uUB

(5)

where subscripts (.)LB and (.)UB refer to lower and up-

per bounds, respectively. In this paper, it is necessary to

explicitly consider the contact force constraint to pre-
vent slip and flit on act surface. The frictional contact

wrench cone constraint is shaped by using the state and
contact force generated by the robotic system:

hc(x, Fc) ≤ 0, hc(x, Fc) := Wc(x)Fc (6)

where Wc(x) ∈ R
16×nc is a matrix describing the uni-

lateral constraint using a polyhedral approximation of

the friction cone of a surface Caron et al. [2015]. The
contact force is coupled to the system dynamics as

shown in (1) so that this constraint makes the trajec-

tory optimization problem more difficult.

3.4 Problem Definition

Here we specify the end-to-end problem we are address-

ing and break it down into tractable subproblems. The

end-to-end trajectory generation problem assumes that

an initial state, x0 = x(t0), and a goal output state, yg,

are given. The problem consists then on obtaining opti-

mal state and input trajectories satisfying state, input,

and contact constraints over a finite-time horizon. The

end-to-end trajectory generation problem is written as

follows:

Problem 1 Consider an initial state x(t0) fulfilling

state equality and inequality constraints, a goal output

vector yg, and finite time interval T = [t0, tf ]
∆
d . Our

problem is to obtain a locally optimal trajectory for
the discretized system in (3) satisfying all constraints

to reach the goal output at time instance tf , that is
X := {xd(t0), · · · , x

d(tf )} where fy(x
d(tf )) = yg.
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All constraints are independent then the Jacobian ma-

trices are full row rank. Then, we iteratively update the

sampled states as follows:

zk+1 = zk + γk∆zk (9)

where z0 denotes the initially sampled state and γk ∈
R≥0. For our gradient decent method, we deploy a par-

ticular method for computing γk.

γk =
|(zk − zk−1)

>(∆zk −∆zk−1)|

‖∆zk −∆zk−1‖2
(10)

∆zk is computed by the following QP.

min
∆zk,wk

‖wk‖
2

s.t. Je(zk)∆zk ≤ −he(zk) + wk,

Ji(zk)∆zk ≤ ϕd
i − hi(zk)

(11)

where ϕd
i refers the desired vector computed by using

the initial sampled state as follows:

min
ϕd

i

‖ϕd
i − hi(z0)‖

2, s.t. ϕd
i ≤ δi (12)

where δi = [α, · · · , α]> ∈ R
dim(hi(z0)) and α < 0.

The proposed method is a numerical iteration combined

with QP so that we have to determine the termination
tolerance of this iterative process. We terminate the
iteration if the error ‖he(zk)‖ ≤ ε where ε is a very

small numerical tolerance. Then, it is evaluated whether

the inequality constraints are fulfilled in terms of the

update state. We obtain a set of the states updated

by the proposed method and satisfying the addressed

constrained.

Xstate := {zk ∈ R
nx : ‖he(zk)‖ ≤ ε, hi(zk) ≤ 0,

zk updated from z0 ∼ N (µx,Σx)}
(13)

For the next step, we take all elements of Xstate and

check whether there exist the appropriate input and

contact force to propagate the state which also fulfills

the state constraints. Considering the input and contact

force constraints, we formulate a QP problem by taking

two elements v1 and v2 from Xstate.

min
u,Fc

F>
c QcFc + u>Quu

s.t. v2 = fD(v1, u, Fc),

hu(u) ≤ 0, hc(v1, Fc) ≤ 0

(14)

where Qc ∈ S
nc

>0 and Qu ∈ S
nu

>0 are weighting ma-

trices for the cost. If there exists an optimal solution

of the problem in (14), we collect all v1 in (14) into

SRS, X . Otherwise, we discard the updated state sam-

ples. It is key to draw sufficient state samples on the

constrained manifold using the proposed optimization-

based method because we break down the end-to-end

trajectory optimization problem via the use of POMDP,

which will rely on the probabilistic distribution over the

sampled set. If the state set is sparse, there is less chance

of finding a feasible sequence of output regions.

4.2 Output Space Approximation

In this subsection, we check the feasibility of reach-

ing the desired goal output. To do so, we approxi-
mate the output samples with a Gaussian distribu-
tion y∗ ∼ N (µy∗ ,Σy∗) Hendeby and Gustafsson [2007].

From the obtained SRS X , we compute sample mean

and covariance of X , µ∗
x and Σ∗

x. Based on the sample
mean and covariance, the mean and covariance of the

output obtained after neglecting higher order terms are

µy∗ := fy(µ
∗
x) + Vec [tr(Hy,i(µ

∗
x)Σ

∗
x)]

ny

i=1 (15a)

Σy∗ := Jy(µ
∗
x)Σ

∗
xJ

>
y (µ

∗
x)

+
1

2
Mat [tr(Σ∗

xHy,i(µ
∗
x)Σ

∗
xHy,j(µ

∗
x))]

ny,ny

i,j=1 (15b)

where Jy(µ) and Hy,i(µ) denote the Jacobian matrix of

the output function fy(µ) and the 2nd derivative matrix

of the output function fy,i(µ), for the i-th element. In

particular,

Jy(µ) :=
∂fy
∂x

(µ),

Hy,i(µ) :=











∂2fy,i(µ)

∂x2
1

. . .
∂2fy,i(µ)
∂x1∂xnx

...
. . .

...
∂2fy,i(µ)
∂xnx∂x1

. . .
∂2fy,i(µ)

∂x2
nx











(16)

where Jy(µ) ∈ R
ny×nx and Hy,i(µ) ∈ R

nx×nx is a sym-

metric matrix. We construct a probabilistic ellipsoid in

the output space to approximate whether an output

sample y∗ is feasible. We define a set of outputs that lie

inside an ellipsoid Eκ with

Eκ := {y ∈ R
ny : (y − µy∗)>Σ−1

y∗ (y − µy∗) ≤ κ} (17)

where κ is a coefficient determined by the cumulative

probability of the Chi-square distribution. For instance,

κ = 5.991 for Pr(y∗ ∈ Eκ) = 0.95 and y∗ ∈ R
2. Our

method to check if a goal output yg is interior to Eκ
is more efficient than using a Monte Carlo method, be-

cause we only need to compute µy∗ and Σy∗ using the

mean and covariance matrix of the samples using (15).
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5 Optimal Sequence of Subregions via POMDP

After checking that the desired output goal yg is lo-

cated at the interior of the ellipsoid Eκ in (17), we solve

Subproblem 2 to find an optimal sequence of subre-

gions in the output space. We will find the optimal

policy to move from the output subregion containing

y(t0) = fy(x(t0)) to one where yg is located.

5.1 POMDP Setup

To start the process solving Subproblem 2, we define

output subregions:

Yi := {y ∈ R
ny : ‖y − yci ‖∞ ≤ εy} (18)

where yci ∈ R
ny denotes the center of the output subre-

gion Yi and i ∈ [1,m]N where ∪i∈[1,m]NYi ⊂ R
ny . Sides

of the subregions are 2εy. Also, we obtain a set of out-
puts as follows:

Y := f̂y(X ) = {y ∈ R
ny : y = fy(x), x ∈ X} (19)

where f̂y : X ⇒ Y denotes a set-value mapping. To
formulate our problem as a POMDP, we define discrete

nodes associated with the previous subregions as fol-

lows:

si = node(Yi), i ∈ [1,m]N (20)

where S := {s1, . . . , sm}. Based on these nodes, we

transform the problem to a POMDP. We will formu-
late the probability of observations using the sampled
states. Before formulating the detailed POMDP, we in-

troduce several definitions used in this section

Definition 2 (POMDP) Partially Observable Markov

Decision Process is defined as a tuple P =

(S,A,Ob,T,Z):

– S is a finite set of nodes, S := {s1, · · · , sms
}

– A is a finite set of actions, A := {a1, · · · , ama
}

– Ob is a finite set of observations, Ob :=

{o1, · · · , omo
}

– T is the transition dynamics T(s′, s, a) defining the

transition from s ∈ S to s′ ∈ S after taking an

action a ∈ A.
– Z is the observation Z(s, a, o) consisting of the prob-

ability of observing o ∈ Ob after taking an action

a ∈ A from node s ∈ S.

Definition 3 (Markov Policy) A Markov policy Π is

defined as a sequence: Π := {a(1), · · · , a(n)}. a(j) ∈ A,
where a(j) : S → S is a measurable map from a node

to another one, j ∈ [1, n]N .

Definition 4 (Principle Singular Vector) Consider a

node si ∈ S associated with an output subregion Yi and
a set Y = f̂y(X ). Consider ΣYi

being the covariance

matrix for the set Yi ∩Y , that is, ΣYi
= E[(y−µy)(y−

µy)
>] and µy = E[y] where y ∈ Yi ∩ Y. A Principle

Singular Vector (PSV) is defined as

V(si) = col(VYi
)k, σk(ΣYi

) = σ(ΣYi
) (21)

where ΣYi
= V>

Yi
ΛYi

VYi
, ΛYi

= diag(σ1, . . . , σny
),

and σk denotes the singular value of ΣYi
.

5.2 POMDP Formulation

The problem concerning this section is on finding a se-

quence of feasible subregions towards an output goal

using POMDP tools and analysis. To do that, we con-

vert the POMDP into a belief MDP. Belief b[si] is de-

fined with respect to discrete nodes si ∈ S. Let suppose
b = b[s(j)], b′ = b[s(j+1)], and a = a(j) where s(j) rep-

resents the node for the j-th step of the POMDP. The

belief transition function, Γ(b, a, b′), is equal to

Γ(b, a, b′) =
∑

o∈Ob

Pr(b′|b, a, o)Pr(o|b, a) (22a)

Pr(b′|b, a, o) =

{

1, if belief update returns b′

0, otherwise
(22b)

Pr(o|b, a) =
∑

s′∈S

Z(s′, a, o)
∑

s∈S

T(s′, s, a)b. (22c)

The key challenges of this POMDP are on defining

meaningful observations and on finding their condi-

tional probability. Let us consider that Y = Y (j) and

Y ′ = Y (j+1) associated with the nodes s(j) and s(j+1).

We propose to define observations as the set of feasible
states after taking an action a, i.e.

Ô := {v1 ∈ R
nx : v1 ∈ Y ∩ Y, v2 ∈ Y ′ ∩ Y,

v2 = fD(v1, u, Fc), hu(u) ≤ 0,

hc(v1, Fc) ≤ 0, u ∈ R
nu , Fc ∈ R

nc}

(23)

where Y is the subregion before taking the action a.

If v1 ∈ Ô, it holds that there exists at least one sam-

ple connecting fy(v1) to another output fy(v2) in the
subregion Y ′ satisfying the constraints as illustrated in

Fig 2(a). Otherwise, v1 is excluded from the observa-
tion Ô. Considering the above observations, we define

the conditional probability as

Z(s′, a, o) := Pr(o|s′, a) = card(Ô)/card(Y ′ ∩ Y). (24)

Let us focus on the reward and transition dynamics. As
a heuristic, a higher number of feasible samples falling
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state x0 = x(t0). We assume that the given initial state

x0 fulfills all state constraints.

Definition 5 (Discrete-time Reachable Set) Let x0 be

an initial state and t ∈ T∆t
d = [t0, tf ]

∆t
d be an arbitrary

time interval. We define a reachable set in discrete time

domain as:

Rx(t, x0) := {x(t) : ∃u([t0, t]
∆t
d ), ∃Fc([t0, t]

∆t
d ),

he(x(τ)) = 0, hi(x(τ)) ≤ 0,

hu(u(τ)) ≤ 0, hc(x(τ), Fc(τ)) ≤ 0,

x(τ +∆t) = fD(x(τ), u(τ), Fc(τ)),

x(t0) = x0, τ ∈ [t0, t]
∆t
d }

(28)

where ∆t > 0 is the discretization step or sampling
period for our discrete model.

We extend the reachable set defined above for the finite

discrete time interval T∆t
d = [t0, tf ]

∆t
d as

Rx(T
∆t
d , x0) :=

⋃

t∈T∆t
d

Rx(t, x0). (29)

For any tf <∞, the reachable set satisfies the following

bound Rx(T
∆t
d , x0) ⊆ Rx([t0,+∞), x0). By using the

set-value mapping f̂y, we can express the reachable sets
in the output space such as Ry(t, x0) = f̂y(Rx(t, x0))

and Ry(T
∆t
d , x0) = f̂y(Rx(T

∆t
d , x0)). We clearly show

the following two corollaries related to the defined

discrete-time reachable sets.

Corollary 1 The reachable set over a finite time hori-
zon T∆t

d = [t0, tf ]
∆t
d , Ry(T

∆t
d , x0), is compact.

Proof See Appendix B.

Corollary 2 Suppose that {x0} = Rx(t0, x0) and fy
is continuous. Then, a set, Ry(T

∆t
d , x0) where T∆t

d =
[t0, tf ]

∆t
d , is connected.

Proof See Appendix C.

Above two corollaries are useful to check whether the
goal output is reachable using the proposed reachable
sets. Based on the corollaries, we address a theorem to

confirm that the goal output is reachable in terms of

the system dynamics, constraints, and a specific time

horizon.

Theorem 1 Suppose that the initial state, x0, the goal

output, yg, and discrete-time interval, T∆t
d = [t0, tf ]

∆t
d ,

are given. Let us assume that the set, Ry(T
∆t
d , x0), is

compact, connected, and yg ∈ Ry(T
∆t
d , x0). Then, at

lest one trajectory Ψ := {ξ(t0), . . . , ξ(τ)} exists such

that fy(ξ(τ)) = yg where τ ≤ tf .

Proof See Appendix D.

6.2 Forward Propagation of Reachable Set

We employ the sampling-base method and a QP to

propagate the state in the discrete-time domain. A

random input is drawn from a Gaussian distribution

u ∼ N (µu,Σu) at each instant of time with the input
set U defined as the collection of inputs fulfilling input

constraint. Let us consider x0 and Rx(T
∆t
d , x0) where

T∆t
d = [t0, tf ]

∆t
d . We define a QP to check for feasible

contact forces, i.e.

min
Fc,xk+1

F>
c QcFc + (xk+1 − xk)

>Qx(xk+1 − xk)

s.t. xk+1 = fD(xk, u, Fc),

he(xk+1) = 0, hi(xk+1) ≤ 0,

hc(xk, Fc) ≤ 0, u ∈ U

(30)

where xk ∈ Rx(T
∆t
d , x0). If there exist the optimal de-

cision variable F ?
c and x?

k+1, x
?
k+1 becomes an element

of Rx(tk+1, x0). For all sampled inputs u ∈ U and the

reachable states xk ∈ Rx(T
∆t
d , x0), the QP in (30) is re-

peatedly solved to collect the optimal decision variables

x?
k+1 in Rx(tk+1, x0):

Rx(tk+1, x0) = {x
?
k+1 : (F ?

c , x
?
k+1)← QP (30),

∀xk ∈ Rx(T
∆t
d , x0), ∀u ∈ U}

(31)

The reachable set Rx([t0, tk+1]
∆t
d , x0) = Rx(T

∆t
d , x0) ∪

Rx(tk+1, x0). This is a computationally efficient

method to compute the reachable sets because the QP
is computationally cheap. However, the number of state
samples in the reachable sets exponentially increases in

terms of the number iteration. To reduce the growing

computation burden, we propose a particular method

in the following section.

6.3 Propagation of Boundary States

The basic algorithm for reachability analysis suffers

from exponential complexity with respect to the num-

ber of time steps. Although the previous POMDP con-

tributes to reducing the time horizon to be checked for

reachability analysis, full-state propagation would still

result in heavy computational burden. In this section,

we propose a method for reducing the computational

complexity of the algorithm by only propagating se-

lected states. This approach results in more conserva-

tive reachable sets.

To implement the forward propagation of boundary

state samples, we define a set by collecting the bound-

ary samples of an reachable set Rx(t, x0) as follows:

Bx(t, x0) := {x ∈ R
nx : x ∈ Rx(t, x0),

fy(x) ∈ gbd(Ry(t, x0))}.
(32)
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Algorithm 1: Computing Reachable Sets by

Propagation of Boundary States

Data: q0, q̇0, Qc, Qx, T∆t
d , yg

Result: Rx(T∆t
d , x0)

M0, b0 ← Update dynamics properties w.r.t. q0, q̇0 ;
Jc ← Update contact Jacobian w.r.t. q0 ;
Check Contact Kinematics in (4) w.r.t. q0, q̇0;
if Feasible then

Rx([t0, t0]∆t
d , x0) = Rx(t0, x0) = {x0};

for k ← 0 to Nt do

T∆t
k,d = [t0, tk]∆t

d ;

U ← Generate Nu input samples;

Bx(T∆t
k,d, x0) ← (32) by Rx(T∆t

k,d, x0) ;

NRx
← Get card(Bx(T∆t

k,d, x0);

for j ← 1 to NRx
do

xk ← j-th sample in Rx(T∆t
k,d, x0) ;

for i← 1 to Nu do

u ← i-th sample in U ;
solve (30) with xk and u ;
if ∃(F?

c , x?
k+1) then

add x?
k+1 to RB

x (tk+1, x0);

end

end

end

Rx([t0, tk+1]∆t
d , x0) ←

Rx(T∆t
k,d, x0) ∪RB

x (tk+1, x0) ;

end

end

else
Terminate due to the infeasible initial state

end

;

This definition can be extended to the reachable set
over a finite time horizon, Bx(T

∆t
d , x0), in the same

manner. We solve the QP (30) for only the state sam-
ples in Bx(T

∆t
d , x0) to obtain RB

x (tk+1, x0) and iter-

ate this process to expand the reachable set forward.

In this way, the computational complexity becomes

linear with respect to the number of boundary sam-

ples, card(Bx(T
∆t
d , x0)). The detailed process of our al-

gorithm is described in Algorithm 1. In order to re-

place full-state propagation with boundary-state prop-

agation, we show that the set of reachable outputs is

compact and connected. First, the set RB
y (T

∆t
d , x0) is

compact, because we are able to obtain the hull of the

set as shown in Corollary 1. Next, we prove the reach-

able set RB
y (T

∆t
d , x0) is connected.

Corollary 3 Suppose that x0 ∈ Rx(t0, x0) and fy is

continuous. Then, RB
y (T

∆t
d , x0) is connected.

Proof The proof is similar to that of Corollary 2 and

therefore is omitted. See Appendix C.

In linear systems, it is straightforward to recur-

sively propagate boundary states by, for instance, us-

ing Proposition 6.5 in Blanchini and Miani [2008] and to

over-approximate the reachable set using Zonotopes Gi-

rard et al. [2006], Hänsch et al. [2013]. In addition, prop-
agating boundary states is valid for obtaining conser-

vative reachable sets for manipulators Lee et al. [2019]

and legged robots Lee et al. [2020] if their kinematic

workspaces are connected, the reason being that the

reachable set is a subset of the kinematic workspace.

The above proposition can be extended for the class of
nonlinear robotic systems with connected workspaces.

6.4 Computational Complexity Analysis

We analyze the computational complexity to compare

the efficiency of the propagation of full states and that

of boundary states. There exists many algorithms to

obtain the concave hull from the set of data Galton

and Duckham [2006], Duckham et al. [2008], Moreira

and Santos [2007]. They have O(n3) or O(n log n) time

complexity with n data in 2-D space. General QPs are

non-deterministic polynomial-time hard, which means

the algorithms are more complex than the polynomial

time complexity to be solved. In the case that the QP

is convex, it is widely known that the time complexity
of the QP is O(m3) where m is the number of decision

variables.

Based on the aforementioned discussion, we can

compare the computational complexity of two cases:
propagation of full states and propagation of boundary
states. Let us consider Nt steps over the time interval
[t0, tk]

∆t
d where ∆t = (tk − t0)/Nt, and Nu is the num-

ber of input samples. For each propagation method, the
computational complexity can be represented as

Cf ∼O(
Nt
∑

i=1

N i
u(nc + nx)

3) ≈ O
(

NNt
u (nc + nx)

3
)

Cb ∼O(
Nt
∑

i=1

Nb(nc + nx)
3 + (iNb)

3)

≈ O(NtNb(nc + nx)
3 +N4

t N
3
b )

(33)

where Cb, and Nb denote the complexity of full state

propagation, that of boundary state propagation, and

the number of boundary samples. Normally, a set of

boundary samples contains much smaller samples than

a set of entire states, that is, Nb � Nu. The effect

of the boundary sampling on computational complex-

ity becomes significantly advantageous in terms of the

number of time steps. We will show the comparison of

the computational complexity using an example in the

simulation section.
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Algorithm 2: Sequential Optimal Control

Data: q0, q̇0, Qc, Qx, Qy, yg, Y?

Result: Ψ, U
if yg is reachable then

Ψ = ∅, U = ∅ ;

x0 ← [q>0 , q̇>0 ]>;
for k ← 1 to nπ − 1 do

yf ← y
(k)
?c ;

(Ψ
(k)
? ,U

(k)
? )← solve NLP problem in (36) ;

Ψ← vertcat(Ψ,Ψ
(k)
? );

U← vertcat(U,U
(k)
? );

x0 ← ξf in Ψ
(k)
? ;

end

end

else
Terminate due to the infeasible goal output

end

;

6.5 Sequential Reachability Analysis

Given an optimal sequence of subregions in the output

space, Y? = {Y
(1)
? , · · · , Y

(nπ)
? }, we check it is possible

to successively move from one subregion to the next one

via reachability analysis as described in Subproblem 3.

7 Nonlinear Constrained Optimal Control

In this work, we describe the use of sequential opti-

mal control for nonlinear programs without constraint

softening. Instead of considering end-to-end trajectory

generation, we focus on finding a trajectory connecting

two subregions obtained by the POMDP process de-

scribed earlier. By iterating this process for connecting

subregions, the optimal control process is able to attain
the desired output with reduced computational cost.

7.1 Nonlinear Programming

In order to formulate the optimal control problem

solved by NLP, a performance measure is defined in

the discrete time and state space, that is the sum of

running cost, `, and, final cost, `f :

J (U,Fc, N) :=

N−1
∑

k=0

`(xk, uk, Fc,k) + `f (xf , Fc,f ) (34)

whereU := {u0, . . . , uN−1} and Fc := {Fc,0, · · · , Fc,N}.
The running and final costs are formulated by using

quadratic terms as follows:

`f (xf , Fc,f ) =efy(xf )
>Qye

f
y(xf ) + F>

c,fQcFc,f ,

`(xk, uk, Fc,k) =efy(xk)
>Qye

f
y(xk) + F>

c,kQcFc,k

+ e0x(xk)
>Qxe

0
x(xk)

(35)

where efy(x) = yf−fy(x) and e0x(x) = x0−x. Addition-

ally, Qx ∈ S
nx

>0, Qc ∈ S
nc

>0, and Qy ∈ S
ny

>0 denote the

weighting matrices for the state, the contact force, and
the output, respectively. ξ(t) ∈ R

nx and yd ∈ R
ny de-

note the trajectory of the state and the desired goal of
the output of the NLP problem, respectively. The NLP
problem is defined to obtain the end-to-end trajectory

as follows:

min
Ψ,U

J (U,Fc, N)

s.t. ξk+1 = fD(ξk, uk, Fc,k),

he(ξk) = 0, hi(ξk) ≤ 0,

hu(uk) ≤ 0, hc(ξk, Fc,k) ≤ 0.

(36)

In order to reduce the computational time, we se-
quentially solve the optimal control problem by refer-

ring the results of POMDP problem. Given Y?, we
solve nπ− 1 optimal control problems to reach the goal

output. Algorithm 2 shows the way to sequentially ob-

tain the optimal trajectory and the corresponding input

torque.

8 Numerical Simulations

In this section, we validate the proposed approach by

demonstrating numerical simulations using two robotic

systems which are called Draco and Valkyrie. Draco is

developed as a test platform for efficient and dynamic

locomotion using liquid-cooled series elastic actuators
Kim et al. [2018] and Valkyrie is a biped full-body hu-

manoid robot operated for executing locomanipulation

missions by NASA Radford et al. [2015]. For the basic

software setup, the dynamic simulation is implemented

by DART Lee et al. [2018]. We utilize two optimizers:

Goldfarb for QP and IPOPT implementing a primal-

dual interior point method Wächter and Biegler [2006].
In addition, we extract analytic expressions of both

kinematic and dynamic properties to deploy them for
nonlinear optimization process by using Mathematica1,

FROST Hereid and Ames [2017], and MATLAB2. The

simulation is executed on a laptop with a Core i7-8650U

CPU and 16.0 GB RAM.

8.1 One-sided Leg Draco

A simulation model of Draco consists of three virtual

joints for its floating base (q1, q2, q3) ∈ SE(2), i.e.,

q1, q2, and q3 refer to virtual joints for the floating

base positions and pitch orientation, and three actuated

1 https://www.wolfram.com/mathematica/ (ver.12)
2 https://www.mathworks.com/ (R2019b)
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Goal 

Position

Fig. 7 Snapshots for Valkyrie simulation: red dots indicate the final goal position in Cartesian space. (a) Initial configuration
at t = 0 s, (b) configuration at t = 0.1 s, (c) configuration at t = 0.2 s, (d) configuration at t = 0.3 s, (e) configuration at
t = 0.4 s, (f) final configuration at t = 0.5 s and the left hand reaches to the desired goal position.
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Fig. 8 Simulation Results using Valkyrie: (a) the hand position in Cartesian space with red circles which mean way-points
produced by POMDP process, (b) the hand position in the time domain, (c) the joint configuration in the time domain.
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Fig. 9 CoM behavior while controlling the hand position and
Performance indices: (a) CoM in the x-y plane, (b) CoM in
the time domain (c) performance index values for each section
in the output space

cost so that it takes significant time to solve the opti-

mal control problem using NLP. Therefore, we reduce

the dimension of the states to 47 by making one of the

arms and the neck completely rigid. To start the nonlin-

ear dynamic optimization process, we compute an ini-

tial set of initial inputs by using a simple whole-body

controller as follows:

uinit = (M−1N>
c S

>(SNcM
−1S>)†)>b(0, qinit) (38)

where Nc = I −M−1J>
c (JcM

−1J>
c )

†Jc, Jc refers the
contact Jacobian, and b(., .) stands for the vector of

gravitational, centrifugal and coriolis forces. The goal

of this simulation is to move the robot’s left hand to-

ward a goal position defined in the operational space

while fulfilling contacts on the feet. In this numerical

simulation, we consider a 3 dimensional output space
(Cartesian coordinates of the left hand) and two sur-
face contacts on the feet. The foot size is 0.135 × 0.08

and we set the friction coefficient to the value 0.7 in the

simulation environment.

The initial and goal positions of the left hand are

[−0.0009, 0.3455, 1.3433] and [0.0134, 0.2849, 1.3085],

respectively. As shown in Fig. 7, the robot maintains its

contacts correctly while changing its whole body con-

figuration to reach the goal output. The proposed pro-

cess based on POMDP produces 5 waypoints, which are

specified by the red circles shown in Fig. 8 (a). The joint

position trajectories and the corresponding hand tra-

jectories are generated while satisfying all constraints

via the reachability analysis, as shown in Fig. 8 (b) and

(c). The robot’s Center of Mass (CoM) is one of the

interesting results in this simulation as shown in Fig.
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9 (a) and (b). Even-though we do not directly control

the CoM dynamics, they do not fluctuate much and re-
mains inside the support polygon. The reason is that
we fulfill friction constraints and while minimizing ki-

netic energy: we formulate the quadratic running cost

using the state error so that the optimization prevents

the robot from moving fast and jerky. We also show in

Fig. 9 (c) the performance index values to reach each
waypoint from the previous one and the resulting tra-

jectories corresponding to locally optimal solutions.

9 Conclusion

This paper proposes a method to generate trajectories

for complex robotic systems subject to contact con-
straints. We formulate the problem as an optimal con-
trol problem, which we subsequently convert to an NLP.

Our approach focuses on efficiently solving the NLP

problem so that we can scale the method to many types

of complex robotic systems. We devise a new approach

to obtain discrete-time reachable sets for trajectory

generation and solve the nonlinear optimization prob-

lem. Although the computational cost is significantly

reduced, it is still challenging to employ this approach

to real-time control. We demonstrate two numerical

simulations using Draco and Valkyrie. These simula-
tions show that the proposed method is effective in

real robotics applications and scalable for highly artic-

ulated robots such as full-body humanoid robots. Soon,

we will investigate ways to combine this approach with

feedback controllers and extend the proposed method

for hybrid dynamical systems (e.g., walking or jump-

ing robots and dual-arm manipulation). We will also
study the relationship between the optimal conditions

of POMDP and the sampling distribution for more ef-
ficient motion planning.
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Appendices

A Proof of Proposition 1

Proof Since the samples are uniformly distributed, it is pos-
sible to select any unit vector in Rny as the PSV of si, that is,
RaV(si) where Ra ∈ SO(3) is a rotation matrix. If we select
the rotation matrix Ra such that d⊥ = RaV(si), which is
orthogonal to V(si), it follows that T (s′, s, a) = 〈V(si), d〉 =
〈d⊥, d〉 = 0 for all a ∈ A.

B Proof of Corollary 1

Proof Let us consider a general hull of the set Ry(T∆t
d , x0),

that is ghull(RD
y (T∆t

d , x0)), being compact. By the
Heine−Borel theorem, all closed subsets of a compact set are
also compact. Since Ry(T∆t

d , x0) ⊂ ghull(Ry(T∆t
d , x0)), the

reachable set Ry(T∆t
d , x0) is compact.

C Proof of Corollary 2

Proof Consider three sets: F1 = Rx(T∆t
d , x0), F2 =

Rx(tk, x0), and F3 = F2 ∪ F ′
1, where F ′

1 is the collec-
tion of states x ∈ F1 producing the next feasible state
by Definition 5 with respect to x ∈ F1. It is true that
Rx(T∆t

d , x0) = F1 ∪ F2 = F2 ∪ F3. Let us consider arbi-
trary two sets H1 and H2 satisfying Rx(T∆t

d , x0) = H1∪H2

with H1 ∩ H2 = ∅. Let x ∈ F ′
1 and suppose x ∈ H1. Then,

H1 ∩ F1 6= ∅ and H1 ∩ F3 6= ∅. This implies that F1 ⊆ H1

and F3 ⊆ H1, hence, H2 = ∅. This proves that Rx(T∆t
d , x0)

is connected. Since the mapping fy is continuous, we also
conclude that the set Ry(T∆t

d , x0) is connected.

D Proof of Theorem 1

Proof Since Ry(T∆t
d , x0) is compact and f̂y is continuous,

Rx(T∆t
d , x0) is closed and f̂−1

y is also continuous. Then,

Rx(T∆t
d , x0) is connected because Ry(T∆t

d , x0) is connected

and f̂−1
y is continuous. Therefore, there exists at least one

trajectory connecting x0 to x(τ) satisfying fy(x(τ)) = yg in
Rx(T∆t

d , x0).

E Specifications of Valkyrie

We consider the following joint position/velocity/torque con-
straints. Excluding the virtual joints for the floating base, the
actuated joints (R28) are specified such as

qinit =[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.2, 1.1, 0.0, 0.4, 1.5,

0.0, 0.0, −0.6, 1.2, 0.6, 0.0,

0.0, 0.0, −0.6, 1.2, 0.6, 0.0],

qUB =[1.181, 0.666, 0.255, 1.162, 1.047, 0.0, 2.0, 1.519,

2.18, 2.174, 3.14, 2.0, 1.266, 2.18, 0.12, 3.14,

0.4141, 0.467, 1.619, 2.057, 0.875, 0.348, 1.1,

0.5515, 1.619, 2.057, 0.875, 0.348],

qLB =[0.0, −1.047, −0.872, −2.85, −1.266, −3.1, −0.12,

− 2.019, −2.85, −1.519, −3.1, −2.174, −2.019, −1.1,

− 0.5515, −2.42, −0.083, −0.8644, −0.349, −0.4141,

− 0.467, −2.42, −0.083, −0.8644, −0.349],

q̇B =[5.29, 9.0, 9.0, 5.0, 5.0, 5.0, 5.89, 5.89, 11.5, 11.5,

5.0, 5.89, 5.89, 11.5, 11.5, 5.0, 5.89, 7.0, 6.11, 6.11,

11.0, 11.0, 5.89, 7.0, 6.11, 6.11, 11.0, 11.0],

uB =[150.0, 150.0, 150.0, 26.0, 26.0, 26.0, 190.0, 190.0,

65.0, 65.0, 14.0, 190.0, 190.0, 65.0, 65.0, 14.0, 190.0,

350.0, 350.0, 350.0, 205.0, 205.0, 190.0,

350.0, 350.0, 350.0, 205.0, 205.0];

where q̇UB = +q̇B , q̇LB = −q̇B , uUB = +uB , and uLB =

−uB , respectively.
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