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1 Introduction

Understanding the breaking of supersymmetry within string theory is of the utmost im-
portance, if one aims to describe the real world from a microscopic point of view. In this
respect, it is essential to distinguish models in which the spectrum is non-supersymmetric
only below a certain energy scale, from those in which supersymmetry cannot be restored,
since either it is not present at all or it is broken at the string scale. These models, which
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can experience only the non-supersymmetric phase, are the subject of the present work.
Two notable examples, which we discuss in what follows, are the non-supersymmetric het-
erotic SO(16)×SO(16)-theory [1, 2] and the open-string system made by an anti-Dp-brane
on top of an Op-plane in type II string theory. This second class of models provides also
a realization of the general phenomenon called “brane supersymmetry breaking” [3–10],
studied also in [11, 12] (see [13] for a recent review).

A central question is how string theory is capable of maintaining finiteness and stability,
even in the absence of supersymmetry in the target space. A proposal to answer this
question has been given in [14] and further developed in [15–20]. It relies on the idea of
misaligned supersymmetry, which explains the finiteness of string theory as a consequence
of exponentially growing oscillations between the net number of bosons and fermions at
each mass level, leading to cancellations when considering the entire, infinite, tower of
states as a whole. Instead, standard supersymmetric spectra lead to finite quantities as a
consequence of cancellations taking place at each individual mass level, due to an exact
matching in the number of fermionic and bosonic degrees of freedom.

The identification of an almost exact cancellation between spacetime bosons and
fermions in the asymptotic density of states in the world sheet theory dates back to the work
of [21]. It was subsequently realized [14] that such a cancellation does not need to be neces-
sarily level by level, as for standard supersymmetry, hence the name misaligned supersym-
metry. A first extension to open-string models was made in [22], where it is argued that mis-
aligned supersymmetry (called there “asymptotic supersymmetry”) is needed to decouple
the open-string sector from a closed-string tachyon. Hence, it is again related to stability.

Sufficient conditions for misaligned supersymmetry in closed-string theories were found
to be modular invariance and the absence of physical tachyons [14]. Indeed, it is well known
that modular invariance is crucial for closed strings and in particular it dictates how left-
and right- moving sectors are coupled. In closed-string theories, the cancellations implied by
misaligned supersymmetry occur precisely in accordance with the way modular invariance
fixes the couplings among sectors: changing these couplings would in general spoil modu-
lar invariance and prevent such cancellations from occurring. In this work, we review the
original literature, discussing in detail the non-supersymmetric heterotic SO(16)×SO(16)-
theory and showing how the predicted cancellations occur. Then, we turn our attention to
open-string models and, in particular, we consider the system in which an anti-Dp-brane
is placed on top of an Op-plane in type II string theory. Here, the orientifold involution
generically breaks modular invariance down to a subgroup. Nevertheless, we find that mis-
aligned supersymmetry is again at work. In particular, we develop a systematic procedure
to show the occurrence of the required cancellations at all orders. This very same procedure
can be applied also to the heterotic example, allowing us to prove a previous conjecture.
Our results also indicate that brane supersymmetry breaking and misaligned supersym-
metry present similar features. This hints at a deeper connection that would substantially
improve our understanding of non-supersymmetric type II string theory compactifications.

The interplay between anti-Dp-branes and Op-planes plays an important role in phe-
nomenologically important type II string theory constructions with broken supersymmetry.
In particular, an anti-D3-brane in a Calabi-Yau background with an O3-plane is at the core
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of the KKLT and LVS proposals for de Sitter vacua in string theory [23, 24]. The anti-
D3-brane can be placed on top of an O3-plane that is located at the bottom of a warped
throat [25, 26]. We are studying here an analogous flat-space model and discover a sur-
prising connection to misaligned supersymmetry. More generically, non-supersymmetric
branes lead to four-dimensional low energy effective theories with broken supersymmetry,
which constitute a much wider class of models than supersymmetric ones [27] and could
lead to phenomenologically interesting non-supersymmetric realisations of the Standard
Model [28, 29]. These are the motivations why we decided to revisit and investigate further
anti-Dp-branes and Op-planes in string theory, uncovering their connection to misaligned
supersymmetry.

To identify misaligned supersymmetry, we need to study the physical states’ net boson-
fermion degeneracies encapsulated in the partition function of the theory. These net phys-
ical degeneracies can be obtained from a Hardy-Ramanujan-Rademacher sum. To the best
of our knowledge, so far misaligned supersymmetry has been demonstrated only by look-
ing at the leading exponentials in the Hardy-Ramanujan-Rademacher sum but here we will
study all terms. In order to do that, we specialise our discussion to the case in which the
partition function can be written entirely in terms of products of Dedekind η-functions
and, for such a subclass of theories, we show analytically how misaligned supersymmetry
is at work at any order of the Hardy-Ramanujan-Rademacher expansion and this allows
us to prove that the state degeneracies vanish in an averaged sense. Once more, the het-
erotic SO(16)×SO(16)-theory and the type II models with an anti-Dp-brane on top of
an Op-plane will serve as two explicit examples. We believe this can be an important
step in understanding misaligned supersymmetry as a general property of string theory
and of string phenomenology in particular. Heterotic string models exhibiting misaligned
supersymmetry have been previously analysed in [18, 19, 30–34].

This work is organized as follows. In section 2, we recall the general approach to
misaligned supersymmetry in closed-string theories. Then, we review in detail the non-
supersymmetric heterotic SO(16)×SO(16)-theory, showing that misaligned supersymmetry
is present at leading order. In section 3, we then turn our attention to the investigation
of misaligned supersymmetry in open-string models. First, we show that the spectrum of
an anti-Dp-brane on top of an Op-plane presents several hints that supersymmetry is not
just broken but also misaligned. Then, we perform an analysis of the one-loop partition
function of an anti-Dp-brane on top of an Op-plane, showing that the previous intuition is
indeed correct. In section 4, we then review the Hardy-Ramanujan-Rademacher expansion
for partitions functions in the form of Dedekind η-quotients. Based on this, a discussion of
misaligned supersymmetry beyond leading order is presented in section 5, in which we also
discuss in detail the heterotic SO(16)×SO(16)-theory and an anti-Dp-brane on top of an
Op-plane. In section 6, we calculate the one-loop cosmological constant of an anti-Dp-brane
on top of an Op-plane and find that it is finite for 0 ≤ p ≤ 6. In section 7, we present an
outlook on future research directions.
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1.1 Summary of the results

We present an explicit example of open-string misaligned supersymmetry by showing that
the spectrum of an anti-Dp-brane on top of an Op-plane exhibits an oscillating behaviour
between bosonic and fermionic states (see figure 3). The leading exponential growth of
both the bosonic and the fermionic states at mass level n is eCtot

√
n with Ctot = 2π

√
2.

Since this is the same, it cancels in an averaged sense and the averaged net number of
states grows more slowly, with a coefficient Ceff < Ctot.

The Hardy-Ramanujan-Rademacher sum gives the exact number of states for any n

and allows us to study subleading corrections to the leading approximate number of states
eCtot

√
n. We discover a peculiar property of the phase factor in the Hardy-Ramanujan-

Rademacher sum (see our lemma (4.13)). This property translates into oscillations around
the leading growth for the number of states in each sector (see figure 7). These oscillations
are such that they exactly cancel in each sector separately when averaged appropriately.
This allows us to prove that Ceff = 0 in a wide class of models that includes the anti-Dp-
brane on top of an Op-plane as well as the heterotic SO(16)×SO(16)-theory.

2 Misaligned supersymmetry in closed strings

In this section, we review the concept of misaligned supersymmetry in closed-string models,
following mainly the discussion in [14, 16]. Then, we analyze the heterotic SO(16)×SO(16)-
theory [1, 2] as an instructive example in which misaligned supersymmetry is at work.

2.1 The many faces of misaligned supersymmetry

Misaligned supersymmetry can be understood from different perspectives. It can be formu-
lated as the occurrence of exponentially growing oscillations in the net number of bosonic
minus fermionic physical states at each energy level. Equivalently, it can be related to the
presence of unphysical tachyons in the partition function, namely virtual excitations with
negative squared mass, which are not dangerous as long as they remain off-shell. Alter-
natively, it can be deduced by looking at the asymptotic behaviour of an appropriately
defined sector-averaged number of states that is argued to grow more slowly than the vari-
ous state degeneracies as the energy increases. Below, we present how all of these concepts
are intertwined.

Our starting point is the one-loop torus partition function. For a generic closed-string
theory with D non-compact dimensions this can be written in the form

Z(τ, τ̄) = (Im τ)1−D2
N∑

i,̄=1
Ni̄ χi(q)χ̄̄(q̄), q = e2iπτ . (2.1)

In consistent physical models, the matrix Ni̄ is restricted by modular invariance. The
quantities χi(q) and χ̄̄(q̄) are the characters of the left-moving and right-moving highest-
weight sectors respectively and form an N -dimensional representation of the modular group
with modular weight κ ∈ Z/2:

χi(Mτ) = (cτ + d)κ
N∑
j=1

Mijχj(τ), Mτ = aτ + b

cτ + d
, (2.2)
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where Mij is a N ×N matrix representing the modular group in the basis of the χi. They
can be expressed as power-series in the variable q

χi(q) = qHi
∑
n

a(i)
n q

n, Hi = hi −
c

24 , (2.3)

where hi ≥ 0 is the highest weight and Hi the vacuum energy of the ith-sector, while c is
the central charge of the world sheet conformal field theory. The coefficients a(i)

n , which are
assumed to be non-negative, count the degeneracy of states of the ith-sector at the excited
level n. They are the objects of our primary interest in the present work.

As long as one can define a set of characters that is closed under the modular SL(2,Z)-
group, one can write the general expression of these coefficients a(i)

n by means of a Hardy-
Ramanujan-Rademacher series as [14, 35, 36]

a(i)
n = a

(i)
0
∑
α

2π
α

N∑
j=1

Q(α;n)ijfj(α, i;n), (2.4)

where

Q(α;n)ij = e
iπκ
2

∑
0≤β<α,

gcd(α,β)=1

(M−1
αβ )ij e

2πi
(
Hj

β′
α
−Hi βα

)
e−2πin β

α , (2.5a)

fj(α, i;n) =
[

Hj

n+Hi

] 1−κ
2
Jκ−1

[4π
α

[
Hj(n+Hi)

] 1
2

]
, (2.5b)

with Jν = Jν(x) being the Bessel functions of the first kind. a(i)
0 is the net number of states

at n = 0. (Mαβ)ij is the representation of the modular group acting on the characters χi(q)
and associated to the SL(2,Z) element

Mαβ =
(
−β′ (1 + ββ′)/α
−α β

)
, (2.6)

where β′ is an arbitrary integer parameterising the freedom of acting on Mαβ by acting on
the left with the T -matrix. In the summation over α, each term α > 1 gives subleading
corrections to the leading-order α = 1 (to see this, notice e.g. that for Hj < 0 the expo-
nential growth is of the form ex, with x ≈ 4π|Hj |1/2/α). For α = 1, the functions fj have
an asymptotic behaviour

fj(1, i;n) n→∞≈ fj(1;n) =


1√
2

1
2π |Hj |

1−2κ
4 n

2κ−3
4 e4π[|Hj |n]

1
2 , Hj < 0;

(2πn)κ−1, Hj = 0;√
2

2π H
1−2κ

4
j n

2κ−3
4 , Hj > 0.

(2.7)

For the choice β′ = 0, one finds M10 = S−1, so that Q(1;n)ij = eiπκ/2Sij , Sij being the
matrix representing the modular transformation S in the representation of the modular
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group acting on the characters χi. The leading-order (α = 1) behaviour of the degeneracies
a

(i)
n as n→∞ can thus be expressed in the form

a(i)
n

n→∞≈ a
(i)
0√
2

e
iπκ
2 n

2κ−3
4

∑
j: Hj<0

|Hj |
1−2κ

4 Sij e4π[|Hj |n]
1
2 . (2.8)

For cases where there is only one sector with negative vacuum energy this reduces to

a(i)
n

n→∞≈ Ai n
−BeC

√
n, (2.9)

where C = 1/TH is the inverse Hagedorn temperature and

Ai = a
(i)
0√
2

e
iπκ
2 Si1

[
c

24

] 1−2κ
4
, B = 3

4 −
κ

2 , C = 4π
[
c

24

] 1
2
. (2.10)

Without loss of generality, the sectors have been ordered such that i = 1 corresponds to
the identity sector, having h1 = 0 and H1 = −c/24 < 0, where c is the central charge. An
important and well-known result is that the entries Si1 are always non-vanishing, namely
Si1 6= 0.1 As a consequence, the (real) coefficients Ai will be non-vanishing as well and,
within each sector, the degeneracy of states grows exponentially with the energy (as long
as H1 < 0). All sectors experience the same exponentially growing behaviour, since they
are all related to the identity sector by the coefficients Si1 6= 0.

To understand better how misaligned supersymmetry works, we need to look more
closely at the partition function. To this purpose, we can insert (2.3) into (2.1) and obtain

Z(τ, τ̄) = (Im τ)1−D2
∑
i,̄

Ni̄

∞∑
m=Hi

∞∑
n=H̄

a
(i)
m−Hi ā

(̄)
n−H̄ q

mq̄n. (2.12)

Notice that now the indices m − Hi and n − H̄ of the left and right states degeneracies
depend on the sectors i, ̄ being considered. Then, provided they are defined (i.e. pro-
vided both a(i)

n−Hi and ā
(̄)
n−Hj exist in the original series for the given n), the net physical

degeneracies of the theory at the mass level M2
n = 4n/α′ are

ann =
∑
i,̄

Ni̄ a
(i)
n−Hi ā

(̄)
n−Hj =

∑
i,̄

Ni̄ a
(i̄)
nn . (2.13)

These coefficients are important in order to define the partition function computed only
over the physical states, i.e.∫ 1

2

− 1
2

dRe τ Z(τ, τ̄) = (Im τ)1−D2
∑
n

ann q
nq̄n. (2.14)

1This can be seen, for example, from the Verlinde formula [37]

Nijk =
∑
l

SilSjlSlk
Sl1

, (2.11)

which expresses the structure constants Nijk appearing in the fusion rules in terms of Sij and it requires
Si1 6= 0 for consistency.
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Indeed, we recall that physical states are given by m = n, while m 6= n correspond
to unphysical states, which drop out from physical quantities when imposing the level
matching condition.

From the Hardy-Ramanujan-Rademacher formula (2.4), we see that tachyonic states
with Hj < 0 have an exponentially growing behaviour, while states with Hj ≥ 0 are
power-law suppressed, since κ = 1 −D/2 < 0, for D > 2. Therefore, the fastest growing
contribution in the sum (2.13) is given by the terms l = l̄ = 1 for all the sectors, which have
H1 = H1̄ = −c/24. In fact, thanks to the expansion (2.9) (notice that the shift n→ n+Hi

performed in (2.13) does not affect the asymptotic behaviour in the large-n limit, in which
n+Hi ≈ n), we find

a(i̄)
nn

n→∞≈ 1
2a

(i)
0 ā

(̄)
0 Si1S̄1̄̄ n

3
2−κ eCtot

√
n, (2.15)

and thus we can write

Ctot = 4π
(
|H1|

1
2 + |H1̄|

1
2
)

= lim
n→∞

log |a(i̄)
nn |√
n

. (2.16)

The definition of Ctot does not make a distinction in the indices i, ̄, since all sectors grow
with the same exponential behaviour, as explained before. Misaligned supersymmetry
predicts then that these asymptotic exponential behaviours cancel when summing over all
sectors in a specific way, leading to an effective exponential growth governed by Ceff < Ctot,
as we are going to explain now.

The presence of exponentially growing numbers of states can lead to divergences in
physical quantities. Misaligned supersymmetry avoids this by predicting the occurrence of
certain cancellations, taking place in a specific generalization of the quantities a(i̄)

nn , namely
a sector-averaged number of state which grows more slowly than (2.15). To construct this
quantity, we formally replace the asymptotic state degeneracies a(i̄)

nn with the functional
forms Φ(i̄)(n):

a(i̄)
nn → Φ(i̄)(n). (2.17)

The crucial point here is that, while the index n in a(i̄)
nn tacitly depends also on the sectors

i, ̄, as it is clear from (2.13), the functional forms are Φi̄(n) are defined for all positive, real
n. In other words, the argument n in Φi̄(n) is independent from i, ̄. For practical purposes,
it is convenient to take the variable n to be continuous after the replacement (2.17). How-
ever, while this works at leading order in the Hardy-Ramanujan-Rademacher expansions,
one can check that the functions Φ(i̄)(n) are in general not real when subleading orders
are considered. For this reason, in section 4 we will propose a different procedure in order
to formulate the problem in a consistent manner beyond the leading exponentials. Since
assuming Φ(i̄)(n) to be continuous functions of n helps in visualising the cancellations at
leading order, we will proceed with this assumption for the time being. Once the quantities
Φ(i̄)(n) are introduced, we can define the sector-averaged number of states, 〈ann〉, as the
sum of these functions over all sectors in the theory, namely

〈ann〉 =
∑
i,̄

Ni̄Φ(i̄)(n), (2.18)
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then analogously to (2.16) we have

Ceff = lim
n→∞

log |〈ann〉|√
n

. (2.19)

It is now clear that, in the case in which

Ceff < Ctot, (2.20)

the asymptotic growth of the sector-averaged number of states is slower than that of the
state degeneracies within each sector. If this happens, it means that cancellations occur
indeed when considering the sum over all sectors and misaligned supersymmetry is at work.
In other words, the difference between Ctot and Ceff can be explained as follows: although
in each sector the coefficients a(i̄)

nn grow at a rate fixed by Ctot, there are cancellations
which make the effective coefficients 〈ann〉 grow at the rate fixed by Ceff . Notice that the
cancellations in 〈ann〉 occur among sectors which are misaligned, since each of the Hi can
be integer or half integer as well (the only constraint imposed by modular invariance is
that Hi = H̄ mod 1, if Ni̄ 6= 0).

In [14], the result (2.20) is proven to hold for generic modular invariant partition
functions like (2.1), having κ < 0. In addition, it is conjectured that

Ceff = 0, (2.21)

which implies that the sector-averaged number of states does not grow exponentially, but at
most polynomially. We will refer to (2.20) as the weak form of misaligned supersymmetry,
while the conjecture (2.21) will be denoted as its strong form. Notice that (2.21) implies the
occurrence of cancellations also at all subleading orders. This is a highly non-trivial fact
and in the present work we argue that it is indeed the case in a large class of string theory
models. In particular, in section 4 we will contextualise the specific framework which we will
refer to and in section 5 we will then see the details of how misaligned supersymmetry can
work at any subleading order and test it in specific examples, i.e. in the heterotic SO(16)×
SO(16)-theory and in open-string models with an anti-Dp-brane on top of an Op-plane.

We can understand the cancellations implied by misaligned supersymmetry also from
a more physical point of view. Knowing the expressions of a(i)

n , with the prescription given
above one can calculate the explicit form of the function 〈ann〉 at leading order, which is

〈ann〉 = 4π2∑
i,̄

Ni̄fi(1;n)f̄̄(1;n) + . . . . (2.22)

Contrary to Si1 in (2.9), nothing prevents now some of the coefficients Ni̄ from vanishing.
When Ni̄ 6= 0, three different situations can occur. If Hi ≥ 0 and H̄ ≥ 0, then by looking
at the asymptotic behaviour given in (2.7), we see that there is no exponential growth
at all. Indeed, an example of such a case is when the partition function is vanishing as
a consequence of spacetime supersymmetry, which excludes both physical and unphysical
tachyons. On the contrary, the situation in which Hi < 0 and H̄ < 0 is clearly unaccept-
able, since it implies the existence of physical tachyons. Notice that this case corresponds
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to the situation in which both the left and right moving sector experience asymptotic expo-
nential growth. Finally, in the situation in which either Hi ≥ 0 or H̄ ≥ 0, which is a milder
assumption than the first one, we see that the asymptotic growth is slower than (2.15) and
the condition (2.20) is verified. In such a case, physical tachyons are not present, but un-
physical ones are. This is the situation leading to misaligned supersymmetry in spacetime.

Finally, let us comment on how (2.20) is related to the presence of oscillations in the
net number of bosons minus fermions at each energy level. Of course, for cancellations to
take place when summing over all the sectors in (2.22), some of the coefficients Ni̄ have
to be positive, implying the presence of more bosons than fermions, and some have to be
negative, implying more fermions than bosons. Along with this logic, we can see directly
that (2.20) predicts then an exponentially growing oscillation in the net number of bosons
and fermions at each energy level.

2.2 An heterotic non-supersymmetric string theory model

The non-supersymmetric heterotic SO(16)×SO(16)-theory, originally constructed in [1, 2],
is perhaps the prototype example of a non-supersymmetric and yet tachyonic-free closed-
string theory. In this section, we show how such a model exhibits the main features of
misaligned supersymmetry that we reviewed above.

It is instructive to start by recalling how the heterotic SO(16)×SO(16)-theory can be
obtained from an orbifold of the heterotic E8 × E8 superstring theory [38]. The one-loop
torus partition function of the heterotic E8 × E8 model is given by

ZE8×E8 = (Im τ)−4

η8η̄8 (V8 − S8)(Ō16 + S̄16)2. (2.23)

Here and in the following we use the definition of so(2n) characters given in [39] and
reviewed in appendix A. The partition function (2.23) is vanishing due to the well known
Jacobi’s aequatio identica satis abstrusa, i.e. V8 = S8. Physically, this is a consequence of
spacetime supersymmetry, namely the fact that the number of bosons and fermions is the
same at each energy level. The partition function of the heterotic SO(16)×SO(16)-theory
is obtained by inserting in (2.23) the projector

Pg = 1
2 (1 + g) . (2.24)

The orbifold generator is g = (−1)F+F1+F2 , where F is the spacetime fermion number,
while F1 (F2) is the fermion number of the first (second) E8 factor. The insertion gives

PgZE8×E8 = 1
2
[
ZE8×E8 + g(ZE8×E8)

]
, (2.25)

where
g(ZE8×E8) = (Im τ)−4

η8η̄8 (V8 + S8)(Ō16 − S̄16)2 (2.26)

is obtained by flipping the signs of the S8 and S16 sectors in (2.23). However, the projected
partition function as it stands is not modular invariant. To obtain a modular invariant
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expression, one acts repeatedly with modular transformations T and S, adding at each
step the new terms thus generated, until the final result is modular invariant. Eventually,
one finds

ZSO(16)×SO(16) = (Im τ)−4

η8η̄8

[
V8(Ō16Ō16 + S̄16S̄16)− S8(Ō16S̄16 + S̄16Ō16)

+O8(V̄16C̄16 + C̄16V̄16)− C8(V̄16V̄16 + C̄16C̄16)
]
.

(2.27)

This is the partition function of the heterotic SO(16)×SO(16)-theory. It is related to the
supersymmetric partition function ZE8×E8 by

1
2 (ZE8×E8 + Zg) = ZSO(16)×SO(16), (2.28)

where Zg is the modular invariant expression

Zg = (Im τ)−4

η8η̄8 [(V8+S8)(Ō16−S̄16)2+(O8−C8)(V̄16+C̄16)2−(O8+C8)(V̄16−C̄16)2]. (2.29)

As we will show in the rest of the section, the partition function (2.27) exhibits the features
of misaligned supersymmetry. It has been obtained as a projection of a supersymmetric
partition function and indeed we will see that we can use a similar logic to construct
models with open strings and misaligned supersymmetry. In that case, we will start from
an anti-Dp-brane and enforce on it the projection induced by an Op-plane.

Expanding the partition function (2.27) in powers of q and q̄, we can infer the partition
function restricted to physical states, i.e. those with equal powers of q and q̄. This can be
defined as Ẑ(τ2) =

∫ 1/2
−1/2 dτ1 Z(τ1, τ2) and has an expansion that reads

ẐSO(16)×SO(16) = (Im τ)−4
[
−2112 + 147456 (qq̄)

1
2 − 4713984 qq̄ +O(qq̄)3/2

]
. (2.30)

Therefore, we can easily recognize one of the features of misaligned supersymmetry, i.e. an
exponentially growing oscillation in the net number of bosons minus fermions at each phys-
ical energy level, as shown in figure 1. Moreover, if one looks more closely at terms with dif-
ferent powers of q and q̄, which are not displayed in the expansion above, one would see that
some of them have in fact negative powers of q and/or q̄. These correspond to unphysical
tachyons and are yet another signal of misaligned supersymmetry, as discussed previously.

A more quantitative way to study the presence of misaligned supersymmetry is by
employing explicitly the formalism presented in the previous section. Looking at the very
form of (2.27) and comparing it with the general formula (2.1), a convenient basis for the
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−80

−40

40

80

±log (±gn) bosons
fermions

Figure 1. The net number of physical degrees of freedom for the lightest energy levels of the
heterotic SO(16)×SO(16)-theory, defined as (−1)Fngn = Nb(n)−Nf (n). Each point corresponds to
string states with mass M2

n = 4n/α′, for n = 0, 1/2, 1, . . . , 20. A positive value indicates a surplus
of bosonic states compared to the fermionic ones, and vice versa for negative values. The presence
of two misaligned sectors is clearly visible. In particular, red dots are associated to integers values
of n, while blue dots to half-integers values. As predicted by misaligned supersymmetry, we observe
an exponentially growing oscillation between the net number of bosons and fermions.

left and right moving characters χi and χ̄̄ is

χi = 1
η8


O8
V8
S8
C8

 =


q−

1
2 + 36q 1

2 + . . .

8 + 128q + . . .

8 + 128q + . . .

8 + 128q + . . .

 , (2.31a)

χ̄̄ = 1
η̄8


Ō16Ō16 + S̄16S̄16
V̄16C̄16 + C̄16V̄16
V̄16V̄16 + C̄16C̄16
Ō16S̄16 + S̄16Ō16

 =


q̄−1 + 248 + . . .

4096q̄ 1
2 + 245760q̄ 3

2 + . . .

256 + 36864q̄ + . . .

256 + 36864q̄ + . . .

 . (2.31b)

This basis is chosen in such a way that the characters are eigenfunctions of T , they are
covariant under S and have a series expansion with positive coefficients. In this basis, the
matrix Ni̄ appearing in (2.1) is given by

N =


0 1 0 0
1 0 0 0
0 0 0 −1
0 0 −1 0

 , (2.32)
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while the modular transformations T and S act respectively as

T = diag(−1, 1, 1, 1), S = 1
2(−iτ)−4


1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1

, (2.33)

on the left moving sector χi and

T̄ = diag(1,−1, 1, 1), S̄ = 1
2(−iτ̄)−4


1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1

, (2.34)

on the right moving sector χ̄̄. To be consistent with the previous discussion, we have
ordered the elements in the basis in such a way that the identity sector in both left and
right moving sectors resides in the first component of the characters χi and χ̄̄.

Since Si1 6= 0 and S̄ı̄1̄ 6= 0, from the general discussion in subsection 2.1 we expect that
each sector a(i̄)

nn grows with an exponential behaviour dictated by formula (2.9), i.e.2

a(i̄)
nn

n→∞≈ AiAj (2n)−
11
2 e2π(

√
2+2)

√
n, (2.35)

or in other words the inverse Hagedorn temperature is

Ctot = 2π(
√

2 + 2), (2.36)

where we used (2.15), with H1 = −1
2 and H1̄ = −1 since the heterotic string theory has

cL = 12 and cR = 24.
When considering the sum over all sectors entering the partition function, if misaligned

supersymmetry is present, as the oscillations in figure 1 hint, then cancellations are ex-
pected in the sector-averaged number of states. To verify that this is indeed the case for
the system under investigation, we introduce first the functional forms Φ(i̄)(n) associated
to a(i̄)

nn . These are given by

Φ(i̄)(n) = 4Si1S̄̄1̄ (2n)−
11
2 e2π(

√
2+2)

√
n + φ(i̄)(n), (2.37)

where the functions φ(i̄)(n) stand for the subleading terms. Then, using the explicit form
of matrices S and S̄ in (2.33) and (2.34), one can check that all the leading exponentials
cancel when summing over all sectors, indeed∑

i,̄

Ni̄Si1S̄̄1̄ = S11S̄2̄1̄ + S21S̄1̄1̄ − S31S̄4̄1̄ − S41S̄3̄1̄ = 0. (2.38)

This means that the sector-averaged number of states (2.18) is determined by the sublead-
ing terms φi̄(n),

〈ann〉 =
∑
i,̄

Ni̄Φ(i̄)(n) =
∑
i,̄

Ni̄φ
(i̄)(n), (2.39)

2Here and in the following, we read the matrices Sij from the S-transformations on the characters,
omitting powers of τ .
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which can have different asymptotic behaviours in different sectors, but whose exponential
growth, is fixed by a coefficient which is by definition smaller than Ctot. This result shows
that, in the heterotic SO(16)×SO(16)-theory, misaligned supersymmetry is present in
its weak form, leading to a sector-averaged number of physical states growing at a rate
Ceff < Ctot.

The next step would be to check if in fact misaligned supersymmetry is present in its
strong from, namely if Ceff = 0. Proving this conjecture requires a careful analysis of the
subleading contributions to each sector. As explained previously, this cannot be performed
immediately with the functional forms Φ(i̄)(n), as the latter are not a priori real for α > 1.
In section 4 we will develop the necessary tools to perform such an analysis under certain
conditions and we will come back to this point in section 5.

3 Misaligned supersymmetry in open string theories

The previous discussion involved explicitly closed strings and a major role was played by
the underlying modular invariance of the torus partition function. In the following, we
will focus on a particular class of open-string models, in which we identify the features of
misaligned supersymmetry. These models are obtained by placing an anti-Dp-brane on top
of an Op-plane in type II string theory and are examples of the general framework of brane
supersymmetry breaking constructions.

3.1 The perturbative spectrum of an anti-Dp-brane on top of an Op-plane

To motivate our choice of the system with an anti-Dp-brane sitting on top of an Op-plane,
we now show that the mass levels of the perturbative spectrum indeed present an increasing
oscillation in the (net) number of bosons and fermions. This strongly supports the idea
that misaligned supersymmetry is underlying it, as we will show in subsection 3.2.

3.1.1 Alternance between fermions and bosons

We consider the perturbative spectrum of an anti-Dp-brane sitting on top off an Op-plane.
In lightcone quantization, we have the NS- and R-vacua |NS〉 and |a〉R, |ȧ〉R, as well as the
bosonic and fermionic creation operators αI−n and bI−r, for n ∈ N+ and r ∈ N+

0 + φ, with
φ = {1

2 , 0} in the NS- and R-sectors, respectively. The index I denotes all directions but
the gauge-fixed ones. The generic mass formulae in the NS- and R-sectors read

α′M2
NS = N (α) +N

(b)
NS −

1
2 , (3.1a)

α′M2
R = N (α) +N

(b)
R , (3.1b)

where N (α) and N (b) are the lightcone level number operators

N (α) =
∑

m∈N+

δIJ α
I
−mα

J
m, N (b) =

∑
s∈N+

0 +φ

s δIJ b
I
−sb

J
s . (3.2)

The physical states are those invariant under the GSO-projection and the action of the
orientifold operator O. We perform our analysis by studying the action of the orientifold
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on the GSO-invariant states, based on the discussion in [40]. It can be shown that the
orientifold acts on the vacua as3

O |NS〉 = e−
iπ
2 |NS〉 , O |R〉 = |R〉 , (3.3)

where |R〉 is either of the Ramond vacua, and on the creation operators as

OαImO
−1 = (−1)mαIm, ObIrO

−1 = eiπrbIr . (3.4)

This is sufficient to determine that the pattern followed by the spectrum is a
fermionic/bosonic alternance at each massive level. We can prove this as follows.

• The generic NS-state of mass α′M2 = n requires a total number of excitations n+ 1/2
and can be written as

|NSn〉 = αI1−n1 . . . α
Ik
−nkb

J1
−r1 . . . b

Jl
−rl |NS〉 , with

k∑
i=1

ni +
l∑

j=1
rj = n+ 1/2. (3.5)

In this way, we can write the orientifold action as

O |NSn〉 = (−1)n+1 |NSn〉 . (3.6)

• The generic R-state of mass α′M2 = n requires a total number of excitations n and
can be written as

|Rn〉 = αI1−n1 . . . α
Ik
−nkb

J1
−r1 . . . b

Jl
−rl |R〉 , with

k∑
i=1

ni +
l∑

j=1
rj = n, (3.7)

where |R〉 is either of the Ramond vacua, depending on the GSO-projection. Then,
for an anti-Dp-brane one can observe the action

O |Rn〉 = (−1)n |Rn〉 . (3.8)

The pattern followed by the states of an anti-Dp-brane sitting on an orientifold Op-plane
that we find has thus a pure fermionic/bosonic alternance: in contrast to the locally su-
persymmetric spectrum of an anti-Dp-brane at a smooth internal point, levels with mass
α′M2 = 2n contain all the fermions of the spectrum but no bosons, while levels with mass
α′M2 = 2n+ 1 contain all the bosons of the spectrum but no fermions.

The analysis of the spectrum of a Dp-brane on top of an orientifold plane is identical
except for the fact that the orientifold operator acts with an opposite sign on the Ramond
vacuum, which implies that the projection on the fermions is opposite. This means that,
in contrast to the spectrum of a Dp-brane at a smooth internal point, levels with mass
α′M2

n = 2n+ 1 contain all the bosons and the fermions of the spectrum, while levels with
mass α′M2

n = 2n contain neither the bosons nor the fermions.
Below, figures 2 and 3 show the number of physical states for a Dp- and an anti-Dp-

brane sitting on top on an Op-plane, respectively. Notice that, whilst the pattern is clear
from the discussion above, it is in the following subsections that we will explain how to
compute the degeneracies at each level.

3The orientifold operator does not square to the identity on the NS-vacuum since O2 |NS〉 = − |NS〉.
However, this state is removed by the GSO projection.
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Figure 2. The number of bosonic and fermionic physical degrees of freedom for the lightest energy
levels for a Dp-brane on top of an Op-plane, defined as (−1)Fngn = Nb(n) − Nf (n). Each point
corresponds to states with mass M2

n = n/α′, with n = 0, 1, . . . , 20. Filled points correspond to
states that are invariant under the orientifold projection, whereas empty dots represent states that
would be there if the Dp-brane was at a smooth point but that are projected out by the orientifold.
The number of bosonic and fermionic states is the same at each mass level and the partition function
vanishes as required by supersymmetry.

0 10 20 n

−20

20
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fermions

Figure 3. The number of bosonic and fermionic physical degrees of freedom for the lightest energy
levels for an anti-Dp-brane on top of an Op-plane, defined as (−1)Fngn = Nb(n) − Nf (n). Each
point corresponds to states with mass M2

n = n/α′, with n = 0, 1, . . . , 20. Filled points correspond
to states that are invariant under the orientifold projection, whereas empty dots represent states
that would be there if the anti-Dp-brane was at a smooth point but that are projected out by the
orientifold. One clearly sees the presence of misaligned supersymmetry.
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3.1.2 Number of degrees of freedom by level

Given the general form of the states in the NS- and R-sectors, a combinatoric analysis
allows us to determine the number of the fermionic and bosonic degrees of freedom, n(m)

f

and n(m)
b respectively, at each level.

For each level α′M2 = m, one needs to account for all the possible ways in which
it is possible to excite the vacuum giving that mass and to keep in consideration all the
symmetrisation and antisymmetrisation factors that are implied by the creation operators.
A careful analysis indicates that the number of fermionic degrees of freedom in the Ramond-
sector at the level m is expressible as

1
8 N(m) =

m∑
r=0

 ∑
λ∈P (m−r)

∑
µ∈P (r)

[
m−r∏
j=1

r∏
l=1

(
8 + n

(m−r)
j − 1
n

(m−r)
j

)(
8
n

(r)
l

)] , (3.9)

where P (k) denotes the set of all the partitions of the integer number k, with n(k)
j repre-

senting the coefficients in the partition λ written as k(λ) = ∑k
j=1 jn

(k)
j .

At the end of the day, this is just a formal way to summarize the results of a counting
which, if needed, can be performed explicitly at the desired level. Thanks to the bosonic-
fermionic alternation the net degeneracy at level m turns out to be

(−1)Fmgm = (−1)m+1N(m). (3.10)

From an explicit analysis of the formulae above up to the fourth mass level, we observe that
the spectrum gives the degeneracies g0 = 8, g1 = 128, g2 = 1152 and g3 = 7680. Therefore,
we find oscillations in the net numbers of bosons and fermions: a necessary condition for
misaligned supersymmetry.

3.2 Anti-Dp-brane on top of an Op-plane in type II string theory

The one-loop partition function of oriented closed strings is given by the torus, the sole
closed orientable Riemann surface with vanishing Euler character. When considering unori-
ented open (and closed) strings, on the other hand, the situation becomes more interesting.
There are indeed three additional Riemann surfaces with vanishing Euler character, with
holes, boundaries and crosscaps: the annulus, the Möbius strip and the Klein bottle. For
example, the partition function of a Dp-brane in flat space is given by the annulus, while
that of a (anti-)Dp-brane on top of an Op-plane is encoded in the Möbius strip. In this sub-
section, we briefly review the first of these setups and then we discuss in detail the second.

The partition function of a Dp-brane in flat space is given by the annulus [41–43]

Ap(t) = Vp+1

(2t)
p+1

2

1
η8 (Vp−1O9−p + V9−pOp−1 − Sp−1S9−1 − Cp−1C9−p) [it] (3.11)

and it can be simplified to

Ap(t) = Vp+1

(2t)
p+1

2

(V8 − S8)
η8 [it] . (3.12)
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We defined the dimensionless formal Dp-brane world volume as Vp+1 = Vp+1(4π2α′)−
p+1

2 .
Here and in the following, between squared brackets we indicate the argument of the
Dedekind function and of the so(2n) characters. For the annulus, this is related to the
closed-string modulus by τ ≡ it. The one-loop amplitude is obtained by integrating over
the whole spectrum

Ap = 2Vp+1

∫ ∞
0

dt

2t (2t)
− p+1

2
(V8 − S8)

η8 [it] , (3.13)

where the overall factor of 2 is due to the fact that we are summing over the two different
orientations of the open string, giving the same contribution. This partition function, and
the associated amplitude, are vanishing since V8 = S8. This is a manifestation of the
well known fact that a Dp-brane preserves supersymmetry and thus the net number of
bosons minus fermions is vanishing at each energy level. In flat space, there is no real
distinction between a Dp-brane and an anti-Dp-brane, indeed the partition function is the
same. Things will be different after the inclusion of Op-planes.

When a Op±-plane is introduced,4 the Riemann surface of interest is not the annulus
anymore, but the Möbius strip. The partition function of a Dp-brane on a Op±-plane
is [42, 43]5

MDp(t) = ±1
2(2t)−

p+1
2

(
V̂8 − Ŝ8

)
η̂8 [it] ≡ 0, (3.14)

which vanishes due to supersymmetry, since V̂8 = Ŝ8. As is customary, we wrote the
Möbius strip using hatted characters. These are defined to be manifestly real as

χ̂i (it) = e−iπHiχi

(
it+ 1

2

)
= qHi

∞∑
n=0

(−1)na(i)
n q

n, q = e−2πt. (3.15)

Indeed, the Möbius strip has τ ≡ it+ 1/2 with a non-vanishing constant real part. On the
one hand, this real part is crucial for misaligned supersymmetry, since it introduces relative
signs for the number of states at each mass level. On the other hand, as a consequence
of the fixed real part of the argument, χ(it + 1/2) acquires a phase, eiπH , which can be
conveniently eliminated by defining the manifestly real quantity χ̂(it). Anyway, one can
easily calculate that for the combinations V8/η

8 and S8/η
8, the phase is trivial, eiπH ≡ 1,

therefore in the following we will avoid using the hatted notation if not needed.
When considering an anti-Dp-brane, the orientifold projection operator in the partition

function gives the opposite sign in the Ramond sector, with respect to the Dp-brane. This
is very much similar to what happened in the example of the heterotic string discussed
previously, where the orbifold projection was introducing additional minus signs into a
supersymmetric (and hence vanishing) partition function. Therefore, the partition function
of an anti-Dp-brane on an Op±-plane is

MDp(t) = ±1
2(2t)−

p+1
2

(V8 + S8)
η8

[
it+ 1

2

]
(3.16)

4For an odd number of branes, only Op−-planes are allowed. However, we are keeping here the discussion
as generic as possible.

5We normalize the Möbius strip parameter it as in [40]. This is twice the parameter used in [39, 43].
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and, due to the sign flip, it is not vanishing anymore. The associated amplitude is

MDp = ±Vp+1

∫ ∞
0

dt

2t (2t)
− p+1

2
(V8 + S8)

η8

[
it+ 1

2

]
. (3.17)

A first indication of the presence of misaligned supersymmetry can be obtained by expand-
ing the integrand in powers of q. In fact, one just needs the p-independent factor

M(t) = −1
2
V8 + S8
η8

[
it+ 1

2

]
. (3.18)

Indeed, for the Op−-plane case we have (the Op+-plane case has just an overall sign differ-
ence)

− 1
2

(V8 + S8)
η8

[
it+ 1

2

]
= −8 + 128q − 1152q2 + 7680q3 − 42112q4 +O(q5) , (3.19)

with q = e−2πt. We notice an increasing oscillation in the (net) number of bosons and
fermions at each energy levels, as shown in figure 3. As anticipated, the alternating sign
giving rise to the oscillation is precisely due to the fixed real part in the argument of the
characters, as one can check that setting it to zero would result in the same expansion in
powers of q, but without any sign flip

1
2

(V8 + S8)
η8 [it] = 8 + 128q + 1152q2 + 7680q3 + 42112q4 +O(q5). (3.20)

As done for the heterotic string, we can use the formalism of subsection 2.1 to perform a
more quantitative study of the asymptotic growths of the state degeneracies.

3.3 Asymptotic number of states

In the general discussion for closed strings in subsection 2.1 and in the example in sub-
section 2.2, a major role is played by the modular properties of the characters χi, χ̄̄. In
addition, the very proof that misaligned supersymmetry is present in its weak form in the
heterotic SO(16)×SO(16)-theory, namely formula (2.38), relied on the particular form of
the matrix Ni̄ in (2.32), which is constrained by modular invariance.

One can easily check that the combination V8 + S8 is not closed under S-
transformations, while V8 − S8 = 0 trivially is. This observation has implications on
the basis of the characters we have to choose in order to study the presence of misaligned
supersymmetry in the anti-Dp-brane, since we need a basis satisfying the properties stated
in subsection 2.1 (see also [14] for more details): the χi have to be closed under modu-
lar transformations, diagonal under T -transformations and with non-negative expansion
coefficients a(i)

n .
As a starting point, since the combination V8 + S8 does not transform covariantly

under modular S-transformations, we enlarge the set and consider all of the characters
O8, V8, S8 and C8, as done for the left-moving sector of the heterotic string in (2.31a).
Then, we would like to separate from the expansion (3.19) the contributions with a positive
coefficient (bosons) from those with a negative coefficient (fermions). To this purpose and
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to avoid dealing explicitly with the arguments, it is convenient to restore the hat notation
for the time being. We will put a hat on characters whose argument is (it + 1/2), while
characters without hat have just (it), i.e.

χ̂V ≡
V8
η8

[
it+ 1

2

]
, χV ≡

V8
η8 [it] , χ̂S ≡

S8
η8

[
it+ 1

2

]
, χS ≡

S8
η8 [it] , (3.21)

and similarly for the remaining characters O8 and C8. In addition, from now on we will
specify the analysis to the Op−-plane case, but the case with Op+-planes can be easily
obtained by changing the appropriate signs. We define then the combinations

χ
(b)
i = 1

2(χi − χ̂i), χ
(f)
i = 1

2(χi ∓ χ̂i), i = {O, V, S,C}, (3.22)

where the upper sign is for a Dp-brane, while the lower sign is for an anti-Dp-brane.
Introducing the basis vector

χI = qHI
∑
n

a(I)
n qn =

(
χ

(b)
i

χ
(f)
i

)
, I = 1, . . . , 8, (3.23)

the partition function can now be rewritten as

M(t) =
8∑
I=1

cIχI , (3.24)

with only non-vanishing coefficients c2 = −c7 = 1. For the Dp-brane, the two vectors (3.22)
are parallel and the partition function vanishes for the chosen coefficients cI (using again
V8 = S8). For the anti-Dp-brane we recover instead

M(t) = χ
(b)
V − χ

(f)
S = −1

2
V8 + S8
η8

[
it+ 1

2

]
, (3.25)

as desired. This notation is slightly redundant, but it is convenient in proving the presence
of misaligned supersymmetry.

We have chosen the basis such that the contribution from χ
(b)
V has a q expansion

with odd powers, while that from χ
(f)
S has only even powers, but both χ(b)

V and χ(f)
S have

non-negative a(I)
n , i.e.

χ
(b)
V = 1

2

(
V8
η8 [it]− V8

η8

[
it+ 1

2

])
= 128q + 7680q3 +O(q5), (3.26a)

χ
(f)
S = 1

2

(
S8
η8 [it] + S8

η8

[
it+ 1

2

])
= 8 + 1152q2 +O(q4). (3.26b)

Therefore, this basis has all the necessary properties in order to apply the formalism of
subsection 2.1. In particular, χ(b)

i and χ(f)
i transform under S-transformations according to

the same matrix Sij as in (2.33). The vector χI transforms under S with a block diagonal
matrix with non-vanishing entries given by such Sij6

SIJ = Sij ⊗ I2, i, j = {1, 2, 3, 4} = {O, V, S,C}. (3.27)
6The presence of vanishing elements in SIJ means that this is a basis of pseudo-characters, as defined

in [14]. This subtlety will not affect our discussion here.
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Therefore, the sectors are coupled to the identity sector i = 1 = O via Si1 6= 0 and their
leading exponential contribution to the asymptotic number of states is

a(I)
n

n→∞≈ 1
2(2n)−

11
4 e2
√

2π
√
n, (3.28)

where we used (2.9) with S21 = S31 = 1/2, H1 = −1/2 and κ = −4. From this, we deduce
directly the inverse Hagedorn temperature

Ctot = 2
√

2π. (3.29)

When considering the sum over the sectors I, if misaligned supersymmetry is present,
as the oscillations in figure 3 suggest, we expect cancellations in the sector-averaged number
of states, as it happened in the heterotic string previously analyzed. To verify this, we
introduce the functional forms Φ(I) associated to a(I)

n

Φ(I)(n) = sI(2n)−
11
4 e2
√

2π
√
n + φ(I)(n), sI =

{
SI1 for 1 ≤ I ≤ 4,
SI5 for 5 ≤ I ≤ 8, (3.30)

where φ(I)(n) contain the subleading terms. Then, using the explicit coefficients cI given
above and the fact that the only non vanishing entries of SI1 are Si1 6= 0, we can see that
the leading exponentials in Φ(I)(n) cancel when summing over all sectors. Indeed∑

I

cIsI = c2S21 + c7S31 = S21 − S31 = 0 (3.31)

and then
〈an〉 =

∑
I

cIΦ(I)(N) =
∑
I

cIφ
(I)(N). (3.32)

This proves that misaligned supersymmetry is at work for the anti-Dp-brane on top of an
Op-plane in type II string theory and

Ceff < Ctot. (3.33)

We present now a heuristic argument for why moreover the conjecture Ceff = 0 is expected
to be true. We can take advantage of the fact that the partition function of the anti-Dp-
brane differs just in one sign from that of the Dp-brane, which is vanishing. Recalling that
the Dp-brane partition function is proportional to V8−S8 = 0, we can organize its (infinite)
series expansion as

0 ≡ −1
2

(V8 − S8)
η8

[
it+ 1

2

]
= −1

2
(
−8 + 128q − 1152q2 +O(q)3

)
+ 1

2
(
−8 + 128q − 1152q2 +O(q)3

)
= −1

2
[(

8 + 128q + 1152q2 +O(q)3
)
−
(
8 + 128q + 1152q2 +O(q)3

)]
= −1

2
(V8 − S8)

η8 [it]

(3.34)
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Therefore, we see that we have an exact cancellation between positive and negative contri-
butions. For the Dp-brane, this cancellation occurs not only in the functional forms, but
precisely in the a(i)

n at each energy level. Now, the point is that, modulo overall factors, the
coefficients of the anti-Dp-brane matches precisely with those in either of the two parenthe-
sis above. More precisely, calling a(Dp,b)

n = −a(Dp,f)
n the coefficients of one of the two identi-

cal parenthesis in the third line above, we can recover the coefficients of the anti-Dp-brane as

a
(Dp,b)
2n = 0, a

(Dp,b)
2n+1 = a

(Dp,b)
2n+1 ;

a
(Dp,f)
2n = a

(Dp,f)
2n , a

(Dp,f)
2n+1 = 0.

(3.35)

Due to this map, the functional forms Φ(I) for the Dp-brane and for the anti-Dp-brane
should be exactly the same, and therefore we can expect that they cancel for the latter
case, due to the vanishing partition function of the former (see figures 2, 3).

We will show that cancellations do indeed occur also at subleading orders in the follow-
ing sections, in a variety of models including an anti-Dp-brane on top of an Op-plane and
the heterotic SO(16)×SO(16)-theory as well. In particular, we will show fairly generically
that Ceff = 0.

4 Going beyond leading order

In the previous sections, we discussed the presence of misaligned supersymmetry just by
looking at the leading exponentials in the asymptotic expansion of the net state degenera-
cies a(i)

n . This was enough to prove that Ceff < Ctot. However, one can wonder whether
cancellations occur also at subleading orders. Answering this question would prove the
conjecture Ceff = 0.

As explained in subsection 2.1, the formalism of the functional forms Φ(i̄)(n) is not well
suited when going beyond leading order in the Hardy-Ramanujan-Rademacher expansion.
The core of the problem is that it is not clear how to define the terms Q(α;n)ij appearing
in the general formula (2.4) when promoting the variable n to be continuous. Indeed, such
functions become typically complex, while Φ(i̄)(n) should be a real quantity, since it is
counting physical degrees of freedom. In particular, a general prescription for analyzing
an arbitrary order in α is extremely complicated to implement due to the intricacies in the
definition of the function Q(α;n)ij .

For a particular class of partition functions, in [44] a more explicit Hardy-Ramanujan-
Rademacher formula has been derived for the state degeneracies at all orders. Below, we
will review such a result and then show how to recast the partition functions of the heterotic
SO(16)×SO(16)-theory and of anti-Dp-branes on Op-planes in the form needed to apply
the results of [44]. In this framework, in the next section we will be able to provide a
general procedure to study cancellations beyond leading order.
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4.1 Rademacher series for eta-quotients

In [44], an exact expression for the state degeneracies an is calculated for partition functions
that can be written as η-quotients, i.e. of the form

Z(τ) =
∞∏
m=1

[
η(mτ)

]δm , (4.1)

where {δm}∞m=1 is a sequence of (positive or negative) integers of which only finitely many
are non-vanishing. Before giving such a result, a few definitions are in order. First, one
defines the constants n0, c1 and the functions c2 = c2(α), c3 = c3(α) as

n0 = − 1
24

∞∑
m=1

mδm, (4.2)

c1 = −1
2

∞∑
m=1

δm, (4.3)

c2(α) =
∞∏
m=1

[gcd(m,α)
m

] δm
2
, (4.4)

c3(α) = −
∞∑
m=1

δm
[gcd(m,α)]2

m
. (4.5)

Then, given the Dedekind sum

s(β, α) =
α−1∑
n=0

n

α

(
βn

α
−
⌊
βn

α

⌋
− 1

2

)
(4.6)

and the function
ϕ(β, α) = e−iπ

∑∞
m=1 δm s

(
mβ

gcd (m,α) ,
α

gcd (m,α)

)
, (4.7)

let the function Pα = Pα(n) be

Pα(n) =
∑

0≤β<α,
gcd (β,α)=1

e−2πin β
α ϕ(β, α). (4.8)

Finally, let the function G = G(α) be

G(α) = min
m∈N: δm 6=0

{ [gcd (m,α)]2
m

}
− c3(α)

24 . (4.9)

In this setup, the main result of [44] is the following theorem.
Theorem. If c1 > 0 and G(α) is a non-negative function, then, for an arbitrary integer

n > n0, the coefficients an in the series expansion

Z(τ) = q−n0
∞∑
n=0

anq
n (4.10)
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can be written as

an = 2π
[24(n− n0)]

c1+1
2

∑
α∈N+,
c3(α)>0

c2(α) [c3(α)]
c1+1

2
Pα(n)
α

Ic1+1

[(2π2

3α2 c3(α)(n− n0)
) 1

2
]
,

(4.11)
where Iν represents the modified Bessel function of the first kind.

This formula allows us to have control over each of the various contributions (leading
and all of the subleading) to a given state degeneracy an. Because of the asymptotic
expansion Iν(x) x→∞≈ ex/(2πx) 1

2 , each value c3(α)/α2, for α ∈ N+, represents a successively
subleading exponential correction to the coefficient an. The asymptotic expression of an is

an
n→∞≈ 1

8 1
2

1
n

2c1+3
4

[2c0
3

] 2c1+1
4
c2(α0)Pα0(n)

[
α0
4

]c1
eπ
[ 2c0

3 n
] 1

2
, (4.12)

where c0 = c3(α0)/α2
0, α0 being the integer maximising c3(α)/α2.

Compared to the general Hardy-Ramanujan-Rademacher formula (2.4), we see that in
the case of (4.11) there is no mixing between different sectors and that all contributions
are in the form of the modified Bessel functions of the first kind.

4.1.1 A lemma for the function Pα(n)

The series coefficients an in equation (4.11) involve n-dependent functions Pα(n) that are
defined above in equation (4.8) and that are sums over phases. Being invariant under
the shift n → n + mα for any m ∈ Z, namely Pα(n) = Pα(n + mα), these terms Pα(n)
can take only α different values, at fixed order α. We denote these values as Pα(k), with
k = 1, . . . , α. An important property for our forthcoming discussion is that the sum over
k of Pα(k) is vanishing. This is a consequence of the following lemma.

Lemma. Given the integers m, α ∈ N, n ∈ N0 and γ = gcd(α,m), if @ p ∈ N : m = pα,
i.e. if m is not a multiple of α and if α > 1, then

α
γ
−1∑

k=0
Pα(n+mk) = 0. (4.13)

The proof is straightforward:
α
γ
−1∑

k=0
Pα(n+mk) =

α
γ
−1∑

k=0

∑
0≤β<α,

gcd (β,α)=1

e−2πi(n+mk) β
αϕ(β, α)

=
∑

0≤β<α,
gcd (β,α)=1

e−2πin β
αϕ(β, α)

α
γ
−1∑

k=0
e−2πimk β

α

=
∑

0≤β<α,
gcd (β,α)=1

e−2πin β
αϕ(β, α)

[
1− e−2πimβ

γ

1− e−2πim β
α

]
= 0,

(4.14)
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where we used the geometric sum ∑s−1
n=0 r

n = (1 − rs)/(1 − r), with r = e−2πim β
α and

s = α/γ, and the fact that α/γ,mβ/γ ∈ N. An important subcase is for n = 0 and m = 1,
giving

α−1∑
k=0

Pα(k) = 0. (4.15)

This lemma will be used explicitly to prove the cancellations among the various sectors
beyond leading order.

4.2 Heterotic SO(16) × SO(16)-theory in terms of eta-quotients

In this subsection, we show explicitly how to recast the partition function of the heterotic
SO(16)×SO(16)-theory in a form that is suitable for applying formula (4.11). To this
purpose, one essentially needs to employ standard identities for modular functions, but
there is also a further subtlety concerning the sign of the function G(α) defined in (4.9),
as will be explained.

One can start from the partition function in (2.27). Suppressing the factor coming from
the spacetime momentum integration, i.e. concentrating on the quantity Z(τ, τ̄) defined by
Z(τ, τ̄)SO(16)×SO(16) = (Im τ)−4Z(τ, τ̄), we can express it in terms of Jacobi ϑ-functions as

Z(τ, τ̄) = 1
2η12(τ)η̄24(τ̄)

[
ϑ4

2(τ)ϑ̄8
3(τ̄)ϑ̄8

4(τ̄)− ϑ4
3(τ)ϑ̄8

2(τ̄)ϑ̄8
4(τ̄) + ϑ4

4(τ)ϑ̄8
2(τ̄)ϑ̄8

3(τ̄)
]
. (4.16)

It is convenient to separate the three terms in the sum and factorize the contributions from
left and right-movers by writing

Z(τ, τ̄) =
3∑
i=1

Zi(τ, τ̄), Zi(τ, τ̄) = 1
2 Ri(τ)L̄i(τ̄). (4.17)

For completeness, we observe that in terms of the variable q = e2πiτ one has the expansions

R1(τ) = 16 + 256q + 2304q2 + 15360q3 + 84224q4 +O(q)5, (4.18a)
L1(τ) = q−1[1− 8q + 36q2 − 128q3 + 402q4 +O(q)5], (4.18b)

R2(τ) = −q−
1
2
[
1 + 8q

1
2 + 36q + 128q

3
2 +O(q)2], (4.18c)

L2(τ) = 256− 4096q
1
2 + 36864q − 245760q

3
2 + 1347584q2 +O(q)

5
2 , (4.18d)

R3(τ) = q−
1
2
[
1− 8q

1
2 + 36q − 128q

3
2 +O(q)2], (4.18e)

L3(τ) = 256 + 4096q
1
2 + 36864q + 245760q

3
2 + 1347584q2 +O(q)

5
2 . (4.18f)

Now, one can express each Jacobi ϑ-function as a product of Dedekind η-functions, as
reviewed in appendix A. Below, we discuss the three terms in (4.17) separately.

• In the first product, one has

R1(τ) = ϑ4
2(τ)

η12(τ) = 16 η8(2τ)
η16(τ) , (4.19a)

L1(τ) = ϑ8
3(τ)ϑ8

4(τ)
η24(τ) = η8(τ)

η16(2τ) . (4.19b)
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In both cases, c1 = 4 and G(α) ≥ 0, therefore (4.11) applies and gives us complete
knowledge over all of the subleading contributions. In particular, for R1 one finds
n0 = 0, c2(2α + 1) = 1/16 and c3(2α + 1) = 12, with c3(2α) = 0, while for L1 one
finds n0 = 1, c2(2α) = 1 and c3(2α) = 24, with c3(2α+ 1) = 0.
Further, one can easily evaluate the asymptotic forms. For R1, one has c0 = 12 for
α0 = 1, with c2(1) = 1/16 and P1(n) = 1 (with an overall factor 16), while for L1
one finds c0 = 6 for α0 = 2, with c2(2) = 1 and P2(n) = (−1)n, therefore

aR1
n

n→∞≈ 1
4 · 8 1

4

1
n

11
4

e(8π2n)
1
2 , (4.20a)

aL1
n

n→∞≈ 1
2

(−1)n

n
11
4

e(4π2n)
1
2 . (4.20b)

The growth of the coefficients of the first term in the partition function reads then

a(1)
nn = aR1

n+n0 ā
L1
n+n0

n→∞≈ 1
8 · 8 1

4

(−1)n+1

n
11
2

e[(8π2)
1
2 +(4π2)

1
2 ]n

1
2 . (4.21)

• In the second product, one has

R2(τ) = − ϑ
4
3(τ)

η12(τ) = − η8(τ)
η8(τ/2)η8(2τ) , (4.22a)

L2(τ) = ϑ8
2(τ)ϑ8

4(τ)
η24(τ) = 256 η16(τ/2)η16(2τ)

η40(τ) . (4.22b)

Clearly, we cannot apply directly (4.11) to these expressions. Since it just amounts to
an index relabelling, we can consider the argument τ ′ = 2τ , which gives the functions

R′2(τ) = R2(2τ) = − η8(2τ)
η8(τ)η8(4τ) , (4.23a)

L′2(τ) = L2(2τ) = 256 η16(τ)η16(4τ)
η40(2τ) . (4.23b)

While c1 = 4 and G(α) ≥ 0 for −R′2(τ), L′2(τ) does not have a non-negative function
G(α), but it turns out that a further shift τ̃ = τ + 1/2, which amounts to flipping
half of the signs in the series expansion (something we can keep track of), happens to
have a positive semidefinite function G(α), along with c1 = 4. So one has to consider
the function

L̃′2(τ) = L′2(τ + 1/2) = 256 η8(2τ)
η16(τ) . (4.24)

We can now apply (4.11) to these expressions and obtain again a complete under-
standing of all of the subleading contributions. For −R′2 one finds n0 = 1, c2(2α+1) =
16, c2(4α + 4) = 1, c3(2α + 1) = 6 and c3(4α + 4) = 24, with c3(2 mod 4) = 0, while
for L̃′2 one finds n0 = 0, c2(2α+ 1) = 1/16 and c3(2α+ 1) = 12, with c3(2α) = 0.
One can easily evaluate the asymptotic forms. For −R′2, one has c0 = 6 for α0 = 1,
with c2(1) = 16 and P1(n) = 1, while for L′2 (the result for L′2(τ) can be obtained
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by studying L′2(τ + 1/2) and inserting a factor (−1)n) one finds c0 = 12 for α0 = 1,
c2(1) = 1/16 and P1(n) = (−1)n (with an overall factor 256), therefore

a
R′2
n

n→∞≈ −1
2

1
n

11
4

e(4π2n)
1
2 , (4.25a)

a
L′2
n

n→∞≈ 2 · 2 1
2

2 1
4

(−1)n

n
11
4

e(8π2n)
1
2 . (4.25b)

The coefficients of the original functions are actually aR2
n = a

R′2
2n+n0 and aL2

n = a
L′2
2n+n0 ,

so that the growth of coefficients of the second term in the partition function reads

a(2)
nn = aR2

n āL2
n

n→∞≈ 1
32 · 2 1

4

(−1)2n+1

n
11
2

e[(16π2)
1
2 +(8π2)

1
2 ]n

1
2 . (4.26)

• In the third product, one has

R3(τ) = ϑ4
4(τ)

η12(τ) = η8(τ/2)
η16(τ) , (4.27a)

L3(τ) = ϑ8
2(τ)ϑ8

3(τ)
η24(τ) = 256 η8(τ)

η16(τ/2) . (4.27b)

In order to apply (4.11), one can consider the functions

R′3(τ) = R3(2τ) = η8(τ)
η16(2τ) , (4.28a)

L′3(τ) = L3(2τ) = 256 η8(2τ)
η16(τ) . (4.28b)

Indeed, these have c1 = 4 and G(α) ≥ 0 as required. Once more, formula (4.11)
gives us now the complete information on the subleading contributions of this sector.
For R′3, one has n0 = 1, c2(2α) = 1 and c3(2α) = 24, with c3(2α + 1) = 0, while for
L′3 one finds n0 = 0, c2(2α+ 1) = 1/16 and c3(2α+ 1) = 12, with c3(2α) = 0.

One can easily evaluate the asymptotic forms. For R′3, one has c0 = 6 for α0 = 2,
with c2(2) = 1 and P2(n) = (−1)n, while for L′3 one finds c0 = 12 for α0 = 1, with
c2(1) = 1/16 and P1(n) = 1 (with an overall factor 256), therefore

a
R′3
n

n→∞≈ 1
2

(−1)n

n
11
4

e(4π2n)
1
2 , (4.29a)

a
L′3
n

n→∞≈ 2 · 2 1
2

2 1
4

1
n

11
4

e(8π2n)
1
2 . (4.29b)

The coefficients of the original functions are aR3
n = a

R′3
2n+n0 and aL3

n = a
L′3
2n+n0 , so that

the growth of coefficients of the third term in the partition function reads

a(3)
n = aR3

n aL3
n

n→∞≈ 1
32 · 2 1

4

(−1)2n+1

n
11
2

e[(16π2)
1
2 +(8π2)

1
2 ]n

1
2 . (4.30)
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−Φ2,3(n)
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Figure 4. The lightest string states in the heterotic SO(16)×SO(16)-theory. The three interpolating
functions Φi(n), for i = 1, 2, 3, correspond to the three terms Z1, Z2 and Z3 that combine into
the total partition function, and in particular they are simply the degeneracies a(i)

n plotted for a
continuous variable n. Notice that, although Φ2(n) = Φ3(n), i.e. Z2 and Z3 contribute equally to
physical states, the associated off-shell coefficients are different.

In figure 4 below we have reported a plot of the three different sectors that one indi-
viduates when writing the partition function in terms of Dedekind η-quotients.

It is interesting to highlight that, except for the scaling τ → τ ′ = 2τ and/or the shift
τ → τ̃ = τ + 1/2, the heterotic SO(16)×SO(16)-theory can be written entirely in terms of
two functions. Indeed, one has the identities

R′3(τ) = L1(τ) = R′2(τ + 1/2), (4.31a)
L′3(τ) = 16R1(τ) = L′2(τ + 1/2). (4.31b)

Notice that a product of Dedekind η-functions does not necessarily satisfy the require-
ments of applicability of the formula (4.11). In the specific case at hand, nevertheless,
some manipulations on τ allowed us to bypass the problem of a non-positive semi-definite
function G(α) in (4.9).

4.3 Anti-Dp-branes on Op-planes in terms of eta-quotients

As for the heterotic string in the previous subsection, we would like to rewrite the partition
function of an anti-Dp-brane on top of an Op-plane as an η-quotient, in order then to
apply (4.11) to study the subleading contributions to the state degeneracies.
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The partition function (3.16) can be simplified by exploiting the properties of the
so(2n) characters. First, we recall that7

S2n

[
it+ 1

2

]
= S2n(O2n − V2n)[2it],

η2n
[
it+ 1

2

]
= η2n(O2n + V2n)[2it].

(4.32)

These follow for example from formula (9.80) of [40] and allow to remove the dependence
on the constant real part in the argument. Then, we can recast the Jacobi triple product
identity as

(S2n + C2n)(O2n + V2n)(O2n − V2n) = 2n. (4.33)

In the particular case n = 4, we have a further simplification since V8 = S8, giving

V8

[
it+ 1

2

]
= V8(O8 − V8)[2it], V8(O8 + V8)(O8 − V8) = 8. (4.34)

Using these relations, we have

V8
η8

[
it+ 1

2

]
= 2−3

η8 (V8(O8 − V8))2[2it] = 23

η8 (O8 + V8)−2[2it] = 8ϑ3[2it]−8 (4.35)

and the Möbius strip amplitude becomes

MDp = ±Vp+1

∫ ∞
0

dt

t
(2t)−

p+1
2
V8
η8

[
it+ 1

2

]
= ±Vp+1

∫ ∞
0

dt

t
(2t)−

p+1
2 8ϑ3[2it]−8.

(4.36)

Therefore, we are interested in the quantity (defined already in (3.18))

M(τ) = − 8
ϑ8

3(2τ) = −8 η16(τ) η16(4τ)
η40(2τ) . (4.37)

We cannot apply directly formula (4.11) to this expression, since the condition G(α) ≥ 0
in (4.9) is not satisfied. As for the heterotic string, we can overcome the problem by
shifting τ → τ+1/2 (this amounts to have an expansion in powers of q without alternating
signs), leading to

M̃(τ) = M(τ + 1/2) = −8 η8(2τ)
η16(τ) . (4.38)

For this function, the condition G(α) ≥ 0 is satisfied and therefore (4.11) applies and
allows us to understand all subleading contributions. In particular, one finds n0 = 0,
c1 = 4, c2(2α + 1) = 1/16, c3(2α) = 0 and c3(2α + 1) = 12. One can easily evaluate the
asymptotic form. Indeed, one has c0 = 12 for α0 = 1, c2(1) = 1/16 and P1(n) = (−1)n+1,

7Due to the fact that ϑ1 = 0, there is an ambiguity in the following formulae between S2n and C2n when
evaluating the characters at z 6= 0. This will not play any role in our discussion.
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with an overall factor 8 (the factor (−1)n+1 has been inserted along with the same logic
as explained above formula (4.25)), and the asymptotic form of an is

an
n→∞≈ 1

8 · 8 1
4

(−1)n+1

n
11
4

e(8π2n)
1
2 . (4.39)

Interestingly, the function (4.38) is related to the heterotic SO(16)×SO(16)-theory by
the following identities

−M(τ + 1/2) = 1
2 R1(τ) = 1

32 L̃
′
2(τ + 1/2) = 1

32 L
′
3(τ). (4.40)

5 Cancellations at all orders and Ceff = 0

In this section, we finally show that, in the class of models for which the tools presented
in section 4 can be employed, the cancellations implied by misaligned supersymmetry
occur at all orders in the Hardy-Ramanujan-Rademacher expansions and the conjecture
Ceff = 0 holds. The result will rely crucially on the lemma (4.13). First, we give a
general prescription to construct the functional forms Φ(i)(n) in such a way that they
remain explicitly real when n is continuos even beyond leading order, thus overcoming the
problem mentioned in subsection 2.1. Then, we specialize our discussion to the two systems
we analyzed explicitly in the present work: the heterotic SO(16)×SO(16)-theory and an
anti-Dp-brane on top of an Op-plane.

5.1 General procedure

The starting point is the expression for the Laurent coefficients (4.11), which we rewrite
here for convenience as

an =
∑
α∈N+,
c3(α)>0

an(α) =
∑
α∈N+,
c3(α)>0

Pα(n)fn(α), (5.1)

where

fn(α) = 2π c2(α) [c3(α)]
c1+1

2

α[24(n− n0)]
c1+1

2
Ic1+1

[(2π2

3α2 c3(α)(n− n0)
) 1

2
]
. (5.2)

We are again suppressing the indices i, j labelling the various sectors, therefore this quan-
tity should really read a

(i)
n .8 We will restore these indices later on, when it will become

necessary, as we will see. The prescription presented in subsection 2.1 amounts to letting n
be a continuous variable, thus promoting an to the functional forms an → Φ(n). However,
while the term with α = 1 in Φ(n) is real, the terms with α > 1 can be complex, due to the

8Note that the number of sectors did change in our discussion. In particular, for the heterotic
SO(16)×SO(16) example we wrote the partition function in equation (2.27) using four sectors, while we
wrote it in equation (4.17) in terms of three η-quotients. In this section, we are interested in the number
of η-quotients.
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fact that Pα(n) is a complex number in general.9 To overcome this problem and construct
a real function Φ(n) we notice two facts.

(i) First, in general the leading order contribution in an can underestimate or overesti-
mate the real value. This means that subleading corrections can come with either
positive or negative signs.

(ii) Second, as noticed in section 4, for each fixed α, there are only α independent real
values of the function Pα(n) as n ∈ N varies. To stress when we will employ them,
we introduce a hat notation

Pα(n) ≡ P̂α(k) ∈ R, ∀n ∈ N(k)
α , k = 1, . . . , α, (5.3)

where N(k)
α = {n ∈ N : n = kmodα} are α subsets of N. The lemma (4.13) indicates

that the sum of P̂α(k) over k = 1, . . . , α is zero.

Since our aim is to define functional forms that interpolate between the physical degenera-
cies at discrete n, we can define α different subsectors, depending on the value taken by
the function Pα(n). In particular, for each of these α different values, we define functional
forms Φk(n;α) such that

Φk(n;α) = P̂α(k) fn(α), k = 1, . . . , α. (5.4)

The crucial step here is that we replace the quantities Pα(n), which are complex when
n ∈ R, with the discrete and manifestly real ones P̂α(k), which are independent of n.
Therefore, the functions (5.4) are now real when n is assumed to be a continuous variable.
The price we have to pay is that, for each α > 1 we are in fact introducing α different
subsectors within the same sector i (whose index had been understood up to now)

a(i)
n (α)→ Φ(i)

k (n;α), k = 1, . . . , α. (5.5)

The number of these subsectors increases with α in the Hardy-Ramanujan-Rademacher
expansion, up to an infinite number of them. As explained above, these subsectors will
be populated by positive and negative contributions in general, therefore we expect that
cancellations can occur among them. That this is indeed the case is a consequence of the
lemma on the functions P̂α(k). To see this explicitly, we have just to average over the
k = 1, . . . , α, subsectors at fixed α. Then, since fn(α) does not depend on k, at any fixed
order α > 1 we immediately conclude that such an average is vanishing, i.e.

α∑
k=1

Φk(n;α) =
[

α∑
k=1

P̂α(k)
]
fn(α) = 0, α > 1, (5.6)

9It might be helpful to think of the terms α = 1 and α > 1 as leading and subleading orders respectively.
However, strictly speaking this identification could be misleading in the present context. Indeed, what
governs the exponential growth in (4.11) is the quantity c3(α)/α2 and it is not guaranteed that this is
maximized at α = 1. It can also happen that c3(1) ≤ 0, and therefore the corresponding term with
α = 1 would not appear in the sum. In fact, such cases did indeed appear already in subsection 4.2 above.
Nevertheless, when present, the contribution with α = 1 has P1(n) = 1 and there is only one subsector
k = 1, thus making this case somehow special. In 5.1.1, we will analyze these subtleties in more detail, but
for the time being we are keeping the discussion as plain as possible.
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where we used∑α
k=1 P̂α(k) = 0. As shown in the proof of lemma (4.13), the result holds for

every integer α > 1, including the limit α → ∞. Performing these cancellations for every
order in the Hardy-Ramanujan-Rademacher expansions, we are left at most with α = 1,
if it is present in the original expansion (4.11). This is special in some sense, since there
are no subsectors associated to it and therefore the mechanisms outlined above cannot
work. However, here comes to rescue the presence of other sectors, labelled by i, j. Indeed,
cancellations among terms with α = 1 have to occur among different sectors, analogous to
the original formulation of misaligned supersymmetry reviewed in subsection 2.1. There-
fore, due to the cancellations between sectors i, j for α = 1 and the cancellations between
subsectors k for α > 1, the result Ceff = 0 follows.

As an example, consider for instance the function M̃(τ), defined in (4.38), that is
associated to the description of an anti-Dp-brane on top of an Op-plane. As discussed in
subsection 4.3, this function is such that all the even values α = 2l in the Hardy-Ramanujan-
Rademacher expansions give zero, the only contributions to the Laurent coefficient being
from odd values α = 2l + 1. Focusing on the first correction beyond leading order, i.e.
α = 3, we have the complex-valued function

P̃3(n) = e−
2πi
3 (n−2) + e−

4πi
3 (n+1). (5.7)

However, restricting to integer values of n, one finds the three possible real values

P̃3(1) = −1, P̃3(2) = +2, P̃3(3) = −1, (5.8)

and these add up to zero, as expected. All values of α behave in a similar way.

5.1.1 Refining the argument

There are some subtle points in the previous reasoning that we omitted for convenience of
presentation and that we address below. We will also discuss explicit examples later on.

In sections 2 and 3, a defining feature of misaligned supersymmetry was identified in
the presence of a bosonic-fermionic oscillation at leading order in the Hardy-Ramanujan-
Rademacher expansion. Therefore, we will assume that the partitions functions Z(τ) we
work with have this property. However, this per se is not enough to guarantee the presence
of misaligned supersymmetry in full generality, as we are going to explain.

For simplicity, we start by considering the case in which the partition function is given
by a single term which is also an η-quotient. This corresponds to the open-string system
we are interested in. If more η-quotients are present, one can just repeat the analysis for
each of them separately. The heterotic model will indeed be of this latter type.

In general, for a single η-quotient, we can distinguish the following situations.

1. The conditions of applicability of (4.11), i.e. c1 > 0 and G(α) > 0, are met either by
the function Z(τ) or by the function Z̃(τ) = Z(τ + 1/2). The two subcases must be
distinguished.

(a) The conditions of applicability of (4.11) are met by Z̃(τ) = Z(τ + 1/2), which
corresponds to a Laurent series with positive-semidefinite coefficients (as the
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original Z(τ) has oscillating coefficients by assumption). In this case, we can
work out the alternating coefficients an of the original series from the positive
coefficients ãn of the new series by just noticing that an = (−1)nãn. We will
have then to keep track of which states had positive/negative coefficients before
the shift of τ was performed. A concrete example is the partition function M(τ)
of an anti-Dp-brane on top of an Op-plane, as in subsection 4.3.

(b) The conditions of applicability of (4.11) are met by Z(τ), which has oscillat-
ing coefficients an. A concrete example are the functions L1(τ) and R′3(τ) in
subsection 4.2.

2. The conditions of applicability of (4.11) are met neither by the function Z(τ) nor by
the function Z̃(τ) = Z(τ + 1/2).

We do not consider the case 2. in this paper and leave its investigation for future work.
Case 1.(b) happens to be trivially described as in the general treatment above, while case
1.(a) is more subtle. We now focus on it, since it corresponds to the open-string system
of our interest. We will also discuss extensions of the reasoning to the closed-string case,
focusing again on the heterotic SO(16)×SO(16)-model.

5.2 Open strings: anti-Dp-brane on top of an Op-plane

Here we discuss in detail the case 1.(a) introduced above and then specialise it to the case
of an anti-Dp-brane sitting on top of an Op-plane.

In the function Z̃(τ) = Z(τ + 1/2), the shift in τ + 1/2 flips the signs of the state
degeneracies and leads to coefficients ãn which are all positive. Therefore, we cannot
distinguish anymore which states are fermions in Z̃(τ). In order to discuss cancellations
among bosons and fermions for the original model Z(τ), we must treat separately the
values of n that correspond to original bosonic degeneracies, namely an = ãn, and those
that correspond to original fermionic degeneracies, namely an = −ãn. For definiteness, let
us focus on the bosonic ones. Using a tilde notation to stress that we are dealing with the
theory Z̃(τ), we have

ãn =
∑
α∈N+,
c3(α)>0

ãn(α) =
∑
α∈N+,
c3(α)>0

˜̂
Pα(n)f̃n(α), n ∈ Nb, (5.9)

where Nb ⊂ N represents the subset of values of n with a bosonic degeneracy an = ãn.
Although this formally looks the same as the generic case above, the fact that n only takes
values in a subset of N is crucial. Indeed, since the periodicity of P̃α(n) is P̃α(n) = P̃α(n+α),
we are no longer guaranteed that all the values of n at our disposal in Nb are all the α
distinct values that P̃α(n) would assume if its domain was N. In particular, if Nf ⊂ N
represents the subset of fermionic states with an = −ãn, we may write

an(α) = ãn(α) = ˜̂
Pα(k)f̃n(α), ∀n ∈ N(k)

α ∩ Nb;

an(α) = −ãn(α) = ˜̂
Pα(k)f̃n(α), ∀n ∈ N(k)

α ∩ Nf .
(5.10)
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It is therefore manifest that the value P̃α(n) = ˜̂
Pα(k) is only found e.g. in the bosonic

sector if N(k)
α ∩ Nb 6= ∅. Of course, the missing values of ˜̂

Pα(k) would be found in the
fermionic sector, and vice versa, but this means that they would contribute with an extra
(−1)-factor, invalidating the cancellation based on (4.13). Take for definiteness the case
where Nb = 2N0 + 1. In this case, the degeneracies that appear in the corrections to the
bosonic degeneracies (5.9) are

. . . , ã2n−1(α),
P̃α(2n+1)

ã2n+1(α),
P̃α(2n+3)

ã2n+3(α), . . . ,
P̃α(2n+2α−1)

ã2n+2α−1(α), ã2n+2α+1(α)
P̃α(2n+1)

, . . . (5.11)

and one can observe how the periodicity mod 2α in the functions P̃α(n) allows to recognise
all the sectors P̃α(2n+1+2l), with l = 0, . . . , α−1 (we do not use the periodicity modα since
if ã2n+1(α) is in the spectrum, then ã2n+1+2α(α) is also always there, unlike ã2n+1+α(α)).
Now one needs to understand whether the values P̃α(2n+1), P̃α(2n+3), . . . , P̃α(2n+2α−1)
suffice to individuate all the α terms ˜̂

Pα(k) that add up to zero. The answer is affirmative
if α is odd, as one can see by direct inspection.

A more explicit treatment is below. See also figures 5 and 6 for an explicit example.

• In the bosonic sector, one has the sequence

ã1(α)
P̃α(1)

, ã3(α), ã5(α), . . . , ã2α−5(α), ã2α−3(α)
P̃α(α−3)

, ã2α−1(α)
P̃α(α−1)

,

P̃α(1)

ã2α+1(α), . . . (5.12)

and therefore:

(a) for odd α, every α consecutive terms contain the α different terms ˜̂
Pα(k) (this

happens just because the difference of two odd numbers is even);

(b) for even α, half of the terms ˜̂
Pα(k) are never hit by the degeneracies (in fact,

α− (2l + 1), for any l, is never even if α is even).

• In the fermionic sector, one has the sequence

ã0(α)
P̃α(0)

, ã2(α), ã4(α), . . . , ã2α−6(α), ã2α−4(α)
P̃α(α−4)

, ã2α−2(α)
P̃α(α−2)

,

P̃α(0)

ã2α(α), . . . (5.13)

and therefore:

(a) for odd α, every α consecutive terms contain the α different terms ˜̂
Pα(k) (this

happens just because the difference of two odd numbers is even);

(b) for even α, half of the terms ˜̂
Pα(k) are never hit by the degeneracies (in fact,

α− 2l, for any l, is never odd if α is even).
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Figure 5. Periodicity of the function Pα(n) for α = 3, with odd argument n ∈ 2N0 + 1. Each
circle contains increasing odd integers n = 2l+1, while the horizontal lines represent the associated
term P3(n). The periodicity P3(n) = P3(nmod 3) permits to group all odd numbers n in α = 3
different groups. All different values of P̂α(k) can be populated by Pα(n) for odd values of α. Even
arguments n ∈ 2N0 behave in the same way for odd values of α.

P̂4(2)

P̂4(1)

P̂4(3)
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9

11

13

15

17

19

Figure 6. Periodicity of the function Pα(n) for α = 4, with odd argument n ∈ 2N0 +1. Each circle
contains increasing odd integers n = 2l + 1, while the horizontal lines represent the corresponding
value P4(n). The periodicity P4(n) = P4(nmod 4) necessarily leaves out half of the possible values
P̂α(k) in the first column. Even arguments n ∈ 2N0 behave in the same way for odd values of α.

The outcome of this analysis is that models exhibiting misaligned supersymmetry
experience a net cancellation, at all odd subleading orders α = 2l+ 1, taking place among
the pure bosonic and pure fermionic sectors individually. On the other hand, at all even
subleading orders α = 2l, the pure bosonic and fermionic sector do still combine together
into nonzero values. In short, we have seen that the even orders α = 2l may be problematic
within the case 1.(a) under consideration and we cannot draw any general conclusion for
them at this stage, but we do not need them in the open-string case example below. Notice
that they will be tractable easily for the closed-string case of interest below.

Fortunately, for the partition function of an anti-Dp-brane on top of an Op-plane, given
in (4.37), the shifted function (4.38) that we need to consider is such that all the even orders
in the Hardy-Ramanujan-Rademacher expansions are vanishing, the only contributions
being from α = 2l + 1. This is discussed in subsection 4.3. Therefore, we do not have to
deal with additional complications and we can apply directly our machinery, which shows
that the interpolating functions cancel at all subleading orders, with bosonic and fermionic
corrections averaging out to zero independently from each other. This proves that

Ceff = 0 (5.14)

for the anti-Dp-brane on top of an Op-plane. Below, figure 7 reports a schematic represen-
tation of this.
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Φ(n)

−Φ(n)

0 10 20 n

−20

20

±log (±gn)

P̃3(1) = −1
P̃3(2) = +2
P̃3(3) = −1

Figure 7. A schematic plot representing the spectrum of an anti-Dp-brane on top of an Op-plane,
including the terms at leading order, for α = 1, and the (magnified) corrections at next-to-leading
order, for α = 3. One has to consider bosons (odd n) and fermions (even n) separately, since the
corrections to the coefficients of the partition function M(τ) are computed with the dual function
M̃(τ). Then, levels n = 1 mod 3 have corrections multiplied by the value P̃3(1) = −1, levels
n = 2 mod 3 have corrections multiplied by the value P̃3(2) = +2 and levels n = 3 mod 3 have
corrections multiplied by the value P̃3(3) = −1. For each different value the function P̃α(n) can take,
one can individuate a different interpolating function. Evidently, the average of such interpolating
functions vanishes, independently from each other, both in the bosonic and in the fermionic sector.

5.3 Closed strings: heterotic SO(16) × SO(16)-theory

We turn now to closed strings, for which one has to consider products of two functions, one
for the right- and one for the left-moving sector. As in section 4, let the generic one-loop
closed-string partition function be Z(τ, τ̄) = R(τ)L̄(τ̄). For the physical state degeneracies,
one can generally write

ann = rn−HR l̄n−HL =
[∑
α

rn−HR(α)
][∑

β

l̄n−HL(β)
]
, (5.15)

where rn−HR and ln−HL are the Laurent coefficients of the series R(τ) and L(τ), respec-
tively, and the summations over α and β represent their Hardy-Ramanujan-Rademacher
expansions. Again, we refrain from diving into a general and all-encompassing analysis,
but rather focus on an example. This should suffice to give all of the elements that one
may need to take care of in the investigation of a given theory.

Let us consider the heterotic SO(16)×SO(16)-theory. As discussed in subsection 4.2,
its partition function can be written as a sum of three terms that are separate products
of right- and left-moving Dedekind η-quotients. For definiteness, here we start with the
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product Z1(τ, τ̄) = R1(τ)L̄1(τ̄). Both these functions can be treated in the way discussed
in subsection 4.1 and the full state degeneracies read

a(1)
nn = rR1

n+nR1
0
l̄L1
n+nL1

0
=
[ ∑
α∈ΓR1

rR1
n+nR1

0
(α)
][ ∑

β∈ΓL1

l̄L1
n+nL1

0
(β)
]
, (5.16)

where for brevity we defined the two sets containing the contributions to the Laurent
coefficients, i.e. ΓR1 = {α ∈ N+ : cR1

3 (α) > 0} and ΓL1 = {β ∈ N+ : cL1
3 (β) > 0}, according

to the general formula (4.11). In particular, in an obvious notation, one can write

a(1)
nn =

∑
α∈ΓR1

∑
β∈ΓL1

a(1)
nn(α, β)

=
∑

α∈ΓR1

∑
β∈ΓL1

PR1
α (n+ nR1

0 )P̄L1
β (n+ nL1

0 )fR1
n+nR1

0
(α)f̄L1

n+nL1
0

(β).
(5.17)

For any given value α ∈ ΓR1 and β ∈ ΓL1 , the series of contributions a
(1)
nn(α, β) can be asso-

ciated to some envelope functions Φ(1)
`αβ

(n;α, β), for some `αβ = 1, . . . , lcm(α, β), with the
least common multiple being lcm(α, β) = αβ/ gcd(α, β). Indeed, the series of contributions
a

(1)
nn(α, β) allows us to define lcm(α, β) continuous functions of n ∈ R

Φ(1)
`αβ

(n;α, β) = PR1
α (`αβ + nR1

0 )P̄L1
β (`αβ + nL1

0 )fR1
n+nR1

0
(α)f̄L1

n+nL1
0

(β), (5.18)

which, taking into account the two different periodicities PR1
α (m) = PR1

α (mmodα) and
P̄L1
β (m) = P̄L1

β (mmodβ), correspond to values n in a
(1)
nn(α, β) for which one has `αβ =

nmod lcm(α, β).
In order to show that misaligned supersymmetry takes place at any order in the Hardy-

Ramanujan-Rademacher series, we want to show that these envelope functions average out
to zero, i.e. that ∑lcm(α,β)

`αβ=1 Φ(1)
`αβ

(n;α, β) = 0. In order to do that we rewrite the sum over
`αβ in terms of a double sum, defining γαβ = β/ gcd(α, β), as

lcm(α,β)∑
`αβ=1

Φ(1)
`αβ

(n;α, β) =

=
α∑

kα=1

γαβ−1∑
m=0

Φ(1)
kα+mα(n;α, β)

=
α∑

kα=1

γαβ−1∑
m=0

PR1
α (kα +mα+ nR1

0 )P̄L1
β (kα +mα+ nL1

0 )fR1
n+nR1

0
(α)f̄L1

n+nL1
0

(β)

=
α∑

kα=1
PR1
α (kα +mα+ nR1

0 )fR1
n+nR1

0
(α)f̄L1

n+nL1
0

(β)
[γαβ−1∑
m=0

P̄L1
β (kα +mα+ nL1

0 )
]

= 0,

(5.19)

where in the last line we used lemma (4.13). In order to use that lemma, we need the
condition γαβ = β/gcd(α, β) > 1, which is indeed the case since the function L̄1 has
only even βs and the function R1 has only odd αs. Notice that one could not draw
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the same conclusion by splitting the sum over lαβ as a sum over kβ = 1, . . . , β and m =
0, . . . , α/gcd(α, β)−1 since, in the case where β = 2rα, for r ∈ N, we have α/gcd(α, β) = 1.
To sum up, we have given a general proof that

lcm(α,β)∑
`αβ=1

Φ(1)
`αβ

(n;α, β) = 0. (5.20)

Thanks to the dualities reported in (4.31), it is apparent that the functions Z2 = R2L̄2 and
Z3 = R3L̄3 contribute to physical states, which are what defines the envelope functions,
in an identical way, just with a different index labelling and with different overall factors.
Therefore, the total cancellation shown for Z1 holds for Z2 and Z3, too. To conclude, even
for the heterotic SO(16)×SO(16)-theory we proved that

Ceff = 0. (5.21)

The key to this result is just lemma (4.13), which is a general property of the Dedekind
η-quotients for which (4.11) holds.

Here we have just considered an explicit closed-string case, but the machinery that has
been described is easy to adapt to a large variety of closed-string models. Cancellations
beyond leading order depend on the specific details of the right- and left-moving factors
that define their partition function.

Notice that the open-string case discussed in subsection 5.2 can also be discussed with
the tools presented above. Given the partition function M = M(τ) of an anti-Dp-brane on
top of an Op-plane, one can consider a closed-string theory where the right-moving sector
is R(τ) = −M̃(τ) = −M(τ + 1/2) and the left-moving sector has coefficients ln = (−1)n+1

for β = 2 and vanishing for all other βs. In this case, we know the right-moving sector is
defined only for odd values of α, so the number of envelope functions is lcm(α, 2) = 2α.
For `α = 1, . . . , 2α, the envelope functions can be defined as

Φ`α(n;α) = (−1)`α+1P̃α(`α + n0)f̃n+n0(α). (5.22)

Therefore we simply have
2α∑
`α=1

Φ`α(n;α) =
2∑

k=1

α−1∑
m=0

Φk+2m(n;α)

=
2∑

k=1
(−1)k+1f̃n+n0(α)

α−1∑
m=0

P̃α(k + 2m+ n0)

= 0.

(5.23)

6 One-loop cosmological constant and supertrace formulae

In previous sections we have shown how the non-supersymmetric heterotic SO(16)×SO(16)-
theory and the anti-Dp-/Op-system in flat space provide a realisation of misaligned su-
persymmetry. In this section we explore the expected finiteness properties of the non-
supersymmetric anti-Dp-/Op-system. In particular, we compute the finite value of the
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one-loop cosmological constant and show that the first four mass supertraces vanish. The
one-loop cosmological constant for the heterotic SO(16)×SO(16)-theory was computed
in [1] and the general properties of the one-loop cosmological constant for closed strings
are discussed in [15, 16].

Let us consider a D-dimensional quantum field theory with mass levels M2
n, degenera-

cies gn and fermion parities Fn. Given an arbitrary mass scale µ2, the one-loop cosmological
constant reads [15]

Λ = −1
2

(
µ2

8π2

)D
2 ∑

n

(−1)Fngn
∫ ∞

0

dt
t1+D

2
e−2πM2

nt/µ
2
. (6.1)

It is convenient to rearrange this expression as

Λ = −
(
µ

2π

)D ∫ ∞
0

dt
2t (2t)

1
2 (p+1−D)M̂p(t), (6.2)

where, for q = e−2πt, the function M̂p(t) has been defined as

M̂p(t) = 1
(2t) 1

2 (p+1)

∑
n

(−1)Fngn qM
2
n/µ

2
. (6.3)

For the field theory of a p-brane one must consider a spacetime of dimension D = p+ 1, so

Λp = −
(
µ

2π

)p+1 ∫ ∞
0

dt
2t M̂p(t). (6.4)

This also gives a cosmological constant with the right mass dimension for the contribution
of a p-brane, namely Λ ∼ µp+1.

For an anti-Dp-brane in flat space, in the string frame, the mass spectrum in both
the NS- and R-sectors follows the pattern M2

n = n/α′ for each mass level n ∈ N0 (see eq.
(8.33, [40])), therefore it is convenient to set µ = 1/

√
α′. One can thus recognise that the

function defined in (6.3) corresponds to the partition function in (3.16), i.e. M̂p(t) = MDp(t)
(in the case of an Op−-plane). One can therefore write

ΛDp = − gs2π τDp

∫ ∞
0

dt
2t MDp(t), (6.5)

where the tension of the anti-Dp-brane is τDp = 2π/(gslp+1
s ), with the string length ls =

2π
√
α′. The string coupling is the vacuum expectation value gs = e〈Φ〉, where Φ is the

dilaton field. ΛDp can be calculated explicitly. We can define the integral Ip via

−
∫ ∞

0

dt
2t MDp(t) =

∫ ∞
0

dt
(2t) 1

2 (p+3)
16

ϑ8
3[2it] = 8

∫ ∞
0

dt
t

1
2 (p+3)

1
ϑ8

3[it] = Ip (6.6)

so that
ΛDp = gs

2π τDp Ip. (6.7)

The value Ip is finite as long as p = 0, 1, 2, 3, 4, 5, 6, as can be seen immediately thanks to
the small-t expansion

ϑ−8
3 [it] t→0+

≈ (2t)4. (6.8)
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One can evaluate the integral numerically and find

I0 = I6 ' 16.65, (6.9a)
I1 = I5 ' 9.086, (6.9b)
I2 = I4 ' 6.984, (6.9c)
I3 ' 6.461. (6.9d)

The equality for S-dual Dp-/D(6 − p)-branes follows from the modular transformation
ϑ3[it−1] = t

1
2ϑ3[it]. For p > 6 the above integral diverges and our flat space calculation

does not give a sensible answer. This can be attributed to the fact that the corresponding
anti-Dp-brane on top of an Op-plane strongly backreacts and no asymptotic flat space
solution exists.

The full vacuum energy consists of the tree-level potential, which corresponds to the
DBI-contribution, as well as this one-loop correction. Let the shifted dilaton be φ = Φ−〈Φ〉.
Then, in the string frame, the contribution to the action reads

SDp
Λ = −τDp

∫
W1,p

dp+1ξ
√
−det (ϕ∗G) e−φ

[
1 + gs

2π Ip eφ
]
, (6.10)

where ϕ : W1,p ↪→ X1,9 is the embedding function of the anti-Dp-brane worldvolume
W1,p into the 10-dimensional spacetime X1,9. As expected, the one-loop correction to the
tree-level vacuum energy is suppressed by a factor gs, which is the open-string coupling.
The 10-dimensional Einstein frame is defined by the metric gMN = e−

φ
2GMN and gives

SDp
Λ = −τDp

∫
W1,p

dp+1ξ
√
−det (ϕ∗g) e

(p−3)
4 φ

[
1 + gs

2π Ip eφ
]
. (6.11)

We now turn our attention to the supertrace formulae for this system. From the
previous analysis of the partition function and its expansion in powers of q, we learned that

− 8ϑ−8
3 [it] ≡

∞∑
n=0

(−1)Fngne−2πnt, (6.12)

where g0 = 8, g1 = 128, g2 = 1152 and so on. The regularised string supertrace formula
can be defined as

StrM2β = lim
t→0

∞∑
n=0

(−1)FngnM2β
n e−2πtM2

n/µ
2
, (6.13)

where α′M2
n = n and the scale µ can again be conveniently defined as µ = 1/

√
α′. The

supertraces can then be computed as

StrM2β = lim
t→0

(−µ2

2π
d

dt

)β
(−8ϑ−8

3 [it])

 . (6.14)

From the small-t expansion in (6.8), we see immediately that the first non-zero supertrace
arises for β = 4, with all the lower ones vanishing, i.e.

StrM0 = StrM2 = StrM4 = StrM6 = 0, StrM8 6= 0. (6.15)

In [15], a similar result was proven for closed strings and interpreted as a consequence of
misaligned supersymmetry.
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7 Discussion

In this work, we showed that misaligned supersymmetry is a feature that can characterise
non-supersymmetric theories for both closed and open strings. In particular, we extended
the previous results on closed-strings to the open-string case for models in which an anti-
Dp-brane is placed on top of an Op-plane. Misaligned supersymmetry leads to cancellations
between bosons and fermions at all different energy levels. Such cancellations are usually
visualised by proving that the sector-averaged state degeneracies grow at an exponential
rate governed by a coefficient Ceff that is smaller than the inverse Hagedorn temperature,
i.e. Ceff < Ctot. Here, we showed that in a large class of theories it is possible to prove
that such a coefficient is actually zero, i.e. Ceff = 0. This proves a total cancellation that
previously was only conjectured.

Given the exact cancellation of continuous functions that we have proven by showing
that Ceff = 0 and the fact that the formula for the expansion coefficients an in equa-
tion (4.11) is exact, one might wonder how finite non-zero results arise for example for
the cosmological constant or other quantities of interest. The finite answers do arise when
performing discrete sums over the states instead of using the continuous functions we intro-
duced. It would be very interesting to use our improved understanding of all the subleading
corrections to show explicitly how discrete sums over the number of states lead to a finite
non-zero answer [45].

We proved that misaligned supersymmetry is present in systems which in principle
do not share any common feature. Indeed, the heterotic SO(16)×SO(16)-theory is a non-
supersymmmetric closed string model, while anti-Dp-branes and Op-planes are open string
states that spontaneously break the supersymmetry preserved by the type II closed-string
sector they are coupled to. Moreover, while the presence of misaligned supersymmetry
in closed strings can be interpreted as a consequence of the underlying modular invari-
ance [14], this reasoning cannot be directly applied to open strings. However, in our open
string theory example the partition function turns out to be invariant under a congruence
subgroup of SL(2,Z), which is crucial for using our generalized version of the Hardy-
Ramanujan-Rademacher sum. Certainly, misaligned supersymmetry seems to be a general
phenomenon that might be capable of explaining why string theory can give finite answers
(at any loop) even without supersymmetry.

We devoted great attention to models with anti-Dp-branes on top of Op-planes, which
are examples of brane supersymmetry breaking. Our results thus point towards a relation
between this scenario and misaligned supersymmetry: some models of brane supersymme-
try breaking can give finite answers thanks to misaligned supersymmetry.

The case p = 3 is of particular interest due to its relation to the KKLT and LVS
constructions. We showed that the one-loop cosmological constant of these models is finite
and such a finiteness can be explained thanks to the presence of misaligned supersymmetry.
In addition, it is known that the worldvolume field theory living on an anti-D3-brane on top
of an O3-plane is described by non-linear supersymmetry [46, 47]. In this sense, our work
indicates that low-energy effective theories with non-linear supersymmetry are completed
in the high-energy regime into string theories with misaligned supersymmetry. A key
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observation for this is that the mass scale of the non-linear realisation of supersymmetry is
the anti-D3-brane tension, m ∼ τ

1/4
D3 , and similarly this is the scale that characterises the

infinite tower of string states that define the realization of misaligned supersymmetry.
There are various directions in which one can extend our work. First, we always

assumed to have a single anti-Dp-brane in a flat ten-dimensional background modded out by
an orientifold projection. It would be interesting to consider deviations from this, including
multiple coincident or intersecting branes and involving possibly also compact dimensions.
In these cases, a central question would be the stability of the resulting construction, see
for example [42]. The role played by the Kaluza-Klein towers of states should also be
investigated. Second, we performed our analysis of the partition function only at one-
loop level. Therefore, a natural development would be to understand whether or not our
findings hold at higher loops. For the two-loop level, one can see for example [19]. Finally,
recently a connection between misaligned supersymmetry and swampland conjectures has
been pointed out in [48]. It would be interesting to pursue along this line of investigation.
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A Dedekind η-function and Jacobi ϑ-functions

In terms of the variable q = e2πiτ , the Dedekind function is defined as

η(τ) = q
1
24

∞∑
n=−∞

(−1)nqn
(3n−1)

2 = q
1
24

∞∏
n=1

(1− qn), (A.1)

while the Jacobi ϑ-functions can be defined as infinite sums

ϑ

[
a

b

]
(z|τ) =

∞∑
n=−∞

q
1
2 (n+a)2e2πi(n+a)(z+b), (A.2)

or equivalently as infinite products

ϑ

[
a

b

]
(z|τ) = e2πia(z+b) q

a2
2

∞∏
n=1

(1− qn)
(
1 + qn+a− 1

2 e2πi(z+b)
) (

1 + qn−a−
1
2 e−2πi(z+b)

)
.

(A.3)
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Particularly relevant for writing string theory amplitudes are the following four functions:

ϑ1(q) ≡ −ϑ
[ 1

2
1
2

]
(0|τ) =

∞∑
n=−∞

q
1
2 (n+ 1

2 )2(−1)n−
1
2 = −iq

1
8

∞∏
n=1

(1− qn)2(1− qn−1), (A.4a)

ϑ2(q) ≡ −ϑ
[ 1

2
0

]
(0|τ) =

∞∑
n=−∞

q
1
2 (n+ 1

2 )2 = 2q
1
8

∞∏
n=1

(1− qn) (1 + qn)2 , (A.4b)

ϑ3(q) ≡ −ϑ
[

0
0

]
(0|τ) =

∞∑
n=−∞

q
n2
2 =

∞∏
n=1

(1− qn)(1 + qn−
1
2 )2, (A.4c)

ϑ4(q) ≡ −ϑ
[

0
1
2

]
(0|τ) =

∞∑
n=−∞

(−1)nq
n2
2 =

∞∏
n=1

(1− qn)(1− qn−
1
2 )2. (A.4d)

Some useful relations are

ϑ1 = 0, (A.5)
ϑ4

3 − ϑ4
4 − ϑ4

2 = 0, (A.6)
ϑ2ϑ3ϑ4 = 2η3. (A.7)

The second one is known as Jacobi equation, while the third one as Jacobi triple product
identity.

Under the generating modular transformations T and S, which act on the modular
parameter as T (τ) = τ + 1 and S(τ) = −1/τ , the Dedekind function transforms as

T : η(τ + 1) = e
iπ
12 η(τ), (A.8)

S : η(−1/τ) =
√
−iτ η(τ). (A.9)

The general form for the transformation of the Jacobi ϑ-functions is

T : ϑ

[
a

b

]
(z|τ + 1) = e−iπa(a−1) ϑ

[
a

a+ b− 1
2

]
(z|τ) (A.10)

S : ϑ

[
a

b

]
(z| − 1/τ) =

√
−iτe2πiab+iπ z

2
τ ϑ

[
b

−a

]
(z|τ), (A.11)

but more explicitly we can write

ϑ2(τ + 1) = e
iπ
4 ϑ2(τ), (A.12a)

T : ϑ3(τ + 1) = ϑ4(τ), (A.12b)
ϑ4(τ + 1) = ϑ3(τ), (A.12c)

ϑ2(−1/τ) =
√
−iτ ϑ4(τ), (A.13a)

S : ϑ3(−1/τ) =
√
−iτ ϑ3(τ), (A.13b)

ϑ4(−1/τ) =
√
−iτ ϑ2(τ). (A.13c)

Another useful identity is

η(τ + 1/2) = e
iπ
24

η3(2τ)
η(τ)η(4τ) . (A.14)
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It is possible to express the Jacobi ϑ-functions in terms of the Dedekind η-function
and vice versa via the identities

ϑ2(τ) = 2η2(2τ)
η(τ) , (A.15a)

ϑ3(τ) = η5(τ)
η2(τ/2)η2(2τ) , (A.15b)

ϑ4(τ) = η2(τ/2)
η(τ) . (A.15c)

It is also useful to introduce the characters of the so(2n) algebras, which are defined as

O2n = ϑn3 + ϑn4
2ηn , (A.16a)

V2n = ϑn3 − ϑn4
2ηn , (A.16b)

S2n = ϑn2 + i−nϑn1
2ηn , (A.16c)

C2n = ϑn2 − i−nϑn1
2ηn . (A.16d)

In particular, O2n and V2n correspond to the traces over the NS-sector, whereas S2n and
C2n correspond to the traces over the R-sector.

Further properties of ϑ3(z, τ ). Since the elliptic function ϑ3(z, τ) has an important
role in our discussion, we collect here some useful properties.

The Jacobi elliptic function ϑ3 can be defined as a infinite sum

ϑ3(z, τ) =
∞∑

n=−∞
eiπn2τe2niz (A.17)

and it is a solution of the heat equation

1
4iπ∂

2ϑ3
∂z2 (z, τ) + ∂ϑ3

∂τ
(z, τ) = 0. (A.18)

In this work, we mainly employ the Jacobi ϑ-constant, defined as

ϑ3(τ) ≡ ϑ3(z = 0, τ). (A.19)

Moreover, we often need to restrict our attention to the case in which the argument is
purely imaginary, namely τ = it, with t > 0. In this case, ϑ3(it) satisfies the functional
equation

ϑ3(it−1) = t
1
2ϑ3(it), (A.20)

which can be interpreted as a modular S-transformation. One can also show the asymptotic
behaviours

ϑ3(it) t→0+
≈ 1√

2t
, (A.21)

ϑ3(it) t→∞≈ 1. (A.22)
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