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Abstract In this work, we propose a trajectory gen-
eration method for robotic systems with contact kine-
matics and force constraints based on optimal control
and reachability analysis tools. Normally, the dynamics
and constraints of a contact-constrained robot are non-
linear and coupled to each other. Instead of linearizing
the model and constraints, we solve the optimal con-
trol problem directly to obtain feasible state trajecto-
ries and their corresponding control inputs. A tractable
optimal control problem is formulated and subsequently
addressed by dual approaches, which rely on sampling-
based dynamic programming and rigorous reachability
analysis tools. In particular, a sampling-based method
together with a Partially Observable Markov Decision
Process (POMDP) solution approach are used to break
down the end-to-end trajectory generation problem by
generating a sequence of subregions that the system’s
trajectory will have to pass through to reach its final
destination. The distinctive characteristic of the pro-
posed trajectory optimization algorithm is its ability to
handle the intricate contact constraints, coupled with
the system dynamics, in a computationally efficient
way. We validated our method using extensive numeri-
cal simulations with a legged robot.
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1 Introduction

This paper considers the issue of trajectory optimiza-
tion problems for robotic systems with state, input,
and contact force constraints. Often, it is required that
legged or humanoid robots maintain stable foot or body
contacts while executing given tasks. In such cases,
contact forces constrain and determine the robot’s
state reachability together with other state and in-
put constraints. Therefore, we seek to devise control
algorithms that can generate trajectories for contact-
constrained robots via formal state reachability analy-
sis. Frequently, control studies for robotics assume that
task trajectories are predefined Khatib [1987], Sentis
and Khatib [2005], Mansard et al. [2009], Righetti et al.
[2011], then attempt to find an instantaneously optimal
solution to accomplish them. However, the desired tra-
jectories are frequently infeasible and it is not straight-
forward to check the feasibility of trajectories under
contact constraints a priori. Many motion planning and
trajectory generation approaches for humanoid robots
use very simple models that rely on the dynamics of the
center of mass under contact constraints Kajita et al.
[2003], Stephens and Atkeson [2010], Liu et al. [2015],
Lee and Oh [2016]. However, these methods result in
lower performance of the robots due to their inability
to accurately capture the robot’s kinematics and input
constraints.

Our paper formulates a problem considering com-
plex robotic systems constrained by contact forces cou-
pled with the system dynamics, state, and input con-
straints. Before trajectory optimization, it can be ben-
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eficial for end-users to check whether desired goals are
reachable. Using reachability analysis is one way to
guarantee the existence of feasible state trajectories. It
can provide useful guidance for high level planning for
instance. However, for our purpose, it is very difficult
to check that the desired goal is reachable using meth-
ods that rely on the solution of the Hamilton-Jacobi-
Bellman partial differential equation (PDE), since the
contact force is time varying and the robots we consider
in our problem are nonlinear and high-dimensional sys-
tems. Linearization of dynamics and core approxima-
tion of reachable sets with convex sets is not applicable
to our problem because reachable sets of constrained
nonlinear systems may not be convex. Thus, we devise
a new method consisting of propagating system states
to obtain the reachable set. After confirming that the
goal is reachable via the proposed reachability analy-
sis, we generate an optimal trajectory by using Nonlin-
ear Programming (NLP) tools. Although nonlinear op-
timization tools and in particular, Sequential Quadratic
Programming (SQP) have been utilized for trajectory
optimization for robotic systems with contacts in the
literature (see Posa et al. [2014]), the use of such meth-
ods poses significant computational challenges for high-
dimensional systems. Nonlinear programming requires
the use of many decision variables and constraints when
incorporating both state of the full-body system and
the constraint forces. Therefore, we aim to solve tra-
jectory optimization problems for robotic systems with
contact constraints based on NLP methods, but in a
more computationally efficient way than state-of-the-
art methods in the field.

Concretely, we propose an approach that com-
bines sampling-based methods, quadratic programming
(QP), NLP tools, and approximation techniques, which
are based on the propagation of samples at boundary
points of reachable sets to solve our problem. More
specifically, we divide the end-to-end trajectory genera-
tion problem into small tractable sub-problems by using
a sampling-based approach combined with quadratic
programming (QP). Then, we reformulate the trajec-
tory optimization problem as a Partially Observable
Markov Decision Process (POMDP) with full-body dy-
namics of the robots considering obstacles in the sys-
tem’s output space. An optimal Markov policy result-
ing from the application of a dynamic programming
(DP) algorithm provides a sequence of output subre-
gions that the system’s output has to visit while avoid-
ing unsafe output regions, such as regions comprised
of the locations of obstacles in the output space. In
the next step, we utilize rigorous reachability analysis
tools to determine whether given pairs of subregions
can be connected with each other by means of feasible

trajectories. In our proposed approach, we propagate
the reachable sets of the system starting from a given
initial state by propagating the boundary states of the
reachable sets corresponding to previous time instances.
In this way, we achieve a significant improvement of the
algorithmic efficiency of our method, which is one of its
distinctive features compared with other state-of-the-
art techniques.

We summarize the main contributions of our work
in this paper as follows:

— To the best of our knowledge, the proposed method

is the first one in making the end-to-end trajec-
tory generation problem with Contact Wrench Cone
(CWC) constraints tractable.
Thus, our method allows end-users to quickly verify
that goal output states are reachable via the pro-
posed reachability tool prior to execution of robot
behaviors.

— Our method enables to consider a wide vari-
ety of robotic constraints, such as joint posi-
tion/velocity /torque constraints, collision avoid-
ance, contact kinematics and CWC constraints.
We demonstrate the efficiency of our method by ap-
plying it to a 23-DOF humanoid robot.

This paper is organized as follows. We summarize
prior work related to trajectory optimization and reach-
ability analysis in Section 2. Section 3 defines our prob-
lem and the target class of systems. A sampling-based
algorithm for obtaining approximations of the reach-
able set of constrained systems is proposed in Section
4, and a POMDP-based approach for obtaining an opti-
mal Markov policy of the output sequence is described
in Section 5. In Section 6, we propose an approach to
obtain the reachable sets that we leverage in Section
7 to design an optimal controller based on NLP tech-
niques. The proposed approach is validated by exten-
sive simulations of a robotic legged system with contact
force constraints in Section 7.

2 Related Work
2.1 Motion Planning and Trajectory Optimization

There is a rich literature on motion planning and tra-
jectory optimization for robotic systems. In particular,
kinodynamic motion planning has been widely studied
and used for the computation of trajectories that sat-
isfy constraints arising from both the kinematics and
dynamics of robots. For instance, Rapidly exploring
Random Tree (RRT) Kuffner and LaValle [2000], Kara-
man et al. [2011] and Probabilistic Road Map (PRM)
Kavraki et al. [1996] algorithms are employed to solve
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motion planning problems of robots. RRT*-smart is an
improved version of RRT*, which is based on the com-
bination of optimization techniques and an intelligent
sampling strategy Islam et al. [2012]. In Sakcak et al.
[2019], a variation of RRT* is proposed in which optimal
trajectories are synthesized based on a pre-computed
database of motion primitives. A semi-stochastic tech-
nique for generating a trajectory fulfilling kinodynamic
constraints to reach a goal state is proposed in Sintov
[2019]. However, these methods are not suitable for tra-
jectory optimization problems for non-holonomic sys-
tems Wieber [2006] or for robotic systems with contact
constraints, which are key attributes of various types of
robots.

Optimal control is a widely used approach to solv-
ing motion planning problems. For instance, Lyapunov
functions are utilized to track desired walking trajec-
tories under significant physical perturbations Nguyen
and Sreenath [2015], Nguyen et al. [2016]. Several stud-
ies have used Linear Quadratic Regulators (LQR), for
instance to synthesize local controllers and compute the
cost-to-go while fulfilling contact kinematic constraints
Posa et al. [2016], or to robustly control trajectories un-
der disturbances Manchester and Kuindersma [2019],
or to achieve optimal momentum control under multi-
ple contacts Herzog et al. [2015]. Reference Carius et al.
[2018] leverages the iterative LQR algorithm to handle
hard contacts with computational efficiency. Although
these methods based on LQR are computationally ef-
ficient, they require preliminary steps to obtain nom-
inal trajectories and rely on linear system approxima-
tions. In contrast, our method generates from scratch
the robot trajectories using nonlinear whole-body dy-
namic models of the robot.

Nonlinear optimization methods are capable of di-
rectly handling complicated nonlinear dynamics with
contact constraints Tassa et al. [2012], Posa et al. [2014],
Mastalli et al. [2019]. In these works, contact kinematics
and force constraints are expressed using inelastic im-
pact and Coulomb friction in the form of Linear Com-
plementary Problems (LCP) Tassa et al. [2012], Posa
et al. [2014]. However, these state-of-the-art methods
do not account for CWC constraints Caron et al. [2015]
which better describe the contact states of robots by
including horizontal and vertical moments with respect
to the contact surfaces. Another difference with respect
to these methods is that our proposed method pro-
vides a framework for computational efficiency based
on sampling methods which the above references don’t
provide. In addition, Budhiraja et al. [2018], Mastalli
et al. [2019] propose computationally efficient optimal
control methods for robots with contacts via Differen-
tial Dynamic Programming (DDP) but at the cost of

ignoring inequality or CWC constraints as we consider
in our problem. As a result our method aims at provid-
ing a more comprehensive trajectory generation tool
that includes more realistic models and a richer set of
constraints.

Many studies on legged robots have employed sim-
plified models, e.g., the Linear Inverted Pendulum
Model (LIPM) or the Reaction Mass Pendulum Model
(RMPM) based on centroidal dynamics, to plan walk-
ing motions instead of using full-body models. LIPM-
based planners generate Center of Mass (CoM) behav-
ior efficiently due to employing a low-dimensional state,
and the planned CoM is tracked via Whole-Body Con-
trol (WBC) for both bipedal Kim et al. [2019] and
quadrupedal Mastalli et al. [2020] robots. In addition,
the centroidal dynamics model accounts for the cen-
troidal momentum to describe upper-body behaviors
or to make robots more robust against push distur-
bances Wensing and Orin [2016]. Based on the cen-
troidal dynamics model, approximated CoM proxy and
CWC constraints are employed to generate legged loco-
motion behaviors by sampling CoM states Carpentier
and Mansard [2018]. Also, Fernbach et al. [2020] lever-
ages the centroidal dynamics model to guarantee that
CoM trajectories fulfill constraints while making con-
tact transitions.

Although the above methods are practical and com-
putationally efficient, two significant issues arise Lee
et al. [2020]. First, there exists a discrepancy between
simplified models and more complex full-body models
of robots. These methods cannot guarantee that the de-
sired CoM behaviors and contact locations are feasible
because simplified models do not explicitly handle joint
position/velocity /torque constraints that occur in real
robots. Secondly, using simplified models prevents con-
trollers to verify whether multiple task trajectories can
be simultaneously executed.

In our approach, in order to strictly enforce the ex-
plicit constraints and account for the nonlinearities of
the full-body model of robots, thus ensuring our abil-
ity to generate feasible trajectories, we propose to di-
rectly solve the resulting optimal control problem after
converting it to a Nonlinear Programming (NLP) prob-
lem. Although many NLP solvers, such as SNOPT Gill
et al. [2005] and IPOPT Wiéchter and Biegler [2006],
they involve complex computations that prevent them
from being practical for robotic systems. One of the
main contributions of this work is the significant mit-
igation of the computational burden of the nonlinear
trajectory generation process based on NLP applied to
various robotic systems.
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2.2 Reachability Analysis

Reachability or feasibility tools are beneficial to plan
complex and dynamic motions of robotic systems ful-
filling constraints such as loco-manipulation Jorgensen
et al. [2020], Burget and Bennewitz [2015], Yang et al.
[2017]. In optimal control studies, reachability analysis
is frequently implemented by solving Hamilton-Jacobi-
Bellman (HJB) PDE Asarin et al. [2000], Mitchell et al.
[2005], Kariotoglou et al. [2013]. Although these meth-
ods are effective for low-dimensional dynamical sys-
tems, it is hard to perform the HJB-based reachability
analysis for high-dimensional constrained systems such
as humanoid robots. Other than the HJB-based meth-
ods, many approaches have been proposed to compute
reachable sets by exploiting mathematical techniques,
optimization, inherent characteristics of systems, etc.
The logarithmic norm of a type of system’s Jacobian is
utilized to obtain over-approximated reachable sets for
nonlinear continuous-time systems Maidens and Arcak
[2015] and that norm is utilized for simulation-based
reachability analysis Arcak and Maidens [2017]. Reach-
ability analysis for uncertain nonlinear systems based
on conservative approximations can be found in Rung-
ger and Zamani [2018]. Also, for continuous-time piece-
wise affine systems, linear matrix inequalities (LMI) are
employed to characterize the bounds of reachable re-
gions in Hamadeh and Goncalves [2008]. Another class
of reachability analysis uses convex approximations of
the reachable sets in terms of ellipsoidal sets Kim [2008],
polytopes, zonotopes Girard [2005], and support func-
tions Le Guernic and Girard [2010]. In Liebenwein et al.
[2018], a sampling-based method is employed to approx-
imately compute reachable sets. However, the method
proposed in this reference is not applicable to contact-
constrained robotic systems.

Although these approaches are capable of applying
nonlinear dynamical systems, they are not suitable for
complex robots due to the high-dimensional state space
dynamics and intricate constraints. Instead, the reach-
ability analysis is typically carried out on the configu-
ration space of robots. Reachability space is merely em-
ployed to speed up an inverse kinematics solver for dex-
terous manipulation Vahrenkamp et al. [2009]. Reacha-
bility indices of a mobile manipulator at potential poses
of the base in SFE(2) are computed to find the suit-
able base pose for a given grasping mission Vahrenkamp
et al. [2013]. For humanoid robots, a simple sampling
method is utilized to generate a sparse reachable area
of end-effector with joint limit and self-collision avoid-
ance Lofaro et al. [2012]. Also, a reachability map of a
full-body humanoid is proposed to select a stance pose
for achieving a grasping task Burget and Bennewitz

[2015]. Furthermore, Yang et al. [2017] combines both
an upper-body inverse dynamic reachability map and a
lower-body dynamic reachability map to generate loco-
manipulation behavior. Guan et al. [2008] obtains the
reachable space of a humanoid robot using optimiza-
tion and the Monte-Carlo method. After solving the
inverse kinematics of legged parts, random configura-
tions of the upper-body are tested to check whether
the CoM position belongs to the support polygon. Jor-
gensen et al. [2020] proposes a method to find the loco-
manipulability region based on the readability of both
manipulation and locomotion contact transition.

Reachability has contributed to improving the per-
formance of motion planning in robotics. Nevertheless,
most approaches rely on robots’ kinematics and sim-
ple constraints in position or velocity levels. We need
to exploit not only kinematics but also the dynamics
of robots to properly handle contact constraints in the
reachability tools. However, it is well known that it is
difficult to do reachability analysis for high-dimensional
systems due to the computational complexity. There-
fore, in this paper, we will employ optimal control meth-
ods, which will be applied to nonlinear models of the
robotic systems and will also implement the reachabil-
ity analysis of contact-constrained robots in a compu-
tationally efficient way, namely through the boundary-
states propagation method.

3 Problem Formulation
3.1 Notation

We denote the set of real n-dimensional vectors and
the set of real n x m matrices by R™ and R™*™, respec-
tively. The set of natural numbers and the set of integer
numbers are denoted by N and Z, respectively. The set
of positive definite and positive semi-definite n X n ma-
trices are denoted by S¥; and S%,. When considering
21,722 € Nwith zo > 21, the discrete interval between z
and z9 is defined as 21, 23]y == {21, 21+1,...,20—1, 22}
In case that z; and 25 are non-negative real numbers,
[21,22](? ={z1,21+ A, ..., 20 — A, 25} denotes a dis-
crete interval with A being the increment. When n real
numbers aq, .. ., a, are consider, Vec[a;]?_; € R™ repre-
sents a vector whose i-th element is a;. Given n x m real
numbers aiy, ..., Gmn, & matrix whose (4, j) element is
a;; is denoted by Mat|a;];/2; € R"*™. Given a square
matrix A € R™ " tr(A) denotes its trace. 7(A) and
o(A) represent the largest and smallest singular val-
ues of A, respectively. Given matrices A; € R™*™
i € [1,z]n, Vertcat(Ay,...,A,) € Rt tnz)xm iy
dicates a block matrix constructed by vertically con-
catenating the matrices A; i € [1,z]y. Given a set of
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real vectors A C R™, card(A) denotes its cardinality.
When considering particular cases such that A C R™
with n € [1,3]y, ghull(A) and gbhd(A) represent the
general hull and the set of vectors closest the bound-
ary of A. E[.] represents the probabilistic expectation
operator.

3.2 Nonlinear Robotic System with Contacts

We characterize the equation of motion for general
robotic systems with contact forces and assuming rigid
body linkages as follows:

M(q)§ + b(4,q) = STu+ I/ (¢)Fe (1)

where ¢ € R™1, M(q) € S;l%, b(g,q) € R", S € R™*"a,
u € R™ J.(q) € R"*" and F, € R™ denote the joint
variable, sum of Coriolis/centrifugal and gravitational
forces, selection matrix for the actuation, input actuat-
ing joint torques, contact Jacobian matrix, and contact
force, respectively. We can bring the differential equa-
tion (1) into a state space form by defining the state
z = [r{25]" € R™ where z; = ¢ and 23 = ¢:
Z2
MY (z1) (STu+ . (1) F. — b(xa, 21)) (2)

= f(z,u, F).

=
Il

The continuous state space model of the robot can be
discretized as follows:

2(t1) = fo (2(tr), u(t), Fe(tr)) 3)

where z(tx), u(ty), and F.(tx) denote the state, in-
put and contact force at time t;. In addition, fp :
RPetutne s R7 i3 continuous and At = tgpy1 — tg.
Since the robotic systems are controlled in operational
space, the output of the system is a function of the
state, y(t) = fy(z(t)), where f, : R" = R, is Cs.
For instance, we can set the output of the system as
the position and orientation of the end-effector, that
is y € SE(3), then the robot would be controlled to
achieve the desired output at specific time instance:
y(ty) = y9 where y9 and ty represent the goal output
vector and final time, respectively.

3.3 Constraints of the System

We refer to h, and h; as the equality constraint func-
tion and the inequality constraint function, respec-
tively, where we assume that h.(z) = 0 and h;(z) < 0.

The state equality constraint function, h., should con-
tain the contact kinematics constraints as follows:

®i(q) =0
1 d T .
¢i(g.4) = i =Js,(0)g=0 (4)
; d?¢;  dIe.(q) . .
butardvi) = S0 = DDy g (=0

where ¢; : R — RS denotes a continuous mapping for
position and orientation errors of the i-th body with
respect to the planned contact location and Jg, = J,.
Also, we consider multiple inequality constraints in
joint space as follows:

B <q<qup, 4B <4< quB;

(5)

urp <u<uyp

where subscripts (.) 5 and (.)y s refer to lower and up-
per bounds, respectively. In this paper, it is necessary to
explicitly consider the contact force constraint to pre-
vent slip and flit on act surface. The frictional contact
wrench cone constraint is shaped by using the state and
contact force generated by the robotic system:

he(z, F.) <0, he(z,F.) = W.(z)F, (6)
where W.(x) € R1®X" is a matrix describing the uni-
lateral constraint using a polyhedral approximation of
the friction cone of a surface Caron et al. [2015]. The
contact force is coupled to the system dynamics as
shown in (1) so that this constraint makes the trajec-
tory optimization problem more difficult.

3.4 Problem Definition

Here we specify the end-to-end problem we are address-
ing and break it down into tractable subproblems. The
end-to-end trajectory generation problem assumes that
an initial state, xo = x(tp), and a goal output state, y?,
are given. The problem consists then on obtaining opti-
mal state and input trajectories satisfying state, input,
and contact constraints over a finite-time horizon. The
end-to-end trajectory generation problem is written as
follows:

Problem 1 Consider an initial state x(tg) fulfilling
state equality and inequality constraints, a goal output
vector y9, and finite time interval 7' = [to,t;]$. Our
problem is to obtain a locally optimal trajectory for
the discretized system in (3) satisfying all constraints
to reach the goal output at time instance ty, that is

X = {a(to), -+, a’(ty)} where f,(x?(ts)) = y*.
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Fig. 1 Subproblems and Proposed method: (a) Generating random state vectors and obtaining a set of sample-wisely feasible
states, Section 4.1, (b) Checking the feasibility goal output via output approximation, Section 4.2, (¢) Solving POMDP to
obtain an optimal sequence of nodes, Section 5, (d) Obtaining reachable sets and optimizing trajectories between sequential
nodes, Section 6 and 7 (e) Consecutively executing trajectory optimizations with reachable sets, Section 6 and 7

This problem is implicit and hard to solve in general. In
addition, we do not know if the goal output is reachable
in first place. Therefore, we divide the entire problem
into four tractable subproblems as follows:

Subproblem 1 Given constraint functions he, h;, hy,
and h., we aim to obtain a set of states, X, fulfilling
all constraints. We define this set in Definition 1 as the
Samplewise Reachable Set.

Subproblem 2 Given a set of states fulfilling con-
straints, X, and an nitial state, x(to), the problem is
now to find an optimal sequence of subregions in the
output space such that y9 is reachable.

Subproblem 3 Suppose that the above optimal se-
quence of subregions in output space has been found and
we are given the initial state x(tg), the next subproblem
1s to check whether the goal output, y9, is reachable via
reachability analysis.

Subproblem 4 After checking the goal output, y9, we
obtain a local optimal trajectory, X, by solving a non-
linear constrained optimal control problem.

We employ optimal control to generate short tra-
jectories based on quadratic cost terms involving out-
put errors. We break down the motion planning prob-
lem into various subproblems in output space instead
of configuration space. This strategy provides a near-
optimal solution for output space trajectory generation.
To tackle these subproblems we employ sampling-based
optimizations, a POMDP representation, reachability
analysis, and nonlinear optimal control. The overall
procedure is depicted in Fig. 1.

4 Sample-Based Optimization via QP
In this section, we solve the defined Subproblem 1 by

using random samples and QP. The solution of Sub-
problem 1 is a set of states precisely defined as follows:

Definition 1 (Samplewise Reachable Set) Given con-
straint functions h., h;, h,, and h., Samplewise Reach-
able Set (SRS) is defined as a collection of the states
satisfying all constraint.
X ={x € R"™ : he(x) =0, hi(z) <0, Jv € R"=,

v = fp(x,u, F.), he(v) =0, hi(v) <0,

hy(u) <0, he(z, Fe) <0, u e R™, F, € R"}
By the definition of SRS, all elements in X are able

to propagate to the next state fulfilling the addressed
constraints by appropriate input and contact force.

(7)

In this section, we will obtain SRS by using sampling-
based method and a least-square QP process.

4.1 Update for Random State Samples

We start by creating random samples from a Gaussian
distribution z ~ N (g, ¥;) where p, € R" and X, €
L% are the mean and the covariance matrix, respec-
tively, that is, y, == E[z] and =, = E[(z—pz) (z—p1z) T].
We compute i, by considering the median of Range of
Motion (RoM) for each robot joint or initial configu-
ration in relation to joint constraints (6). We assume
that ¥, is a diagonal matrix whose elements are vari-
ances of joint positions and velocities. When drawing
multiple random samples, we assume that the random
samples are statistically independent and uncorrelated.
As a first step, we gather the states fulfilling the ad-
dressed constraints among the sampled random states.
Of course the Monte-Carlo method can be one of can-
didates to collect the state samples however it is very
inefficient. Instead of the Monte-Carlo method, a least-
square QP and the gradient descent method are com-
bined to update the sampled states for fulfilling the
state constraints.
Firstly, let us consider the state constraint functions
he, and h;. Then, the corresponding Jacobian matrices
are defined as follows:

Je(z) = 68};; (), Ji(z) =

Oh;
ox

(). (8)
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All constraints are independent then the Jacobian ma-
trices are full row rank. Then, we iteratively update the
sampled states as follows:

Zht1 = 2k + YAz 9)

where zy denotes the initially sampled state and 7y €
R>g. For our gradient decent method, we deploy a par-
ticular method for computing ~y.

‘(Zk — Zk_l)T(AZk — Azk_1)|

= 1
Tk ||Azk — Azk,1||2 ( O)
Az, is computed by the following QP.

: 2
Jmin

st Je(zr)Azg < —he(zk) + wi, (11)

Ji(zr) Az, < @ — hi(z)

where ¢ refers the desired vector computed by using
the initial sampled state as follows:

min ¢ = hi(z0)|%, st of <6 (12)

i

where §; = [a, ---, a]T € RI™(i(20) and a < 0.
The proposed method is a numerical iteration combined
with QP so that we have to determine the termination
tolerance of this iterative process. We terminate the
iteration if the error ||h.(zr)|| < € where € is a very
small numerical tolerance. Then, it is evaluated whether
the inequality constraints are fulfilled in terms of the
update state. We obtain a set of the states updated
by the proposed method and satisfying the addressed
constrained.

KXstate = {Zk e R" : ”he(zk)H <g hi(zk) <0,

13
2z, updated from zg ~ N (i, 3;)} (13)

For the next step, we take all elements of Xat0 and
check whether there exist the appropriate input and
contact force to propagate the state which also fulfills
the state constraints. Considering the input and contact
force constraints, we formulate a QP problem by taking
two elements v; and vy from Xy ate-
min  FQ.F. +u' Quu
u,F.

s.t. 'UZZfD(Ulauch);
hy(u) <0, he(vy, Fe) <0

(14)

where Q. € S% and Q, € SIj are weighting ma-
trices for the cost. If there exists an optimal solution
of the problem in (14), we collect all v; in (14) into
SRS, X. Otherwise, we discard the updated state sam-
ples. It is key to draw sufficient state samples on the

constrained manifold using the proposed optimization-
based method because we break down the end-to-end
trajectory optimization problem via the use of POMDP,
which will rely on the probabilistic distribution over the
sampled set. If the state set is sparse, there is less chance
of finding a feasible sequence of output regions.

4.2 Output Space Approximation

In this subsection, we check the feasibility of reach-
ing the desired goal output. To do so, we approxi-
mate the output samples with a Gaussian distribu-
tion y* ~ N (p1y~, Xyy+) Hendeby and Gustafsson [2007].
From the obtained SRS X, we compute sample mean
and covariance of X', u¥ and X*. Based on the sample
mean and covariance, the mean and covariance of the
output obtained after neglecting higher order terms are

piy= = fy(uz) + Vec [tr(Hy (1) 23)]12, (15a)
By =3y () S5y (1)
1 * * * * My, M
+ 5 Mat [or(SpHy i (05) BaHy 5 (1)) 520 (15b)

where J, (1) and Hy, ; (1) denote the Jacobian matrix of
the output function f, (1) and the 2nd derivative matrix
of the output function f, ;(x), for the i-th element. In
particular,

of
Jy(:u) = aixy(:u)v
9% fy.i (1) 9% fy.i (1)
Ox? T 010w, (16)
Hyi(p) = : . :
62fy,i(ﬂ) azfy,i(ﬂ)
0Ty, 0xy " 6:6%x

where J, (1) € R™*" and H, ; (1) € R™**™= is a sym-
metric matrix. We construct a probabilistic ellipsoid in
the output space to approximate whether an output
sample y* is feasible. We define a set of outputs that lie
inside an ellipsoid &, with

En={y €R™ : (y—py-) 'Sy —py) <k} (17)

where k is a coeflicient determined by the cumulative
probability of the Chi-square distribution. For instance,
k = 5.991 for Pr(y* € &) = 0.95 and y* € R?. Our
method to check if a goal output yY is interior to &
is more efficient than using a Monte Carlo method, be-
cause we only need to compute py~ and 3« using the
mean and covariance matrix of the samples using (15).
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5 Optimal Sequence of Subregions via POMDP

After checking that the desired output goal y9 is lo-
cated at the interior of the ellipsoid &, in (17), we solve
Subproblem 2 to find an optimal sequence of subre-
gions in the output space. We will find the optimal
policy to move from the output subregion containing
y(to) = fy(x(to)) to one where y? is located.

5.1 POMDP Setup

To start the process solving Subproblem 2, we define
output subregions:

Vi={y e R"™ 1 [ly — yilloc < ey} (18)

where y{ € R™ denotes the center of the output subre-
gion Y; and i € [1,m]n where Ujep1 ), Yi € R™. Sides
of the subregions are 2¢,. Also, we obtain a set of out-
puts as follows:

Y=f,(X)={yeR™ :y = f,(2),2 € X} (19)

where fy : X =3 )Y denotes a set-value mapping. To
formulate our problem as a POMDP, we define discrete
nodes associated with the previous subregions as fol-
lows:

s; =node(Y;), i€ [l,m]y (20)

where § = {s1,...,8,}. Based on these nodes, we
transform the problem to a POMDP. We will formu-
late the probability of observations using the sampled
states. Before formulating the detailed POMDP, we in-
troduce several definitions used in this section

Definition 2 (POMDP) Partially Observable Markov

Decision Process is defined as a tuple P =

(S, A0, T,Z):

— S is a finite set of nodes, S :== {s1, -+, Sm. }

— A is a finite set of actions, A = {a1,- - ,am, }

— O, is a finite set of observations, O, =
{017' o ’Omo}

— T is the transition dynamics T(s', s,a) defining the
transition from s € S to s’ € S after taking an
action a € A.

— Z is the observation Z(s, a, 0) consisting of the prob-
ability of observing o € O, after taking an action
a € A from node s € S.

Definition 3 (Markov Policy) A Markov policy II is
defined as a sequence: IT := {aM),--- ,a(™}. aU) € A,
where aU) : S — S is a measurable map from a node
to another one, j € [1,n]y .

Definition 4 (Principle Singular Vector) Consider a
node s; € S fxssociated with an output subregion Y; and
a set Y = f,(X). Consider Xy, being the covariance
matrix for the set Y; N Y, that is, Xy, = E[(y — py)(y —
1y) "] and p, = E[y] where y € Y; N Y. A Principle
Singular Vector (PSV) is defined as

V(Sl) = COI(qu‘,)ka Jk(Eyi) = E(Eyi) (21)
where Eyi = V;iAyiVyi, Ayi = diag(al,...,any),
and o} denotes the singular value of 3y,.

5.2 POMDP Formulation

The problem concerning this section is on finding a se-
quence of feasible subregions towards an output goal
using POMDP tools and analysis. To do that, we con-
vert the POMDP into a belief MDP. Belief b[s;] is de-
fined with respect to discrete nodes s; € S. Let suppose
b=0b[sD], ¥ =b[sUtD], and a = a9 where s\9) rep-
resents the node for the j-th step of the POMDP. The
belief transition function, I'(b, a,b’), is equal to

L'(b,a,b') = Z Pr(b'|b, a, 0)Pr(ob, a) (22a)
o0€Oy,
, _ [ 1, if belief update returns b’
Pr(t'lb, a, 0) = {O, otherwise (22b)
Pr(olb,a) = Z Z(s',a,0) ZT(sl,s,a)b. (22¢)

s'€S s€S

The key challenges of this POMDP are on defining
meaningful observations and on finding their condi-
tional probability. Let us consider that ¥ = Y () and
Y’ = YU+ associated with the nodes s) and sU+1.
We propose to define observations as the set of feasible
states after taking an action a, i.e.

O={v eR™ v €Y NY, 1€Y' NY,
Vg = fD('U17U,FC), hu(u) g 0, (23)
he(vr, Fe) <0, u € R™, F, € R"}

where Y is the subregion before taking the action a.
If v € O, it holds that there exists at least one sam-
ple connecting f,(v1) to another output fy,(ve) in the
subregion ) satisfying the constraints as illustrated in
Fig 2(a). Otherwise, v; is excluded from the observa-

tion O. Considering the above observations, we define
the conditional probability as

Z(s',a,0) = Pr(o|s’,a) = card(0)/card(Y' N Y). (24)

Let us focus on the reward and transition dynamics. As
a heuristic, a higher number of feasible samples falling
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Fig. 2 Basic use of a POMDP process: (a) Observations are samples that can reach neighboring output subregions, (b) Given a
set of observations for a node V(s;) we compute their principle singular vector, (¢) Using this vector we compute the transition

dynamics and the action vectors in output space.

into a subregion implies a higher probability of reaching
it. Therefore we define the reward

card(Y; NY) _
card()) + i

where K, € Ry and 7; € R are the gain and reward
offset, respectively. We take 7; to be large when y9 € ).
Also, to avoid unsafe output regions we set 7; to large
negative values.

For defining the transition dynamics, let an action
a € A map state s € S to s’ € S. ds_,¢ is a vector
in our node space associated with dy_,y+ = (y'¢ — y°)
where y¢ and y’¢ are the centers of subregions Y and
Y’, respectively. We define the transition dynamics as

R(s;,a) = K, (25)

T(s',s,a) = {g:(s/, s, a)/@, ietisf #0, (26a)
T(s',s,a) =max {0, (V(s),a)} (26Db)

where @w = »7 A T(s',5,a) denotes a normalization
constant and a is the action vector of the action a.
In Fig. 2(b), we illustrate V(s) and it is intuitive that
the samples are densely scattered along PSV. Fig 2(c)
interprets the meaning of the tansition dynamics. In
detail, the angle between PSV and the action vector
is smaller, in other words (V(s),a) is bigger, and it is
easier to make a transition in the action direction a.
As according to Proposition 1, we cannot construct the
transition dynamics by the proposed method if first two
singular values of Xy, are similar or the output samples
are uniformly distributed. In these cases, the transition
dynamics is considered as deterministic.

Proposition 1 Let s = s; € S and the correspond-
ing subregion be Y;. If the output samples are uniformly
distributed in Y;, then T(s',s,a) = 0.

Proof See Appendix A.

We now solve a finite-horizon belief MDP. The op-
timal policy, denoted by IL,, is obtained by solving the
Bellman equation as follows:

0.(0) = e | 2 MR
) (27)

+. Z Pr(o|b, a)D4(T'(b,a,0))

o€y,

where /3 is a discount coefficient. The result of the DP
provides an optimal Markov policy which we trans-
form to a sequence of nodes as S, = {s&l), e ,s&n")}.
The sequence of subregions in output space is con-
verted form the optimal sequence of the nodes, Y, =
{node™*(s ¢ )), .-+ ,node (s} (n )} Based on the gener-
ated sequence of subreglonb, we will implement reach-
ability analysis for each connection between sequential

two subregions in Y.

6 Reachability Analysis

It is extremely hard to obtain the reachable set in con-
tinuous time because our problem incorporates the non-
linear dynamics with intricated state-input constraints.
In this section, we define discrete-time reachable sets
and propose the way to obtain the reachable sets via op-
timizations. To overcome the computational complex-
ity of propagation algorithm for the reachable sets, a
method propagating the boundary samples is proposed
and analyzed in the views of computational complexity.

6.1 Optimization-based Reachability Analysis

To start solving Subproblem 3, we define a discrete-time
reachable set at time instance ¢ in terms of the initial
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state xg = x(tg). We assume that the given initial state
xq fulfills all state constraints.

Definition 5 (Discrete-time Reachable Set) Let xo be
an initial state and t € Tt = [to, t]4" be an arbitrary
time interval. We define a reachable set in discrete time
domain as:

Ra(t,x0) = {2(t) : 3u([to, t]3" )73Fc([to7 t2"),
he(x(7)) = 0, hi(z(r)) <
ha(u(7)) <0, he(x(7), F. ( )) 0, (28)
o(1 + At) = fp(x(7), u(7), Fe(7)),
z(to) = xo, T € [to, 1|7}

where At > 0 is the discretization step or sampling
period for our discrete model.

We extend the reachable set defined above for the finite
discrete time interval T4t = [tg, t4]4 as

U R t (ﬁ(] (29)

teT At

Rr( iUo

For any ty < oo, the reachable set satisfies the following
bound R, (T3, zo) C Ru([to, +00),20). By using the
set-value mapping fw we can express the reachable sets
in the output space such as R, (¢, z9) = fy(Rx(t,xo))
and Ry (T2 20) = fu(Ra(TA, 20)). We clearly show
the following two corollaries related to the defined
discrete-time reachable sets.

Corollary 1 The reachable set over a finite time hori-
zon TP = [to, ty]3, Ry(T2, x), is compact.

Proof See Appendix B.

Corollary 2 Suppose that {zo} = Ry (to,z0) and f,
is continuous. Then, a set, R, (T, o) where T3t =
[to,tr]5", is connected.

Proof See Appendix C.

Above two corollaries are useful to check whether the
goal output is reachable using the proposed reachable
sets. Based on the corollaries, we address a theorem to
confirm that the goal output is reachable in terms of
the system dynamics, constraints, and a specific time
horizon.

Theorem 1 Suppose that the initial state, xq, the goal
output, y9, and discrete-time interval, T3 = [to, t¢]5",
are given. Let us assume that the set, R, (T, x¢), is
compact, connected, and y9 € ’Ry(TdAt,xo). Then, at
lest one trajectory ¥ = {&(tg), ..., &(7)} exists such
that f,(§(1)) = y? where T < ty.

Proof See Appendix D.

6.2 Forward Propagation of Reachable Set

We employ the sampling-base method and a QP to
propagate the state in the discrete-time domain. A
random input is drawn from a Gaussian distribution
u ~ N(py, ) at each instant of time with the input
set U defined as the collection of inputs fulfilling input
constraint. Let us consider zo and R, (T3, zo) where
TAL = [tg,tf]5*. We define a QP to check for feasible
contact forces, i.e.
min  FQ.F. + (vh11 — 1) | Qu(Try1 — 1)

Fohg1
st. zp+1 = fp(ze,u, Fo), (30)
he(xgt1) =0, hi(zps1) <0,
he(zp, Fo) <0, ueld

where 7, € R, (T, 2¢). If there exist the optimal de-
cision variable F* and z}, ,, ¥}, becomes an element
of Ry (tk41,20). For all sampled inputs u € U and the
reachable states ), € R, (T, o), the QP in (30) is re-
peatedly solved to collect the optimal decision variables
w1 in Ry (teg, xo):

R;c(tk—&-laxO) = {x2+1 : (F ) x2+1) +— QP (30)7

At (31)
Vo € R (T, xo), Yu € U}

The reachable set R ([to, tr+1]4% 20) = Ra(T2, 20) U
Rau(tkt1, o). This is a computationally efficient
method to compute the reachable sets because the QP
is computationally cheap. However, the number of state
samples in the reachable sets exponentially increases in
terms of the number iteration. To reduce the growing
computation burden, we propose a particular method
in the following section.

6.3 Propagation of Boundary States

The basic algorithm for reachability analysis suffers
from exponential complexity with respect to the num-
ber of time steps. Although the previous POMDP con-
tributes to reducing the time horizon to be checked for
reachability analysis, full-state propagation would still
result in heavy computational burden. In this section,
we propose a method for reducing the computational
complexity of the algorithm by only propagating se-
lected states. This approach results in more conserva-
tive reachable sets.

To implement the forward propagation of boundary
state samples, we define a set by collecting the bound-
ary samples of an reachable set R (¢, z¢) as follows:

B.(t,zg) = {z € R"™ : & € R,(t, x0),

(32)
fy(x) € gbd(Ry(t,20))}-
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Algorithm 1: Computing Reachable Sets by
Propagation of Boundary States

Data: qo, qu QC’ Qza TdAtv yg
Result: R, (TdAt,xo)
Mo, bo < Update dynamics properties w.r.t. qo, ¢o ;
J. < Update contact Jacobian w.r.t. qo ;
Check Contact Kinematics in (4) w.r.t. qo, go;
if Feasible then
Ra([to, to] 2, 20) = Ra(to, zo) = {zo};
for k < 0 to N; do
TRh = [to, tr] 35
U + Generate N,, input samples;
BGC(TkA,fl»IO) < (32) by RZ(TkA,tti:xO) ;
Ng, + Get card(B. (Th, o);
for j <~ 1 to N, do
z) + j-th sample in R, (T,ffl,wo) ;
for i + 1 to N, do

u <— i-th sample in U;

solve (30) with z) and u ;

if I(F¥, x5 ;) then

‘ add werl to Rf(tk+1,x0);

end
end
end
R ([to, trt1]3"s zo) +

Ra (T, x0) URE (try1, wo) ;

end

end
else

| Terminate due to the infeasible initial state
end

)

This definition can be extended to the reachable set
over a finite time horizon, B, (T, z0), in the same
manner. We solve the QP (30) for only the state sam-
ples in B, (T, x¢) to obtain RE(ty41,70) and iter-
ate this process to expand the reachable set forward.
In this way, the computational complexity becomes
linear with respect to the number of boundary sam-
ples, card(B, (T, z0)). The detailed process of our al-
gorithm is described in Algorithm 1. In order to re-
place full-state propagation with boundary-state prop-
agation, we show that the set of reachable outputs is
compact and connected. First, the set ’RS (T2, x) is
compact, because we are able to obtain the hull of the
set as shown in Corollary 1. Next, we prove the reach-
able set Rf(TdAt7 %) is connected.

Corollary 3 Suppose that o € Ry(to, o) and f, is
continuous. Then, Rg(TdAt,xo) is connected.

Proof The proof is similar to that of Corollary 2 and
therefore is omitted. See Appendix C.

In linear systems, it is straightforward to recur-
sively propagate boundary states by, for instance, us-
ing Proposition 6.5 in Blanchini and Miani [2008] and to

over-approximate the reachable set using Zonotopes Gi-
rard et al. [2006], Hansch et al. [2013]. In addition, prop-
agating boundary states is valid for obtaining conser-
vative reachable sets for manipulators Lee et al. [2019]
and legged robots Lee et al. [2020] if their kinematic
workspaces are connected, the reason being that the
reachable set is a subset of the kinematic workspace.
The above proposition can be extended for the class of
nonlinear robotic systems with connected workspaces.

6.4 Computational Complexity Analysis

We analyze the computational complexity to compare
the efficiency of the propagation of full states and that
of boundary states. There exists many algorithms to
obtain the concave hull from the set of data Galton
and Duckham [2006], Duckham et al. [2008], Moreira
and Santos [2007]. They have O(n3) or O(nlogn) time
complexity with n data in 2-D space. General QPs are
non-deterministic polynomial-time hard, which means
the algorithms are more complex than the polynomial
time complexity to be solved. In the case that the QP
is convex, it is widely known that the time complexity
of the QP is O(m?) where m is the number of decision
variables.

Based on the aforementioned discussion, we can
compare the computational complexity of two cases:
propagation of full states and propagation of boundary
states. Let us consider N; steps over the time interval
[to, tx]5 where At = (t;, — to)/Ni, and N, is the num-
ber of input samples. For each propagation method, the
computational complexity can be represented as

Ny
Cy ~O(> Ni(ne+ne)*) ~ O (NI (ne +ns)?)
i=1
N (33)
C, NO(Z Nb(nc + nz)?’ + (iNb)B)
i=1
~ O(N{Ny(ne +ng)? + Nng’)

where C;, and N, denote the complexity of full state
propagation, that of boundary state propagation, and
the number of boundary samples. Normally, a set of
boundary samples contains much smaller samples than
a set of entire states, that is, N, < N,. The effect
of the boundary sampling on computational complex-
ity becomes significantly advantageous in terms of the
number of time steps. We will show the comparison of
the computational complexity using an example in the
simulation section.
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Algorithm 2: Sequential Optimal Control
Data: qo, 4o, Qc, Qaz, Qy, ¥?, Y«
Result: ¥, U
if y9 is reachable then
T=0U=0;
zo < lgg 5 dg |7
for k<~ 1ton, —1do
k
vyl
(‘I’ik), U™) « solve NLP problem in (36) ;
¥ <+ vertcat(W, ‘Il(*k));
U « vertcat(U, U&k));
2o « & in WM
end
end
else
| Terminate due to the infeasible goal output
end

)

6.5 Sequential Reachability Analysis

Given an optimal sequence of subregions in the output
space, Y, = {Y*(l), cee ,Y*(n")}, we check it is possible
to successively move from one subregion to the next one
via reachability analysis as described in Subproblem 3.

7 Nonlinear Constrained Optimal Control

In this work, we describe the use of sequential opti-
mal control for nonlinear programs without constraint
softening. Instead of considering end-to-end trajectory
generation, we focus on finding a trajectory connecting
two subregions obtained by the POMDP process de-
scribed earlier. By iterating this process for connecting
subregions, the optimal control process is able to attain
the desired output with reduced computational cost.

7.1 Nonlinear Programming

In order to formulate the optimal control problem
solved by NLP, a performance measure is defined in
the discrete time and state space, that is the sum of
running cost, £, and, final cost, £:
N—-1
J(U,F.,N) = Uz, up, Fe ) +Cp(xy, Fop)  (34)
k=0
where U := {uyg,...,uny_1}and F. = {F,.o,- -, Fe N }.
The running and final costs are formulated by using
quadratic terms as follows:

Cp(wy, Fer) :egjj(zf)Tdeg(xf) + FCT,chFc,f,
O, up, Fop) =ef (x0) T Qyel (v1) + FLQcFee (35)

+ed(zr) " Qued(wk)

where ef (z) = y/ — f,(z) and €0 (z) = 2o —z. Addition-
ally, Q, € S%%, Q. € %, and Q, € SZ% denote the
weighting matrices for the state, the contact force, and
the output, respectively. £(t) € R™ and yq € R™ de-
note the trajectory of the state and the desired goal of
the output of the NLP problem, respectively. The NLP
problem is defined to obtain the end-to-end trajectory
as follows:

min J(U,F.,N)
v, U

st Eky1 = fo(&ks Uy Fek)s (36)
he(&k) =0, hi(&) <0,
hu(uk) § 07 hc(gkaFc,k) S 0.

In order to reduce the computational time, we se-
quentially solve the optimal control problem by refer-
ring the results of POMDP problem. Given Y, we
solve n, — 1 optimal control problems to reach the goal
output. Algorithm 2 shows the way to sequentially ob-
tain the optimal trajectory and the corresponding input
torque.

8 Numerical Simulations

In this section, we validate the proposed approach by
demonstrating numerical simulations using two robotic
systems which are called Draco and Valkyrie. Draco is
developed as a test platform for efficient and dynamic
locomotion using liquid-cooled series elastic actuators
Kim et al. [2018] and Valkyrie is a biped full-body hu-
manoid robot operated for executing locomanipulation
missions by NASA Radford et al. [2015]. For the basic
software setup, the dynamic simulation is implemented
by DART Lee et al. [2018]. We utilize two optimizers:
Goldfarb for QP and TPOPT implementing a primal-
dual interior point method Wichter and Biegler [2006].
In addition, we extract analytic expressions of both
kinematic and dynamic properties to deploy them for
nonlinear optimization process by using Mathematica',
FROST Hereid and Ames [2017], and MATLAB?. The
simulation is executed on a laptop with a Core i7-8650U
CPU and 16.0 GB RAM.

8.1 One-sided Leg Draco

A simulation model of Draco consists of three virtual

joints for its floating base (q1, ¢2, ¢q3) € SE(2), ie.,

q1, q2, and g3 refer to virtual joints for the floating
base positions and pitch orientation, and three actuated

1 https://www.wolfram.com/mathematica/ (ver.12)
2 https://www.mathworks.com/ (R2019b)
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Fig. 3 Snapshots of a Numerical Simulation in the Presence of Two obstacles: a table and a chair: (a) Initial configuration
(t =0 s), (b) Avoiding the obstacles (¢ = 3 s), (c¢) Moving toward the goal position (¢t = 4 s), (d) Final configuration (¢t = 5.5

s).

joints, i.e. hip, knee and ankle joints (g4, g5, ¢s). In this
simulation, we assume that the floating base position
in the y direction, and its roll and yaw orientations are
fixed. The joint position constraints for three actuated
joints are defined as follows:

dLB — [—1.2, 0.5, —1.5], quB — [—0.2, 2.6, —05]
and each joint has £1000 rad /s velocity limits. In addi-
tion, the position, orientation, and velocity of the foot
should satisfy the kinematic constraints for the rigid
surface contact. We consider 2-dimensional motion with
a surface contact having rectangular support polygon
on the foot so that the friction cone constraints can be
characterized as

|fac| Skuf27 fz>0a |7'y| Sdmfz (37)

where d, denotes the distance between the center of
the polygon and the vertex in the local frame of the
foot and k, represents the friction coefficient. F, =
[f2,f], 7] is the contact wrench, which is a resul-
tant contact force at the center of the support polygon.
Based on the inequality constraints of (37) and the co-
ordinate transformation from local frame on the foot
to the global frame, we can represent the friction cone
constraints in the form WieqRe(q)Fe = We(q)Fe <
0 where Wiyeqr is a coefficient matrix derived from
(37) and R.(q) is a rotational matrix from global to
foot frames. In W,eq;, we set the friction coefficient
k, = 0.4. Considering all constraints, we will control
the robot’s motion while maintaining the contact.

To start the reachability analysis, we generate
10% state samples and gather the states fulfilling the
constraints. The initial configuration of the robot is
Ginit = [0.352, 0.348, 0.0, —0.95, 2.2, —1.25]". Us-
ing the initial configuration, we set the mean and
covariance of the Gaussian distribution for sampling:
pe = g, O1x6) | and 2, = diag([w",27"]7) where
w = [r, m, «, 7w, 7, 7. We define a threshold for
numerical convergence of the optimization with value

(@) (b)
0.6~ Goal Output 7
0.5 |
204 ] 50510 5053
N (0)
N
03 -0l
L (%)
0.2- Initial Output -
0.1 0.3 0.5 0.7 0.9 0 20 2 20 2 20 2
X (m) Hip (rad)  Knee (rad) Ankle (rad)

Fig. 4 Output and State Samples: (a) Output samples com-
puted by the feasible state set method and approximated by
ellipsoids, (b) State sample distributions before implementing
the proposed optimization process, (¢) State sample distribu-
tions in SRS X. Each histogram is normalized to show its
distribution.

1.0 x 1077 and the maximum number of iterations is
1.0 x 10%. After implementing the sampling-based ap-
proach described in Section 4, we obtain 3.47 x 10°
states among 10° state samples. For formulating the
POMDP problem in 2D space, we set 40 nodes defined
by S = {s;} where i € [1,40]y and 8 actions A = {a;}
where j € [1,8]n, and each action consists of moving
up, down, right, left, up-right, up-left, down-right, and
down-left in the grid world, respectively. We consider
two static obstacles for the robot to avoid in the out-
put space. The objective of our numerical simulation
is to obtain an optimized trajectory to reach the goal
output while avoiding the obstacles and fulfilling all
constraints. In addition, we generate 1.0 x 10° input
samples for propagating the states.

First, the results of our sample-based optimization
is shown in Fig. 4(a). The set with red dots contains
the outputs associated with the states fulfilling the con-
straints given by the optimization process described
in Section 4. As shown in Fig. 4(a), both the initial
[0.384, 0.352] and goal [0.51, 0.52] outputs are located
at the interior of the feasible set. Then, we solve the
POMDP problem to find a sequence of nodes, which
result in 12 of them, avoiding the obstacles as shown
in Fig. 4(b). After obtaining the sequence of nodes, we
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Fig. 5 Simulation results of subproblems: (a) Optimal se-
quence of the defined POMDP, (b) Propagated reachable vol-
ume over the time horizon, (c) Output trajectory by solving
optimal control problem, (d) Joint position trajectory by solv-
ing optimal control problem.

obtain the reachable sets as shown in Fig. 4(c). The
reachable set R} ([0,0.05]5°%, 2¢) contains the desired
output associated with the first node. Based on this re-
sult, we solve the NLP (36) to find a trajectory to reach
the desired output from the initial configuration.

Fig. 4(d), (e), and (f) show the results of trajectory
optimization to reach the goal position with respect to
a given initial state. The optimization result includes
both joint position and velocity trajectories fulfilling
kinodynamic constraints, e.g. joint position, velocity,
and torque limits and contact kinematic and force con-
straints. As shown in Fig 4(d), the generated trajec-
tories pass through the subregions in an optimized se-
quence obtained by solving the POMPD problem and
reaching the final output goal position.Furthermore, the
optimization results for the actuated joints in the phase
space have stabilizable end points in Fig. 4(f). Fig. 3
shows sequential snapshots of the numerical simulation.
In the simulations environment, a pair of table and chair
is modeled around the robot and we consider them as
obstacles in the output space. As presented in Fig. 3
(d), the robot reaches the goal position avoiding the
collision to the obstacles.

The computational complexity is analyzed by mea-
suring the execution time of the algorithm for com-
puting the reachable sets. We repeat 10 simulations
to measure the computation time for both the full-
state and boundary-state propagation methods and dis-
play the results in Fig. 6. The algorithm cannot com-
pute the reachable sets via the full-state propagation

20—+ 7T 7T77 77— +———550

180L| 7T Time for full-states propagation

H 500
Time for boundary-states propagation I
14450

Accumulated time for reachable sets
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Fig. 6 Computational time for obtaining reachable sets with
discretization step At = 0.01 and 10 simulations.

| Algorithms | CPU Time (s) | Iter. | Total |
Obtaining SRS X 14.133 1
POMDP 30.218 1
Reachability 21.091 (average) 11 839.024
Optimal Control | 51.152 (average) 11
[ Single NLP | 7867.151 | 1 [ 7887.154 |

Table 1 Computation time for executing two algorithms.
Our method reduces the computation time by 10x compared
to the baseline (10.66 % of the computation time taken by
solving a single large NLP for the entire horizon.)

method for more than two steps due to the lack of mem-
ory capacity, as shown in the blue dotted line in Fig
6. As we predicted in the complexity analysis of Sec-
tion 6.4, the boundary-states propagation method sig-
nificantly reduces the computational time for comput-
ing the reachable sets. Table 1 shows the computation
time for our algorithm compared with the computation
time for solving a single large nonlinear optimization
problem to reach the goal output. Our method takes
839.024 s to solve the trajectory, which accounts for
10.66 % of the computation time taken by the single
large NLP, e.g., 7887.154 s. This result demonstrates
that our method has a significant advantage for im-
proving computational efficiency.

8.2 Humanoid Robot Valkyrie

We also test the proposed approach using full-body hu-
manoid robot, Valkyrie, having 34 degrees of freedom.
The initial configuration and the state and input con-
straints are specified in Appendix E. The sampling con-
ditions and the threshold for the optimizations are the
same as those for the Draco simulation in Section 8.1.
In this simulation, the state is a 69-dimensional vector
consisting of the joint position, velocity, and running
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(d

Fig. 7 Snapshots for Valkyrie simulation: red dots indicate the final goal position in Cartesian space. (a) Initial configuration
at t = 0 s, (b) configuration at ¢ = 0.1 s, (c) configuration at t = 0.2 s, (d) configuration at ¢ = 0.3 s, (e) configuration at
= 0.4 s, (f) final configuration at t = 0.5 s and the left hand reaches to the desired goal position.
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Fig. 8 Simulation Results using Valkyrie: (a) the hand position in Cartesian space with red circles which mean way-points
produced by POMDP process, (b) the hand position in the time domain, (c) the joint configuration in the time domain.
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Fig. 9 CoM behavior while controlling the hand position and
Performance indices: (a) CoM in the x-y plane, (b) CoM in
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cost so that it takes significant time to solve the opti-
mal control problem using NLP. Therefore, we reduce
the dimension of the states to 47 by making one of the
arms and the neck completely rigid. To start the nonlin-
ear dynamic optimization process, we compute an ini-

tial set of initial inputs by using a simple whole-body
controller as follows:

Uinie = (MTIN]ST(SN.M SN TH(0, ginic)  (38)
where N, = I — MY (J.M~1I])1J., J. refers the
contact Jacobian, and b(.,.) stands for the vector of
gravitational, centrifugal and coriolis forces. The goal
of this simulation is to move the robot’s left hand to-
ward a goal position defined in the operational space
while fulfilling contacts on the feet. In this numerical
simulation, we consider a 3 dimensional output space
(Cartesian coordinates of the left hand) and two sur-
face contacts on the feet. The foot size is 0.135 x 0.08
and we set the friction coefficient to the value 0.7 in the
simulation environment.

The initial and goal positions of the left hand are
[—0.0009, 0.3455, 1.3433] and [0.0134, 0.2849, 1.3085],
respectively. As shown in Fig. 7, the robot maintains its
contacts correctly while changing its whole body con-
figuration to reach the goal output. The proposed pro-
cess based on POMDP produces 5 waypoints, which are
specified by the red circles shown in Fig. 8 (a). The joint
position trajectories and the corresponding hand tra-
jectories are generated while satisfying all constraints
via the reachability analysis, as shown in Fig. 8 (b) and
(c). The robot’s Center of Mass (CoM) is one of the
interesting results in this simulation as shown in Fig.



16

Jaemin Lee! et al.

9 (a) and (b). Even-though we do not directly control
the CoM dynamics, they do not fluctuate much and re-
mains inside the support polygon. The reason is that
we fulfill friction constraints and while minimizing ki-
netic energy: we formulate the quadratic running cost
using the state error so that the optimization prevents
the robot from moving fast and jerky. We also show in
Fig. 9 (c) the performance index values to reach each
waypoint from the previous one and the resulting tra-
jectories corresponding to locally optimal solutions.

9 Conclusion

This paper proposes a method to generate trajectories
for complex robotic systems subject to contact con-
straints. We formulate the problem as an optimal con-
trol problem, which we subsequently convert to an NLP.
Our approach focuses on efficiently solving the NLP
problem so that we can scale the method to many types
of complex robotic systems. We devise a new approach
to obtain discrete-time reachable sets for trajectory
generation and solve the nonlinear optimization prob-
lem. Although the computational cost is significantly
reduced, it is still challenging to employ this approach
to real-time control. We demonstrate two numerical
simulations using Draco and Valkyrie. These simula-
tions show that the proposed method is effective in
real robotics applications and scalable for highly artic-
ulated robots such as full-body humanoid robots. Soon,
we will investigate ways to combine this approach with
feedback controllers and extend the proposed method
for hybrid dynamical systems (e.g., walking or jump-
ing robots and dual-arm manipulation). We will also
study the relationship between the optimal conditions
of POMDP and the sampling distribution for more ef-
ficient motion planning.
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Appendices

A Proof of Proposition 1

Proof Since the samples are uniformly distributed, it is pos-
sible to select any unit vector in R™v as the PSV of s;, that is,
R.V(s;) where R, € SO(3) is a rotation matrix. If we select
the rotation matrix R, such that d* = R,V(s;), which is
orthogonal to V(s;), it follows that T (s’,s,a) = (V(s:),d) =
(d+,d) =0 for all a € A.

B Proof of Corollary 1

Proof Let us consider a general hull of the set Ry (T2, zq),
that is ghull(Rf (TA%,20)), being compact. By the
Heine—Borel theorem, all closed subsets of a compact set are
also compact. Since Ry (T, o) C ghull(R, (T£%, 20)), the
reachable set Ry (Tt z0) is compact.

C Proof of Corollary 2

Proof Consider three sets: F1 = Ry (TdAt,wo), Fo =
Ra(tk,x0), and F3 = F2 U Fy, where Fj is the collec-
tion of states * € Fi1 producing the next feasible state
by Definition 5 with respect to * € Fj. It is true that
Rz(TdAt,xo) = F1 UFs = Fo U Fs. Let us consider arbi-
trary two sets H1 and Ho satisfying R (Tt x0) = Hi UHo
with H1 NHa = 0. Let « € F| and suppose € Hi. Then,
HiNF1 # 0 and Hi N Fz # 0. This implies that F1 C H1
and F3 C H1, hence, Ha = (). This proves that Ra (T3, o)
is connected. Since the mapping f, is continuous, we also
conclude that the set Ry (Tt, o) is connected.

D Proof of Theorem 1

Proof Since R (T 2%, o) is compact and fy is continuous,
Ra (T, 20) is closed and fy ! is also continuous. Then,
Ra (T2, 20) is connected because Ry (T, zo) is connected

and f; 1 is continuous. Therefore, there exists at least one
trajectory connecting zo to z(7) satisfying fy (z(7)) = y9 in
Ra (T3, wo).

E Specifications of Valkyrie

We consider the following joint position/velocity /torque con-
straints. Excluding the virtual joints for the floating base, the
actuated joints (R28) are specified such as

¢init =[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.2, 1.1, 0.0, 0.4, 1.5,
0.0, 0.0, —0.6, 1.2, 0.6, 0.0,
0.0, 0.0, —0.6, 1.2, 0.6, 0.0],

qup =[1.181, 0.666, 0.255, 1.162, 1.047, 0.0, 2.0,1.519,
2.18, 2.174, 3.14, 2.0, 1.266, 2.18, 0.12, 3.14,
0.4141, 0.467, 1.619, 2.057, 0.875, 0.348, 1.1,
0.5515, 1.619, 2.057, 0.875, 0.348],

qrp =[0.0, —1.047, —0.872, —2.85, —1.266, —3.1, —0.12,
—2.019, —2.85, —1.519, —3.1, —2.174, —2.019, —1.1,
—0.5515, —2.42, —0.083, —0.8644, —0.349, —0.4141,
—0.467, —2.42, —0.083, —0.8644, —0.349],

ip =[5.29, 9.0, 9.0, 5.0, 5.0, 5.0, 5.89, 5.89, 11.5, 11.5,
5.0, 5.89, 5.89, 11.5, 11.5, 5.0, 5.89, 7.0, 6.11, 6.11,
11.0, 11.0, 5.89, 7.0, 6.11, 6.11, 11.0, 11.0],
up =[150.0, 150.0, 150.0, 26.0, 26.0, 26.0, 190.0, 190.0,

65.0, 65.0, 14.0, 190.0, 190.0, 65.0, 65.0, 14.0, 190.0,
350.0, 350.0, 350.0, 205.0, 205.0, 190.0,
350.0, 350.0, 350.0, 205.0, 205.0];

where qup = +4B, LB = —{4B, uuB = +uB, and urLp =

—up, respectively.
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