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Abstract— We consider a class of stochastic optimal
control problems for discrete-time linear systems whose
objective is the characterization of control policies that will
steer the probability distribution of the terminal state of
the system close to a desired Gaussian distribution. In our
problem formulation, the closeness between the terminal
state distribution and the desired (goal) distribution is mea-
sured in terms of the squared Wasserstein distance which
is associated with a corresponding terminal cost term. We
recast the stochastic optimal control problem as a finite-
dimensional nonlinear program whose performance index
can be expressed as the difference of two convex functions.
This representation of the performance index allows us
to find local minimizers of the original nonlinear program
via the so-called convex-concave procedure [1]. Finally, we
present non-trivial numerical simulations to demonstrate
the efficacy of the proposed technique by comparing it
with sequential quadratic programming methods in terms
of computation time.

Index Terms— Stochastic Optimal Control, Optimization,
Uncertain Systems

I. INTRODUCTION

We consider covariance steering problems for discrete-time

stochastic linear systems in which, however, the constraints

on the terminal state covariance are enforced indirectly by

means of appropriate terminal costs. Specifically we consider

the problem of steering the state of a stochastic system, which

is originally drawn from a given Gaussian distribution, to a

terminal state whose distribution is “close” to a desired (pre-

scribed) Gaussian distribution, where the closeness between

the two distributions is measured in terms of the squared

Wasserstein distance. We show that the resulting problem can

be reduced to a tractable optimization problem which can be

solved efficiently if one exploits its structure.

Literature Review: The main focus of the first attempts

to study covariance steering problems [2], [3], [4] was on

finding stabilizing controllers that drive the state covariance

to a desired positive definite matrix asymptotically (infinite-

horizon case). The covariance steering problem turns out to be

closely related to the so-called Schrödinger’s bridge problem,

which plays an important role in optimal mass transport and
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statistical mechanics [5]. Finite-horizon covariance control

problems for continuous-time linear systems were recently

studied in [6], [7], [8], [9]. Covariance steering problems for

discrete-time systems are also receiving significant attention at

present. In [10], the constrained covariance steering problem

is recast as a finite dimensional convex optimization problem

based on a semidefinite relaxation of the constraint on the

terminal state covariance. Covariance steering problems with

convex chance constraints are studied in [11].

In the previously discussed references, the specifications on

the terminal state covariance correspond to hard constraints

which often lead to difficult problems (for instance, the ana-

lytic solution to the covariance steering problem presented in

[6] is only valid for the special case in which the input and

noise channels coincide). An alternative problem formulation,

which has inspired this paper, is presented in [12] in which

a terminal cost is used as a “soft” constraint on the terminal

state covariance. The latter cost corresponds to the squared

Wasserstein distance between a desired state distribution and

the “actual” terminal state distribution. The latter formulation

leads to a standard two-point boundary value problem which

can be solved by means of indirect shooting methods. It

is well known that the success of such methods relies on

knowledge of good initial guesses and thus, in general, a

systematic process for the computation of the solution to the

class of covariance steering problems proposed in [12] with

soft terminal constraints is still missing.

Main Contribution: We first formulate the covariance steer-

ing problem as a stochastic optimal control problem in which

the requirement on the terminal state covariance is encoded in

a terminal cost term (“soft constraint”). Similarly with [12],

we consider the case in which the terminal cost corresponds to

the squared Wasserstein distance between the actual terminal

state distribution and the desired Gaussian distribution but in

contrast with the latter reference, we consider the discrete-time

case. First, we recast this stochastic optimal control problem

as a (deterministic) nonlinear program by utilizing an affine

state feedback control policy parametrization (the control input

at each stage is an affine function of the history of visited

states). Then, we show that the performance index of the

nonlinear program can be expressed as the difference of two

convex functions by using a suitable bilinear transformation

of the decision variables. To the best of our knowledge, this

is the first paper that shows that covariance steering problems

can be formulated as difference of convex functions programs



(DCPs). By leveraging this fact, one can find local minimizers

of the nonlinear program via efficient techniques such as the

so-called convex-concave procedure (CCP) [1], [13]. The CCP

is an iterative procedure which can compute local minimizers

of non-convex optimization problems which correspond to

DCP based on successive convexifications. Exploiting this

extra structure of the problem reduces its complexity and

allows us to use convex optimization solvers which in turn

leads to improved scalability and numerical efficiency. Finally,

we show the efficacy of our approach in numerical simulations

in terms of computation time compared to general purpose

NLP solvers.

Outline: The rest of the paper is organized as follows.

Section II presents the problem formulation. In Section III,

we show that the covariance steering problem with Wasserstein

distance terminal cost can be associated with a difference of

convex functions program. In Section IV, we present numerical

simulations. Finally, Section V concludes the paper with a

summary of remarks and directions for future research.

II. PROBLEM FORMULATION

A. Notation

We denote by R
n the set of n-dimensional real vectors and

by R and R
+ (resp., R++) the set of real numbers and non-

negative (resp., strictly positive) real numbers, respectively.

The sets of non-negative and strictly positive integers are

denoted by Z
+ and Z

++, respectively. We denote by E[·]
the expectation functional. Given a random vector x, we

denote its mean vector and covariance matrix by E[x] and

Cov[x], respectively. The space of n× n symmetric matrices

is denoted by Sn and the cone of positive semi-definite

(positive definite) symmetric matrices by S
+
n (S++

n ). The trace

of a square matrix is denoted as tr(·). The transpose of

a matrix A ∈ R
n×m is denoted by AT, its nuclear norm

by ‖A‖∗ where ‖A‖∗ := tr((ATA)1/2) and its Frobenius

norm by ‖A‖F where ‖A‖F :=
√

tr(ATA). The block

diagonal matrix formed by n matrices A1, . . . , An is denoted

by blkdiag(A1, . . . , An). The zero matrix is denoted as 0

whereas the identity matrix as I . We write x ∼ N (µ, S) to

denote that x is a Gaussian random vector with mean µ ∈ R
n

and covariance S ∈ S
++
n .

B. Wasserstein Distance

In this paper, we shall formulate a stochastic optimal

control problem with terminal cost that measures the closeness

between the final state probability distribution and a desired

distribution in terms of the squared Wasserstein distance. Next,

we briefly review the concept of Wasserstein distance between

two distributions and we provide its analytic expression when

both of them are Gaussian.

Given two random vectors x1, x2 over Rn with probability

density functions ρ1, ρ2, their squared Wasserstein distance is

defined as follows:

W 2(ρ1, ρ2) := inf
ρ∈P(ρ1,ρ2)

Ey[‖x1 − x2‖22], (1)

where ρ ∈ P(ρ1, ρ2) is the joint probability density function

(pdf) of the random vector y := [x1, x2]
T, and P(ρ1, ρ2)

denotes the set of all probability density functions over R
2n

with finite second moments and marginals ρ1 and ρ2 on x1 and

x2, respectively. It is worth mentioning that the Wasserstein

distance between two probability measures is a valid distance

metric (in the strict mathematical sense) because it satisfies

all of the properties of a metric (non-negativity, symmetry,

triangle inequality, and identity).

If xi ∼ N (µi, Si), where µi ∈ R
n and Si ∈ S

++
n for i ∈

{1, 2}, then the squared Wasserstein distance can be written

in closed-form as follows [14]:

W 2(ρ1, ρ2) = ‖µ1 − µ2‖22
+ tr

(

S1 + S2 − 2(S
1/2
2 S1S

1/2
2 )1/2

)

. (2)

C. Problem Statement

We consider an uncertain system whose dynamics is de-

scribed by the following discrete-time stochastic linear state

space model:

xk+1 = Akxk +Bkuk +Gkwk, ∀k ∈ Z
+, (3)

where {xk}k∈Z+ is the state (random) process over R
nx ,

{uk}k∈Z+ is the input process over R
nu and {wk}k∈Z+ is

the noise (random) process over Rnw . In particular, {wk}k∈Z+

corresponds to a white Gaussian noise process with E[wk] = 0
and E[wkw

>
m] = δ(k,m)Sw, where Sw ∈ S

++
nw

and δ(k,m) =
1 when k = m and δ(k,m) = 0, otherwise. We also assume

that the initial state x0 ∼ N (µ0, S0) and that x0 and {wk}
are mutually independent, which implies that E[x0w

>
k ] = 0

for all k ∈ Z
+.

Our objective is to drive the uncertain state of the system

(3) from its given initial distribution to a terminal distribution

which is close to a desired terminal Gaussian probability

distribution N (µd, Sd), where µd ∈ R
n and Sd ∈ S

++
n

are given, at a given finite time while minimizing a relevant

performance index. Next, we provide the precise formulation

of our problem.

Problem 1. Let µ0, µf ∈ R
nx , S0, Sf ∈ S

++
nx

, λ > 0 and

N ∈ Z
++ be given. In addition, let Π denote the set of all

admissible control policies π := {m0(·), . . . ,mN−1(·)} for

system (3), with uk = mk(X
k) where Xk denotes the (finite)

sequence of states visited up to stage t = k, that is, Xk :=
{x0, x1, . . . xk}, and mk(X

k) are measurable functions of the

elements of Xk, for k = 0, . . . , N − 1. Then, find a control

policy π∗ ∈ Π that solves the following stochastic optimal

control problem:

Minimize
π∈Π

E

[

N−1
∑

k=0

uT
k uk

]

+ λϕ(ρN , ρd) (4a)

subject to xk+1 = Akxk +Bkuk +Gkwk (4b)

x0 ∼ N (µ0, S0) (4c)

where ρd is the pdf corresponding to the Gaussian probability

distribution N (µd, Sd) (goal terminal state probability distri-

bution), ρN is the pdf of the terminal state xN , and ϕ(ρN , ρd)
denotes the squared Wasserstein distance between ρN and ρd,

that is, ϕ(ρN , ρd) := W 2(ρN , ρd).

In order to associate Problem 1 with a tractable, finite-



dimensional optimization problem, we only consider admis-

sible control policies that correspond to sequences of control

laws mk(·) which are affine functions of the state history:

mk(X
k) =

k
∑

i=0

K(k, i)
(

xi − x̄i

)

+ uff(k), (5)

where x̄i = E[xi]. Next, we show the main steps for recasting

Problem 1, whose decision variable corresponds to the control

policy π, as an optimization problem whose decision variables

are the controller parameters uff(k) ∈ R
nu and K(k, j) ∈

R
nu×nx , for k, j ∈ {0, . . . , N − 1} with k ≥ j.

III. DIFFERENCE OF CONVEX FUNCTIONS

PROGRAMMING FORMULATION

In this section, we will show that Problem 1 can be asso-

ciated with a difference of convex functions program (DCP),

that is, a nonlinear program whose performance index is equal

to the difference of two convex functions. This will allow us to

efficiently compute local minimizers of Problem 1 by means

of heuristic and easily implementable algorithms, such as the

convex-concave procedure [1]. It is worth mentioning that

the set of objective functions which can be expressed as the

difference of convex functions is dense in the set of continuous

functions; moreover, every twice differentiable function can

be represented as the difference of convex functions [15].

However, there is no systematic process that is guaranteed

to find such a representation for a given function of interest

except for a few special classes of functions.

Next, we recast Problem 1 as a finite-dimensional optimiza-

tion problem. To this aim, we express the state xk in terms of

a finite-dimensional decision variable. In particular, by propa-

gating forward in time the state of the discrete-time stochastic

system (3) and using the control policy parametrization given

in (5), we can express xk as a function of x0, {ui}k−1
i=0 and

{wi}k−1
i=0 as follows:

xk = Φ(k, 0)x0 +
k−1
∑

i=0

Φ(k, i)Biui +
k−1
∑

i=0

Φ(k, i)Giwi, (6)

where Φ(k, n) := Ak−1 . . . An, Φ(n, n) = I with k ≥ n for

k, n ∈ Z
+ (state transition matrix of (3)). Now, let us define

the following quantities:

x := [xT
0 , xT

1 , . . . , xT
N ]T ∈ R

nx(N+1), (7a)

u := [uT
0 , uT

1 , . . . , uT
N−1]

T ∈ R
nuN , (7b)

w := [wT
0 , wT

1 , . . . , wT
N−1]

T ∈ R
nwN . (7c)

By using equations (6)-(7), it follows that

x = Γx0 +Huu+Hww, (8)

where

Γ := [I Φ(1, 0) Φ(2, 0) . . . Φ(N, 0)], (9)

Hu :=















0 0 . . . 0

B0 0 . . . 0

Φ(2, 1)B0 B1 . . . 0

...
...

...
...

Φ(N, 1)B0 Φ(N, 2)B1 . . . BN−1















, (10)

and Hw is defined similarly, after replacing the matrices Bi

in (10) with the matrices Gi. The reader is referred to [10] for

the details on the derivation of (8)-(10).

Because the performance index of Problem 1 consists of a

terminal cost term, we will use the following equation:

xN = Fx, F := [0 · · · 0 I], (11)

to recover xN from x.

Given the particular affine parametrization of the control

policy given in (5) and the fact that the initial state is assumed

to be a Gaussian (random) vector, it follows that the states

of the system in the subsequent stages will also be Gaussian

(random) vectors. In addition, we obtain

u = K(x− x̄) + uff , (12)

where x̄ := E[x], uff := [uT
ff (0), . . . , u

T
ff (N − 1)]T and

K :=















K(0, 0) 0 . . . 0

K(1, 0) K(1, 1) . . . 0

K(2, 0) K(2, 1) . . . 0

...
...

...
...

K(N − 1, 0) K(N − 1, 1) . . . 0















. (13)

We proceed with the derivation of the expression of the

performance index of Problem 1 in terms of the decision

variables uff and K. To this aim, we write
∑N−1

k=0 uT
k uk =

u
T
u, which in view of basic properties of the trace operator

and (12) gives

E[uT
u] = E[tr(uuT)]

= E[tr((K(x− x̄) + uff)(K(x− x̄) + uff)
T)]

= tr(KE[x̃x̃T]KT) + ‖uff‖22, (14)

where x̃ := x − x̄ and in the derivation of the last equality,

we have used the fact that uff is a deterministic quantity.

For the computation of Cov[x] = E[x̃x̃T], we first have to

compute x̄ = E[x]. By taking expectation on both sides of

(8), we obtain:

E[x] = E[Γx0 +Hu(K(x− x̄) + uff) +Hww]

= Γµ0 +Huuff . (15)

After some simple algebraic manipulations, we get:

x̃ = (I −HuK)−1(Γ(x0 − µ0) +Hww), (16)

from which it follows:

E[x̃x̃T] = K̄(ΓS0Γ
T +HwSwHw

T)K̄
T
, (17)

where K̄ := (I − HuK)−1 and Sw := E[ww
T] =

blkdiag(Sw, . . . , Sw). From (15) and (17), we can obtain the

following expressions for µN := E[xN ] and SN := Cov[xN ]:

µN = F (Γµ0 +Huuff), (18a)

SN = F (I −HuK)−1S̃(I −HuK)−T
F

T, (18b)

where S̃ = (ΓS0Γ
T + HwSwHw

T). By plugging (17) into

(14), we have:

E[uT
u] = tr(K(I −HuK)−1S̃(I −HuK)−T

K
T)

+ ‖uff‖2. (19)

After plugging the expressions of µN and SN in (18a)

and (18b) into the expression of W 2(ρN , ρd) for Gaussian



distributions, which is given in (2), we get:

W 2(ρN , ρd) = ‖F (Γµ0 +Huuff)− µd‖22
+ tr(F (I −HuK)−1S̃F (I −HuK)−T

F
T + Sd)

− 2 tr((
√

Sd ×
(F (I −HuK)−1S̃F (I −HuK)−T

F
T)

×
√

Sd)
1/2). (20)

At this point, we propose to apply a variable transformation,

which was first proposed in [16] and later used for covariance

steering problems in [10], to convexify the optimization prob-

lem. In particular, we introduce the new variable, Θ, which is

defined as follows:

Θ := K(I −HuK)−1 =: ϕ(K) (21a)

K := (I +HuΘ)−1
Θ =: φ(Θ). (21b)

Furthermore, by using the identity (I + P )−1 = I − P (I +
P )−1, we obtain:

(I −HuK)−1 = I +HuK(I −HuK)−1

= (I +HuΘ). (21c)

As is shown in [16], the functions φ(·) and ϕ(·) determine a

bijective transformation, that is, φ(·) = ϕ−1(·) and vice versa.

Therefore, the right hand sides of equations (19) and (20) can

be expressed equivalently in terms of uff and the new decision

variable Θ, which is defined in (21), as follows:

E[uT
u] = tr(ΘS̃ΘT) + u

T
ffuff (22)

W 2 = ‖F (Γµ0 +Huuff)− µd‖22
+ tr(F (I +HuΘ)S̃(I +HuΘ)TFT)

− 2 tr((
√

SdF (I +HuΘ)S̃(I +HuΘ)TFT
√

Sd)
1/2)

+ tr(Sd). (23)

Remark 1. It should be noted that K is a block lower

triangular matrix whose last nx columns are equal to 0. If

we examine equation (21b), we observe that (I−HuK)−1 is

a block lower triangular matrix given that Hu is also block

lower triangular, which in turn implies that (I − HuK)−1

is well defined. Finally, left multiplication of (I −HuK)−1

with K gives Θ, which is also a block lower triangular matrix

with the same dimension as K. The reader is referred to [10],

[16] for more details. An important observation is that the new

decision variable Θ should have the same structure as K for

the control policy to maintain causality.

Finally, the performance index of Problem 1 can be ex-

pressed in terms of the decision variables uff and Θ. Let us

denote this function as J(uff ,Θ), where

J(uff ,Θ) = J1(uff) + J2(Θ) + J3(Θ)− J4(Θ), (24)

with

J1(uff) := ‖uff‖22 + λ‖F (Γµ0 +Huuff)− µd‖22, (25a)

J2(Θ) := tr(ΘS̃ΘT), (25b)

J3(Θ) := λ tr
(

F (I +HuΘ)S̃(I +HuΘ)TFT
)

+ λ tr(Sd), (25c)

J4(Θ) := 2λ tr
(

(

√

SdF (I +HuΘ)

× S̃(I +HuΘ)TFT
√

Sd

)1/2
)

. (25d)

Thus, Problem 1 can be reduced to the following optimization

problem:

Problem 2. Let µ0, µd ∈ R
nx , S0, Sd ∈ S

++
nx

, N ∈ Z
++

and {Ak, Bk, Gk}N−1
k=0 , where Ak ∈ R

nx×nx , Bk ∈ R
nx×nu

and Gk ∈ R
nx×nw , be given. Find a pair (u?

ff ,Θ
?), where

Θ
? ∈ R

nuN×nx(N+1) is a block lower triangular matrix, that

minimizes the objective function J(uff ,Θ), which is defined

in (24)-(25).

Proposition 1. Let λ ∈ R
++ be given. Then, the functions

J1, J2, J3 and J4, which are defined in (25), are convex and

thus Problem 2 corresponds to a difference of convex functions

program (DCP).

Proof. The proof of convexity of the functions J1(·), J2(·) and

J3(·) can be found in [10]. For the convexity of J4(·), we need

to define the functions g(Θ) := (
√
SdF (I+HuΘ)Ṽ D̃1/2)T ,

where Ṽ TD̃Ṽ is the eigenvalue decomposition of S̃, and

f(A) := tr((AT
A)1/2) = ‖A‖∗. Clearly, g(·) is an affine

function. In addition, f(·) corresponds to the nuclear norm,

which is a valid matrix norm [17] and thus, f(·) is a convex

function. Finally, J4(Θ) is convex as the composition of the

convex function f(·) with the affine function g(·).
Remark 2. Proposition 1 implies that Problem 1 can be

reduced to a DCP, whose (local) minimizers can be found

by means of the so-called convex-concave procedure [1], [13]

which is known to be efficient and robust in practice.

Remark 3. In the formulation of Problem 2, we do not

consider state or control constraints because our focus is on

studying the role of the Wasserstein terminal cost in covariance

steering problems. It is worth mentioning, however, that such

constraints can be easily incorporated in our optimization-

based approach. For instance, we can impose an explicit

upper bound on the expected value of the control effort that

can be used similarly to [10] (the latter constraint actually

corresponds to a convex constraint).

IV. NUMERICAL EXPERIMENTS

In this section, we present numerical experiments to demon-

strate the efficacy of our approach. All computations were run

on a laptop with 2.8 GHz Intel Core i7-7700HQ CPU and

16 GB RAM. For our simulations, we have used the convex-

concave procedure (CCP) with MOSEK [18] to solve Problem

2 and CVXPY [19] to model the convexified sub-problems.

We compare our method with general purpose NLP solvers in

terms of computation time. In particular, the NLP solvers used

are the IPOPT [20] and the L-BFGS-B implementation of the






