

1 **Title:** Observation-constrained multicycle dynamic models of the Pingding Shan earthquake gate along the
2 Altyn Tagh Fault

3

4 Dunyu Liu^{1,*}, Benchun Duan¹, Veronica B. Prush^{2, **}, Michael E. Oskin² and Jing Liu-Zeng³

5

6 ¹ Center for Tectonophysics, Department of Geology & Geophysics, Texas A&M University, College Station, TX,
7 77843-3115, USA.

² Department of Earth and Planetary Sciences, University of California, Davis, 1 Shields Avenue, Davis, CA, 95616, USA.

¹⁰ ³ Institute of Surface-Earth System Science, Tianjin University, Tianjin, 300072, China.

11

*Corresponding author: dliu@ig.utexas.edu. Now at University of Texas Institute for Geophysics, 10601 Exploration Way, Austin, TX, 78758, USA.

14 ** Now at Department of Earth and Planetary Sciences, McGill University, 3450 University Street, Montréal,
15 Quebec, H3A 0E8, Canada.

16

17

18

19

20

21

22

2

Prepared for Publication in Tectonophysics

24 First submitted on September 22, 2020

25 Revision submitted on April 06, 2021

26 **Abstract:**

27 Earthquake gates are fault geometric complexities, common in natural fault systems, that conditionally
28 impede earthquake ruptures. This study centers on modeling of multicycle dynamics of the Pingding Shan
29 earthquake gate along the central Altyn Tagh Fault in northwest China. The earthquake gate includes three
30 geometric complexities: a prominent restraining bend, a 4-km wide stepover to the east, and a releasing bend
31 to the west. We use a 2D finite element method to simulate coseismic spontaneous ruptures with interseismic
32 fault stress evolutions computed by an analytic viscoelastic solution. Paleoseismic records and long-term slip-
33 rates are used to constrain the models. We find that fault-geometry-related heterogenous stresses accumulated
34 over earthquake cycles yield complex rupture patterns and help explain earthquake recurrence intervals
35 revealed by paleoseismic records. The three most important contributions to the heterogeneous stresses come
36 from dynamic ruptures passing fault geometric complexities, fault-strike-dependent tectonic loading and
37 relaxation, and stress history from past earthquakes. In the Pingding Shan earthquake gate, the releasing
38 stepover appears to impede ruptures more effectively than the restraining bend. The combined impact of the
39 restraining bend and the releasing stepover makes the Pingding Shan earthquake gate a very effective barrier
40 to 350-km model-spanning ruptures. The best-fit model yields a low recurrence interval of 4.6 kyrs for 350-km-
41 long ruptures, interspersed with more frequent ruptures limited to individual fault segments. A lower static
42 friction tends to reduce the effectiveness of the earthquake gate to impede ruptures. Local fault geometric
43 complexities together with rapid energy release and restrengthening of friction during dynamic ruptures help
44 explain the 0.66 recurrence interval coefficient of variation (COV) recorded at the Copper Mine paleoseismic
45 trench site on the Xorxoli segment. This study provides a method for applying heterogenous initial stresses for
46 single-event dynamic rupture simulations that consider the effect of past earthquakes and fault geometry.

47

48 Key words: Dynamic rupture, fault geometric complexity, earthquake cycle, earthquake gate, stress
49 heterogeneity, Altyn Tagh fault

50

51 **1 Introduction**

52 Fault geometric complexities, such as fault bends and stepovers, are common in natural fault systems,
53 and earthquake ruptures often stop at these complexities (e.g., King and Nabelek, 1985; Sibson, 1985;
54 Wesnousky, 1988). However, some recent earthquakes, such as the 1992 M_w 7.3 Landers (California)
55 earthquake (e.g., Massonnet et al., 1993; Cohee and Beroza, 1994; Olsen, 1997) and the 2016 M_w 7.8 Kaikoura
56 (New Zealand) earthquake (e.g., Hamling et al., 2017; Kaiser et al., 2017; Ulrich et al., 2019), break through
57 these geometric complexities. These fault complexities can be conceptualized as “earthquake gates” (Osokin et
58 al., 2015; Duan et al., 2019), which means that they may be closed (i.e., dynamic ruptures stop at these locations)
59 in some earthquakes while open (i.e., dynamic ruptures propagate through them) in others, depending on fault
60 geometry and prior rupture history. Assessing the likelihood and conditions under which earthquake gates are
61 open, leading to multi-fault and multi-segment ruptures and thus larger earthquakes, are important questions
62 in the earthquake science and seismic hazard analysis communities.

63 Geologic observations of mapped historic earthquakes give us first-hand data on the likelihood of fault
64 geometric complexities to impede rupture propagation (Wesnousky, 2006; Biasi and Wesnousky, 2016, 2017).
65 Wesnousky (2006) and Biasi and Wesnousky (2016) find that two-thirds of strike-slip ruptures terminate at
66 stepovers or fault tips and that the likelihood of a rupture jumping past a stepover decreases with increasing
67 stepover offset. Similarly, the likelihood of a rupture passing a fault bend decreases with increasing bend angles
68 (Biasi and Wesnousky, 2017). In addition, Elliott et al. (2009) and Oglesby (2008) show that ruptures may breach
69 a stepover when the coseismic slip gradient near the stepover is greater than 20 cm/km. However, these
70 empirical relations are drawn on limited observations. This was demonstrated by the 2016 M_w 7.8 Kaikoura
71 earthquake, whose complex rupture breaks at least 13 fault segments and jumps across gaps as wide as 20 km
72 (e.g., Kaiser et al., 2017) and the 1992 M_w 7.3 Landers earthquake that breaks multiple fault segments (e.g.,
73 Cohee and Beroza, 1994).

74 Spontaneously dynamic rupture models are used to test the mechanical conditions behind empirical
75 geologic observations and evaluate the likelihood of dynamic ruptures terminating or breaking through fault

76 geometric complexities. These models shed light on how fault geometric measurements and mechanical
77 properties, such as stepover offset, bend angle or branch angle, fault roughness, friction laws, and prestress
78 conditions, affect dynamics of ruptures propagating through geometric complexities (e.g., Harris and Day, 1993;
79 Dunham et al., 2011b; Lozos et al., 2011; Ryan and Oglesby, 2014; Luo and Duan, 2018). For example, Harris
80 and Day (1993) show that a strike-slip rupture is unlikely to jump a stepover wider than 5 km, and dynamically
81 propagating ruptures can jump both compressional and dilatational stepovers. Ryan and Oglesby (2014) test
82 how different friction laws, including the slip-weakening law (e.g., Andrews, 1976) and three forms of rate- and
83 state-dependent friction (e.g., Ruina, 1983), affect whether a rupture can jump a stepover. They find that the
84 functional forms of various friction laws have a secondary effect if the friction laws are scaled to give
85 comparable fracture energy. Fault geometric complexities and prestresses also affect rupture directivity.
86 Oglesby and Mai (2012) develop 3D dynamic rupture models of earthquakes on the North Anatolian Fault
87 system, Turkey. They find that a rupture may propagate through the entire fault system if it nucleates far from
88 an oblique normal fault stepover segment while a rupture may die out in the stepover if it nucleates near the
89 stepover. They also find that the pattern can change drastically when the prestress field is rotated by only 10°.
90 A limitation of these single-event dynamic models, however, is that initial stress conditions are typically
91 resolved from a uniform regional stress field according to local fault strike, which does not account for rupture
92 history and stress heterogeneity inherited from past earthquakes.

93 Multicycle dynamic models, which place dynamic ruptures in the context of earthquake cycles and thus
94 take into account the effects of past earthquakes on initial stress conditions of dynamic ruptures, demonstrate
95 that stress heterogeneity near fault geometric complexities plays a critical role in impeding or passing
96 dynamically propagating ruptures (Duan and Oglesby, 2005, 2006, 2007; Liu et al., 2020). Contributions to stress
97 heterogeneity come from dynamic ruptures through geometric complexities, strike-dependent tectonic loading
98 and relaxation, and the residual stress from past earthquakes. For example, Liu et al. (2020) use a three-
99 dimensional finite element earthquake simulator EQsimu to model fully dynamic earthquake cycles on a bent
100 fault governed by rate- and state-dependent friction. They demonstrate that the zone of stress heterogeneity

101 near the fault bend will widen and complex rupture patterns develop over multiple earthquake cycles on a bent
102 fault.

103 An important step forward is to apply these multicycle dynamic models to real fault systems. The 1500
104 km-long active Altyn Tagh Fault (ATF) in northwest China is a natural laboratory to study earthquake gate
105 behaviors. The ATF, a left-lateral strike-slip fault, is the major lithospheric boundary between the Tarim Basin to
106 the north and the Tibetan Plateau to the south (e.g., Molnar and Tapponnier, 1978). In addition, there are four
107 major earthquake gates along the central ATF, including the Aksay, Pingding Shan, Akato Tagh, and Sulamu Tagh
108 double bends from east to west (see Figure 1 for the first three). Previously, Duan et al. (2019) apply a multicycle
109 dynamic model to the Aksay double restraining bend of the ATF. They find that the Aksay bend is an effective
110 barrier to dynamically propagating ruptures from either side of the bend within a wide range of parameters.
111 However, roughly 10% of ruptures jump across the bend to break the entire modeled fault system. They also
112 find that secondary complexities in fault geometry within the Aksay bend, especially those aligned with the
113 regional strike of the fault system, play a critical role in permitting the occasional jumping ruptures. In this study,
114 we examine rupture behavior at the Pingding Shan earthquake gate, which includes a prominent restraining
115 bend, a 4-km wide stepover to the east, and a releasing bend to the west. This earthquake gate is bounded by
116 the Wuzhunxiao segment to the west and the Xorxoli segment to the east (Figure 1). We will make use of
117 available paleoseismic, geologic, and geodetic data to build observation-constrained multicycle dynamic
118 models of this earthquake gate.

119 The coefficient of variation (COV) of recurrence intervals at a paleoseismic trench site has been used
120 to characterize the complexity of earthquake recurrence in a fault system (e.g., Scharer et al., 2010; Williams et
121 al., 2019). COV is calculated by dividing the standard deviation of recurrence intervals by their mean. A COV
122 near zero indicates periodic to quasi-periodic earthquake recurrence. A COV of one describes a random,
123 uncorrelated recurrence. A COV greater than one suggests clustered earthquake recurrence. The Copper Mine
124 paleoseismic trench site to the east of the Pingding Shan earthquake gate is located on the Xorxoli segment of
125 the ATF (Figure 1). Yuan et al. (2018) identify nine earthquakes over the past 6000 years at the site, with a

126 recurrence interval of 624 ± 411 years and a COV of 0.66. COVs are still rarely used to constrain numerical models
127 but reproducing observed COVs with multicycle dynamic models would be critical to the models' credibility to
128 capture complex dynamics in a fault system.

129 Slip rates along the ATF have been estimated from both geodetic and geologic observations (Table S1
130 in the supplementary material). Regional GPS network data collected from 1993 to 1998 conclude a slip rate ~ 9
131 mm/yr for the ATF (Shen et al., 2001). For a 300-km-long profile between 88°E and 91°E , Bendick et al. (2000)
132 and Wallace et al. (2004) determine a slip rate of 9 ± 5 mm/yr based on GPS measurements. At 85°E , InSAR data
133 yields a slip rate of 11 ± 5 mm/yr, assuming no relative vertical motion and a 15-km locking depth (Elliott et al.,
134 2008). At 94°E , Jolivet et al. (2008) determine slip rate of $8\sim 10$ mm/yr with InSAR data, assuming a locking
135 depth of 7-9 km using a thin-plate model sheared at its base. Geologic studies concur with geodetic analyses,
136 suggesting a long-term slip rate of 9 ± 2 mm/yr since the initiation of the ATF aged 49 Ma (Yin et al., 2002) and
137 an upper bound of 10 mm/yr for post-Early Miocene slip (Yue et al., 2004). Although fast Quaternary slip rates
138 of 26.9 ± 6.9 mm/yr are obtained at Cherchen He and Sulamu Tagh near 86.6°E based on fluvial and glacial
139 geomorphic markers (Mériaux et al., 2004), these rates are suspected to be too fast due to assumptions in
140 offset construction (Cowgill, 2007). Cowgill (2007) revises the rate down to ~ 9 mm/yr at Cherchen He. Cowgill
141 et al. (2009) determine a Quaternary slip rate of 9-14 mm/yr by tightly bracketing the age of a displaced fluvial
142 terrace riser at Yuemake (88.51°E). Elliott (2014) revises the slip rate at the Huermo Bulak He site on the eastern
143 northern strand of ATF down to $6.3+2.1/-1.6$ mm/yr, which is substantially lower than some earlier estimates
144 but agrees with rates from geodetic models and older offset geomorphic markers. Within the Pingding Shan
145 earthquake gate, Mériaux et al. (2012) conclude that the slip rate of the ATF is 13.9 ± 1.1 mm/yr at two sites
146 located at $\sim 90.5^\circ\text{E}$. More recently, Prush et al. (personal communications) has revised this slip rate to 4.7 ± 0.8
147 mm/yr. This latter slip rate estimate will be used in this study to constrain our model parameters. In addition to
148 paleoseismic and slip rate observations of ATF, we also constrain our models using slip-per-event estimates.
149 Geomorphic offsets show maximum surface displacement (slip-per-event) by the most recent earthquakes are
150 4-7 meters between 90.0°E and 91.5°E (Washburn et al., 2001) and are 3-8 m for the Aksay bend at about 94°E

151 (Elliott et al., 2015).

152 In this study, we integrate paleoseismic records, geodetic, and geologic observations with multicycle
153 dynamic models to study rupture behavior of the Pingding Shan earthquake gate over multiple earthquake
154 cycles. We investigate the conditions for system-spanning ruptures that break the gate and assess their
155 probability. We first briefly review the 2D multicycle dynamic modeling method. Then we describe the fault
156 geometry and parameters of the finite element models. We present results from the model that can best fit
157 paleoseismic records, slip rate estimates, and slip-per-event observations. Finally, key parameters that influence
158 earthquake multicycle dynamics are explored, and remaining issues are further discussed.

159

160 **2 Methods**

161 We apply a dynamic finite element code, EQdyna (Duan and Oglesby, 2006), to simulate the coseismic
162 dynamic rupture process for each event over multiple earthquake cycles. EQdyna has been tested in the
163 SCEC/USGS dynamic code verification exercise and performs well (Harris et al., 2009; Harris et al., 2018). In
164 each interseismic period, we use a linear Maxwell viscoelastic model with an analytical solution to calculate
165 fault stress evolution on geometrically complex faults (Nielsen and Knopoff, 1998; Duan and Oglesby, 2005).
166 The model consists of an elastic spring and a viscous dashpot in series (Jaeger, 1969) with the stress-strain
167 relations written as

$$168 \quad \sigma = \sigma_e = \sigma_v, \quad (1)$$

$$169 \quad \varepsilon = \varepsilon_e + \varepsilon_v, \quad (2)$$

170 where σ and ε are stress and strain, respectively, and subscript e stands for elastic component while v
171 represents the viscous component. Assuming pure shear loading, the constitutive relations can be expressed
172 as

$$173 \quad \sigma_e = \mu \varepsilon_e, \quad (3)$$

$$174 \quad \sigma_v = \eta \dot{\varepsilon}_v, \quad (4)$$

175 where μ is the shear modulus, η is the viscosity, and the overdot denotes time derivative.

176 Equations (1)-(4) lead to the constitutive relation for the Maxwell viscoelastic model as

177
$$\frac{\sigma}{\mu} + \frac{\dot{\sigma}}{\eta} = \dot{\varepsilon}. \quad (5)$$

178 Assuming the strain rate $\dot{\varepsilon}$ is a constant over each interseismic period, we can solve the equation (5)

179 for the stress and resolve it onto the shear and normal directions of a fault segment. The shear stress $\sigma_\tau(t)$ and

180 the normal stress $\sigma_n(t)$ on a fault segment at time t , which is the elapsed time since last earthquake, can be

181 written as

182
$$\sigma_\tau(t) = (\sigma_\tau^0 - \eta\gamma_\tau) \exp\left(-\frac{\mu}{\eta}t\right) + \eta\gamma_\tau, \quad (6)$$

183
$$\sigma_n(t) = (\sigma_n^0 - \eta\gamma_n) \exp\left(-\frac{\mu}{\eta}t\right) + \eta\gamma_n, \quad (7)$$

184
$$\gamma_\tau = \gamma \cos(2\phi), \quad \gamma_n = \gamma \sin(2\phi). \quad (8)$$

185 Here, $\sigma_\tau^0, \sigma_n^0$ are fault shear stress and normal stress at the beginning of the interseismic period (i.e.,

186 $t=0$), respectively. $\gamma_\tau, \gamma_n, \gamma$ and ϕ are fault shear strain rate, fault normal strain rate, maximum shear strain rate

187 in the model, and the angle between the maximum shear loading direction and the local strike of a fault

188 segment, respectively.

189 In addition to the tectonic loading, gravity also contributes to stresses on the fault. The model assumes

190 the fault is buried at a certain depth and the equilibrium (ambient) normal stress resulting from the lithostatic

191 stress is part of the total normal stress on the fault. This ambient normal stress, σ^a , is assumed to be not relaxed.

192 Therefore, the total normal stress on a fault segment $\sigma_N(t)$ is

193
$$\sigma_N(t) = \sigma_n(t) + \sigma^a, \quad \sigma_N^0 = \sigma_n^0 + \sigma^a. \quad (9)$$

194 Substituting equation (9) into equation (7), the total normal stress during the interseismic period is

195
$$\sigma_N(t) = (\sigma_N^0 - \sigma^a - \eta\gamma_n) \exp\left(-\frac{\mu}{\eta}t\right) + \eta\gamma_n + \sigma^a. \quad (10)$$

196 The viscoelastic model accounts for the effects of off-fault deformation, such as secondary faulting,

197 aftershocks, and topographic changes, on the fault shear and normal stresses at fault complexities to alleviate

198 pathological fault behavior (e.g., permanently locking or fault opening) (Nielsen and Knopoff, 1998; Duan and

199 Oglesby, 2005). This is a very simplified, approximate version of the interseismic phase of an earthquake cycle,

200 but it captures the impacts of tectonic loading and stress relaxation on fault stress evolution between two
201 consecutive earthquakes.

202 When a critical point on the fault system reaches failure level (i.e., the Mohr-Coulomb failure criterion)
203 from the viscoelastic calculation, we run EQdyna for the coseismic dynamic rupture process with initial fault
204 shear and normal stresses calculated from equations (6) and (10) by forcing the rupture to propagate at a speed
205 of 1.5 km/s within 2 km of the failure point. After dynamic rupture spontaneously stops, the residual stress on
206 the fault from the dynamic event will be used as the initial stress conditions for the next interseismic viscoelastic
207 calculation, and fault friction will be reset to the static level. The process repeats as many times as needed to
208 obtain multiple cycle results. Typically, we run a few thousand earthquake cycles for a model.

209 A slip-weakening friction law is typically used in spontaneous rupture simulations (e.g., Andrews, 1976;
210 Day, 1982), in which fault friction decreases linearly with slip up to a threshold. The law works well for ground
211 motion applications but does not include a slip rate dependence of friction. The rate dependence of friction
212 has been observed in low-speed friction experiments (e.g., Dieterich, 1979; Ruina, 1983), and strongly rate-
213 weakening friction laws are proposed based on high-speed friction experiments (e.g., Di Toro et al., 2004). In
214 addition, rate-dependence of friction is shown to produce pulse-like ruptures inferred from seismic
215 observations (Heaton, 1990) because of the healing effect at the end of sliding in this type of friction laws. In
216 this study, we use a slip- and rate- weakening friction law (Duan, 2019) in the dynamic rupture process to control
217 the friction evolution during dynamic events. The friction law follows:

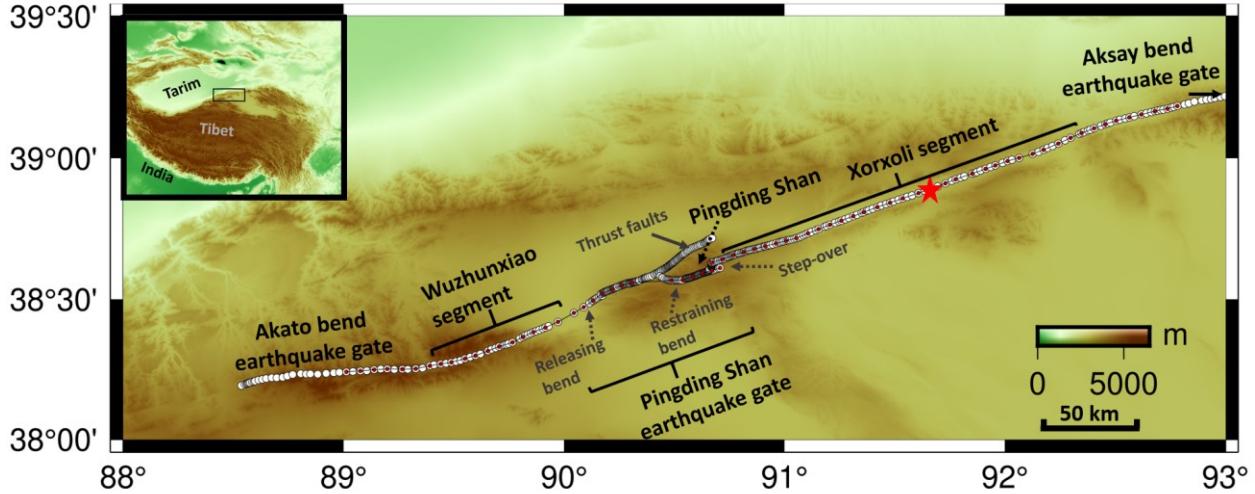
$$218 \quad f_1(d) = \begin{cases} f_s - \frac{(f_s - f_d)d}{d_0} & d \leq d_0 \\ f_d & d > d_0 \end{cases}, \quad (4a)$$

$$219 \quad f_2(v) = \begin{cases} f_r - \frac{(f_r - f_d)v}{v_0} & v \leq v_0 \\ f_d & v > v_0 \end{cases}, \quad (4b)$$

$$220 \quad f(d, v) = \max(f_1(d), f_2(v)), \quad (4c)$$

221 where f_r is the restrengthening friction coefficient after the sliding stops. Its value is between the dynamic
222 friction coefficient f_d and the static friction coefficient f_s . d and v are slip and slip velocity on the fault,

223 respectively, and d_0 and v_0 are the critical slip distance and critical velocity, respectively. The friction law
224 behaves like the classical slip-weakening law in the early phase of slip, with restrengthening of friction when
225 the slip velocity drops below v_0 in the latter phase of slip. Similar slip- and rate-dependent friction laws have
226 been used in other earlier studies (e.g., Madariaga et al., 1998; Aagaard et al., 2001)


227

228 **3 Models**

229 **3.1 The fault geometry**

230 The ATF geometry is inferred from field and remote mapping and prior publications (e.g., Washburn et
231 al., 2001; Washburn et al., 2003; Cowgill et al., 2004; Mériaux et al., 2005; Cowgill et al., 2009; Gold et al., 2009;
232 Mériaux et al., 2012; Elliott, 2014 ; Prush et al., personal communications). Figure 1 shows the trace (white dots)
233 of the 350-km-long central Altyn Tagh Fault straddling the Pingding Shan earthquake gate. To focus on the effect
234 of first order and macroscopic scale fault geometry on rupture dynamics along the fault system, we sample the
235 fault (red dots) at 4-km intervals along strike. Within the vicinity of the Pingding Shan there are three main
236 geometric complexities present: a 4-km releasing stepover in the east, a prominent restraining bend southwest
237 to the Pingding Shan, and a large releasing bend in the west. The Akato Tagh and Aksay restraining double bends
238 delimit the western and eastern ends of the model, respectively. The Wuzhunxiao, Pingding Shan and Xorxoli
239 segments are indicated in Figure 1. In this model, we exclude the thrust faults north of the Pingding Shan and
240 the normal fault within the stepover.

241

242

243 Figure 1. Fault geometry of the Pingding Shan earthquake gate of the central Altyn Tagh Fault. White dots
 244 indicate the mapped fault trace. The red dots are model control points sampled at 4-km intervals along strike
 245 of the fault system. The Pingding Shan earthquake gate includes a prominent restraining bend, a 4-km wide
 246 stepover to the east, and a releasing bend to the west. The gate is bounded by the Wuzhunxiao and Xorxoli
 247 segments to the west and east, respectively. Inset gives the tectonic setting and background of the studied
 248 region. Thrust faults north of the Pingding Shan are indicated but not included in the model. We focus mainly
 249 on the effect of the first order and macroscopic fault geometry on the dynamics of the fault system. The Copper
 250 Mine paleoseismic trench site (Yuan et al., 2018) is denoted by the red star.
 251

252 3.2 Model Parameters

253 The complexity of earthquake phenomena can be attributed to heterogeneity in fault geometry, fault
 254 prestress, friction, rock material properties and rheology, etc. In this study, we focus on the impact of the
 255 realistic fault geometry on rupture dynamics, keeping other model parameters uniform in each model. For
 256 different models we adjust 1) the static friction coefficient f_s , 2) the dynamic friction coefficient f_d , 3) the
 257 restrengthening friction coefficient f_r , 4) the critical slip velocity v_0 , and 5) the viscosity η used for the tectonic
 258 loading and stress relaxation. In all models we assume homogeneous rock properties with $V_p = 6000$ m/s,
 259 $V_s = 3464$ m/s and density $\rho = 2670$ kg/m³. The maximum shear strain rate is 3.9×10^{-15} /yr based on a
 260 recent interferometric synthetic aperture radar study to the west (Zhu et al., 2016). We choose a time step of
 261 1 yr for the interseismic loading. For dynamic ruptures the time step is $dt = \alpha dx/V_p$, where α is a constant
 262 between 0 and 1, dx is the element size and V_p is P-wave velocity. Given $dx = 200$ m, $V_p = 6000$ m/s, and
 263 $\alpha = 0.5$, $dt = 0.0167$ s. We conservatively choose $dt = 0.01$ s.

264 We choose an ambient normal stress (σ_a) of 100 MPa, which corresponds to the effective normal
265 stress at about 6 km depth, assuming hydrostatic pore pressure. We note that after many earthquakes on this
266 geometrically complex fault system, stresses on the fault become very heterogeneous. Although the viscoelastic
267 model in this study intends to avoid fault opening at fault complexities that is considered to be nonphysical at
268 the depth, we apply a lower bound of the absolute normal stress of 10 MPa to ensure that fault opening does
269 not happen in the models. The viscosity has a minimum value $\eta_{min} = f_s \sigma_a / \gamma$ (Duan and Oglesby, 2005), below
270 which earthquakes cannot nucleate in the models because the tectonic loading is effectively relaxed. η_{min} is
271 7.7×10^{21} Pa • s for a fault system with a low $f_s = 0.3$ and 2.2×10^{22} Pa • s for a fault system with a high
272 $f_s = 0.7$.

273 Given an ambient stress field, f_s determines the overall shear strength of the fault system. This
274 strength of the fault system affects the degree to which elastic strain energy accumulated near the fault is
275 partitioned to earthquake slip or off-fault deformation, which is critical to fit the models to the long-term slip
276 rate data. Given a specified initial stresses, f_d will determine the stress drop, which is the difference between
277 the initial shear stress and the multiplication of normal stress and f_d . Note that the heterogeneity of on-fault
278 stresses over many earthquake cycles on a realistic fault geometry leads to very heterogenous shear strength
279 and stress drop distributions. Therefore, we frame our discussions of fault shear strength and stress drop in
280 terms of f_s and f_d , respectively. We also test f_r and v_0 between models because a strong and rapid
281 restrengthening process during dynamic ruptures may increase the heterogeneity of stress along the fault
282 system, which is important to fit modeled earthquake recurrence to paleoseismic observations including COV.

283 To test the impact of various parameters on multicycle dynamics of the earthquake gate, we run eight
284 models using the prescribed fault geometry (Table 1). Model A has a $f_s = 0.5$, $f_d = 0.43$, which yields an
285 apparent stress drop of 7 MPa and $f_r = 0.49$. We also run 5 variations of Model A (Models A1-A5), in which
286 one parameter value is different from that in Model A (Table 1). Model B represents a fault system with a higher
287 shear strength of $f_s = 0.7$, typical of low-speed rock friction experiments (Byerlee, 1978). Model C represents
288 a fault system with a lower shear strength of $f_s = 0.3$ following observations that mature strike-slip faults may

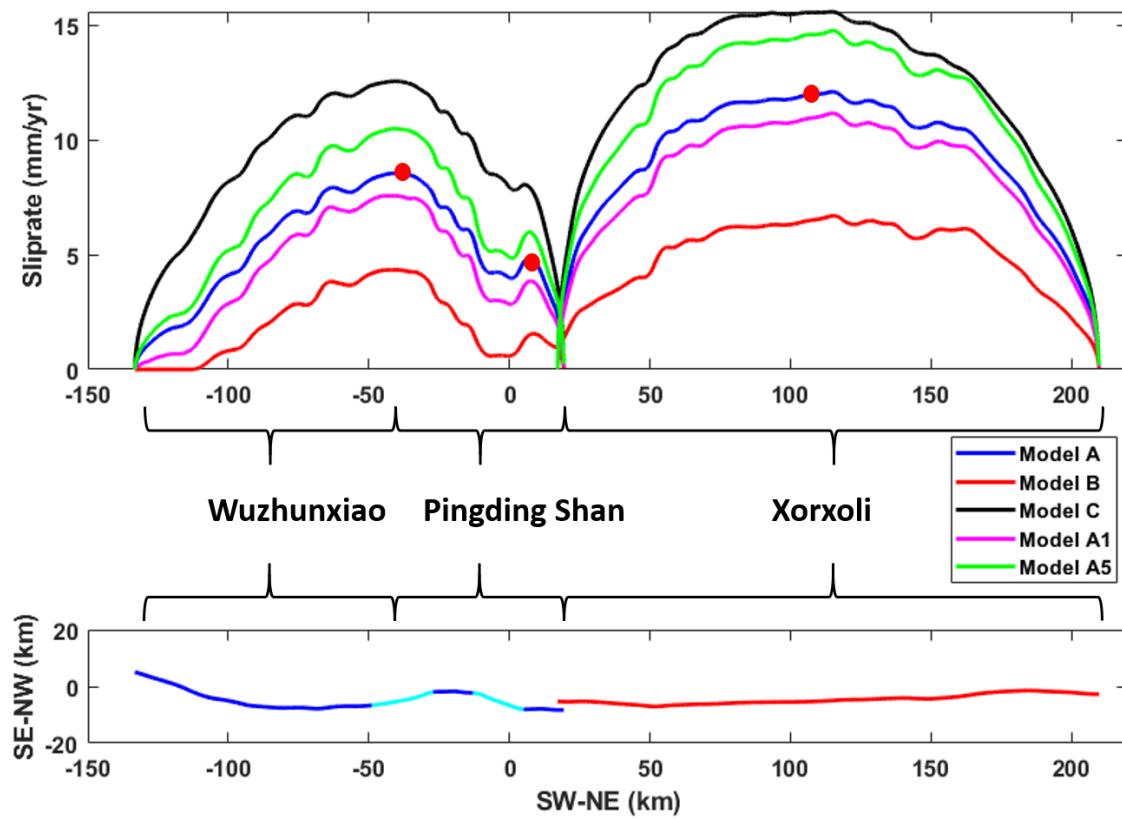
289 be inherently weak (e.g., Rice, 1992; Dunham et al., 2011a). We run 2500 earthquake cycles for Model A and
290 1500 cycles for other models.

291

292 Table 1. Key parameters of models presented in this study. Changes of parameters relative to the reference
293 Model A are bolded.

Models/ Parameters	Static friction f_s	Dynamic friction f_d	Restrengthening friction f_v	Viscosity η (Pa s)	v_0 (m/s)	d_0 (m)
A	0.5	0.43	0.49	2.5×10^{22}	0.2	0.5
A1	0.5	0.45	0.49	2.5×10^{22}	0.2	0.5
A2	0.5	0.43	0.47	2.5×10^{22}	0.2	0.5
A3	0.5	0.43	0.49	2.5×10^{22}	1.0	0.5
A4	0.5	0.43	0.49	2.5×10^{22}	0.2	1.0
A5	0.5	0.43	0.49	3.5×10^{22}	0.2	0.5
B	0.7	0.63	0.69	2.5×10^{22}	0.2	0.5
C	0.3	0.23	0.29	2.5×10^{22}	0.2	0.5

294

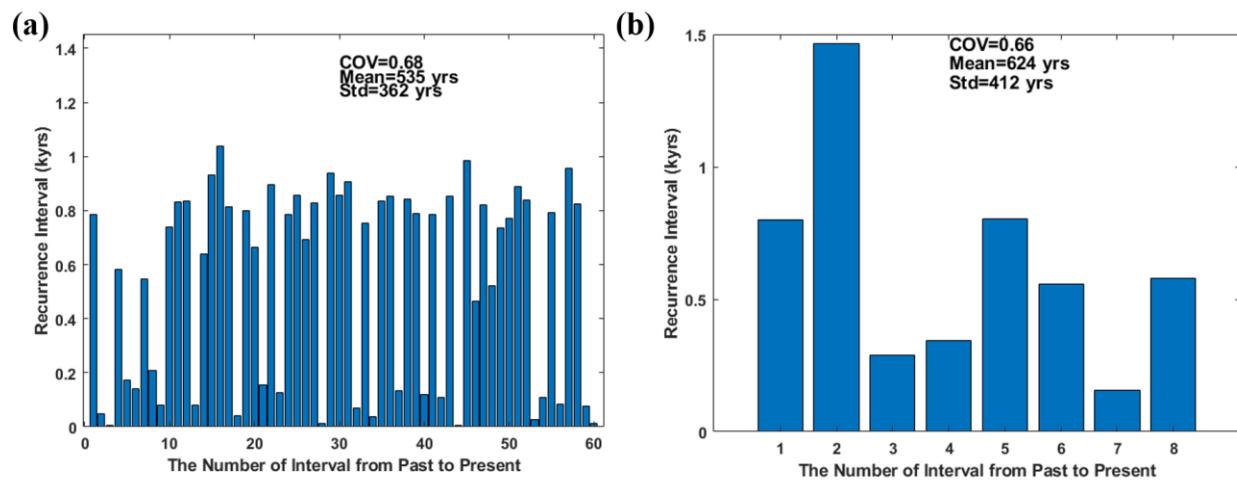

295 4. Results

296 4.1 Best-fit Model A to observations and the statistics from Model A

297 Figure 2 (Top) compares long-term slip rates calculated from five models (Models A, A1, A5, B, and C).

298 In Model A, the maximum long-term slip rate at the Wuzhunxiao, Pingding Shan, and Xorxoli segments are
299 about 8.5, 5, and 12 mm/yr, respectively, which are indicated by red dots. Long-term slip rates vary along fault
300 strikes and they decrease to zero when approaching fault tips. The long-term slip rates from Model A match
301 the observed 9-14 mm/yr slip rate of the ATF of the region (e.g., Shen et al., 2001; Cowgill et al., 2009) and the
302 recently revised low 4.7 ± 0.8 mm/yr slip rate east of the Pingding Shan restraining bend (Prush et al., personal

303 communications). Model B, which has a higher static friction coefficient of 0.7 (high shear strength), gives long-
 304 term slip rates less than half of Model A. Model C, which has a low static friction of 0.3 (low shear strength),
 305 produces slip rates that are about 4 mm/yr greater than slip rates from Model A. The results support the notion
 306 that the shear strength of a fault system affects how the elastic strain energy accumulated near the fault is
 307 partitioned between earthquake slip and off-fault deformation. Model A1, which has a higher v_0 in the friction
 308 law, shows a similar long-term slip rate to that of Model A. Model A5, which has a higher viscosity (implying
 309 less off-fault deformation and relaxation) records larger slip rates relative to Model A.

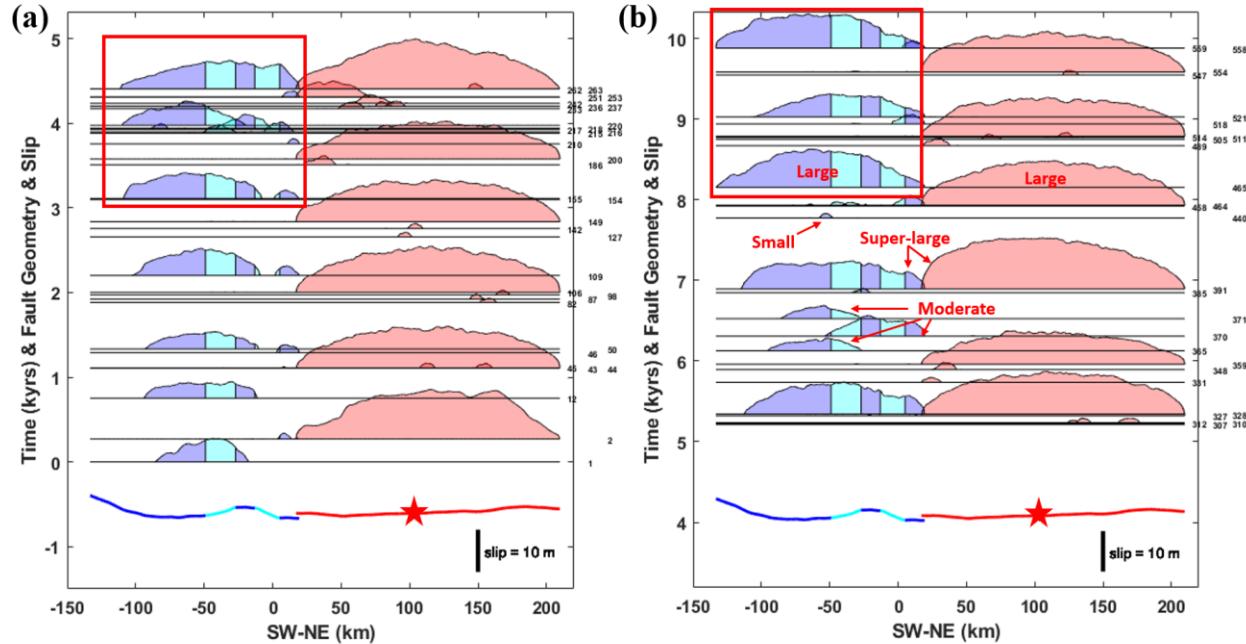

310
 311 Figure 2. (Top) Long-term slip rates in Model A, B, C, A1 and A5, respectively. In Model A, the maximum long-
 312 term slip rate at the Wuzhunxiao, Pingding Shan and Xorxoli segments are about 8.5, 5 and 12 mm/yr,
 313 respectively, which are indicated by red dots. The slip rates agree with geodetic and geologic estimates of the
 314 long-term slip rate of the ATF. Model B has a high static friction of 0.7. Model C has a low static friction of 0.3.
 315 Model A1 has a higher v_0 in the friction law. Model A5 has a higher viscosity. (Bottom) Fault geometry for
 316 reference. The blue and red segments indicate the Wuzhunxiao and Xorxoli segments, respectively. The
 317 Pingding Shan segment consists of the regional releasing and restraining bends (light blue color).
 318

319 Model A best fits the paleoseismic and geologic observations along the ATF in this region, including the

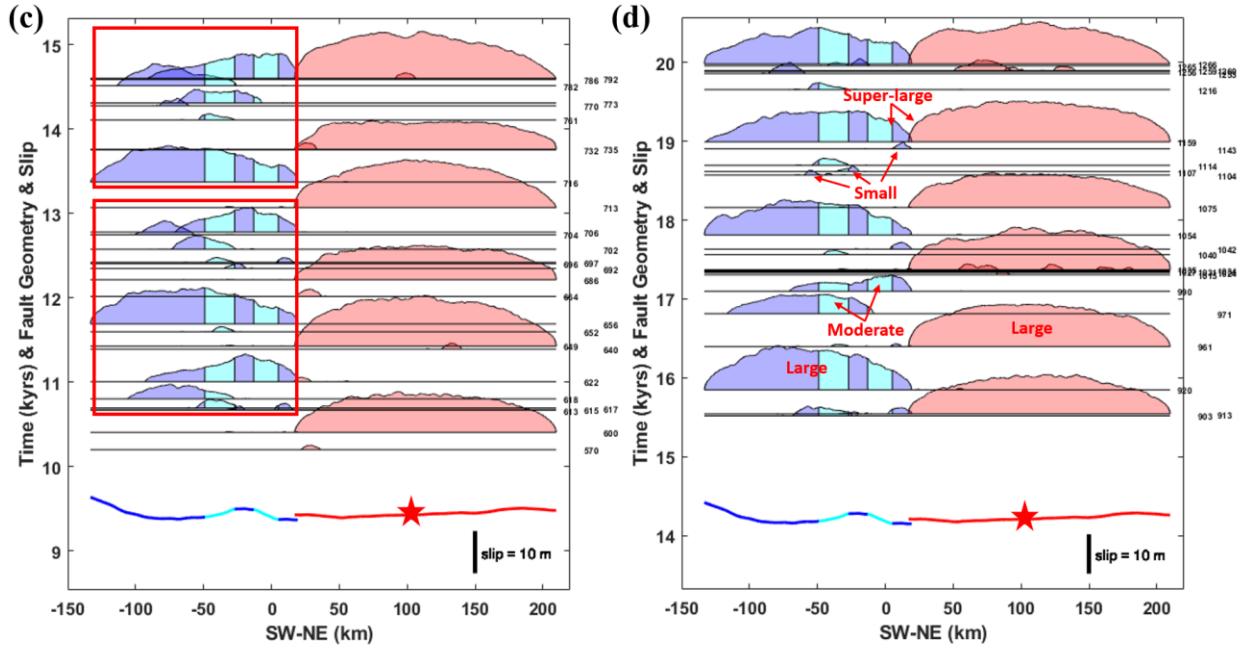
320 recurrence interval of 624 ± 411 years and COV of 0.66 determined at the Copper Mine paleoseismic trench site
 321 (Yuan et al., 2018), the long-term average ATF slip rate of $9 \sim 14$ mm /yr (e.g., Shen et al., 2001; Cowgill et al.,
 322 2009) for the central ATF, a recent revised long-term slip rate of 4.7 ± 0.8 mm/yr east of the Pingding Shan
 323 restraining bend at $\sim 90.5^\circ\text{E}$ (Prush et al., personal communications), and the slip-per-event about 3-8 meters
 324 (Washburn et al., 2001; Elliott et al., 2015). Figure 3a shows modeled recurrence intervals from the earthquake
 325 sequence of Model A that closely approximate the recurrence interval and COV reported at the Copper Mine
 326 site (Figure 3b). An earthquake event is identified when its slip at the Copper Mine site exceeds 0.2 m. We
 327 choose 0.2 m as the threshold because this slip amount is recognizable at paleoseismic sites but is not too large
 328 to bar small events from the model. There are 61 such events over the 2500 earthquake cycles simulated. The
 329 mean and the standard deviation of the recurrence intervals are 535 and 362 years in Model A, respectively,
 330 yielding a COV of 0.68.

331

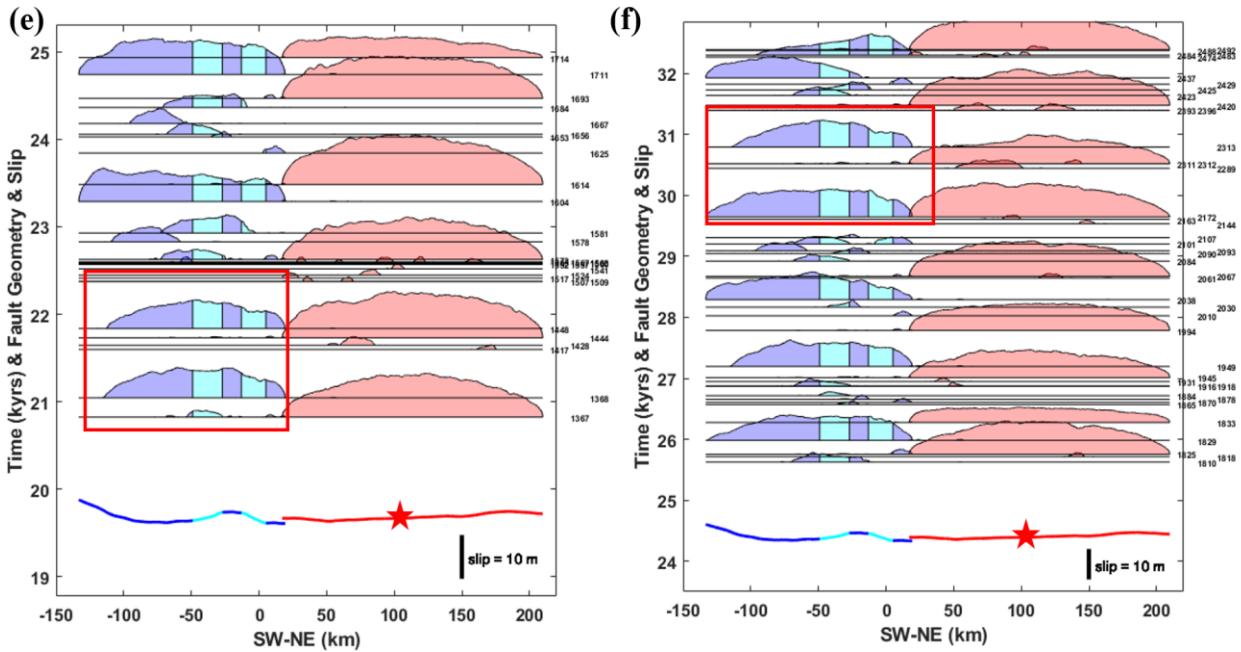
332



333
 334 Figure 3. (a) Recurrence intervals from the earthquake sequence of Model A that has a footprint at the Copper
 335 Mine site. An earthquake event is defined when its slip exceeds 0.2 m at the Copper Mine site location. The
 336 mean and standard deviation of the recurrence interval are 535 and 362 years, respectively. The COV is 0.68.
 337 (b) Recurrence intervals from the paleoseismic record at the Copper Mine site on the Xorxoli segment of the
 338 central Altyn Tagh fault (Yuan et al., 2018). The record covers a time span of 6000 years and shows 9 earthquake
 339 events. The recurrence interval and standard deviation are 624 and 412 years, respectively. The COV is 0.66.
 340 Model A reproduces the large variance of recurrence intervals revealed by the paleoseismic record, which
 341 ranges from ~ 100 -1000 yr.
 342


343 The magnitudes of earthquakes shown in Figure 3a ranges from M_w 5.8 to M_w 8.0, assuming slip is
 344 uniform to a seismogenic depth of 17 km as suggested by Bouchon and Vallee (2003) for the nearby 2001
 345 Kunlunshan earthquake. However, Jolivet et al. (2008) suggest an 8-10 km locking depth for the ATF, which
 346 would yield magnitudes from M_w 5.6 to M_w 7.9. The maximum slip for these events ranges from 0.39 to 12.66
 347 m, with a mean of 6.70 m and a standard deviation of 4.69 m. The mean agrees with the slip amount per event
 348 of 3-8 m inferred from geologic data (Washburn et al., 2001; Washburn et al., 2003; Elliott et al., 2015).

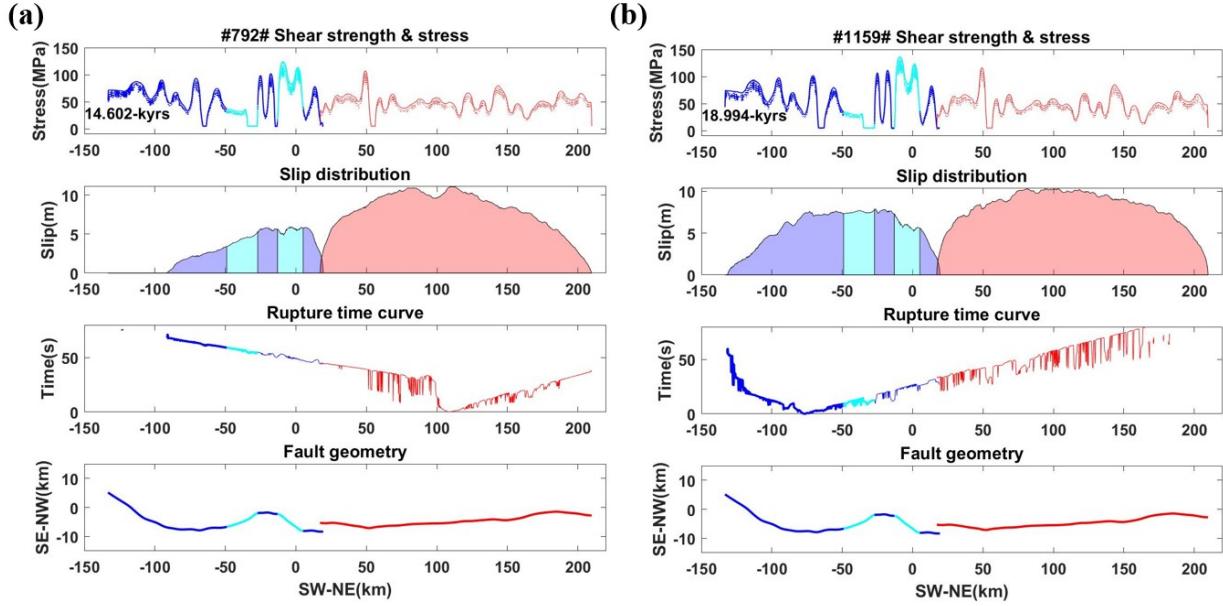
349
 350


351 4.2 Dynamic rupture models from best-fit simulation parameters

352

353

354


355 Figure 4. Slip distributions of earthquake events (maximum slip > 1 m) in Model A during the 32.5 kyrs simulated.
356 Panels a-e shows slip distributions every 5 kyrs and panel f shows slip distributions in the last 7.5 kyrs. The fault
357 geometry is shown at the bottom of each panel. A bar of 10 m slip is given for reference in each panel. Event
358 numbers are shown on the right edge of each panel. The paleoseismic site Copper Mine is denoted as a star on
359 the fault geometry. Examples of small, moderate, large, and super-large ruptures are indicated in panels b and
360 d (see Section 4.2 for details of these definitions). Red rectangles in panels a and c outline rupture patterns that
361 involve a mixture of small, moderate, and large events. Red rectangles in panels b, e and f show rupture patterns
362 that involve mainly ruptures combining the Wuzhunxiao and Pingding Shan segments. The blue and red
363 segments indicate the Wuzhunxiao and Xorxoli segments, respectively. The Pingding Shan segment consists of

364 the regional releasing and restraining bends (light blue color).

365

366 Figure 4 show slip distributions of earthquake events with maximum slip over 1 m from Model A. Here,
367 we qualitatively define four types of ruptures in the earthquake sequence of Model A. Small events have
368 rupture extents less than 20 km ($M_w < 7.1$ assuming the locking depth of 17 km). Moderate events rupture tens
369 of kilometers with an upper length limit of 100 km ($M_w = 7.1 - 7.6$). Large ruptures exceed 100 km ($M_w > 7.6$)
370 which typically involve the whole Xorxoli segment or the combined Wuzhunxiao and Pingding Shan segments.
371 Super-large ruptures span the entire modeled fault system. Examples of small to super-large events are labelled
372 in Figure 4b and 4d, respectively. The Wuzhunxiao and Pingding Shan segments show two primary rupture
373 patterns. One pattern involves a mixture of small, moderate, and large events, as indicated by red rectangles in
374 Figure 4a and 4c. The other pattern consists of mainly large events that span the combined length of the
375 Wuzhunxiao and Pingding Shan segments, as outlined by red rectangles in Figure 4b, 4e, and 4f. The prominent
376 restraining and releasing bends contribute to the complex patterns because ruptures frequently terminate at
377 their ends. About every 1-2 kyr a large rupture occurs that spans both bends but is frequently stopped by the
378 releasing step-over between the Pingding Shan and Xorxoli segments. In contrast, the Xorxoli segment is
379 relatively straight and shows less macroscopic geometric complexity. As a result, the rupture pattern is
380 dominated by relatively periodic large ruptures and irregularly recurring small and moderate events. We note
381 that if the Xorxoli segment were perfectly straight and the loading was constant over time, we would expect
382 more periodic ruptures of the whole Xorxoli segment, which cannot explain the 0.66 COV determined by
383 paleoseismology. Local fault geometric complexities and the irregularly recurring small and moderate events
384 therefore contribute to the high COV on the relatively straight Xorxoli segment.

385

386

387 Figure 5. Details of dynamic ruptures of super-large events #792 (a) and #1159 (b), respectively. The rupture
 388 details (top to bottom of the figure) include shear stress and strength distributions before ruptures, final slip
 389 distributions, rupture time curves, and the fault geometry for reference.

390

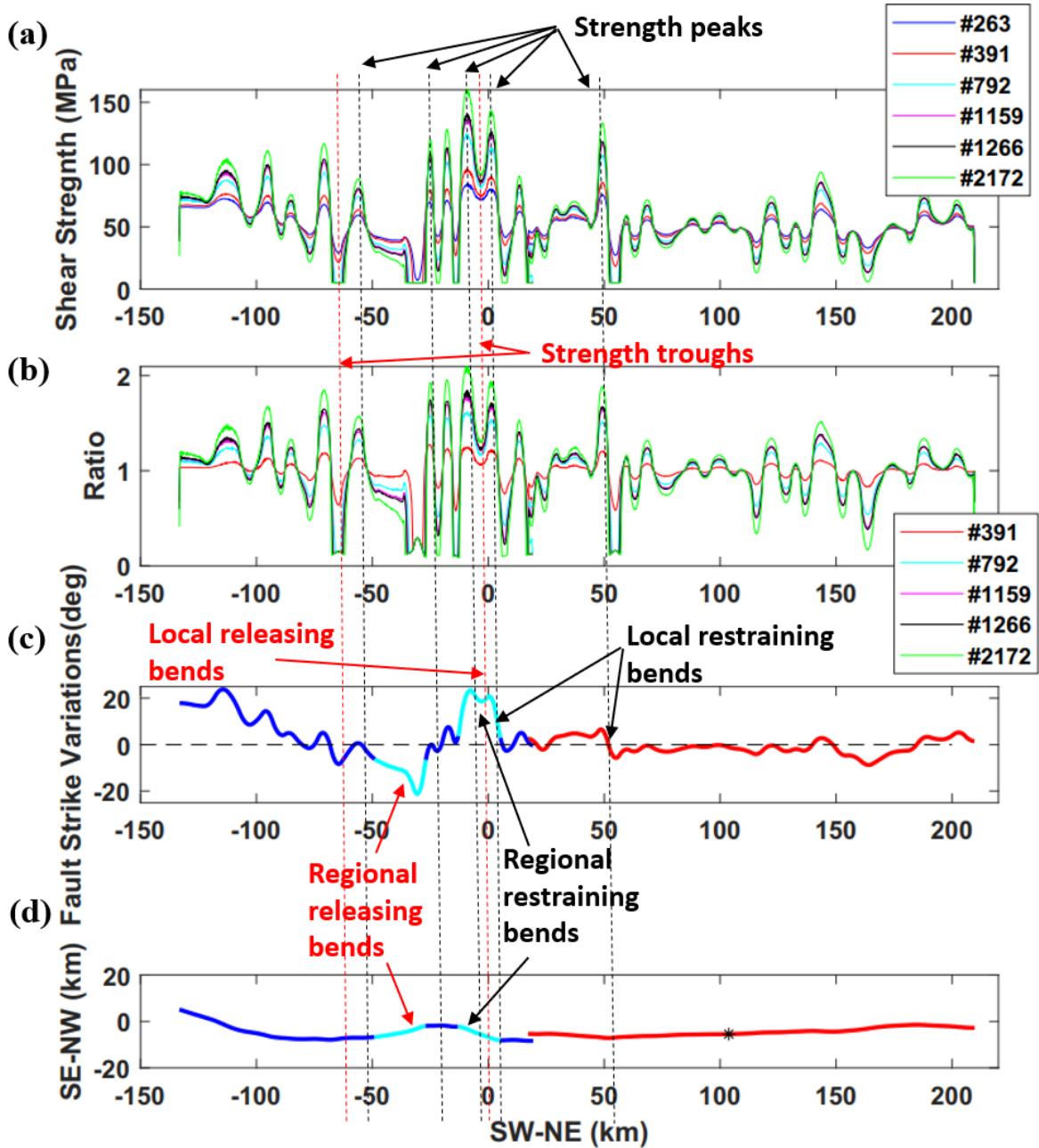
391

392 Super-large earthquakes that rupture all three complexities within the earthquake gate are possible
 393 but rare. In the 2500 earthquake cycles simulated in Model A, seven events span the entire fault. Six of these
 394 events nucleate on the Xorxoli segment, indicating it is a favorable segment for nucleation of super-large
 395 ruptures. The seventh initiates on the Wuzhunxiao segment. The super-large ruptures exhibit two types of
 396 dynamics. Figure 5a and 5b show details of rupture dynamics for two super-large ruptures, including the stress
 397 conditions before rupture, coseismic slip distributions, and rupture time curves. (Rupture details of the other 5
 398 super-large events are provided in Figure S1-S5 in the supplementary material.) They show somewhat different
 399 dynamics, indicating the complexity of dynamic ruptures in a geometrically realistic fault system. The first type
 400 represents six super-large ruptures that nucleate on the Xorxoli segment and propagate westward through the
 401 Pingding Shan earthquake gate. The difference among them is the nucleation location along the Xorxoli
 402 segment as shown by rupture details of those events in the supplementary material. Figure 5b shows the event
 403 that nucleates on the Wuzhunxiao segment. Figure S6 includes nucleation locations of all the events presented
 404 in Figure 4. Figure S6 demonstrates that earthquakes tend to nucleate where the fault is about parallel to the

405 general ATF strike and near bends or the step-over. In addition, many earthquakes nucleate on the regional
406 releasing bend but nucleation on the regional restraining bend is rare.

407 The releasing stepover is more effective as a barrier to dynamically propagating ruptures than the
408 restraining bend in our models. For example, ruptures propagating from the Wuzhunxiao segment can break
409 the Pingding Shan restraining bend, but are often stopped by the stepover. The combination of the two fault
410 complexities leads to a low occurrence rate of super-large ruptures. There are 193 earthquake events shown in
411 Figure 4 with magnitudes ranging from M_w 6.22 to M_w 8.0 (assuming a locking depth of 17 km). Given seven
412 super-large ruptures over the 32.5 kyr simulated, the earthquake sequence yields a low occurrence rate of
413 super-large ruptures at 3.6% for earthquakes over M_w 6.22 and an average recurrence interval of about 4.6 kyr.

414

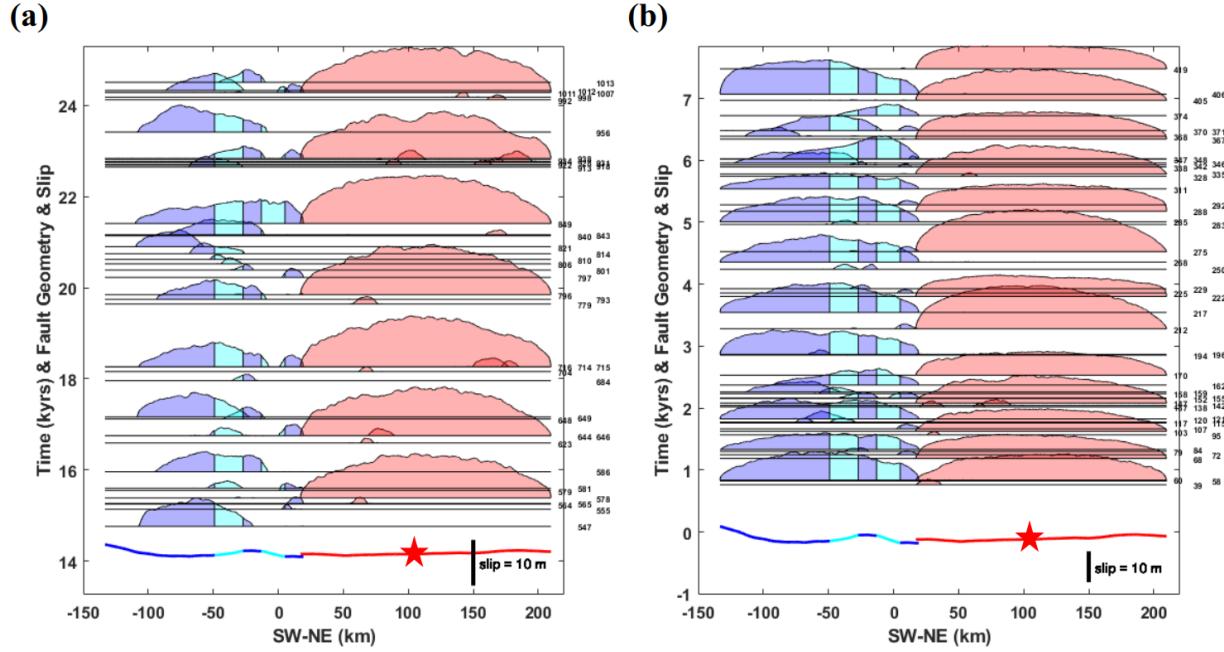

415 4.3 On-fault stress states preceding super-large ruptures

416 Figure 6a shows shear strength distributions before super-large events #263, #391, #792, #1159, #1266
417 and #2172 from Model A, respectively. Figure 6c shows fault strikes variations along the fault. Wide ranges of
418 positive and negative numbers indicate regional restraining and releasing bends over tens of kilometers, which
419 are colored in light blue. In addition, these regional bends contain local restraining bends and releasing bends
420 at finer spatial scales in a few kilometers, as indicated by vertical dashed lines where strikes change sharply
421 over short distances. Figure 6d shows the fault geometry. The shear strengths before super-large ruptures are
422 very heterogeneous. The heterogeneity is strongly correlated with fault geometry, with generally high strengths
423 at the regional restraining bend and low strengths at the regional releasing bend. For example, the prominent
424 Pingding Shan restraining bend shows an overall shear strength well over 120 MPa, while the releasing bend
425 west to the Pingding Shan has strength below 40 MPa, with some locations reaching the minimum 5 MPa
426 permitted by the model (calculated by multiplying the minimum absolute normal stress 10 MPa by the static
427 friction coefficient 0.5). On the other hand, the local strength peaks and troughs are correlated with local
428 restraining and releasing bends. For example, within the Pingding Shan restraining bend, a strength trough
429 corresponds to the local releasing bend (indicated by the dash red vertical line).

430 Second, the shear strength of the fault system evolves to become more heterogenous as more ruptures
431 occur, as shown in Figure 6b. We calculate ratios of shear strength of super-large events #391, #792, #1159,
432 #1266 and #2172 relative to the shear strength of event #263, the first super-large rupture in the earthquake
433 sequence, at every fault node. Figure 6b shows the distribution of these ratios. A ratio of 1 at a fault node
434 indicates the shear strength does not deviate from that in event #263. The accumulation of stress heterogeneity
435 is indicated by an increase in the ratio of shear strength at restraining bends and a decrease at releasing bends.
436 The on-fault stress conditions deviate substantially from the distribution calculated by simply resolving a
437 uniform regional stress field onto the fault based on fault geometry.

438

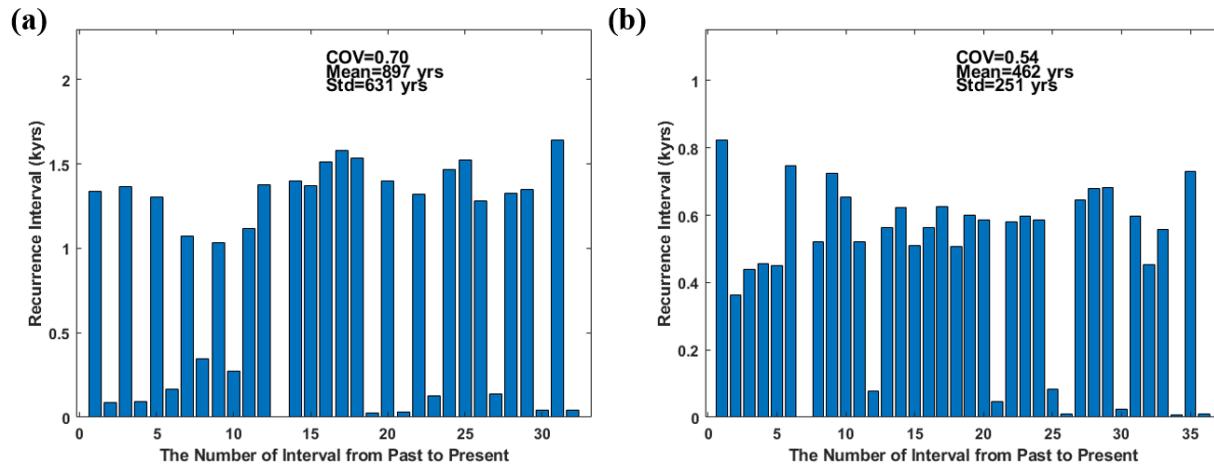
439



440

441 Figure 6. (a) Shear strength distributions before super-large events. Event numbers are shown in the legend. (b)
442 Distributions of shear strength ratios for events #391, #792, #1159, #1266 and #2172 relative to the shear
443 strength of event #263, respectively. (c) Fault strike variations along the fault. Zero values, the dashed
444 horizontal line, indicates that the fault is parallel to the general strike of ATF. Wide ranges of positive and
445 negative angles, that are colored in light blue, stand for the regional restraining and releasing bends,
446 respectively. These regional bends contain local restraining and releasing bends at finer spatial scales, which
447 are indicated by sharp changes of strike angles over short distances. In general, the regional restraining and
448 releasing bends correspond to high and low shear strengths in panel a. The local stress peaks and troughs are
449 also correlated with local restraining and releasing bends, as indicated by the vertical black and red dash lines.
450 (d) Reference fault geometry. The Copper Mine paleoseismic site is denoted by the star.

451


452
453 4.4 Mechanical effects of the key parameters
454 4.4.1 Static friction
455 Static friction affects the long-term slip rate distribution by determining the amount of elastic strain
456 partitioned between earthquake slip and off-fault deformation. Model B and Model C have a static friction of
457 0.7 and 0.3, representing strong and weak end-member fault systems, respectively. As shown in Figure 2, Model
458 B yields long-term slip rates slightly less than half of those determined in Model A, while Model C yields a much
459 higher long-term slip rate with peaks over 15 mm/yr. Low static friction reduces the degree of strength
460 heterogeneity caused by fault geometry during both long-term loading and dynamic ruptures. For an on-fault
461 normal stress ranges from 100 MPa to 200 MPa with static friction of 0.3, the shear strength would vary from
462 30 MPa to 60 MPa. For the same fault system with a static friction of 0.7, the shear strength would vary from
463 70 MPa to 140 MPa instead. A fault system with low static friction therefore tends to reduce stress
464 heterogeneity associated with the fault geometry.
465 Figure 7 shows slip distributions of dynamic ruptures in Model B (Figure 7a) and Model C (Figure 7b),
466 respectively. The slip patterns are characteristic in each model for the time ranges chosen. The strong fault of
467 Model B shows fragmented rupture patterns that include small, moderate, and large earthquakes, while the
468 weak fault of Model C is mainly dominated by large and occasionally super-large earthquakes. The rupture
469 pattern of Model B is similar to that of Model A. Figure 8 shows recurrence intervals and their statistics at the
470 Copper Mine site from Model B (Figure 8a) and Model C (Figure 8b), respectively. Their COVs are 0.70 and 0.54,
471 and their mean recurrence intervals are 896 years and 462 years, respectively. Model B is more in line with
472 Model A in terms of COV, while Model C yields shorter recurrence intervals and a smaller COV compared to
473 Model A.
474

475

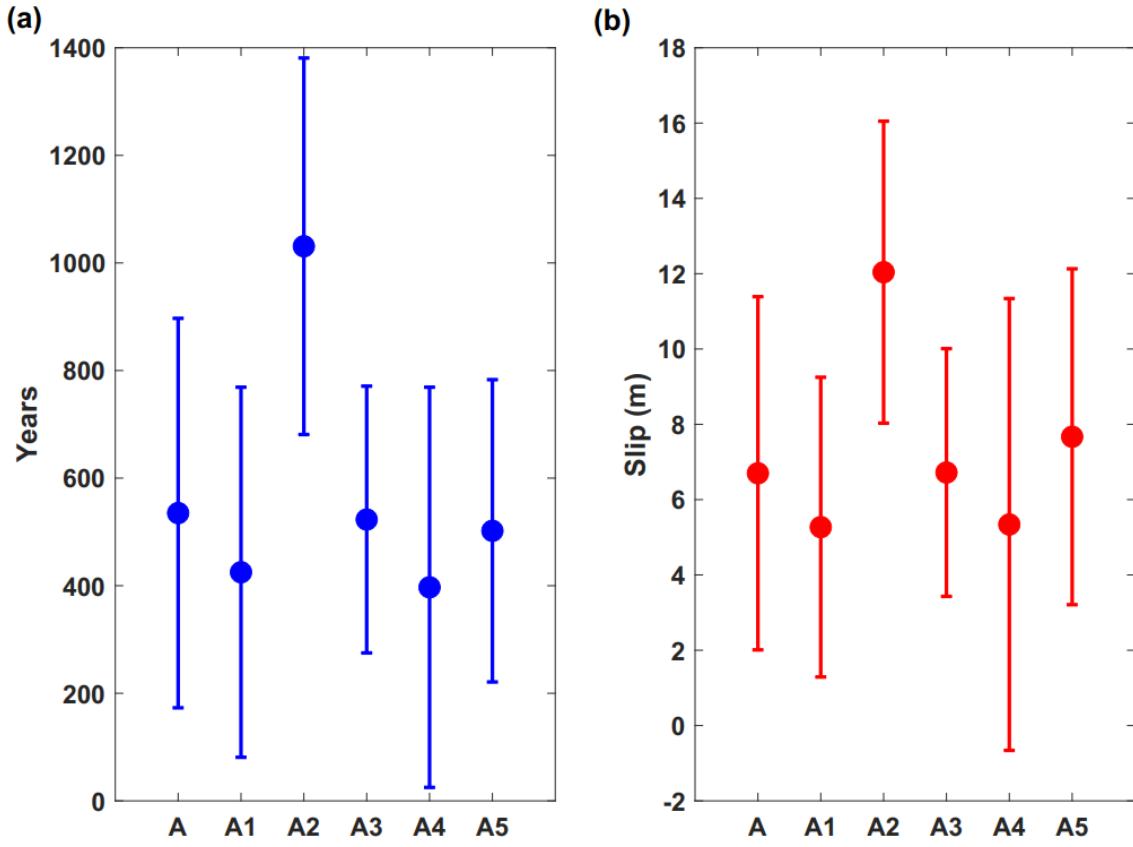
476 Figure 7. (a) Slip distributions of earthquake events (maximum slip > 1 m) in the high friction model (Model B),
 477 15 to 25 kiloyears after the start of the simulation. (b) Slip distributions of earthquake events in the low friction
 478 model (Model C) in the first 7.5 kyrs after model initiation. The fault geometry is shown at the bottom of each
 479 panel. A bar of 10 m slip is given for reference. Event numbers are shown on the right edge of each panel. The
 480 regional restraining and releasing bends are colored in light blue. The Copper Mine paleoseismic trench is
 481 denoted as a star on the fault geometry.

482

483

484 Figure 8. (a) Recurrence intervals at the Copper Mine site from the earthquake sequence of Model B. An
 485 earthquake is defined when its slip at the Copper Mine site exceeds 0.2 m. The mean and standard deviation
 486 of the recurrence interval are 896 and 631 years, respectively. The COV is 0.70. (b) Recurrence intervals at the
 487 Copper Mine site from the earthquake sequence of Model C. The mean and standard deviation of the
 488 recurrence interval are 462 and 251 years, respectively. The COV is 0.54.

489


490 4.4.2 The effect of apparent stress drop

491 Table 2 summarizes the statistics of recurrence intervals and slips at the Copper Mine paleoseismic
 492 trench site from Model A and Models A1-A5. The means and standard deviations of recurrence intervals and
 493 slips from various models are visualized in Figure 9a and 9b, respectively. Here we compare the results from
 494 Model A1 and Model A to examine the effect of apparent stress drop. Compared with Model A, the only change
 495 in Model A1 is an increase in the dynamic friction coefficient (f_d), from 0.43 in Model A to 0.45 in Model A1
 496 (Table 1). Given $f_s = 0.5$ and $\sigma_a = 100$ MPa, this change results in a smaller apparent stress drop of 5 MPa in
 497 Model A1, compared with 7 MPa in Model A. The reduction of the apparent stress drop increases the COV of
 498 Model A1 to 0.81 from 0.68 in Model A (Table 2). The recurrence interval and slip are comparable with those
 499 in Model A, with smaller mean values in Model A1. The difference in maximum long-term slip rate on the
 500 Wuzhunxiao and Xorxoli segments is only \sim 1 mm/yr (Figure 2), implying a minor effect of apparent stress drop
 501 on the long-term slip rate.

502

503 Table 2. Summary of earthquake rupture parameters at the Copper Mine site obtained from the multicycle
 504 dynamic models.

Model name	Mean of recurrence interval, years	Std of recurrence interval, years	COV	Mean of peak slip, m	Std of peak slip, m	Number of events with peak slips over 1 m/ total cycles modeled
A	535	362	0.68	6.70	4.69	61/2500
A1	425	344	0.81	5.27	3.98	33/1500
A2	1031	350	0.34	12.04	4.01	27/1500
A3	523	248	0.47	6.72	3.29	61/1500
A4	397	372	0.94	5.34	6.00	30/1500
A5	502	281	0.56	7.67	4.46	36/1500

505

506 Figure 9. (a) Means and standard deviations of recurrence intervals at the Copper Mine site from Models A, A1-
 507 A5, respectively. (b) Means and standard deviations of slips at the Copper Mine site from Models A, A1-A5,
 508 respectively.

509

510 4.4.3 The effect of rate and slip dependence of friction

511 We explore the effect of rate dependence of friction in dynamic ruptures on the statistics of the fault
 512 system by adjusting the restrengthening friction (f_r) and the threshold slip velocity (v_0). In Model A2, f_r is lower
 513 than that in Model A (Table 1). In Model A3, the threshold slip velocity v_0 is larger than that in Model A (Table
 514 1). As shown in Duan (2019), a lower f_r or a larger v_0 favors a more gradual friction restrengthening process
 515 during dynamic ruptures. We obtain lower COVs of 0.34 and 0.47 in Models A2 and A3, respectively, compared
 516 with that in Model A. It suggests that more gradual friction restrengthening in dynamic ruptures favors more
 517 periodicity of recurrence intervals.

518 Model A4 has a larger d_0 than Model A (Table 1), which indicates a larger fracture energy and less rapid
519 energy release during dynamic ruptures. An increase in d_0 results in an increase in the number of small events,
520 leading to an increase in rupture pattern heterogeneity (indicated by a higher COV of 0.94, Table 2). These
521 results indicate that a fault system with a realistic fault geometry and dynamic ruptures with a slower energy
522 release rate and more rapid restrengthening will yield a larger COV.

523

524 4.4.4 The effect of viscosity.

525 The viscosity in our models affects the partitioning of the elastic strain energy between earthquake
526 rupture and off-fault deformation. Higher viscosities tend to yield higher long-term slip rates (Duan et al., 2019).
527 Model A5, which has a higher viscosity of 3.5×10^{22} Pa s than Model A (Table 1), yields larger long-term slip
528 rates compared to that of Model A (Figure 2), agreeing with the previous study.

529

530 **5. Discussion**

531 We find that multicycle dynamic rupture models with realistic fault geometry can reproduce the mean
532 and COV of recurrence intervals documented at the Copper Mine paleoseismic trench site on the Xorxoli
533 segment over the past 6000 years. Two questions emerge: why does fault geometry matter, and how does it
534 affect stress state? Dieterich and Smith (2010) show that stress heterogeneity from geometric interactions at
535 irregularities along nonplanar faults causes the slip solutions to diverge from those of planar faults and leads
536 to nonlinear scaling of fault slip with rupture dimension in a purely elastic medium. The divergence increases
537 with the fractal features of the fault geometry and the stress heterogeneity may progressively impede slip.
538 Dieterich and Richards-Dinger (2010) uses an efficient, quasi-static fault system earthquake simulator, RSQSim,
539 to simulate earthquake catalogs with up to 10^6 events with magnitudes from $\sim M_w$ 4.5 to M_w 8. They
540 demonstrate that fault system geometry is the major driver to establish the characteristics of stresses that
541 control earthquake recurrence statistics. Dynamic ruptures on rough fault geometry also yield heterogeneous
542 stresses and slips and excite waves over a wide range of frequency that is important for ground motion

543 applications (Dunham et al., 2011b; Shi and Day, 2013). Combining both the long-term earthquake cycles and
544 dynamic ruptures, our multicycle dynamic models demonstrate that stress heterogeneity associated with fault
545 geometric complexities is impacted by a feedback loop of three processes over multiple earthquake cycles. First,
546 dynamic ruptures passing fault bends or stepovers will induce heterogenous stresses. Second, during the
547 interseismic periods, tectonic loading and stress relaxation will lead to fault-strike dependent stress
548 accumulation and relaxation. Third, the stress history from past earthquakes will serve as the initial conditions
549 for the next earthquake cycle. Therefore, as illustrated in Figure 6, heterogeneous stresses preceding dynamic
550 ruptures evolve over earthquake cycles and are closely correlated with fault geometry.

551 The overall shear strength of the fault system, parameterized by the static friction level (f_s) in our
552 models, affects both the long-term slip rate of the system and the details of rupture dynamics. A moderate
553 value of $f_s=0.5$ (Model A) best fits geologic and paleoseismic observations. We also examine two end members
554 of static friction levels at 0.7 (Model B) and 0.3 (Model C) representing a very strong and a very weak fault
555 system, respectively. The weak fault, Model C, tends to yield large earthquakes because the low static friction
556 smooths the fault geometry-related stress heterogeneities, favoring unimpeded ruptures. Based on empirical
557 relations from fault mapping of past earthquakes (Biasi and Wesnousky, 2017), the Pingding Shan restraining
558 bend should be a strong barrier to ruptures. But in the case of Model C, it barely stops dynamically propagating
559 ruptures. The strong fault model (Model B) shows a more fragmented rupture pattern than Model A.

560 The initial stress condition, which is a key ingredient in dynamic rupture models, is poorly constrained.
561 As shown in Figure 6, on-fault stresses become rather heterogeneous after many earthquake cycles on the fault
562 system with realistic geometry. Our results imply that, to prescribe a heterogeneous initial stress field for single-
563 event dynamic rupture models, stresses resolved from a regional stress field based on fault geometry should
564 be increased/decreased at regional and local restraining/releasing bends where substantial strike changes
565 occur to take into account stress heterogeneity inherited from past earthquakes.

566 There are still disparities between paleoseismic records and the best fit Model A in terms of recurrence
567 intervals and the COV. Two possibilities may explain the disparity. First, the limited sample size of paleoseismic

568 records, subject to uncertainties in dating, affects the mean and COV of recurrence intervals. Second, the
569 realistic fault geometry in the multicycle dynamic rupture models alone may not account for all the
570 heterogeneities in earthquake processes. Given the uncertainties in paleoseismic datasets, we aim to capture
571 only the major features, rather than fine-tuning our models for a perfect fit. The key message from the models
572 is that a realistic fault geometry can account for much of the complexity in earthquake recurrence intervals
573 revealed by the paleoseismic record.

574

575 **6. Conclusion**

576 In this study we simulate multicycle dynamic ruptures of the Pingding Shan earthquake gate along the
577 Altyn Tagh Fault in northwest China. We adopt a 350 km-long fault geometry and run 2500 earthquake cycles
578 in our best fit model. The mean and COV of recurrence intervals from the model at the Copper Mine site of 535
579 years and 0.68, respectively, compare favorably with the 624 years and 0.66 obtained from the paleoseismic
580 record at the site on the Xorxoli segment. The maximum long-term slip rates on the Wuzhunxiao and Xorxoli
581 segment of about 8.5 and 12 mm/yr, respectively, match estimates of geodetically and geologically determined
582 slip rates along the ATF of 9~14 mm/yr. In addition, our model yields a slip rate of about 5 mm/yr east of the
583 Pingding restraining bend, agreeing with a recent geologic estimate of 4.7 ± 0.8 mm/yr (Prush et al., personal
584 communications) and suggesting a reduction of slip affected by the restraining bend and fault tips. The average
585 slip-per-event from the model is 6.7 ± 4.69 m for earthquakes that break the Copper Mine site, in agreement
586 with the slip-per-event estimates from geomorphic offset measurements of 3-8 m in the region (Washburn et
587 al., 2001; Elliott, 2014).

588 The earthquake sequences on the fault system from the best-fit model show complex rupture patterns.
589 The Wuzhunxiao and Pingding Shan segments show a mixture of small and moderate earthquakes that are
590 segmented by the regional releasing and restraining bends and large earthquakes that break the combined
591 Wuzhunxiao and Pingding Shan segments. The Xorxoli segment, which lacks major geometric complexities,
592 tends to serve as the nucleation location of super-large earthquakes that rupture the span of the model. Both

593 the Pingding Shan restraining bend and the releasing stepover impede dynamically propagating ruptures. The
594 Pingding Shan step-over is more effective as a barrier to ruptures in the simulations, but the combination of
595 the two makes the Pingding Shan earthquake gate an effective barrier to super-large, system-spanning ruptures.
596 Super-large ruptures have a recurrence interval of ~4.6 kyr and a rate of 3.6% for earthquakes over M_w 6.22 in
597 the fault system. The Aksay bend that is east of the Pingding Shan gate is an effective barrier to dynamically
598 propagating ruptures and passes only about 10% of ruptures. If we assume that the Pingding Shan earthquake
599 gate is independent of the Aksay bend, we could estimate that even larger earthquakes are vanishingly rare.

600 The overall static friction level of the fault system, i.e., fault strength, affects strain partitioning
601 between on-fault slip and off-fault deformation and, consequently, the long-term slip rate of the fault system.
602 It also affects rupture dynamics. Lower static friction, i.e., a weak fault, tends to reduce the effectiveness of the
603 restraining bend as a rupture barrier and increases the proportion of energy partitioned to on-fault earthquake
604 slip. The weak fault favors large ruptures and occasional super-large ruptures.

605 Our models illustrate the critical role of realistic fault geometries to the dynamics of a fault system. The
606 feedback loop of stress heterogeneity inherited from past earthquakes, dynamic ruptures, and interseismic
607 deformation, leads to fault-geometry-related stress heterogeneity. Complex rupture patterns arise from the
608 heterogenous stress condition, which evolves continuously over earthquake cycles. In addition, rapid and
609 strong restrengthening during dynamic rupture is necessary to explain the 0.66 COV of recurrence intervals at
610 the Copper Mine paleoseismic trench site, especially on the relatively straight Xorxoli segment, which tends to
611 favor unimpeded rupture propagation. Our models indicate that the on-fault stress conditions before
612 earthquakes are much more heterogeneous than the stresses calculated by simply resolving a uniform stress
613 field onto a geometrically complex fault based solely on local fault geometry. The fault-geometry-related stress
614 heterogeneity presented in this study may provide a guidance to set up initial stresses for single-event dynamic
615 rupture simulations that accounts for the effect of past earthquakes.

616

617 **Acknowledgement:** We thank Editor Ling Chen, Julian Lozos and an anonymous reviewer for their constructive

618 reviews that improve the manuscript. The work is funded by National Science Foundation (NSF) Awards EAR-
619 1524743, EAR-1524734 and EAR-2013695. The work is also supported by the National Natural Science
620 Foundation of China (NSFC) (U1839203). Figure 1 is generated by GMT 5.1. Other figures are generated by
621 MATLAB (R2017a). We thank Texas A&M High Performance Research Computing (<http://hprc.tamu.edu/>) for
622 providing the advanced computing resources used in the study.

623

624 **References**

625 Aagaard, B.T., Heaton, T.H., Hall, J.F., 2001. Dynamic earthquake ruptures in the presence of lithostatic normal
626 stresses: Implications for friction models and heat production. *Bull. Seismol. Soc. Am.* 91, 1765-1796
627 Andrews, D.J., 1976. Rupture Velocity of Plane Strain Shear Cracks. *J. Geophys. Res.* 81, 5679-5687
628 Bendick, R., Bilham, R., Freymueller, J., Larson, K., Yin, G., 2000. Geodetic evidence for a low slip rate in the Altyn
629 Tagh fault system. *Nature* 404, 69-72
630 Biasi, G.P., Wesnousky, S.G., 2016. Steps and Gaps in Ground Ruptures: Empirical Bounds on Rupture Propagation.
631 *Bull. Seismol. Soc. Am.* 106, 1110-1124
632 Biasi, G.P., Wesnousky, S.G., 2017. Bends and Ends of Surface Ruptures. *Bull. Seismol. Soc. Am.* 107, 2543-2560
633 Bouchon, M., Vallee, M., 2003. Observation of long supershear rupture during the magnitude 8.1 Kunlunshan
634 earthquake. *Science* 301, 824-826
635 Byerlee, J., 1978. Friction of Rocks. *Pure Appl. Geophys.* 116, 615-626
636 Cohee, B.P., Beroza, G.C., 1994. Slip distribution of the 1992 Landers earthquake and its implications for earthquake
637 source mechanics. *Bull. Seismol. Soc. Am.* 84, 692-712
638 Cowgill, E., 2007. Impact of riser reconstructions on estimation of secular variation in rates of strike-slip faulting:
639 Revisiting the Cherchen River site along the Altyn Tagh Fault, NW China. *Earth Planet. Sci. Lett.* 254, 239-255
640 Cowgill, E., Gold, R.D., Xuanhua, C., Xiao-Feng, W., Arrowsmith, J.R., Southon, J., 2009. Low Quaternary slip rate
641 reconciles geodetic and geologic rates along the Altyn Tagh fault, northwestern Tibet. *Geology* 37, 647-650
642 Cowgill, E., Yin, A., Arrowsmith, J.R., Feng, W.X., Shuanhong, Z., 2004. The Akato Tagh bend along the Altyn Tagh fault,
643 northwest Tibet 1: Smoothing by vertical-axis rotation and the effect of topographic stresses on bend-flanking faults.
644 *Geol. Soc. Am. Bull.* 116, 1423-1442
645 Day, S.M., 1982. Three-dimensional simulation of spontaneous rupture: the effect of nonuniform prestress. *Bull.*
646 *Seismol. Soc. Am.* 72, 1881-1902
647 Di Toro, G., Goldsby, D.L., Tullis, T.E., 2004. Friction falls towards zero in quartz rock as slip velocity approaches seismic
648 rates. *Nature* 427, 436-439
649 Dieterich, J.H., 1979. Modeling of Rock Friction .1. Experimental Results and Constitutive Equations. *J. Geophys. Res.*
650 84, 2161-2168
651 Dieterich, J.H., Richards-Dinger, K.B., 2010. Earthquake Recurrence in Simulated Fault Systems. *Pure Appl. Geophys.*
652 167, 1087-1104
653 Dieterich, J.H., Smith, D.E., 2010. Nonplanar Faults: Mechanics of Slip and Off-fault Damage, in: Ben-Zion, Y., Sammis,
654 C. (Eds.), *Mechanics, Structure and Evolution of Fault Zones*. Birkhäuser Basel, Basel, pp. 1799-1815.
655 Duan, B., 2019. Multicycle Dynamics of the Aksay Bend Along the Altyn Tagh Fault in Northwest China: 1. A Simplified
656 Double Bend. *Tectonics* 38, 1101-1119
657 Duan, B., Liu, Z., Elliott, A.J., 2019. Multicycle Dynamics of the Aksay Bend Along the Altyn Tagh Fault in Northwest
658 China: 2. The Realistically Complex Fault Geometry. *Tectonics* 38, 1120-1137
659 Duan, B., Oglesby, D.D., 2005. Multicycle dynamics of nonplanar strike-slip faults. *Journal of Geophysical Research:*
660 *Solid Earth* (1978–2012) 110
661 Duan, B., Oglesby, D.D., 2006. Heterogeneous fault stresses from previous earthquakes and the effect on dynamics
662 of parallel strike-slip faults. *J Geophys Res-Sol Ea* 111

663 Duan, B., Oglesby, D.D., 2007. Nonuniform prestress from prior earthquakes and the effect on dynamics of branched
 664 fault systems. *J. Geophys. Res.* 112

665 Dunham, E.M., Belanger, D., Cong, L., Kozdon, J.E., 2011a. Earthquake Ruptures with Strongly Rate-Weakening
 666 Friction and Off-Fault Plasticity, Part 1: Planar Faults. *Bull. Seismol. Soc. Am.* 101, 2296-2307

667 Dunham, E.M., Belanger, D., Cong, L., Kozdon, J.E., 2011b. Earthquake Ruptures with Strongly Rate-Weakening
 668 Friction and Off-Fault Plasticity, Part 2: Nonplanar Faults. *Bull. Seismol. Soc. Am.* 101, 2308-2322

669 Elliott, A.J., 2014. Control of Rupture Behavior by a Restraining Double-bend from Slip Rates on the Altyn Tagh Fault.
 670 Ph.D. Dissertation. University of California, Davis.

671 Elliott, A.J., Dolan, J.F., Oglesby, D.D., 2009. Evidence from coseismic slip gradients for dynamic control on rupture
 672 propagation and arrest through stepovers. *J Geophys Res-Sol Ea* 114

673 Elliott, A.J., Oskin, M.E., Liu-Zeng, J., Shao, Y., 2015. Rupture termination at restraining bends: The last great
 674 earthquake on the Altyn Tagh Fault. *Geophys. Res. Lett.* 42, 2164-2170

675 Elliott, J.R., Biggs, J., Parsons, B., Wright, T.J., 2008. InSAR slip rate determination on the Altyn Tagh Fault, northern
 676 Tibet, in the presence of topographically correlated atmospheric delays. *Geophys. Res. Lett.* 35

677 Gold, R.D., Cowgill, E., Arrowsmith, J.R., Gosse, J., Chen, X., Wang, X.-F., 2009. Riser diachroneity, lateral erosion, and
 678 uncertainty in rates of strike-slip faulting: A case study from Tuzidun along the Altyn Tagh Fault, NW China. *J Geophys
 679 Res-Sol Ea* 114

680 Hamling, I.J., Hreinsdottir, S., Clark, K., Elliott, J., Liang, C., Fielding, E., Litchfield, N., Villamor, P., Wallace, L., Wright,
 681 T.J., D'Anastasio, E., Bannister, S., Burbidge, D., Denys, P., Gentle, P., Howarth, J., Mueller, C., Palmer, N., Pearson, C.,
 682 Power, W., Barnes, P., Barrell, D.J., Van Dissen, R., Langridge, R., Little, T., Nicol, A., Pettinga, J., Rowland, J., Stirling,
 683 M., 2017. Complex multifault rupture during the 2016 Mw 7.8 Kaikoura earthquake, New Zealand. *Science* 356,
 684 eaam7194

685 Harris, R.A., Barall, M., Aagaard, B., Ma, S., Roten, D., Olsen, K., Duan, B., Liu, D., Luo, B., Bai, K., Ampuero, J.P., Kaneko,
 686 Y., Gabriel, A.A., Duru, K., Ulrich, T., Wollherr, S., Shi, Z., Dunham, E., Bydlon, S., Zhang, Z., Chen, X., Somalia, S.N.,
 687 Pelties, C., Tago, J., Cruz-Atienza, V.M., Kozdon, J., Daub, E., Aslam, K., Kase, Y., Withers, K., Dalguer, L., 2018. A Suite
 688 of Exercises for Verifying Dynamic Earthquake Rupture Codes. *Seismol. Res. Lett.* 89, 1146-1162

689 Harris, R.A., Barall, M., Archuleta, R., Dunham, E., Aagaard, B., Ampuero, J.P., Bhat, H., Cruz-Atienza, V., Dalguer, L.,
 690 Dawson, P., Day, S., Duan, B., Ely, G., Kaneko, Y., Kase, Y., Lapusta, N., Liu, Y., Ma, S., Oglesby, D., Olsen, K., Pitarka, A.,
 691 Song, S., Templeton, E., 2009. The SCEC/USGS Dynamic Earthquake Rupture Code Verification Exercise. *Seismol. Res.
 692 Lett.* 80, 119-126

693 Harris, R.A., Day, S.M., 1993. Dynamics of fault interaction: parallel strike-slip faults. *J. Geophys. Res.* 98, 4461

694 Heaton, T.H., 1990. Evidence for and Implications of Self-Healing Pulses of Slip in Earthquake Rupture. *Phys. Earth
 695 Planet. Inter.* 64, 1-20

696 Jaeger, J.C., 1969. Behaviour of Actual Materials, Elasticity, Fracture and Flow: with Engineering and Geological
 697 Applications. Springer Netherlands, Dordrecht, pp. 49-106.

698 Jolivet, R., Cattin, R., Chamot-Rooke, N., Lasserre, C., Peltzer, G., 2008. Thin-plate modeling of interseismic
 699 deformation and asymmetry across the Altyn Tagh fault zone. *Geophys. Res. Lett.* 35

700 Kaiser, A., Balfour, N., Fry, B., Holden, C., Litchfield, N., Gerstenberger, M., D'Anastasio, E., Horspool, N., McVerry, G.,
 701 Ristau, J., Bannister, S., Christoffersen, A., Clark, K., Power, W., Rhoades, D., Massey, C., Hamling, I., Wallace, L.,
 702 Mountjoy, J., Kaneko, Y., Benites, R., Van Houtte, C., Dellow, S., Wotherspoon, L., Elwood, K., Gledhill, K., 2017. The
 703 2016 Kaikōura, New Zealand, Earthquake: Preliminary Seismological Report. *Seismol. Res. Lett.* 88, 727-739

704 King, G., Nabelek, J., 1985. Role of Fault Bends in the Initiation and Termination of Earthquake Rupture. *Science* 228,
 705 984-987

706 Liu, D., Duan, B., Luo, B., 2020. EQsimu: a 3-D finite element dynamic earthquake simulator for multicycle dynamics
 707 of geometrically complex faults governed by rate- and state-dependent friction. *Geophys. J. Int.* 220, 598-609

708 Lozos, J.C., Oglesby, D.D., Duan, B., Wesnousky, S.G., 2011. The Effects of Double Fault Bends on Rupture Propagation:
 709 A Geometrical Parameter Study. *Bull. Seismol. Soc. Am.* 101, 385-398

710 Luo, B., Duan, B., 2018. Dynamics of Nonplanar Thrust Faults Governed by Various Friction Laws. *J Geophys Res-Sol
 711 Ea* 123, 5147-5168

712 Madariaga, R., Olsen, K., Archuleta, R., 1998. Modeling dynamic rupture in a 3D earthquake fault model. *Bull. Seismol.
 713 Soc. Am.* 88, 1182-1197

714 Massonnet, D., Rossi, M., Carmona, C., Adragna, F., Peltzer, G., Feigl, K., Rabaute, T., 1993. The displacement field of

715 the Landers earthquake mapped by radar interferometry. *Nature* 364, 138-142

716 Mériaux, A.S., Ryerson, F.J., Tapponnier, P., Van der Woerd, J., Finkel, R.C., Xu, X., Xu, Z., Caffee, M.W., 2004. Rapid slip

717 along the central Altyn Tagh Fault: Morphochronologic evidence from Cherchen He and Sulamu Tagh. *J Geophys Res-*

718 *Sol Ea* 109

719 Mériaux, A.S., Tapponnier, P., Ryerson, F.J., Xiwei, X., King, G., Van der Woerd, J., Finkel, R.C., Haibing, L., Caffee, M.W.,

720 Zhiqin, X., Wenbin, C., 2005. The Aksay segment of the northern Altyn Tagh fault: Tectonic geomorphology, landscape

721 evolution, and Holocene slip rate. *J Geophys Res-Sol Ea* 110

722 Mériaux, A.S., Van der Woerd, J., Tapponnier, P., Ryerson, F.J., Finkel, R.C., Lasserre, C., Xu, X., 2012. The Pingding

723 segment of the Altyn Tagh Fault (91°E): Holocene slip-rate determination from cosmogenic radionuclide dating of

724 offset fluvial terraces. *J Geophys Res-Sol Ea* 117

725 Molnar, P., Tapponnier, P., 1978. Active tectonics of Tibet. *J Geophys Res-Sol Ea* 83, 5361-5375

726 Nielsen, S.B., Knopoff, L., 1998. The equivalent strength of geometrical barriers to earthquakes. *J Geophys Res-Sol Ea*

727 103, 9953-9965

728 Oglesby, D., 2008. Rupture Termination and Jump on Parallel Offset Faults. *Bull. Seismol. Soc. Am.* 98, 440-447

729 Oglesby, D.D., Mai, P.M., 2012. Fault geometry, rupture dynamics and ground motion from potential earthquakes on

730 the North Anatolian Fault under the Sea of Marmara. *Geophys. J. Int.* 188, 1071-1087

731 Olsen, K.B., 1997. Three-Dimensional Dynamic Simulation of the 1992 Landers Earthquake. *Science* 278, 834-838

732 Oskin, M.E., Elliott, A.J., Duan, B., Liu-Zeng, J., Liu, Z., Shao, Y., Prush, V., Morelan, A., Chester, J.S., Elizondo, D., 2015.

733 Earthquake gates: linking rupture length to geologically constrained dynamics of fault complexity, with examples

734 from the Altyn Tagh and San Andreas faults. Abstract presented at 2015 GSA Annual Meeting, Baltimore, Maryland,

735 1-4 Nov. .

736 Rice, J.R., 1992. Chapter 20 Fault Stress States, Pore Pressure Distributions, and the Weakness of the San Andreas

737 Fault, in: Evans, B., Wong, T.-f. (Eds.), *International Geophysics*. Academic Press, pp. 475-503.

738 Ruina, A., 1983. Slip Instability and State Variable Friction Laws. *J. Geophys. Res.* 88, 359-370

739 Ryan, K.J., Oglesby, D.D., 2014. Dynamically modeling fault step overs using various friction laws. *J Geophys Res-Sol*

740 *Ea* 119, 5814-5829

741 Scharer, K.M., Biasi, G.P., Weldon, R.J., Fumal, T.E., 2010. Quasi-periodic recurrence of large earthquakes on the

742 southern San Andreas fault. *Geology* 38, 555-558

743 Shen, Z.-K., Wang, M., Li, Y., Jackson, D.D., Yin, A., Dong, D., Fang, P., 2001. Crustal deformation along the Altyn Tagh

744 fault system, western China, from GPS. *J Geophys Res-Sol Ea* 106, 30607-30621

745 Shi, Z., Day, S.M., 2013. Rupture dynamics and ground motion from 3-D rough-fault simulations. 118, 1122-1141

746 Sibson, R.H., 1985. Stopping of earthquake ruptures at dilatational fault jogs. *Nature* 316, 248-251

747 Ulrich, T., Gabriel, A.A., Ampuero, J.P., Xu, W., 2019. Dynamic viability of the 2016 Mw 7.8 Kaikoura earthquake

748 cascade on weak crustal faults. *Nat Commun* 10, 1213

749 Wallace, K., Yin, G., Bilham, R., 2004. Inescapable slow slip on the Altyn Tagh fault. *Geophys. Res. Lett.* 31

750 Washburn, Z., Arrowsmith, J.R., Dupont-Nivet, G., Feng, W.X., Qiao, Z.Y., Zheng, C., 2003. Paleoseismology of the

751 Xorxol segment of the central Altyn Tagh fault, Xinjiang, China. *Ann. Geophys.* 46

752 Washburn, Z., Arrowsmith, J.R., Forman, S.L., Cowgill, E., Xiaofeng, W., Yueqiao, Z., Zheng, C., 2001. Late Holocene

753 earthquake history of the central Altyn Tagh fault, China. *Geology* 29

754 Wesnousky, S.G., 1988. Seismological and structural evolution of strike-slip faults. *Nature* 335, 340-343

755 Wesnousky, S.G., 2006. Predicting the endpoints of earthquake ruptures. *Nature* 444, 358-360

756 Williams, R.T., Davis, J.R., Goodwin, L.B., 2019. Do Large Earthquakes Occur at Regular Intervals Through Time? A

757 Perspective From the Geologic Record. *Geophys. Res. Lett.* 46, 8074-8081

758 Yin, A., Rummelhart, P.E., Butler, R., Cowgill, E., Harrison, T.M., Foster, D.A., Ingersoll, R.V., Qing, Z., Xian-Qiang, Z., Xiao-

759 Feng, W., Hanson, A., Raza, A., 2002. Tectonic history of the Altyn Tagh fault system in northern Tibet inferred from

760 Cenozoic sedimentation. *Geol. Soc. Am. Bull.* 114, 1257-1295

761 Yuan, Z., Liu-Zeng, J., Wang, W., Weldon, R.J., Oskin, M.E., Shao, Y., Li, Z., Li, Z., Wang, P., Zhang, J., 2018. A 6000-year-

762 long paleoseismologic record of earthquakes along the Xorkoli section of the Altyn Tagh fault, China. *Earth Planet.*

763 *Sci. Lett.* 497, 193-203

764 Yue, Y., Ritts, B.D., Graham, S.A., Wooden, J.L., Gehrels, G.E., Zhang, Z., 2004. Slowing extrusion tectonics: lowered

765 estimate of post-Early Miocene slip rate for the Altyn Tagh fault. *Earth Planet. Sci. Lett.* 217, 111-122

766 Zhu, S., Xu, C., Wen, Y., Liu, Y., 2016. Interseismic Deformation of the Altyn Tagh Fault Determined by Interferometric

767 Synthetic Aperture Radar (InSAR) Measurements. *Remote Sensing* 8, 233

768 Prush, V.B., Oskin, M.E., Liu-Zeng, J., Shao, Y., Sion, B., personal communications. Reduction of Altyn Tagh fault slip
769 rate through the Akatengneng Shan earthquake gate, northwest China.
770