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This paper considers the load—deflection behavior of a pyramid-like, shallow lattice struc-
ture. It consists of four beams that join at a central apex and when subject to a lateral
load, it exhibits a propensity to snap-through: a classical buckling phenomenon. Whether
this structural inversion occurs, and the routes by which it happens, depends sensitively
on geometry. Given the often sudden nature of the instability, the behavior is also exam-
ined within a dynamics context. The outcome of numerical simulations are favorably
compared with experimental data extracted from the testing of three-dimensional (3D)-
printed specimens. The key contributions of this paper are that despite the continuous
nature of the physical system, its behavior (transient and equilibria) can be adequately
described using a discrete model, and the paper also illustrates the utility of 3D-printing
in an accessible research context.
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1. Introduction

The genesis for the material contained in this paper arose from two related but quite
distinct prior studies. The first considered shallow geodesic domes.! These consisted
of structures with a relatively large number of members and joints (in a lattice-
like arrangement), with strong symmetry groups>? related to the overall repetitive
triangular /hexagonal form.*® The second focused on a discrete three degree-of-

9

freedom spring-mass system,” in which a control parameter was used to reveal

*Corresponding author.
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some Interesting equilibrium configurations including bifurcations and transitions,
also associated with snap-through type instabilities.!® 13 These two systems are
representative of structures occupying the extremes of the dimensional spectrum:
low-order but somewhat abstract in the case of the latter; high-order (continuous)
but more realistic in the case of the former. This paper falls between these two:
a structure of moderate complexity, continuous, and yet somewhat amenable to
relatively low-order (modal) analysis.

Three-dimensional (3D)-printing is proving to be an extremely effective method
of producing non-simple geometrical shapes with high precision, and in this paper
we make extensive use of this kind of additive manufacturing to produce a number
of (slender, elastic) structures suitable for testing under load.'* Arch-like structures,
when loaded laterally, form a geometry that has a tendency to be relatively effec-
tive in terms of stiffness and structural efficiency.'%1® However, if loaded sufficiently,
they also tend to be characterized by a loss of stability associated with a sudden
snap-through to an inverted state (if it remains elastic), and although this is some-
times exploited in design it is more typically viewed as an undesirable situation and
as such, one to be avoided. It is important to point out that in contrast to previous

20111718 which have typically consisted of truss-

studies on dome-like structures,
like structures made up of pin-jointed bars, the current structural form is based on
individual members that can bend, and local buckling is a possibility depending
on geometry (and observed in experiment). However, it will be shown that despite
the clearly high-dimensional nature of the systems, the primary behavior can be
described in terms of a few dominant modes.

This paper describes the basic geometry of interest, presents equilibrium paths
for both finite element (FE) and experimental studies, makes a close examination
of the morphing nature of the highly nonlinear underlying potential energy, and
finally shows some dynamic trajectories as they meander through the phase space,

influenced by various equilibrium points as they go.

2. Background
2.1. The specific form of interest

A shallow pyramidal lattice structure (shown in Fig. 1) is considered in this paper.
The structure consists of four nominally identical, slender beam members, connected
at the apex with a moment-transmitting joint, i.e. it is frame rather than a (pin-
jointed) truss, and the central apex lies at a small vertical height relative to the
remote perimeter boundaries of the four members, hence, the term pyramid. The
members are slender enough to enable local or overall (coupled) buckling behavior.
As a result, the structure exhibits non-simple static and dynamical phenomena,
behavior that shows a strong connection with the spring-mass systems and geodesic
domes mentioned in Sec. 1. Note that though the beam members are designed to be
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Fig. 1. Geometry of the pyramidal lattice structure.

identical, and the 3D-printing reduces manufacturing error to a minimum, a tiny
initial imperfection is still inevitable which will break the symmetry and have a
significant influence on the snapping behavior of the frame in experiment.

Rather than focus on a single, specific geometry, we shall present results from a
number of frames with related geometries in order to gain a deeper understanding of
how geometry influences the key qualitative changes in behavior. Some parameters
are fixed, e.g. the location of the boundaries (forming a circle of 200 mm diameter,
D), and the use of 3D-printer acrylonitrile butadiene styrene (ABS) thermoplastic.
A number of pyramidal structures with various heights, H, cross-sectional areas
(always relatively flat in the horizontal direction to promote bending out-of-plane),
and boundary conditions, are analyzed and tested. The ratio H/D can be broadly
used as a measure of “rise”, with nonlinear effects generally increasing with the
magnitude of this parameter, despite the relatively shallow geometries considered:
in this study we typically consider rises in the range 0.03-0.06. Structure A has
“clamped” boundary conditions, meaning that all four members of the structure are
rigidly clamped (integrally printed) at the base perimeter. Whereas for structure B,
the rotations around the circumference are allowed, turning the boundary conditions
into (simply supported) hinges. The number following the structure type represents
the height of the structure in millimeters. Table 1 shows a list of the geometric
parameters of these structures.

The physical frames were 3D-printed with a Stratasys printer using ABS thermo-
plastic (with a measured Young’s modulus of about 1.9 GPa and a specific gravity
very close to unity — note that both of these parameters have some uncertainty
associated with them due to the 3D-printing process!'?). For structure A, a rela-
tively rigid base perimeter is printed integrally with the frame to provide clamped
boundary conditions as shown in Fig. 2(b). Out-of-plane fillets (rounded interior
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Table 1. Geometric parameters for the pyramidal lattice structures
considered in this study.

Edge fixity  Cross-section 1 Height, H
(mm) {mm4} (mm)
Structure A6 Clamped 6x2 5.33 6
Structure A8 Clamped 8x2 5.33 8
Structure A10 Clamped 8x2 5.33 10
Structure A12 Clamped 8x2 5.33 12
Structure B12 Hinged 8x1 0.67 12

corners) are used to avoid cracking and stress concentrations. Whereas for hinged
boundary conditions, the frame is mounted on low-friction rotating bearings as
shown in Fig. 2(a). The central apex joint, however, is still moment transmittable.
As a benefit of 3D-printing technology, there is little pre-stress in the structures.

Experimentally, force is applied vertically using a displacement-controlled dig-
ital load cell (see Fig. 2(a)). The displacement is measured using three proximity
lasers: one to measure the vertical deflection at the apex and the others config-
ured to measure the angle of rotation at the apex in the two orthogonal directions
corresponding to the member orientations. To facilitate (amplify) the angular mea-
surements, a lightweight (but relatively rigid) supplementary frame was attached
to the apex point as shown in Fig. 2(b). An additional supplementary frame (not
shown) was also sometimes used to constrain (clamp) angular deflection, such that
purely symmetric behavior could be followed. It is assumed that any material non-
linearities are negligible.

2.2. Some numerical details and dimension of the solution space

The structures were analyzed using finite element methods. We shall not emphasize
specific aspects, except to say that a code utilizing branch switching was used, in
order to follow the anticipated complicated nature of the equilibrium paths and
their stability. Branch switching is especially important when tracking equilibrium
points emanating from a bifurcation point (e.g. exploiting eigenvector directions).
The code used input parameters appropriate to the 3D-printed specimens to pro-
vide reasonable correlations with experimentally measured data. Sample runs were
verified using ABAQUS. The main approach adopted (reflecting the corresponding
experimental approach) for numerical analysis was to apply a point load at the
apex and compute the corresponding (static) deflection of the structure, primarily
in terms of the three dominant modes of deflection. In addition to static equilib-
ria determination, appropriate inertia effects were included such that an eigenvalue
analysis was used to reveal vibrational characteristics including natural frequencies
and mode shapes, in order to assess stability.

In general, the overall static and dynamic deformation of the structure can
be captured in terms of symmetric (vertical deflection, along the z-axis) and
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Fig. 2. Experimental images for the frame structures, (a) the frame with vertical load cell applied
at the apex, (b) the angle measuring attachment, (¢) angles as measured from the apex.
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Fig. 3. First three vibrating modes for structure A10.

asymmetric (two rotational angles in the zy-plane at the apex, respectively) shapes,
which we can think of as representative modes (see Fig. 3). Under various geome-
tries and boundary conditions, though the order may switch, the first three modes
are always well represented by these three displacement components. Without loss
of generality, we define the three dominant degrees of freedom (DOF) of the system
as A (vertical deflection), #; and 8, (rotations about the z- and y-axes). In the
FE analysis (FEA) it was concluded that any higher-order behavior (beyond the
identified dominant modes) was relatively minor: and we see how this structure can
generally be viewed in discrete terms even though strictly speaking it is continuous.
It should be mentioned that for other geometries, for example for deeper configu-
rations consisting of more members, the 3D representation may be inadequate.

3. Static Equilibria

Primary interest is focused on equilibrium paths of the structure under the action
of a vertical load (P) applied at the apex (in the negative z-direction). Figure 4(a)
shows all the numerical and experimental equilibrium paths for structure A8 under
the vertical load. The numerical results (solid black lines) are achieved by FEA with
arc-length and branch switching methods.??2! The markers represent the experi-
mental results, in which the blue data points show the (free) behavior without any
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Fig. 4. Equilibrium paths for structure A8: simulation and experimental results, (a) vertical load
versus central deflection, (b) deflection versus the two angles, (¢) apex deflection versus mid-length
deflection.

extra constraints, while the orange and the green data points are test results when
one or both of the rotation angles (6 and 8,) are fixed to be zero (using the sup-
plementary frame mentioned earlier). With the help of these extra constraints, the
unstable equilibrium paths with symmetric configurations can be observed. The
experimental results are consistent with the simulation. However, it is iImportant
to appreciate that this load—displacement relationship is just one projection of the
equilibrium paths. As shown in Fig. 4(b), in the configuration space, four stable
equilibrium paths are actually present — they fall on top of each other in the
load-vertical displacement projection, and have configurations as mirror images of
each other. All these four equilibrium paths are observed in experiment (shown by
blue dots) by perturbing the system manually. There is an inevitable geometric
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imperfection in the structure and loading and thus there tends to be a slightly
preferred path that is naturally followed. We also take member instability into con-
sideration, with A; representing the vertical displacement measured at the middle
point of a beam member. The A-A; relationship should be linear if the member
remains unbuckled. However, as can be seen from Fig. 4(c), both the simulation
and the experimental results verify the (local) member instability phenomena.
Structure A8 has only one unloaded stable equilibrium (the initial configura-
tion), four index-1 saddles and four index-2 saddles, where the index reflects the
degree of instability, i.e. the number of negative eigenvalues from the dynamic anal-
ysis. When the height of the structure is increased, more complicated behavior can
be generated, a familiar scenario from arch behavior.?? Figure 5 shows the numeri-
cal equilibrium paths for structure A10 and all the corresponding “free” equilibrium
points (P = 0), and we note the appearance of a stable snapped-through, stable,
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Fig. 5. (a) Numerical equilibrium paths for structure A10 indicating locations of free equilibria
(P = 0), (b) equilibrium paths in terms of deflection versus the two angles, (¢) deflection versus
both mid-length deflections.
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Table 2. Groups of equilibria (structure A10).

Group  Number of equilibria Index®  Color in Fig. 5

1P 1 0 Blue
2 1 0 Blue
3 4 1 Black
4 4 2 Green
5 12 3 Orange
6 8 5 Orange
7 1 7 Red

Notes: 2The “index” is the number of unstable eigenvalues.
bGroup 1 is the initial configuration.

equilibrium configuration (shown in Fig. 5(a)). In total, 31 equilibrium points are
obtained, as listed in Table 2. As mentioned earlier, the stability of the equilibria
is determined by an eigenvalue analysis in which negative eigenvalues correspond
to imaginary natural frequencies. As a result of the symmetry, these equilibria can
be divided into seven groups, and again there is a degree of member instability.
A number of high-order unstable equilibrium points result from the member buck-
ling phenomenon. After eliminating the influence of these high-order modes, which
require a high strain energy level, eleven equilibrium points are exhibited, includ-
ing two stable points, four index-1 saddles, four index-2 saddles, and one local
maximum. The equilibrium paths for structure B12 are qualitatively the same as
structure A10, except that the inverted stable point and unstable points are fur-
ther away from each other. The form and distribution of the equilibrium points are
strikingly similar to the parallel mass-spring system mentioned in Sec. 1.2

4. Iso-Potentials

Despite the structures under consideration being continuous, given the dominance
of the three dimensions, we can form low-order iso-potential shapes for the pyra-
midal frames based on FEA, as shown in Fig. 6. Note that the iso-potentials of
these pyramidal frames possess very similar characteristics to a real 3-DOF system
with analytical governing equations shown in Appendix A. In similarity with a sin-
gle DOF system, equilibrium is associated with a stationary value of the potential
energy, with stability corresponding to a local minimum. In order to reinforce the
low-order description we focus on iso-potential shapes based on the lowest poten-
tial energy corresponding to the three DOF (A, 6, and 6,). Here, the self-weight
is neglected, and the total potential energy of the system is equal to the strain
energy. Under nominally fixed conditions contours of constant potential energy are
found. Although this is very familiar for a system with a single DOF, we still
have equilibria associated with turning points of the potential energy, but now this
requires some care in terms of visualization. Typical results are shown here, and
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Fig. 6. Iso-potential shapes corresponding to the four geometries, (a) structure A10, (b) structure
AB, (c) structure A8, (d) structure B12 (hinged). The shading corresponds to different levels
of potential energy, with transparency allowing a visualization of nesting relative to equilibrium
points.

later (in Appendix B) we will again appeal to 3D-printing but this time for a phys-
ical demonstration of iso-potential shapes.

Four hyperboloid-shaped accessible tubes are found for the frames, whose sec-
tional view is presented in Fig. 6(a) for structure A10. The lack of initial structural
symmetry (in A), including the disparity of the two stable equilibrium states, is
reflected in iso-potential shapes that are significantly asymmetric. The initial equi-
librium possesses a relatively low potential energy, and as a result, branches out
to a larger stable sphere around it. In contrast, the partially inverted (snapped-
through) equilibrium has higher potential energy, lower vibration frequencies (lower
eigenvalues), and is in close proximity to the saddle points. All the features reveal
that the inverted point is much less stable, that is, less robust against large per-
turbations. In fact, this equilibrium configuration would disappear for shallower
structures, e.g. clamped frames with H = 6 mm, shown in Fig. 6(b) and hence
cause the iso-potentials to be single-centered.?? However, though the remote (par-
tially inverted) stable equilibrium disappears, a “remnant” of the equilibrium still
remains in the configuration space, distorting the iso-potential shapes and strongly
influencing nearby dynamic trajectories.?3:24

For frames in which the apex is relatively high with regards to the horizontal sup-
port plane, the stable sphere around the initial configuration is highly asymmetric,
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consisting of a round base and four fingers, each pointing to one index-1 saddle point.
The four passable tubes, as elongations of the four fingers, would occur under higher
potential energy, as well as the inaccessible regions around the local maximum and
index-2 saddles. This is shown in Fig. 6(c). However, as the exhibited iso-potential
shapes are based on the lowest potential energy corresponding to the three displace-
ments (A, 0;,8y), the effects of the fourth and higher vibrating modes cannot be
neglected in the vicinity of the local maximum. Therefore, the simplified 3-DOF
model might be inadequate under extremely high-energy cases when the transient
trajectory approaches the local maximum point. For completeness we also present
the iso-potential shapes for the deeper structure (B12) but now the supports are
hinged, with a more stable nearly inverted equilibrium configuration as shown in

Fig. 6(d).

5. Transient Behavior

In the experiment, three laser sensors are used to measure the vertical deflection, A,
and the two rotations, €, and #,, at the apex synchronously, as shown in Fig. 2(a).
The differences of the sensor readings, and the distance between them, indicate the
two angles at the apex. Structures A10 and B12 are considered in this section. Tran-
sient trajectories, in terms of the configuration space, and phase projections in the
representative A-A plane, are shown in Fig. 7. Arbitrary initial disturbances (in
position and velocity) were used to generate transient trajectories, some of which
were sufliciently high energy to cause a snap-through response. The sampling rate
of the lasers allowed an accurate measurement of velocity. The stable equilibria can
be located intuitively. Although the unstable equilibria “screen” can be observed
from the phase projection (from a general slowing down), it is difficult to distinguish
these unstable equilibrium points in the configuration pace. For clarity, a few typi-
cal transient trajectories are extracted and presented in Fig. 8 for both structures,
with equilibrium points superimposed. The saddle points appear to attract and then
repel all adjacent transient trajectories (at least for these relatively high-energy
initial conditions, started close to the initial equilibrium configuration). Adjacent
trajectory divergence is found in the vicinity of index-1 and index-2 saddles. The
phenomena are especially remarkable for structure B12, in which all saddle points
constitute an invisible barrier, determining the snap-through possibilities for the
trajectories.?’ Furthermore, because of the small magnitude of the negative eigen-
value at the index-1 saddles and relatively low damping, the trajectories are able to
oscillate around the index-1 saddles for a few cycles before veering away. In terms of
the underlying potential energy, a long mild-gradient sphere occurs in the vicinity of
the saddle points, and this promotes a temporary oscillation in the stable directions
around these unstable equilibria.?*:26

Figure 9 shows a representative projection of the theoretical iso-potential shape
for structure A10, with a typical experimental trajectory meandering around it
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Fig. 7. Transient trajectories, (a) structure A10 configuration space, (b) structure B12 configura-
tion space, (c) structure A10 phase projection, (d) structure B12 phase projection.

Fig. 8. Some specific transient trajectories superimposed on the equilibrium points, (a) structure
A10, (b) structure B12.
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Fig. 9. A transient trajectory moving along an iso-potential (structure A10).

before finally ending up back at the initial equilibrium configuration. Although
difficult to observe in a projected view, it is interesting to observe the trajectory
avoiding regions of high energy. It is possible for trajectories to snap-through and
stay on the inverted (remote) stable equilibrium, but this much less likely given
the relative sizes of the basins of attraction: a crucial difference between local and

global stability.2”

6. Conclusion

Pyramidal lattices are representative of a group of structures in which the behavior
under loading is often characterized by highly nonlinear equilibrium configurations
with the possibility of snap buckling in which part or the whole of the structure
may invert. This is most readily observed when the load is applied quasi-statically.
Bifurcations occur, including a typical transition from (axi)-symmetric to asym-
metric deformation, and this depends sensitively on the geometry of the initial
configuration, especially the rise. Even under quasi-static loading the instability is
often manifest as a sudden, discontinuous jump in the response: the system snaps-
through. When the load is applied suddenly, dynamic trajectories are generated
and the evolution of these are heavily influenced by the equilibria of the underlying
structure, especially unstable equilibria (saddle points) that are not usually avail-
able in an experimental context. Potential energy is a useful tool in assessing the
overall environment in which the behavior develops. Although this approach has
often been used in the context of a single DOF, and sometimes 2-DOF, the spe-
cific geometric forms considered in this paper allow a 3-DOF view, an opportunity
for 3D-printing, in addition to the exploitation of 3D-printing for the structures
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themselves. And this provides insight into the daunting nature of highly nonlinear
behavior in high-dimensional systems.
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Appendix A. Comparison With a Discrete 3-DOF Spring-Mass
System

In this appendix, a real 3-DOF spring-mass system with very similar behavior and
iso-potential shapes to the pyramidal frame is introduced. As shown in Fig. A.1(a),
the system 1s composed of three masses and a single spring. The masses are con-
nected to each other by rigid bars with negligible weights. The 3-DOF of the system
are defined as the three clockwise rotation angles #4, 65 and 5. Here, we present the
governing equations (Eq. (A.1)) and iso-potential shapes (Fig. A.1(b)) of this system
without derivation. Further studies on this 3-DOF system can be seen in Ref. 9.

(my +mgo + m3)R30; + maRy Rob cos(6y — 62) + maRy Rabs cos(fy — bs)
4 2moR, Robiy” sin(61 — 62) + 2ms Ry Rafis” sin(6; — 63)
— maRy Ryb16y sin(6; — 03) — ms Ry R3b 65 sin(f; — 63)
— (m1 +ma +m3)gRy sin6; + ki Ry [Xocosf — Yosinfy + Rasin(f; — 65)]
(Lot — (Az1® + Ay ®) ] (Ani® + Ay %) /2
+ ko Ry [X{] cost — Ypsinb; + Rssin(f; — 93)]
Loz — (Ba2® + Ay2*) 2] (Aga® + Ay?) M2 =0,
my1RiRa0) cos(8; — 63) + maR30,
— 9maR; Ry sin(6; — 65) + moRy Robiy by sin(6; — 03) — mogRo sin s
+ k1 Rs [Yg sinfla — Xgcosfy + Ry sin(f; — 92)]
Lot — (Ba1® + Ay )2 (Agi® + Ay )2 =0,
myiR1R30) cos(8; — 63) + m3R36;
— 9maR; R sin(6; — 63) + ma Ry R36165 sin(6; — 63) — magRs sin s
+ ko Rs [Yg sinfls — Xgcosfl; + Ry sin(f; — 93)]
[Log — (Ax2® + Ayo®) 2] (Age® + Aye?) 12 =0, (A.1)
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Fig. A.1. A 3-DOF spring-mass system, (a) schematic, (b) iso-potential shapes.

where
Az1 = Rysinfy + Rysinfly — X,
Ay1 = Ricosf; + Ry cosfy — Yy,
Ago = Rysinfy + Rysinfls — X,
Ayo = Ry cosfl; + Racosfls — Yy.

In the above equations, mi, ms and m3 denote the masses of the three weights,
and R,, Ry and Rj3 are the radius of the rotating rigid bars. As can be seen,
the iso-potentials for the 3-DOF system based on the above governing equations
exhibit similar shapes as pyramidal frame, including two stable equilibria and four
hyperboloid-shaped accessible tubes around the index-1 saddles. The behavior of
the three dominant DOF in the pyramidal frame (A, 6; and 6,) can be related
to the behavior of 6, 63 and f5 In this spring-mass system, respectively. And the
influence of the rise (H) of the of the pyramidal frame is somewhat equivalent to
the influence of ¥y shown in Eq. (A.1).

Appendix B. 3D-Printed Iso-Potentials

In this appendix, we present some 3D-printed renditions of iso-potentials. The grey
object in Fig. B.1(a) corresponds to structure A10 and thus is equivalent to Fig. 6(a)
(and Fig. 9), similarly with the orange shape (structure B12) and Fig. 6(b). Fig-
ures B.1(b) and B.1(c) shows the two co-existing stable equilibrium configurations:
the initial shape in part (b), and the snapped-through configuration in part (c).
Despite the necessarily limited resolution of the 3D-printing technique, we view the
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(a) (b)

Fig. B.1. (a) Some 3D-printed renditions of iso-potentials, (b) and (¢) equilibrium shapes corre-
sponding to structure A10.

snapping between these shapes as trajectories passing through the tubes connecting

the bulbs surrounding the stable equilibria, and passing close to (and influenced by)

the saddle-points that separate them. At rest in an initial equilibrium configuration,

snap-through occurs given either sufficient applied force in a quasi-static sense, or

sufficient initial velocity (kinetic energy) to generate large transient trajectories,

provided a remote (inverted) equilibrium configuration is available.
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