Covariance Steering of Discrete-Time
Stochastic Linear Systems Based on
Wasserstein Distance Terminal Cost

Isin M. Balci and Efstathios Bakolas

Abstract—We consider a class of stochastic optimal
control problems for discrete-time linear systems whose
objective is the characterization of control policies that will
steer the probability distribution of the terminal state of
the system close to a desired Gaussian distribution. In our
problem formulation, the closeness between the terminal
state distribution and the desired (goal) distribution is mea-
sured in terms of the squared Wasserstein distance which
is associated with a corresponding terminal cost term. We
recast the stochastic optimal control problem as a finite-
dimensional nonlinear program whose performance index
can be expressed as the difference of two convex functions.
This representation of the performance index allows us
to find local minimizers of the original nonlinear program
via the so-called convex-concave procedure [1]. Finally, we
present non-trivial numerical simulations to demonstrate
the efficacy of the proposed technique by comparing it
with sequential quadratic programming methods in terms
of computation time.

Index Terms— Stochastic Optimal Control, Optimization,
Uncertain Systems

[. INTRODUCTION

We consider covariance steering problems for discrete-time
stochastic linear systems in which, however, the constraints
on the terminal state covariance are enforced indirectly by
means of appropriate terminal costs. Specifically we consider
the problem of steering the state of a stochastic system, which
is originally drawn from a given Gaussian distribution, to a
terminal state whose distribution is “close” to a desired (pre-
scribed) Gaussian distribution, where the closeness between
the two distributions is measured in terms of the squared
Wasserstein distance. We show that the resulting problem can
be reduced to a tractable optimization problem which can be
solved efficiently if one exploits its structure.

Literature Review: The main focus of the first attempts
to study covariance steering problems [2], [3], [4] was on
finding stabilizing controllers that drive the state covariance
to a desired positive definite matrix asymptotically (infinite-
horizon case). The covariance steering problem turns out to be
closely related to the so-called Schrodinger’s bridge problem,
which plays an important role in optimal mass transport and
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statistical mechanics [5]. Finite-horizon covariance control
problems for continuous-time linear systems were recently
studied in [6], [7], [8], [9]. Covariance steering problems for
discrete-time systems are also receiving significant attention at
present. In [10], the constrained covariance steering problem
is recast as a finite dimensional convex optimization problem
based on a semidefinite relaxation of the constraint on the
terminal state covariance. Covariance steering problems with
convex chance constraints are studied in [11].

In the previously discussed references, the specifications on
the terminal state covariance correspond to hard constraints
which often lead to difficult problems (for instance, the ana-
lytic solution to the covariance steering problem presented in
[6] is only valid for the special case in which the input and
noise channels coincide). An alternative problem formulation,
which has inspired this paper, is presented in [12] in which
a terminal cost is used as a “soft” constraint on the terminal
state covariance. The latter cost corresponds to the squared
Wasserstein distance between a desired state distribution and
the “actual” terminal state distribution. The latter formulation
leads to a standard two-point boundary value problem which
can be solved by means of indirect shooting methods. It
is well known that the success of such methods relies on
knowledge of good initial guesses and thus, in general, a
systematic process for the computation of the solution to the
class of covariance steering problems proposed in [12] with
soft terminal constraints is still missing.

Main Contribution: We first formulate the covariance steer-
ing problem as a stochastic optimal control problem in which
the requirement on the terminal state covariance is encoded in
a terminal cost term (“soft constraint”). Similarly with [12],
we consider the case in which the terminal cost corresponds to
the squared Wasserstein distance between the actual terminal
state distribution and the desired Gaussian distribution but in
contrast with the latter reference, we consider the discrete-time
case. First, we recast this stochastic optimal control problem
as a (deterministic) nonlinear program by utilizing an affine
state feedback control policy parametrization (the control input
at each stage is an affine function of the history of visited
states). Then, we show that the performance index of the
nonlinear program can be expressed as the difference of two
convex functions by using a suitable bilinear transformation
of the decision variables. To the best of our knowledge, this
is the first paper that shows that covariance steering problems
can be formulated as difference of convex functions programs



(DCPs). By leveraging this fact, one can find local minimizers
of the nonlinear program via efficient techniques such as the
so-called convex-concave procedure (CCP) [1], [13]. The CCP
is an iterative procedure which can compute local minimizers
of non-convex optimization problems which correspond to
DCP based on successive convexifications. Exploiting this
extra structure of the problem reduces its complexity and
allows us to use convex optimization solvers which in turn
leads to improved scalability and numerical efficiency. Finally,
we show the efficacy of our approach in numerical simulations
in terms of computation time compared to general purpose
NLP solvers.

Outline: The rest of the paper is organized as follows.
Section II presents the problem formulation. In Section III,
we show that the covariance steering problem with Wasserstein
distance terminal cost can be associated with a difference of
convex functions program. In Section IV, we present numerical
simulations. Finally, Section V concludes the paper with a
summary of remarks and directions for future research.

Il. PROBLEM FORMULATION
A. Notation

We denote by R™ the set of n-dimensional real vectors and
by R and RT (resp., RT™™) the set of real numbers and non-
negative (resp., strictly positive) real numbers, respectively.
The sets of non-negative and strictly positive integers are
denoted by Z* and Z*T, respectively. We denote by E[]
the expectation functional. Given a random vector x, we
denote its mean vector and covariance matrix by E[z] and
Cov|z], respectively. The space of n x n symmetric matrices
is denoted by S,, and the cone of positive semi-definite
(positive definite) symmetric matrices by S (S;} ). The trace
of a square matrix is denoted as tr(-). The transpose of
a matrix A € R" ™ is denoted by AT, its nuclear norm
by || A« where ||A]l. := tr((ATA)'/?) and its Frobenius
norm by ||Al|r where ||A|lr := +/tr(ATA). The block
diagonal matrix formed by n matrices A, ..., A, is denoted
by blkdiag(A;,...,A,). The zero matrix is denoted as O
whereas the identity matrix as I. We write  ~ N (u,S) to
denote that x is a Gaussian random vector with mean p € R”
and covariance S € S{.

B. Wasserstein Distance

In this paper, we shall formulate a stochastic optimal
control problem with terminal cost that measures the closeness
between the final state probability distribution and a desired
distribution in terms of the squared Wasserstein distance. Next,
we briefly review the concept of Wasserstein distance between
two distributions and we provide its analytic expression when
both of them are Gaussian.

Given two random vectors z, x5 over R™ with probability
density functions pi, p2, their squared Wasserstein distance is
defined as follows:

inf

W2(p1, = E,[||z1 — z2||3], 1
(p1,p2) . ylllz1 — 22|13 (D

where p € P(p1, p2) is the joint probability density function
(pdf) of the random vector y := [z1, x2]T, and P(p1,p2)

denotes the set of all probability density functions over R2"
with finite second moments and marginals p; and ps on z; and
x9, respectively. It is worth mentioning that the Wasserstein
distance between two probability measures is a valid distance
metric (in the strict mathematical sense) because it satisfies
all of the properties of a metric (non-negativity, symmetry,
triangle inequality, and identity).

If 2; ~ N(u;, S;), where p; € R™ and S; € ST for i €
{1,2}, then the squared Wasserstein distance can be written
in closed-form as follows [14]:

W2(p1, p2) = llpn — pall3
+ tr(Sl 48— 2(521/251521/2)1/2). 2)

C. Problem Statement

We consider an uncertain system whose dynamics is de-
scribed by the following discrete-time stochastic linear state
space model:

VEeZt, (3

where {zj}rez+ is the state (random) process over R™e,
{ug }rez+ is the input process over R™ and {wy}rez+ is
the noise (random) process over R™. In particular, {wy, }rez+
corresponds to a white Gaussian noise process with E[wy] = 0
and Elwyw,,] = 6(k,m)S,, where Sy, € S} and 6(k, m) =
1 when k = m and 6(k, m) = 0, otherwise. We also assume
that the initial state xo ~ AN (po,So) and that zg and {wy}
are mutually independent, which implies that E[zow, ] = 0
forall k € Z7T.

Our objective is to drive the uncertain state of the system
(3) from its given initial distribution to a terminal distribution
which is close to a desired terminal Gaussian probability
distribution A (14, S4), where pg € R™ and Sy € ST
are given, at a given finite time while minimizing a relevant
performance index. Next, we provide the precise formulation
of our problem.

Tr+1 = ApTr + Brur + Grwg,

Problem 1. Let pg, iy € R™, Sy, Sy € STH, A > 0 and
N € Z*+ be given. In addition, let 1 denote the set of all
admissible control policies m = {mo(-),...,mn—1(-)} for
system (3), with uj, = my(X"*) where X* denotes the (finite)
sequence of states visited up to stage t = k, that is, X* :=
{20, 71, ... 21}, and my(X") are measurable functions of the
elements of X*, for k = 0,...,N — 1. Then, find a control
policy * € 11 that solves the following stochastic optimal
control problem:

N—1
. T
M1£r116111_111ze E l};} ugug | + Ao(pn, pa) (4a)
subject to Trr1 = Axxr + Brug + Grw,  (4b)
zo ~ N (o, So) (40)

where pg is the pdf corresponding to the Gaussian probability
distribution N (114, Sq) (goal terminal state probability distri-
bution), p is the pdf of the terminal state x, and ©(pn, pa)
denotes the squared Wasserstein distance between pn and pg,

that is, o(pN, pa) == W2(pn, pa)-

In order to associate Problem 1 with a tractable, finite-



dimensional optimization problem, we only consider admis-
sible control policies that correspond to sequences of control
laws my(-) which are affine functions of the state history:

k
mi(X*) =" K (ki) (wi — 2i) + ug(k), (5)
=0

where Z; = E[xz;]. Next, we show the main steps for recasting
Problem 1, whose decision variable corresponds to the control
policy 7, as an optimization problem whose decision variables
are the controller parameters ug(k) € R™ and K(k,j) €
R™*n= for k,j € {0,...,N — 1} with k > j.

[1l. DIFFERENCE OF CONVEX FUNCTIONS
PROGRAMMING FORMULATION

In this section, we will show that Problem 1 can be asso-
ciated with a difference of convex functions program (DCP),
that is, a nonlinear program whose performance index is equal
to the difference of two convex functions. This will allow us to
efficiently compute local minimizers of Problem 1 by means
of heuristic and easily implementable algorithms, such as the
convex-concave procedure [1]. It is worth mentioning that
the set of objective functions which can be expressed as the
difference of convex functions is dense in the set of continuous
functions; moreover, every twice differentiable function can
be represented as the difference of convex functions [15].
However, there is no systematic process that is guaranteed
to find such a representation for a given function of interest
except for a few special classes of functions.

Next, we recast Problem 1 as a finite-dimensional optimiza-
tion problem. To this aim, we express the state xj in terms of
a finite-dimensional decision variable. In particular, by propa-
gating forward in time the state of the discrete-time stochastic
system (3) and using the control policy parametrization given
in (5), we can express xj, as a function of xg, {u; f;ol and

{w;}i= 4 as follows:
k-1 k-1
ap = (k,0)zo + > (ki) Biu; + > _ (k,i)Gyw;, (6)
i=0 i=0

where ®(k,n) := Ag_1... Ay, ®(n,n) = I with k > n for
k,n € Z* (state transition matrix of (3)). Now, let us define
the following quantities:

x:=[zl, 2T, ..., 25T e RPN+, (7a)
wi=[ug, uy, ..., uy_q)t € R™N (7b)
w:=[wl, wl, ..., wy_,]T € RV, (7¢)
By using equations (6)-(7), it follows that
x=Tzy+ Hyu+ H,w, ®)
where
T':=[I ©(1,0) ®(2,0) ... ®(N,0)], )
0 0 0
By 0 0
H, — ®(2,1)By B 0 . (10)

®(N,1)By ®(N,2)B; Bn_1

and H,, is defined similarly, after replacing the matrices B;
in (10) with the matrices GG;. The reader is referred to [10] for
the details on the derivation of (8)-(10).

Because the performance index of Problem 1 consists of a
terminal cost term, we will use the following equation:

zy=Fzx, F:=[0---01I, an
to recover zy from x.

Given the particular affine parametrization of the control
policy given in (5) and the fact that the initial state is assumed
to be a Gaussian (random) vector, it follows that the states
of the system in the subsequent stages will also be Gaussian

(random) vectors. In addition, we obtain

u=K(x—T)+ ug, (12)
where Z := E[z], ug := [ut(0),...,ut(N —1)]T and
K(0,0) 0 ... 0
K(1,0) K(1,1) ... 0
K- | K(20) K(2,1) 0 (13)
K(N-1,00 K(N-1,1) ... 0

We proceed with the derivation of the expression of the
performance index of Problem 1 in terms of the decision
variables ug and K. To this aim, we write Zi\:ol uguk =
uTu, which in view of basic properties of the trace operator

and (12) gives
EluTu] = Eftr(uul))
=Eftr(K(z — &) + ug) (K(z — T) +ug)" )]
= tr(KE[@z ] K") + [|uall3, (14)
where & := x — & and in the derivation of the last equality,
we have used the fact that ug is a deterministic quantity.
For the computation of Cov[x] = E[z&"], we first have to

compute & = E[z]. By taking expectation on both sides of
(8), we obtain:

Elx] = E[Tzo + Hy(K(x — &) + ug) + Hyw)

=Tpo + Hyug. (15)
After some simple algebraic manipulations, we get:
&= (I - Hy,K) ' (D(zo — po) + Hyw),  (16)
from which it follows:
E[#&"] = K(TS,I'T + HySoH, K", (17
where K = (I — H,K)™! and S,, = Eww?] =
blkdiag(Sy,. .., Sw). From (15) and (17), we can obtain the

following expressions for py := E[zy] and Sy := Cov]zy]:

pn = F(Tpo + Hyug), (18a)
Sy =F(I—-H,K)'S(I-H,K)"TF*  (18b)
where S = (CSeI'T + HwaHwT). By plugging (17) into
(14), we have:
EluTu] = tr(K(I — H,K) 'S(I - H,K)"TKT")
+ Jlug . (19)

After plugging the expressions of pny and Sy in (18a)
and (18b) into the expression of W?2(px,pq) for Gaussian



distributions, which is given in (2), we get:
W2(pn,pa) = ||F(Tpo + Huug) — pall3
+tr(F(I — H,K) 'SF(I - H,K)"TFT + 5,)
—2tr((v/Sq x
(F(I - H,K) 'SF(I - H,K) "F")

x \/Sq)Y?). (20)

At this point, we propose to apply a variable transformation,
which was first proposed in [16] and later used for covariance
steering problems in [10], to convexify the optimization prob-
lem. In particular, we introduce the new variable, ®, which is
defined as follows:

©:=K(I-H,K) = oK) (21a)
K :=(I+ H,0) ' =: ¢(0). (21b)
Furthermore, by using the identity (I + P)~! =1 — P(I +
P)~1, we obtain:
(I-H,K)'=I+H,K(I-H,K)"
=+ H,0). 2lc)

As is shown in [16], the functions ¢(-) and ¢(-) determine a
bijective transformation, that is, ¢(-) = ¢ ~*(-) and vice versa.
Therefore, the right hand sides of equations (19) and (20) can
be expressed equivalently in terms of ug and the new decision
variable ®, which is defined in (21), as follows:

E[uTu] = tr(@SO") 4+ ufug

W? = ||F(Tpo + Hyug) — pall3

+ tr(F(I + H,®)S(I + H,®)TF™")
—2tr((/SaF(I + H,©)S(I + H,©)TFT\/5,)'/?)
+ tr(Sy). (23)

(22)

Remark 1. It should be noted that K is a block lower
triangular matrix whose last n, columns are equal to 0. If
we examine equation (21b), we observe that (I — H,K)~ ! is
a block lower triangular matrix given that H,, is also block
lower triangular, which in turn implies that (I — H,K)™!
is well defined. Finally, left multiplication of (I — H,K)™!
with K gives ©, which is also a block lower triangular matrix
with the same dimension as K. The reader is referred to [10],
[16] for more details. An important observation is that the new
decision variable © should have the same structure as K for
the control policy to maintain causality.

Finally, the performance index of Problem 1 can be ex-
pressed in terms of the decision variables ug and ©. Let us
denote this function as J(ug, ®), where

J(ug,®) = Ji(ug) + J2(©) + J3(0) — J4(©), (24)

with
Ji(ug) = [lug|3 + M| F(Tpo + Hyug) — pall3,  (252)
J(0©) :=tr(@Se"), (25b)
J5(©) == Atr (F(I + H,0)3(I + HuG)TFT)
+ M tr(Sy), (25¢)

Ji(©) := 2xtr (( S.F(I + H,®)
x S(I + Hu@)TFT@)l/Q). (25d)

Thus, Problem 1 can be reduced to the following optimization
problem:

Problem 2. Let i, pug € R™, So,Sq € Sf+, N € Z++
and {Ak,Bk,Gk}g;Ol, where Aj, € R"=*"= B, € R"=X"u
and Gy, € R"=*"w  be given. Find a pair (u}y,®%), where
0* ¢ R™N>xn(N+1) o g block lower triangular matrix, that
minimizes the objective function J(ug,®), which is defined
in (24)-(25).

Proposition 1. Let A\ € R™™ be given. Then, the functions
Ji, Jo, J3 and J4, which are defined in (25), are convex and
thus Problem 2 corresponds to a difference of convex functions
program (DCP).

Proof. The proof of convexity of the functions J; (-), J2(+) and
J3(+) can be found in [10]. For the convexity of Jy(-), we need
to define the functions ¢(©) := (v/SgF(I+H,0©)VDY)T,
where VTDV is the eigenvalue decomposition of S, and
f(A) = u((ATA)Y?) = || A|.. Clearly, g(-) is an affine
function. In addition, f(-) corresponds to the nuclear norm,
which is a valid matrix norm [17] and thus, f(-) is a convex
function. Finally, J4(®) is convex as the composition of the
convex function f(-) with the affine function g(-). O

Remark 2. Proposition 1 implies that Problem 1 can be
reduced to a DCP, whose (local) minimizers can be found
by means of the so-called convex-concave procedure [1], [13]
which is known to be efficient and robust in practice.

Remark 3. In the formulation of Problem 2, we do not
consider state or control constraints because our focus is on
studying the role of the Wasserstein terminal cost in covariance
steering problems. It is worth mentioning, however, that such
constraints can be easily incorporated in our optimization-
based approach. For instance, we can impose an explicit
upper bound on the expected value of the control effort that
can be used similarly to [10] (the latter constraint actually
corresponds to a convex constraint).

IV. NUMERICAL EXPERIMENTS

In this section, we present numerical experiments to demon-
strate the efficacy of our approach. All computations were run
on a laptop with 2.8 GHz Intel Core i7-7700HQ CPU and
16 GB RAM. For our simulations, we have used the convex-
concave procedure (CCP) with MOSEK [18] to solve Problem
2 and CVXPY [19] to model the convexified sub-problems.
We compare our method with general purpose NLP solvers in
terms of computation time. In particular, the NLP solvers used
are the IPOPT [20] and the L-BFGS-B implementation of the



scipy optimization package [21]. First, we consider a discrete-
time state space model of a double integrator system which is
described by (3) with the following parameters: A, = [§ 4],
B = [0 At]T, Gy, = I, wy, ~ N(0,7I), Vk € Z*. We also
take initial state xg ~ N(MQ,SQ), o = [0, l]T, So = 101,
desired terminal distribution N (14, Sq), with pg = [10,12]T
and S; = I, and sampling period At = 1. In addition, we
consider different experiments for N € {10, 20, 30,40, 50}
and v € {1,0.5}.

Figure 1 illustrates sample trajectories of the closed-loop
system along with the corresponding trajectory of the 2-o
confidence ellipsoids which shows the time-evolution of the
state distribution. Fig. 2 illustrates how the error of the final
covariance matrix, which is measured by ||.Sy —Sy|| r, changes
for different values of the noise intensity parameter ~y and
the terminal cost weight parameter A (all the results shown
in this figure were computed for N = 30). We observe that
as A increases the covariance error decreases. However, the
noise prevents the covariance from “shrinking” to the desired
covariance. If the noise intensity is lower than some threshold
for a given covariance matrix, increasing A would eventually
make the error vanish as shown in the case where v = 0.1. In
all the other cases, the final covariance error converged to a
non-zero value for sufficiently large A. Furthermore, in Table I,
we compare the computation time of our CCP based approach
with off-the shelf NLP solvers.

In our simulations, we have used different values for the
problem horizon N and the noise intensity +. The termination
condition for the simulations is (fix — frk—1)/fx < € with e =
10~% where fy is the value of the minimized objective function
at the k" iteration of CCP and e is the convergence tolerance.
Since this is an unconstrained minimization problem, we select
termination parameters adapted to the NLP solvers used to
ensure that the returned solutions are close to the solution
of the CCP approach. In all our experiments, the objective
value returned by CCP was lower than the values returned by
the other solvers. The results denoted as ’-’ correspond to the
case in which the solver didn’t terminate successfully whereas
the asterisk (*) indicates that the returned optimal solution is
higher than the ones returned by the other solvers.

Table I reports the computation time of one experiment
for different values of certain parameters that appear in the
proposed problem formulation. We observe that the proposed
CCP-based approach is at least 3 times faster than general
purpose NLP solvers in our experiments. One important ob-
servation is that the returned solutions are the same for CCP-
based approach, however, the NLP solvers returned different
locally optimal solutions for some cases (the differences of
these solutions were non-negligible and cannot be attributed
to numerical fluctuations). This result invites us to further
study the existence and uniqueness of local minimizers of the
objective function which is defined in (25) in our future work.

Furthermore, we consider a spacecraft rendezvous problem
in which an active (controlled) vehicle tries to reach a passive
(uncontrolled) vehicle that is moving along a circular orbit
with constant angular velocity n. Let [62, 5y]* denote the rel-
ative position of the active vehicle with respect to the passive
vehicle, which is measured in meters (m), and [6v*, 6vY]T

Fig. 1. Sample trajectories drawn from the optimal state process of the
double integrator system with N = 30, v = 1.0, A = 10.0.

TABLE |
COMPUTATION TIME (IN SECONDS) FOR DIFFERENT PROBLEM
INSTANCES USING DIFFERENT SOLVERS

vy=1 N=10 | N=20 | N=30 | N=40 | N =50
L-BFGS-B 8.61 95.57 245.05 711.19 1538.85
IPOPT 17.67 119.16 353.37* - -
CCP 0.93 5.69 18.20 44.42 92.66
v=.5 N=10 | N=20 | N=30 | N=40 | N =50
L-BFGS-B 6.77 56.51 246.67 576.57 1097.29
IPOPT 14.77 83.01 97.89% - -
CCP 2.14 11.12 38.62 97.03 208.47

its relative velocity, which is measured in meters per second
(m/s). The dynamics of the active vehicle is described by the
so-called two-dimensional Clohessy—Wiltshire (CW) model
which can be approximated by the discrete-time state space
model (3) with parameters:

1 At 0 0 0 0
At
_|3n2At 1 02nAt _ | @ 0 _ VAt
Ay = 0 0 1 At s Be=17 o ,G—mI,
0 —2nAt0 O 0 %

where x, 1= [0z, 0¥, Syk, ovf]T € R* is the state, uy € R?
is the control input (thrust vector) which is measured in N
(Newton), and m is the mass of the active vehicle measured
in kg.

For our simulations, we have used n = 1.113 x 10~ %rad/s
and m = 100kg. The parameters that describe the discrete-
time CW model (A, By, Gf) are obtained by discretization
of the continuous-time CW model via a forward Euler scheme
with sampling period At = 1s. The means and covari-
ances of the initial and goal state (Gaussian) distributions are
po = [100,0,100,0]%, Sy = diag(10,1,10,1), and pug =
[0,0,0,0]T, S; = diag(1,0.1,1,0.1), respectively. Also, we
have taken N = 30, wy ~ N(0,7I) with v = 1.00 (the
nominal CW model is noise-free; for our simulations, we have
added noise to obtain a stochastic system).

Figure 3 illustrates the evolution of the 2-o confidence
ellipsoids of the relative position of the active vehicle. The
initial 2-o ellipsoid is shown in blue, the final one (at stage
t = N) in cyan whereas the 2-0 confidence ellipsoid of the
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Fig. 3. Evolution of the 2¢-confidence ellipsoids of the relative position
of the active vehicle from the rendezvous problem.

goal distribution is shown in red. This problem instance was
solved in 282.15 seconds via CCP with the same termination
condition that was used in the numerical experiments for
the double integrator example with ¢ = 107°. We wish to
highlight here that the general purposes NLP solvers could
not solve this problem in a reasonable amount of time for
N > 10.

V. CONCLUSION

We have addressed the covariance steering problem with
soft terminal constraints in which the terminal cost is defined
as the squared Wasserstein distance between the terminal state
distribution and a desired distribution. We have shown that, by
utilizing an affine control policy parametrization, the proposed
covariance steering problem with Wasserstein terminal cost
can be reduced to a difference of convex functions program
via a bijective variable transformation. The latter problem
can be solved efficiently by the so-called convex-concave

procedure along with convex optimization solvers. Our nu-
merical experiments have shown that our approach reduces
the computation time significantly compared to off-the-shelf
nonlinear programming solvers. In our future work, we plan
to further analyze the questions of existence and uniqueness
of solutions to the finite-dimensional optimization problem
(Problem 2) and explore alternative ways (both analytical and
numerical) to characterize its minimizers. Furthermore, we
plan to extend our approach to covariance steering problems
for nonlinear stochastic systems.
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