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Abstract: Coenzyme Q (CoQ) is an essential component of the mitochondrial electron transport chain 
and an important antioxidant present in all cellular membranes. CoQ deficiencies are frequent in aging 
and in age-related diseases, and current treatments are limited to CoQ supplementation. Strategies 
that rely on CoQ supplementation suffer from poor uptake and trafficking  of this very hydrophobic 
molecule. In a previous study, the dietary flavonol  kaempferol was reported to serve as a CoQ ring 
precursor and to increase the CoQ content in kidney cells, but neither the part of the molecule entering 
CoQ biosynthesis nor the mechanism were described. In this study,  kaempferol labeled specifically in 
the B-ring was isolated from Arabidopsis plants.  Kidney cells treated with this compound incorporated 
the B-ring of kaempferol into  newly synthesized CoQ, suggesting that  the B-ring is metabolized 
via a mechanism described in plant cells.  Kaempferol is a natural flavonoid present in fruits  and 
vegetables and  possesses antioxidant, anticancer, and  anti-inflammatory therapeutic properties. 
A better understanding of the  role  of kaempferol as a CoQ  ring  precursor makes this  bioactive 
compound a potential candidate for the design  of interventions aiming  to increase  endogenous CoQ 
biosynthesis and may improve CoQ deficient  phenotypes in aging and disease. 

 
Keywords:  flavonoids; flavonol;  kaempferol; coenzyme Q; kidney cells; precursor 

 
 
 
 

1. Introduction 
 

Coenzyme Q (CoQ  or ubiquinone) is a small  lipophilic molecule found ubiquitously in cell 
membranes. Structurally, it is composed of a benzoquinone ring and a polyisoprenoid tail that varies 
in length between  species [1]. In mammals, CoQ9  (nine-isoprene tail) and CoQ10  (ten-isoprene tail) are 
present, with  CoQ9  predominant in rodents and  CoQ10  in humans [1]. CoQ synthesis occurs  within 
mitochondria through multiple steps carried  out by, at least, 14 proteins known as COQ proteins [1,2]. 
CoQ plays  a role in multiple cellular functions [3,4].  However, the primary function of CoQ is to 
accept  electrons and  protons from  the respiratory complexes I and  II and  donate them  to complex 
III [1,4]. This redox capacity allows CoQ to cycle between  three different states: ubiquinone (oxidized), 
semiquinone (semi-oxidized), and  ubiquinol (reduced) [1,5]. In its ubiquinol form, CoQH2 plays  an 
important antioxidant role and  provides protection to DNA,  proteins, and  lipids against oxidative 
stress [6,7]. 

CoQ content decreases with  age in a variety of mammalian tissues, as reflected by a decreased 
biosynthesis rate [8–10]. The possibility of increasing CoQ10  content  through dietary supplementation 
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has been  widely explored in recent  decades [6,9]. Although more  controlled studies are needed to 
determine the effectiveness of CoQ10  as an anti-aging drug  in humans [11], it was previously reported 
that CoQ plasma levels in the elderly correlate with enhanced physical activity and lower lipid oxidative 
damage; and  that  CoQ10  supplementation improves vitality, physical performance, and  quality of 
life in old individuals [9]. The case for beneficial effects of CoQ10  supplementation is stronger for a 
number of age-related diseases such as cardiovascular diseases, neuropathies, inflammation, metabolic 
syndrome, arthritis, carcinogenesis, diabetes, osteoporosis, and hypercholesterolemia [3,8,11]. CoQ10 

supplementation has been shown to reduce inflammatory markers, which are commonly present at 
high levels in the aforementioned aged-related diseases [12–14]. 

However,  the  long  polyisoprenoid chain   makes CoQ10   highly lipophilic and   difficult to 
absorb.   CoQ10   dietary supplements pose  several challenges, including specific  absorption via 
the gastrointestinal tract [5], cellular uptake at the plasma membrane, transport across  intracellular 
membranes, and  assimilation by mitochondria.  All these  trafficking steps  render the  process of 
exogenous CoQ10  supplementation very inefficient [3,9]. In this regard, alternative vehicles for CoQ10 

administration are under study (e.g., oil-based capsules, nanoparticles) [3,15,16], as well  as novel 
strategies that could  potentiate the endogenous synthesis of CoQ [2,3]. Previously, we described the 
ability of kaempferol, a flavonol found  in fruits and vegetables, to increase CoQ content  by acting as a 
novel CoQ precursor in mouse and human kidney cells [17]. However, the exact metabolic pathway 
by which kaempferol participates in CoQ  biosynthesis was  not  identified.  Two  hypotheses were 
proposed: (1) Kaempferol could  be a direct  substrate of COQ2 in the CoQ biosynthetic pathway and 
would  be subsequently metabolized by the different COQ proteins until it reached  the final structure of 
CoQ; or alternatively, (2) kaempferol could be metabolized in the cell to produce a potential CoQ ring 
precursor, which would be then  integrated in the CoQ biosynthetic pathway [17]. In a recent  study, 
Soubeyrand and co-authors [18] described that, in plants,  the biosynthetic pathways of flavonoids and 
CoQ are indeed  connected and that kaempferol can serve as a precursor for the synthesis  of CoQ. They 
proved that the B-ring of kaempferol is subjected to peroxidative cleavage,  to give 4-hydroxybenzoic 
acid (4HB), a common precursor of the benzoquinone ring of CoQ [18]. 

The goal of the present work is to further describe  the relationship between kaempferol and CoQ 
in mammalian cells. Our results show  that in kidney cells, the B-ring of kaempferol is the part  of the 
molecule  that enters CoQ biosynthesis, suggesting that the mechanism described for plants  is likely to 
be conserved in vertebrates. 

 
2. Results 

 

To further understand how  kaempferol functions as a CoQ precursor in mammalian cells, we 
decided to test whether the B-ring of kaempferol is the part  of the molecule that enters into the CoQ 
biosynthetic pathway, as was reported to occur  in plants [18]. Our  efforts to chemically synthesize 
kaempferol  specifically 13 C-labeled in  the  B-ring  (13 C6 -[B-ring]-kaempferol)  were   unsuccessful. 
As an alternative strategy, we chose  to isolate  13 C6 -[B-ring]-kaempferol from  cultures of the  plant 
Arabidopsis thaliana. Such an in vivo synthesis of B-ring labeled  kaempferol is possible  because  plants 
derive  the B-ring of kaempferol exclusively  from the phenyl  moiety of phenylalanine [19]. In contrast, 
the A-ring and C-ring originate from malonyl-CoA [19]. By feeding  13 C6 -L-phenylalanine (13 C6 -Phe) 
to Arabidopsis plants grown in sterile  conditions, one  can therefore obtain kaempferol specifically 
labeled on the  B-ring  [18].  Furthermore, to boost  kaempferol accumulation, the  13 C6 -Phe  feeding 
was performed using a flavonoid-3t -hydroxylase Arabidopsis knockout, which cannot  further metabolize 
kaempferol into anthocyanins [20]. One should note that  kaempferol obtained with  such a method 
consists in a mixture of 13 C6 -[B-ring]-kaempferol as well as unlabeled kaempferol, which was present  in 
the plant tissues prior to the feeding with 13 C6 -Phe. The specific enrichment of 13 C6 -[B-ring]-kaempferol 
in the mixture used  for our experiments was approximately 10% of the total pool of kaempferol (i.e., 
unlabeled+labeled). 
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Using 13 C6 -[B-ring]-kaempferol extracted  and purified from Arabidopsis, we treated mouse kidney 
proximal tubule epithelial (TKPTS) cells and  measured de novo  and  total content of CoQ (Figure  1). 
Unlabeled kaempferol, universally 13 C-labeled kaempferol (13 C-kaempferol) and  13 C-labeled 4HB 
(13 C6 -4HB) were used as complementary treatments (Figure 1a). Cells treated with ethanol vehicle were 
included as a control.  We observed that in terms of total CoQ (CoQ+13 C6 -CoQ), both CoQ9  and CoQ10 
content were increased by treatment with kaempferol (independently of the label) and 4HB (Figure 1b,c), 
as described previously for kidney cells [17]. 13 C6 -CoQ was detected in cells treated with 13 C-kaempferol 
and 13 C6 -4HB, which is in agreement with the role of these compounds as CoQ ring precursors [17,21]. 
Notably, treatment with  13 C6 -[B-ring]-kaempferol also  led  to synthesis of 13 C6 -CoQ  (Figure 1b,c), 
indicating that  the  B-ring  of kaempferol is the  part  of the  molecule that  enters CoQ  biosynthesis. 
As expected, the  lower  specific  labeling of the  B-ring  in the  13 C6 -[B-ring]-kaempferol/kaempferol 
mixture resulted in the lower  amount of 13 C6 -CoQ (Figure 1b,c). 
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Figure  1.   Kaempferol B-ring  enters the  coenzyme Q  (CoQ)  biosynthesis pathway.   (a) Scheme 
Figure  1.  Kaempferol   B-ring  enters  the  coenzyme   Q  (CoQ)  biosynthesis   pathway.   (a)  Scheme 
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content. In (b) and (c), mouse kidney proximal tubule epithelial  (TKPTS) cells were treated with the 
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represented  as * (p < 0.05), ** (p < 0.01), *** (p < 0.001) and **** (p < 0.0001). 
two  independent experiments. Differences between total  CoQ (CoQ+13 C-CoQ)  and  the control are 
represented as * (p < 0.05), ** (p < 0.01), *** (p < 0.001) and **** (p < 0.0001). 
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that will enter the CoQ biosynthetic pathway to produce CoQ. The additional supply of this ring enter the CoQ biosynthetic pathway to produce CoQ. The additional supply of this ring precursor 
precursor is able to increase CoQ content in cells. 

is able to increase  CoQ content in cells. 
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Given  the  limited bioavailability of CoQ10   supplements, the  stimulation of the  endogenous 
synthesis  of CoQ has been the focus of several studies [1,9]. Understanding how kaempferol augments 
the CoQ biosynthetic pathway is of outstanding importance, since its capacity  to increase endogenous 
CoQ content has a strong potential to ameliorate CoQ deficiencies associated with  aging  or disease. 
Moreover,  patients could find additional benefits since the regular  consumption of flavonoids is related 
to a reduced risk of age-related diseases as described above  [24–26].  Although the bioavailability 
of kaempferol is quite  low [29], the increase in CoQ in kidney cells was observed at doses  that  can 
be attainable physiologically, by oral supplementation or by consumption of flavonoids-containing 
food [27], and even a slight supplementary amount of CoQ precursors could move the metabolic flux 
in favor of CoQ synthesis. 

Additional research is needed to  characterize kaempferol as an  efficient  compound for  the 
treatment of CoQ deficiencies. Further in vitro and in vivo studies are necessary to fully understand 
the relationship between kaempferol and  CoQ, find the most  suitable formulation of the bioactive 
compound, and identify the enzyme(s) responsible for the peroxidative cleavage. 

 
4. Materials and Methods 

 
4.1. Chemicals and Reagents 

 
Non-labeled kaempferol was obtained from Santa  Cruz  Biotechnology, Inc. (Dallas,  TX, USA); 

13 C6 -4HB from Cambridge Isotope Laboratories, Inc. (Tewksbury, MA, USA); and 13 C-kaempferol from 
Isolife (Wageningen, The Netherlands). CoQ9 and CoQ10 standards were obtained from Sigma-Aldrich 
(San Luis, MO, USA). Dipropoxy-CoQ10 was synthesized essentially as described by Edlund [30] for 
diethoxy-Q10 , except  1-propanol was  substituted for ethanol while  maintaining the other reagents 
and  conditions. 13 C6 -[B-ring]-kaempferol was prepared from in vitro cultures of Arabidopsis thaliana 
flavonoid-3t -hydroxylase knockout plants fed  for 48 h with  250 µM doses  of 13 C6 -L-Phenylalanine 
(Cambridge Isotope Laboratories, Inc., Tewksbury, MA, USA) [18]. Leaves (~1.5 g) were homogenized 
using  a Pyrex tissue grinder in 5 × 900 µL of methanol, and the extracts were centrifuged at 18,000× g 
for 10 min. The supernatants (5 × ~800 µL) were pooled  and mixed to an equal volume  of 2 M HCl and 
incubated at 70 ◦ C for 40 min in order  to hydrolyze the glycosyl–kaempferol conjugates. Hydrolysate 
aliquots (200 µL) were  mixed  with  an equal volume of 100% methanol and  centrifuged at 18,000× g 
for 15 min.   Samples (100 µL each)  were  chromatographed on a Zorbax Eclipse  Plus  C18 column 
(4.6 × 100 mm,  3.5 µm; Agilent Technologies, Santa  Clara,  CA, USA) held  at 30 ◦ C using a 25-min 
linear  gradient starting from 10 mM ammonium formate pH 3.5 to 100% methanol at a flow-rate of 
0.8 mL/min.  Kaempferol (18.7 min) was collected by monitoring the absorbance at 365 nm, evaporated 
to dryness with  nitrogen gas,  and  then  resuspended in 100% methanol for quantification using a 
molar  extinction coefficient of 21,242 M−1  cm−1 . MS/MS analyses indicated that the preparation was 
composed of ~10% of 13 C labeled  kaempferol (M + 6) and ~90% of unlabeled kaempferol. 

 
4.2. Cell Culture Conditions and Treatments 

 
Mouse kidney proximal tubule epithelial (TKPTS) cells [31], were provided by Dr. Elsa Bello-Reuss 

(Texas Tech University Health  Science Center, Lubbock, TX, USA) and Dr. Judit K. Magyesi (University 
of Arkansas for Medical Sciences,  Little  Rock, AR, USA). TKPTS cells were  grown in DMEM/F12 
containing 4.5 g/L glucose, and supplemented with 10% fetal bovine serum (FBS), 2 mM L-glutamine, 
and gentamicin–amphotericin B (125 µg/mL and 5 mg/mL, respectively). Cultures were maintained at 
37 ◦ C in a humidified atmosphere with 5% CO2 . 

For  CoQ  determinations,  cells  were   seeded in  12-well   plates with   an  initial   amount  of 
60,000 cells/well, and  treated with  5 µM of kaempferol, 13 C-kaempferol, 13 C6 -[B-ring]-kaempferol, 
or 1  µM 4HB for 48 h. In the previous publication where we described kaempferol as a novel  CoQ 
precursor, experiments were  made with  10 µM 13 C-kaempferol [17]. However, the limited amount 
of 13 C6 -[B-ring]-kaempferol available led us to decrease the concentration used,  although conditions 
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are still in the range where kaempferol was  reported to increase CoQ content [17]. Ethanol added 
to the  control as vehicle  was  kept  below  0.05% of the  final  volume.  Cells  were  incubated under 
standard culture conditions (37 ◦ C, 5% CO2 ).  After  the designated time,  cells were  washed twice 
with 1X phosphate-buffered saline (PBS), detached from the culture plates using trypsin-EDTA (Fisher 
Scientific, Waltham, MA, USA) and  pelleted by low-speed centrifugation (approximately 1000× g). 
Supernatant was removed and cell pellets  were stored at −20 ◦ C until use. 

 
4.3. Lipid Extraction 

 
Cell pellets were  resuspended in 100 µL of 1X PBS. Prior to lipid  extraction, 10 µL aliquots was 

saved to quantify  protein  concentration using Bradford  assay [32]. Then, dipropoxy-CoQ10 was added 
to the remaining 90 µL as internal standard. To start  the extraction, two mL of methanol was added. 
The cell suspension was vortexed and  two mL of petroleum ether  was added. The upper petroleum 
ether  layer  (containing all non-saponifiable lipids, including CoQ) was  transferred to a clean  tube. 
Another two mL of petroleum ether as added to the original methanol layer, and samples were vortexed 
again.   The top  layer  was  removed, combined with  the  previous one,  and  the  combined organic 
phase was dried under a stream of nitrogen gas.  A series  of CoQ9  and  CoQ10  standards containing 
dipropoxy-CoQ10 were prepared and  lipid  extracted concurrently with  the cell samples to construct 
CoQ9  and CoQ10  standard curves. 

 
4.4. CoQ Analysis 

 
Labeled and   unlabeled CoQ9   and   CoQ10   content from  lipid   extracts was  analyzed using 

HPLC-MS/MS as  described previously [17].    Briefly,  samples were  resuspended in  200  µL  of 
ethanol containing 1 mg/mL benzoquinone in order to oxidize all the lipids prior to the analysis. A 
4000 QTRAP  linear  MS/MS  spectrometer from  Applied Biosystems (Foster  City,  CA,  USA)  was 
used.   Applied  Biosystem software, Analyst version 1.4.2,  was  used for  data   acquisition and 
processing.  Chromatographic separation was  performed on  a Luna  5 µm  PFP(2)  100A column 
(100 × 4.6 mm,  5 µm;  Phenomenex, Torrance, CA, USA) using a mobile phase composed of 90% 
solvent A  (95:5 mixture of  methanol:isopropanol containing 2.5 mM  ammonium formate) and 
10% solvent B (isopropanol containing 2.5 mM  ammonium formate) at  a constant flow  rate  of 
1 mL/min.  All samples were  analyzed in multiple reaction monitoring mode.  Transitions used 
were:   m/z 795.6/197.08 (CoQ9 +H),  m/z 812.6/197.08 (CoQ9 +NH3 ), m/z 801.6/203.08 (13 C-CoQ9 +H), 
m/z 818.6/203.08 (13 C-CoQ9 +NH3 ), m/z 863.6/197.08 (CoQ10 +H), m/z 880.6/197.08 (CoQ10 +NH3 ), m/z 
869.6/203.08 (13 C-CoQ10 +H), m/z 886.6/203.08 (13 C-CoQ10 +NH3 ), m/z 919.7/253.1 (dipropoxy-CoQ10 +H), 
m/z 936.7/253.1 (dipropoxy-CoQ10 +NH3 ). The area of each peak, normalized with the correspondent 
standard curve and the internal standard, was referred to the initial amount of protein. 

 
4.5. Statistical Analysis 

 
Data  shown in this  work represent mean ± standard deviation (SD). Statistical analyses and 

graphics were  performed with  Graphpad Prism  8 (Graphpad Software Inc., San Diego,  CA, USA). 
Differences  in CoQ content in comparison with the control  were analyzed using  parametric one-way 
ANOVA, correcting for multiple comparisons with  Dunnett’s post-test. Significant differences were 
referred as * p < 0.05, ** p < 0.01, *** p < 0.001, and **** p < 0.0001. 

 
5. Conclusions 

 
Our  results show  that  kidney cells can cleave  the B-ring of the dietary flavonol kaempferol to 

produce potential ring precursors of CoQ biosynthesis, most likely 4HB. This metabolism of kaempferol 
augments CoQ biosynthesis and increases CoQ content. This ability  of kaempferol could  potentially 
be used  in the design of more efficient supplements to alleviate the symptoms of CoQ deficiencies in 
aging  and disease. Additional physiological studies will be necessary to confirm  the effectiveness of 
kaempferol supplementation to potentiate ubiquinone biosynthesis at the whole  organism level. 
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