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The teaching of structural stiffness is one of the keystones of the undergraduate curriculum in
mechanics and the strength of materials. Standard linear theory, going back to Hooke’s law, has
proven to be very successful in predicting the performance of elastic structures under load. Many
courses in basic mechanics have a conventional laboratory component often involving a universal
testing machine and extensometer. However, the advent of 3D printing presents an appealing
pedagogical opportunity mid-way between theory and a formal lab experience. The material
contained in this paper focuses on using the 3D printing of relatively simple, flexible cantilever
structures. The relatively high resolution of modern 3D printers facilitates the production of slender
(elastically deformable) structures, and thus provides an opportunity to exploit geometric
parametric variations to enhance a practical understanding of fundamental mechanics concepts
such as stiffness. This approach has proved successful in initial inclusion in both the classroom via
demonstration models, as well as in the lab in which elementary facilities can be utilized to acquire
data. The boundary conditions associated with a cantilever, and the application of a point force are
especially simple to produce in practice, and provide an effective tactile demonstration of the
influence of geometrical changes on the relation between force and deflection, i.e., stiffness. © 2020
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I. INTRODUCTION

The ability of structural elements, and structures in gen-
eral, to effectively withstand load is often achieved by flex-
ural elastic deformation and the storage of strain energy.
Provided the resulting stresses and deflections are kept
within reasonable limits, this is often the basis of an eco-
nomic design (minimal material use). Very often there is a
linear relation between load and deflection, at least for rel-
atively small deflections, broadly in the range of practical
application.' This is the case for beam theory, for example,
and also allows an effective demonstration of the utility of
using dimensionless variables.”™ Coupled with the versa-
tility of 3D printers to conveniently produce structures
with specific geometry, and in an elastic material, the
teaching of solid mechanics can be enhanced by simple
hands-on demonstration models, which can also be used to
acquire data.’

3D printing has been introduced by a number of instruc-
tors to enhance the quality of instruction in a variety of con-
texts, including an appreciation of auxetic behavior,®
laboratory modules,” mechanical behavior,® general
mechanical systems,'” and general education.'' The primary
focus of this paper is on flexural behavior of linear elastic
elements, for which we invoke Hooke’s law, F = kx, i.e.,
force F causes a proportionate deflection x, characterized by
the stiffness of coefficient k. The elastic flexural stiffness of
a simple structure (here, a cantilever) is assessed, primarily
through a subjective, tactile appreciation, and the ways in
which the stiffness changes with geometry.'>!?

The key mechanism in this paper is a comparison based
on parameter variation. Thus, the demonstration models can
be used based purely on feel, where simply pushing down on
the ends of cantilevers sequentially provides a direct assess-
ment of stiffness. There is nothing unique about the dimen-
sions chosen here, and students and instructors are

1049 Am. J. Phys. 88 (12), December 2020

http://aapt.org/ajp

encouraged to produce their own geometries. If measure-
ments are made, then the results can be conveniently pre-
sented in terms of dimensionless quantities.

We shall focus on five fundamental cases, in which a
change in geometry leads to a change in stiffness. Since the
3D-printed specimens are all produced monolithically using
the same material, we isolate a specific parameter, so that the
effect on stiffness can be appreciated in a comparative sense.
We shall focus on sets of tip-loaded cantilevers (see Fig. 1),
and specifically, we consider the following:

 a simple cantilever, under variation of length: Fig. 1(a);

 a simple cantilever, under variation of width: Fig. 1(b);

* a cantilever with different linearly tapered widths: Fig.
L(c);

 a cantilever with a longitudinal stiffener (rib) of varying
depth: Fig. 1(d); and

* a cantilever with a turnaround section with varying length:
Fig. 1(e).

All of these cantilever sets can be printed with relative
ease using any 3D-printer (STL files are available from the
author by request). We use the linear relation between force
and deflection at the free end as a measure of stiffness.

In the classroom setting, students are in a position to
assess stiffness by, for example, pushing down on each canti-
lever sequentially and experiencing the resistance, and then
feeling the differences between each member of a cantilever
set. In this way, they can verify how this stiffness depends
on the change in geometry according to theory.

II. BACKGROUND BEAM THEORY

The general equation of the elastic curve relates the lateral
deformation (y) of a beam along its length x to its geometry
and loading,1
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Fig. 1. Isometric views of the 3D-printed cantilever sets: (a) variable length, (b) variable width, and (c) variable taper. Views from below: (d) cantilevers with
variable ribs and (e) cantilevers with variable length turnarounds. A small eye is printed at the tip to facilitate weight attachment.
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in which M is the applied bending moment (that depends on
external loading and boundary conditions), £/ is the flexural
rigidity, with Young’s modulus E and second moment of
area I. Equation (1) is based on a number of assumptions,
including linear elastic material, thin (slender) geometry, and
is restricted to relatively small deflections (for example, the
curvature expression d’y/dx’ is approximate). It is widely
used (often referred to as Euler—Bernoulli theory), it can be
used to estimate Young’s modulus,' and is easily extended
to include vibrations (see Appendix B). We are specifically
interested in cantilevers with boundary conditions supplying
zero deflection and slope at the built-in, clamped end. The
coordinate system and notation for our cantilevers are shown
in Fig. 2.

III. A SIMPLE CANTILEVER

One of the simplest cases is a cantilever beam of rectangu-
lar cross section subject to a lateral tip load. Assuming a con-
stant (prismatic) cross section of breadth b, thickness d, (the
second moment of area is b x d° /12 for a rectangle), length
L, clamped at x =L and subject to a (downwards) point load
F at x =0 (see Fig. 2(a)), we have the governing equation

dzy

J
dx?

—Fx, (@)

which can be integrated twice, and using the boundary
conditions at the clamped (right hand) end B, (y(L)
=y'(L) = 0), gives a deflected shape
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We immediately see the linear relation between F and y. At
the free end A, x=0, we obtain the tip deflection
yip = —FL*/3EI, thus a stiffness of k = 3EI/L?. It is the
relation between k and geometry that is the focus of this
study.

In general, we shall examine the effect of systematically
varying parameters away from a standard baseline geometry,
as outlined in Table I. These values are generally used for
nondimensionalization in later figures, i.e., parameters are
typically divided by a baseline value and indicated by an
over-bar. Furthermore, E is typically a little lower than
2.1 GPa (the reference value) due to the 3D-printing pro-
cess.” However, we are primarily interested in how geometri-
cal changes influence stiffness in a relative sense with all
cantilevers printed with the same thickness and using the
same (ABS thermoplastic) material. Small weights were
attached to the ends of the cantilevers resulting in vertical
deflection. The deflections included later were generally
measured using a proximity sensor, with an accuracy of
about 1/40 mm. The Appendix includes some results based
on a more sophisticated experimental approach (for example
using a load cell), but in general, we simply observe how the
cantilevers deflect under load, and this is tantamount to feel-
ing the resistance to pushing on each cantilever by hand.

As introductory examples, we will examine the effect of
varying the width b and the length L. We subject the end to
the same specific vertical load (a weight), whereas more for-
mally (in a lab setting), the stiffness is characterized by how
force and deflection are related over a range, with the slope
of a linear fit providing an accurate estimate of stiffness.
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Fig. 2. The geometry of a cantilever: (a) the standard case, (b) a tapered cantilever, (c) a cantilever with a turnaround, and (d) cross-sectional shapes, including
arib stiffener in which the extra material shifts the centroid and neutral axis (increasing /).

Figures 3 and 4 shows the effect of varying these two
parameters in terms of tip deflection and stiffness, including
some photographic images. Here, the relations are normal-
ized with respect to the aforementioned standard cantilever
(indicated by the black circles in subsequent plots). In
dimensional terms, we use L = 120, 140, 160, 180, 200 mm
and b = 10, 15, 20, 25, 30 mm, with the specific cases indi-
cated by the open circles points for experimental data in this,
and later figures. The Appendix contains a detailed measured
example for two different lengths under variable load,
together with tabulated values corresponding to the data-
points shown in the figures. These parameter dependencies
also underlie the notion of propagation of uncertainty and

Table I. The standard cantilever configuration, providing a baseline stiff-
ness, about which parameter variations are taken. That is, this specific geom-
etry typically appears in the middle of each printed set.

Length, L 180 mm
Width, b 20 mm

Thickness®, d 1.68 mm
Second moment of areab, 1 7.9 mm*
Young’s modulus, £ 2.1 GPa
Stiffness, k 8.54 N/m

Mass applied to the tip,
i.e., load, F=mg — deflection, yq

29 g,0.285 N, ~33 mm

“A careful measurement of thickness for the 3D-printed specimens to be
described later, gave an average value d=1.68 mm (compared to a pre-
scribed thickness of 1.5mm), a relatively precise parameter with an
enhanced sensitivity due to its effect on the second moment of area, and the
small dimension most sensitive to the resolution of the 3D-printer.

“In the weaker direction, and about the (horizontal) neutral axis passing
through the centroid.
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measurement error. For example, the thickness and stiffness
are related cubically and hence any error in measuring the
thickness (which is generally small) has a tendency to be
propagated to a greater extent than say, the width, although
this issue will not be addressed here.'>'®

It is important to recall some of the limitations of standard
beam theory, including the restriction to relatively small
deflections. For example, the least wide cantilever (10 mm)
deflects vertically about 70 mm at the tip when subject to an
end mass of 29g, and this corresponds to y,/L of about
35%, a value near the curvature limit of the linear theory.l

A. A note on self-weight

We also mention that there is a small deflection associated
with self-weight, at least where the cantilevers are oriented
horizontally. Using the same linear theory, and an evenly
distributed load, leads to a tip deflection y,,-ﬁ, = fL4 /8EI,
where f'is the distributed load (per unit length).1 The density
of the material used (ABS thermoplastic) in this study is typ-
ically close to 1050 Kg/m®, corresponding to “solid” print
settings, although the density of prints can be adjusted. Thus,
for example, the standard cantilever weighs about 6 g, lead-
ing to a tip deflection of approximately 2.7 mm, an order of
magnitude smaller that the deflection of close to 40 mm
under the 29 g end-weight (which we can choose to vary). In
general, the weight scales with volume (bdL), whereas the
stiffness scales as (b(d/L)*). Given the range of geometries
and weights used in this study, self-weight is ignored.
However, when assessing stiffness by hand, the models resist
force about a natural equilibrium shape, and can also be
“held” in a vertical orientation. Self-weight does provide an
alternative opportunity to demonstrate comparative stiffness
based on the “natural” shape of unloaded, relatively low

Lawrence N. Virgin 1051



ytip ' Enp
2.5

2.0

15

1.0

0.5

0.0

(a)

—— theory

O experiment

Fig. 3. (a) The effect of varying the length L on stiffness and hence the tip deflection, Viip = Yiip /¥0, and (b) and (c) images of the cantilevers under the action
of 29 g end-masses. In this and subsequent figures, the continuous lines and open circles are theory and experimental data, respectively.
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Fig. 4. (a) The effect of varying the width b on stiffness and hence the tip deflection, Vip = Yiip /o, (b) image with 9 g end-masses, and (c) an alternative view

of the cantilevers with 9 g end-masses (with proportionate deflections).
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stiffness cantilevers allowed to droop when oriented horizon-
tally (but not so much as to violate the linear theory). The
vertical orientation is also natural for assessing natural fre-
quency, rather like a tuning fork."’

IV. RIB-STIFFENED CANTILEVERS

The rectangular cross section provides a simple expression
for the second moment of area: I = bd>/12. A convenient
way of increasing / is to effectively move the material fur-
ther away from the neutral axis (that passes through the cen-
troid) by adding a rib-stiffener, giving a T-section (also the
reason why I-sections are effective in beams). This is shown
schematically in part (d) of Fig. 2, in which we fix the rib
width B at 2mm and then systematically change the rib
height, D =0, 1, 2, 3, 4 mm. The general expressions for
area A, centroid location (y.), and second moment of area /,
are readily available for typical shapes:'®

A =bd + DB,
ye = [(D +d/2)db + D*B/2]/A,
I =BD(y. — D/2)* + BD*/12
+db(D +d/2 — y.)* +d’b/12. “)
Again, we seek to observe the effect of adding the stiffening
rib, and this is shown in Fig. 5 in which the second moment
of area (and hence stiffness) increases with rib height. And

again, the measured data corresponding to the 3D-printed
specimens are indicated by the open circle data points, with

the black data point corresponding to the baseline (rectangu-
lar cross section, no rib) case. The interesting part of this
result is that the stiffness increases much faster than the area
(and hence mass) with rib height. For example, relative to
the no-rib standard case (D = 0), for a rib height of 3 mm, the
area increases by 18%, whereas the second moment of area
(and hence stiffness) increases by a little over 500%. Many
components of aircraft structures (fuselage and wings) typi-
cally include panels with stiffeners/ribs, an application where
weight-saving is paramount.

V. TAPERED CANTILEVERS

It is often the case that a cantilever is tapered, for example,
a fishing rod, or tree, or the wing of an aircraft. Referring to
Fig. 2(b), suppose we have a rectangular cross section with a
width b = b(x) that varies linearly such that we have a sec-
ond moment of area /, at the left end and / at the right, i.e.,
I, =I14(1 + Kx/L), with K =1Ig/I4 — 1. Again using the
180 x 20 x 1.68 mm geometry as the baseline case, we con-
sider a set of four cantilevers: (bs, bg) = (20, 20), (15, 25),
(10, 30), (5, 35) mm, see Fig. 2(b). An alternative approach
would be to keep Ip constant, say 20mm, and reduce /4,
resulting in a progressive reduction in stiffness. For example,
if the baseline cantilever was tapered to Smm at the free
end, we would obtain a stiffness reduction of about 20%.
Given the relatively simple variation in / = I(x), we can
directly incorporate this expression when integrating Eq. (2),
although this is not trivial. However, standard cases have
been tabulated. For example, in Roark’s formulas for stress

=
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Fig. 5. (a) The effect of including a small rib on the stiffness and deflection of a prismatic cantilever, ¥, = yip /o0, and (b) and (c) two images of the rib-

stiffened cantilever sets under the action of 29 g tip-masses.
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Fig. 6. (a) The effect of varying the taper on the deflection/stiffness of a cantilever, y,;, = yij,/yo, and (b) image of the tapered cantilevers under the action of

29 g tip masses.

and strain,19 which, for the four cases considered (I3/I4
= 1.0, 1.67, 3,7), provides relative tip deflections of 1.0,
0.919, 0.846, and 0.752, and these are shown in Fig. 6 where
the relations are evaluated numerically at the given values
and then subject to a curve fit. The deflections for these four
geometries represent a fairly modest change in tip deflection.
However, the volumes (and hence mass) of each of these
cantilevers are the same, and thus, the more tapered cantile-
ver may represent a more economic design, at least for this
specific (tip-loaded) case. The theory also holds for the
(much less practical) case of Iz/I4 < 1, in which case the
effect is more noticeable, although not included as an exam-
ple here. A cantilever with a taper in depth also presents cer-
tain stiffness benefits. There may be nonstiffness reasons for
preferring a tapered cantilever, and the linear theory is less
appropriate for more extreme tapers and cases in which the
behavior is more plate-like, requiring a more appropriate
two-dimensional analysis.' ?

VI. CANTILEVERS WITH A TURNAROUND

A final instructive extension to the deflection behavior of
the cantilever can also be achieved using 3D-printing.
Consider the situation shown in Fig. 2(c). The end of the can-
tilever has a “turnaround” attached to it, of length a. If we
again subject the system to a lateral point load F, (but now
applied to the tip of the turnaround), we find some interesting

shapes (and stiffness) depending on the ratio a/L. We ignore
the (small) dimensions of the turnaround corner. The govern-
ing equation now includes an additional bending moment
Fa, located at the main cantilever tip and is given by

d?y

El— = —-F(x —a), 5

dx? ( ) )
where we essentially have a force and a moment at the end
of the main cantilever, and these tend to act against each
other. Applying the clamped-end boundary conditions, we
find the solution

LT 3 (x 1/x\’
YT 3E o\z) 2\L

SO0-20-0) e

With a/L = 0, we obtain the baseline case. However, with
a/L # 0, we see that the deflected shape is not obvious (with
something of a trade-off between the bending moments), but
again we print a set of similar systems with representative
variation in a/L: 1/6, 1/3, 1/2, 2/3, and 5/6. The deflected
shapes for these cases are plotted, in Fig. 7(a), for a fixed end
load (FL? JEI = 0.5566). Clearly, an interesting question
presents itself: what is the tip deflection as a function of a/L?

0 45 90 s M (a) (b)
T ' 10
y/L y A L x y(mm) y
0. (@/)=5/6 {ML tip
/ @/)=2/3 FV |10 05T

=16

-0.5 [

1.0 . . . .
! . 04 06 0.8 1.0
0.0 02 a/L

Fig. 7. (a) The deflected shape of a cantilever with various lengths of turnaround, with a sample shape in the inset, axes in the dimensional form included and

-0.1 T @/L)=1/3 20
0.0 0.‘2 0.4‘1 O.g 0.I8 X/L 1.0

(b) tip deflection as a function of turnaround length. y;, = yrp [YiipajL=o-
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Fig. 8. Three views of a cantilever set with various turnaround lengths under the action of 29 g masses applied at the turnaround tip.

Solving for y(a/L) = 0 at x=0 gives a/L = 2/3, regardless
of the magnitude of F. Also, we see that the case of
a/L = 1/2 gives a zero slope at the tip (shown in the inset).
The tip deflection y,;, is plotted as a function of turnaround
length a/L in Fig. 7(b). Note that the turnaround itself
deflects like a cantilever (with typically a nonzero slope and
deflection at the attached end), in which the slope of the
force vs lateral deflection at the end of the turnaround can be
viewed as a stiffness, but the turnaround is used here merely
as an easily varied mechanism for influencing the behavior
of the main cantilever. Application of linear theory is some-
what restricted in this case, with a more sophisticated analy-
sis indicating a relatively limited range of force for which
the tip deflection is positive: it is clear that a relatively large
load would inevitably result in a negative tip deflection
(despite what the linear theory might say), and again self-
weight, which is a little greater for a system with a turn-
around, may need to be included (Fig. 8).

VII. CONCLUDING REMARKS

This paper introduces the notion of using sets of 3D-
printed cantilevers to provide a tactile demonstration of stiff-
ness and how it is influenced by changes in geometry.
Although the measured results are included, this is done
mainly for completeness, with the primary emphasis based
on relative behavior in which students directly experience
the feel of changes in geometry. By simply pushing down on
the ends of each cantilever in succession, the change in stiff-
ness is immediately apparent. The focus on relative behavior
is intimately related to nondimensionalization and generally
de-emphasizes the importance of units. Students can estimate
the proportional magnitude of changes in deflection and stiff-
ness as a function of changes in beam geometry.

The resolution of the printer and the material properties of
the 3D-printer thermoplastic are much less important than if
they were being used to confirm theory against experiment
in a conventional sense. 3D-printing is now ubiquitous in sci-
ence and engineering. We also mention a couple of subtle
practical ways in which 3D-printing also facilitates testing:
the judicious use of “fillets” on interior corners to reduce
stress concentrations; small “eyes” to facilitate the applica-
tions of loads (most clearly seen in Fig. 5(b)); and holes
printed in the base to allow a convenient attachment to a
test-stand.

As mentioned earlier, ABS thermoplastic does not have
precise mechanical properties but rather a range, e.g.,
1010 < p < 1210 kg/m® and 1.2 < E < 2.9 N/m?. These are
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bulk estimates and the 3D-printing process can lead to
small voids with different density settings. Furthermore, the
nominal values for geometry as printed depend on the reso-
lution of the printer. The deflections are also measured on
the top surface of the cantilever whereas the theory corre-
sponds to the cantilever centerline. Thus, we should not be
surprised by an imperfect theory-experiment correlation.
However, this reinforces the presentation in comparative
terms—the cantilevers are all printed with the same mate-
rial, in the same orientation, into a contiguous base, and to
the same geometric tolerance, and hence their relative
stiffness/frequency behavior is consistent (as confirmed in
the Appendix A).

The (linear) relation between force and deflection is a
dominant issue in understanding the mechanics of solids.
The advent of 3D-printing presents an appealing opportunity
to produce demonstration models that provide an effective
(literally) hands-on appreciation of behavior well-supported
by fundamental theory.
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APPENDIX A: DETAILED MEASUREMENT OF AN
INDIVIDUAL CANTILEVER

Since this paper involves producing physical specimens, it
is easy enough to take measurements with relatively rudi-
mentary equipment. Stiffness, the slope of the force-
deflection relation, is typically measured by taking a set of
deflection measurements under different levels of force, and
fitting the data using least squares. For the tip-loaded cantile-
ver, measuring force and deflection is straightforward, espe-
cially where they are co-located. Either by using a cell load
pushing on the end of the cantilever or simply hanging a
weight (F'=mg), the corresponding measured end deflection
can be achieved using a proximity laser (an OPTO NCDT
1302 with a precision of 0.025 mm was used in this study).
The latter is especially convenient since it does not contact
the cantilever and can be aimed to measure deflection at any
location. An example is shown in Fig. 9(a). Two cantilevers
were subject to increasing levels of tip force. The cantilevers
had identical cross sections (25.4 x 2.5) mm, made from the
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Fig. 9. (a) A 3D-printed cantilever in a test configuration. Under increasing end-load F produced by a displacement-controlled load-cell, the cantilevers bends,
with the tip deflection measured using a laser. (b) Dimensional results plotting force (in Newtons) vs deflection (in mm) for two cantilevers of different lengths,
and (c) the same data plotted in the dimensionless form, with theory suggesting a slope of 3.

same material (and printed in the same orientation), with the
only difference in the length: cantilever A has a length of
L =98.6 mm and for cantilever B, L = 124 mm.

The experimental data (tip force vs deflection) are shown
in Fig. 9(b). In each case, the deflection was measured under
increasing and decreasing force using a load cell (an 5-1bf
Omega Dyne stainless steel S beam was used in this study),
and then repeated, hence the slight spread in the data (in
addition to a little electronic noise associated with the mea-
surement devices). A least squares curve fit gave a stiffness
(slope) of 0.242 N/mm for cantilever A and 0.126 N/mm for
cantilever B. Given the ratio between their lengths (124/
98.6 =1.254) and the inverse cubic relation, we would
expect all other things being equal, cantilever A to be about
1.254° = 1.97 times stiffer than cantilever B (comparing the
slopes in Fig. 9(a) confirms this). Given a deflection for the
“unloaded” state (F = y,, =0), the stiffness can be
extracted using a single weight and single deflection, as
effectively done earlier in this paper. While this is useful in
the comparative examples provided in the main body of this

paper, a conventional theory vs experimental data study ben-
efits from a more thorough statistical treatment to reduce pre-
cision error.

It is instructive to consider these results in nondimensional
terms. This provides a convenient basis for comparison, as
shown in Fig. 9(c). Here, the axes are FL? /EI and yy;,/L, and
we obtain a universal plot in which the slope is close to the
theoretical prediction of three. A slight deviation from line-
arity can be observed for higher loads/deflections, a reminder
that the linear theory relies on limiting restrictions.

APPENDIX B: NATURAL FREQUENCIES OF
VIBRATION

These types of slender structures are also well-suited for
vibration studies, both in terms of a visual appreciation and
actual measurements. When disturbed from equilibrium and
set into motion, these lightly damped slender elements
vibrate in a characteristic fundamental mode of vibration, the

@ (b) ©
y(mn;) L=120mm;0n=25Hz | y(mm3) | L= 160 mm; @n=145Hz | y(mm3) I L= 200 mm; = 9.1 Hz
2 — 2L ] 2
1 l E 1 - 1
0 " AW 0 0
A | (I
3 1 3} 1 3l
. . . . . . , . . . . .
0 05 10 15 20 t(sec) 0 05 10 15 20 t(sec) 0 05 10 15 20 {(sec)

Fig. 10. Time series taken from the standard cantilever with varying length using the same proximity laser as for the static measurement, after the application
of a tip displacement and release. (a) L =120 mm, (b) L =160 mm, and (c) L =200 mm.
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frequency of which can be related to simple geometry in
much the same way as stiffness.

We briefly show some measured frequencies, data
acquired with the same proximity laser (with a sampling rate
of 750 Hz) as used for the deflection measurements. Figure
10 shows three sample time series, resulting from a sudden
tip disturbance. The frequency is extracted using the Fast
Fourier Transform (FFT), or by simply counting the number
of oscillations over a given time duration. We also see the
relatively light damping present in these systems. These
oscillations decay exponentially, and we clearly see how the
frequency changes with length. Some theoretical and mea-
sured frequencies are included in Table II.

A theoretical analysis of the vibration of the cantilever is
also a standard exercise in the mechanics of deformable sol-
ids. For a prismatic cantilever, it can be shown (based on
Euler-Bernoulli theory) that the fundamental natural fre-
quency in bending depends on the geometry and boundary
conditions®*-%32

3516 [EI d\ [E
On = a2\ = 016 <L2) P (B1)

We see that the natural frequency scales linearly with the
thickness d, and with the inverse square of the length L, so
just taking the standard cantilever as an example and com-
paring cantilevers of different lengths (from Appendix A),
we find w,/wo=2.25,1.65, 1.27, and 1, 0.81, different
ratios that can be readily appreciated from a single pluck.
Equation (B1) suggests for the given lengths used in Fig. 10,
we would expect the frequencies to be in the ratio 1/0.56/
0.36, and indeed the measured values scale as 1/0.58/0.36. It
is interesting to observe that changing the width has no effect
on the natural frequency (since mass and stiffness are influ-
enced equally), again an effect that can be directly observed
from the cantilever set with different widths. Finally, the
density of 3D-printing is typically a user-prescribed setting
but it is simple enough to weigh specimens if needed.?*

APPENDIX C: TIP MEASUREMENTS OF THE
CANTILEVER SETS

In the measurements of the cantilever sets, the load is
applied in a vertical downwards direction (with weights, typ-
ically 29 g) and the corresponding deflections are (generally)
vertically down and hence negative. A digital load cell is an
alternative method of loading, with the advantage of not
being restricted to a vertical downward direction and easily
incremented. The deflections were measured using a noncon-
tacting laser sensor (the signal is improved using reflective
tape—with the small gray targets being apparent in the
images of the cantilever sets). The nondimensional normal-
ized stiffnesses and deflections are inverse to each other. The
information provided in the following tables was used to
populate Figs. 3—7. Theoretical results are based for example
on Eq. (3) for Table II and Eq. (6) for Table III, and shown
as continuous lines in the figures (with the measured values
as the circular symbols). For the values listed in the table
below, the data are presented relative to the standard cantile-
ver case, and appear in boldface (Tables IV-VI). Note that
the standard case values are typically slightly different in
each set due to a small amount of experimental uncertainty
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Table II. Influence of changing cantilever length L on deflection y and stiff-
ness k. Theory: ko = 8.54 N/m; yp = —33 mm; wo = 11.9 Hz. Measured:
ko = 7.37N/m; yo = —38.6 mm; wy = 11.3Hz. F = mg = 0.285N.

L(mm) (L/Lg) 120 (0.667) 140 (0.778) 160 (0.889) 180 (1) 200 (1.111)

k/ko (Theory) 3.375 2.125 1.424 1 0.729
k/ko (Measured) 3.37 2.13 1.42 1 0.75
y/yo (Theory) 0.296 0.471 0.702 1 1.372
¥/yo (Measured) 0.29 0.46 0.70 1 1.34
/wg (Theory) 2.25 1.65 1.27 1 0.81
w/wy (Measured) — 2.22 1.72 1.28 1 0.81

Table III. Influence of changing cantilever width b on deflection y and stiff-

ness k. Theory: ko = 8.54N/m; yp = —33 mm. Measured: ko = 7.37 N/m;
yo = —38.6 mm. F = mg = 0.285N.

b (mm) (b/bo) 1005 15075 20(1) 25125 30 (1.5)
k/ko (Theory) 0.5 0.75 1 1.25 1.5
k/ko (Measured) 0.58 0.79 1 1.27 1.42
y/yo (Theory) 2 1.333 1 0.8 0.667
¥/yo (Measured) 1.73 1.27 1 0.78 0.70

Table IV. Influence of changing cantilever cross section rib-height D on
deflection y and stiffness k. Theory: ko =8.45N/m; yp = —33 mm.
Measured: ky = 7.16 N/m; yo = —39.8 mm. F = mg = 0.285N.

D (mm) 0 1 2 3 4

k/(ko(D = 0)) (Theory) 1 1.45 2.70 5.10 8.95
k/ko (Measured) 1 1.52 3.06 5.77 10.76
y/yo (Theory) 1 0.69 0.37 0.20 0.11
v/yo (Measured) 1 0.66 0.33 0.17 0.09

Table V. Influence of changing cantilever taper on deflection y and stiffness
k. Theory: ko = 8.54N/m; yo = —33 mm. Measured: k) = 7.26 N/m; yy =
—39.2mm. F = mg = 0.285N.

by, bg (mm) 20, 20 15,25 10, 30 5,35
Is /Iy 1 1.67 3 7

k/ko (Theory) 1 1.09 1.26 1.33
k/ko (Measured) 1 1.13 1.22 1.26
y/yo (Theory) 1 0.92 0.79 0.75
v/yo (Measured) 1 0.88 0.82 0.79

Table VI. Influence of changing cantilever end turnaround length a on end
deflection y. Lo = 180 mm. Theory: y,,(a =0) = —33 mm. Measured:
Yip(a = 0) = —39 mm (from a previous set). F = mg = 0.285N.

30 60 90 120 150
a (mm) (a/Lo) 0(0) (0.167) (0.333) (0.5) (0.667) (0.833)
Yiip/¥o (Theory) 1 0.75 0.5 0.25 0 —0.25
y,[,,/yn (Measured) 1 0.69 0.48 0.26 0.03 —0.15
Lawrence N. Virgin 1057



and variability. Since the baseline values are divided by
themselves, they are included as black data points in the
figures.
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Lens Set for Eye Testing

This set of concave and convex test lenses must have been given to the physics department at Hobart and William
Smith Colleges by a local Geneva, New York, optician in the mid-20th century. The power of the lenses goes up and
down in steps of 0.25 diopters. As optical testing moves to more sophisticated methods, these sets become available.
I have found them quite useful in lecture demonstrations and in one-on-one laboratory teaching. (Picture and text by

Thomas B. Greenslade, Jr., Kenyon College)
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