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ABSTRACT: Using deuterium-labeled stereochemical probes, we
show that primary alkyltrifluoroborate nucleophiles undergo trans-
metalation to palladium exclusively via a stereoretentive pathway and
that the resulting stereospecificity is broadly independent of electronic
and steric effects. This stands in stark contrast to the stereochemical
course of transmetalation for secondary alkyltrifluoroborates, which
varies between net stereoretention and net stereoinversion depending
upon the electronic properties of the supporting phosphine ligand, the
electronic properties of the aryl electrophile, and the steric properties
of the alkylboron nucleophile. In this study, we additionally show that
the stereochemical course of transmetalation for secondary alkylboron
reagents can be under reagent steric control, while no such steric
control exists for analogous primary alkylboron nucleophiles. The
combined study reveals fundamental mechanistic differences between transmetalations of primary and secondary alkylboron reagents
in Pd-catalyzed Suzuki reactions.
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Over recent decades, the emergence of Pd-catalyzed cross-
coupling reactions has revolutionized our modern

approach to organic synthesis. Oxidative addition, trans-
metalation, and reductive elimination constitute the funda-
mental steps in the standard catalytic cycle of cross-coupling
reactions proceeding via a Pd(0)−Pd(II) redox couple.1

Although oxidative addition and reductive elimination
processes are mechanistically well understood, the prevailing
mechanistic pathway of transmetalation can be less clear.2,3

This is especially true for Suzuki cross-coupling reactions
involving alkylboron nucleophiles.4 In principle, transmetala-
tion of an alkylboron nucleophile can occur with retention
(Figure 1a) or inversion (Figure 1b) of the absolute
configuration. As such, the stereochemical outcome of Suzuki
cross-coupling reactions involving enantioenriched alkylboron
compounds is often difficult to predict.
The Biscoe/Sigman laboratories4 and the Burke laboratory5

have each reported approaches toward stereospecific Pd-
catalyzed Suzuki reactions using unactivated enantioenriched
secondary alkyltrifluoroborates (i.e., without α-heteroatom
substitution, α-C(sp2) substitution, or remote coordinating
groups).6−9 Our study resulted in the development of a
stereodivergent Suzuki process in which the preferred
stereochemical course was intimately tied to the electronic
properties of the supporting phosphine ligand (Figure 2a). In
these cross-coupling reactions, the bulky electron-deficient
ligand bis-CF3PhXPhos

10 (1) promoted a stereoretentive
transmetalation pathway, whereas bulky electron-rich ligands

PtBu3 and PAd3 (2)11 promoted a stereoinvertive trans-
metalation pathway. This study also revealed that the
electronic properties of the aryl electrophile can bias the
transmetalation pathway. In contrast to our observation,
Molander and Dreher (Figure 2b) have shown that 2-
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Figure 1. Putative mechanistic pathways for stereoretentive and
stereoinvertive transmetalation of alkylboron nucleophiles.
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methylcyclohexyltrifluoroborate (3) undergoes stereoretentive
arylation using the bulky electron-rich ligand PtBu3.

12 These
seemingly conflicting stereochemical outcomes suggest that the
steric effects of 3 preclude transmetalation via the stereo-
invertive pathway (see Figure 7 within for a model). Thus,
steric properties can potentially override ligand properties in
dictating the stereocontrol of transmetalation. Collectively,
these results suggest that the electronic properties of the
phosphine ligand and electrophilic coupling partner, as well as
the steric properties of the alkylboron nucleophile, can
independently bias the stereochemical outcome of B-alkyl
Suzuki reactions. Hence, the factors influencing the prevailing
pathway of alkylboron transmetalation are much more nuanced
than were previously appreciated.
Using the Whitesides protocol for probing the stereo-

chemical course of organometallic reactions,13,14 Woerpel15

and Soderquist16 conducted seminal mechanistic investigations

of primary alkylboron transmetalation to palladium. In these
studies, vicinally deuterated primary alkyl-9-BBN nucleophiles
(syn-4 and anti-4) were employed in Suzuki cross-coupling
reactions, with the vicinal JH−H coupling constant being
indicative of the stereochemistry of the resulting product
(Figure 2c). The investigations showed that transmetalation of
primary alkyl-9-BBN nucleophiles to palladium proceeds with
retention of configuration for alkylboron nucleophile 4.
Though these studies provided an important foundation on
which to build our mechanistic understanding of alkylboron
transmetalation, recent transmetalation studies using enan-
tioenriched secondary alkyltrifluoroborate nucleophiles imply
that primary alkylboron transmetalation might likewise
proceed through competing mechanisms that are highly
sensitive to ligand, electronic, and steric effects.4,5,12 Addition-
ally, because alkyl-9-BBN reagents exhibit nucleophilicity more
comparable to that of alkylzinc reagents, it is unclear how the
stereochemical course of their transmetalation relates to that of
less reactive alkyltrifluoroborates, boronic acids, or boronic
esters. Herein we report on the stereochemical course of
transmetalation for Suzuki cross-coupling reactions involving
primary alkyltrifluoroborate nucleophiles.17 Using vicinally
deuterated alkyltrifluoroborate reagents as stereochemical
probes, we have conducted studies to deconvolute potential
stereochemical effects arising from electronic, steric, and ligand
effects within the reaction components. Through careful
evaluation of these effects, we have determined that, unlike
the transmetalation of secondary alkyltrifluoroborates, the
transmetalation of primary alkyltrifluoroborates proceeds
preferentially via a stereoretentive pathway that is independent
of electronic, steric, and ligand perturbations.
Starting from tert-butylacetylene, we successfully prepared

the vicinally deuterated alkyltrifluoroborate compounds syn-6
and anti-6 as stereochemical probes of transmetalation to
palladium (Figure 3). Unlike previously employed alkyl-9-BBN

reagents,15,16 alkylBPin compounds syn-5 and anti-5 are
isolable and are easily characterized. An examination of the
vicinal JH−H coupling constants from their 2H-decoupled 1H
NMR spectra supports their stereochemical assignments
(Figure 4a). Representative cross-coupling products syn-7c
and anti-7c are shown in Figure 4b. As with syn-5 and anti-5,
the relative stereochemistry of syn-7c and anti-7c is easily
established using the vicinal JH−H coupling constants from their
2H-decoupled 1H NMR spectra. Because we sought to
determine the dominant transmetalation mechanism while
also investigating the possibility of competitive transmetalation
pathways, it was important that we obtained clearly resolved
quantifiable signals indicative of syn or anti stereochemistry. An

Figure 2. Stereospecific Pd-catalyzed Suzuki cross-coupling reactions
using unactivated nucleophiles: (a) ligand-controlled stereodivergent
Suzuki reactions; (b) stereoretentive transmetalation of 3; (c)
previous use of isotopically labeled alkyl-9-BBN nucleophiles as
stereochemical probes; (d) investigation of the stereochemical course
of alkylboron transmetalation described in this study.

Figure 3. Synthetic routes to deuterated stereochemical probes syn-6
and anti-6.
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800 MHz NMR instrument was thus employed to ensure that
trace impurities from the preparation of deuterated probes or
from the coupling reactions could be clearly identified and not
mistaken as products arising from a minor transmetalation
pathway. Accordingly, because anti-5 showed greater isotopic
purity in comparison to syn-5, the use of anti-5 and anti-6 as
stereochemical probes enabled a clearer evaluation of the
stereochemical course of transmetalation.
Our discovery that the stereochemical course of trans-

metalation of secondary alkyltrifluoroborates to LPd(Ar)X
complexes is dictated by the electronic properties of the
supporting phosphine ligand (L) as well as by the electronic
properties of the aryl unit (Ar) suggested that the mechanism
of primary alkylboron transmetalation may likewise proceed via
competing stereoretentive and stereoinvertive pathways
depending on the specific components of the cross-coupling
reaction.4 Accordingly, anti-6 was employed in cross-coupling
reactions using bis-CF3PhXPhos (1), which has been to shown
to promote the stereoretentive transmetalation of secondary
alkyltrifluoroborates, and using PtBu3, which has been shown
to promote the stereoinvertive transmetalation of secondary
alkyltrifluoroborates (Table 1). Because we have observed that
the use of electron-rich aryl electrophiles can bias the
transmetalation of secondary alkyltrifluoroborates toward the
stereoinvertive pathway, reactions of primary alkyltrifluorobo-
rates were conducted using electron-deficient, electron-neutral,
and electron-rich electrophilic coupling partners. The use of
electronically differentiated electrophiles thus enabled an
assessment of the effect of subtle electronic changes on the
net stereochemical course of transmetalation. For all such
reactions of anti-6, only the stereoretentive transmetalation
pathway was observed.18 The use of syn-6 also provided
stereochemical data consistent with stereoretention, though
the presence of isotopic impurities in syn-6 complicated its use
as a mechanistic probe (see the Supporting Information for a
complete study using syn-6). No stereochemical variance

resulted when the phosphine ligand was changed from bis-
CF3PhXPhos (1) to PtBu3 or when the aryl electrophile was
varied. To assess the possibility that transmetalation is
influenced by the identity of the leaving group on the aryl
electrophile, we also investigated the use of aryl bromides and
triflates in analogous reactions. These reactions, likewise,
resulted in exclusive formation of the cross-coupling products
from stereoretentive alkylboron transmetalation. Finally, the
direct use of the alkyl pinacol boronate probe anti-5 was
employed to determine the preferred transmetalation pathway
for pinacol boronate nucleophiles, which undergo slower
transmetalation to palladium in comparison to their corre-
sponding trifluoroborate and boronic acids.3a Though cross-
coupling conditions developed by our group for use with
alkyltrifluoroborates failed for anti-5,19 reaction conditions
developed by Liu, Marder, and Steel17k specifically for use with
primary alkyl pinacol boronates successfully generated the
cross-coupling product anti-7c (Figure 5), again via a
stereorententive transmetalation pathway. Together, these
results suggest that, unlike transmetalation of unactivated
secondary alkyltrif luoroborates, the transmetalation mechanism
of unactivated primary alkylboron nucleophiles proceeds
exclusively through a stereoretentive pathway that is insensitive
to the electronic properties of both the phosphine ligand and
aryl electrophile.20

Though the data presented in Table 1 suggest that the
mechanism of transmetalation of unactivated primary alkyltri-
fluoroborates is broadly independent of electronic effects, we
were concerned that the steric properties of the tert-butyl
substituent of anti-6 might override electronic effects from the
phosphine ligand and aryl electrophile, resulting in a sterically
controlled pathway of transmetalation. Indeed, the Whitesides
protocol for stereochemical analysis using vicinal coupling
constants requires the presence of such a bulky β substituent to
bias conformational preference toward the anti conformer
(Figure 2c). Additionally, a report from Molander and Dreher
(Figure 2b) demonstrating stereoretentive transmetalation of
trans-2-methylcylcohexyltrifluoroborate (3) using PtBu3 as the
supporting phosphine contrasts with our observation that
PtBu3 promotes stereoinvertive transmetalation of unhindered
and unactivated secondary alkyltrifluoroborates (Figure 2a).
To gain general insight into the potential steric effects on
alkylboron transmetalation and the divergent stereochemical
outcomes using PtBu3, we prepared a cis/trans (ca. 5/1)
mixture of 4-tert-butylcyclohexyltrifluoroborate (9) for use as a
probe of alkylboron transmetalation. Though 3 is capable of
conformation equilibration through ring inversion, which
complicates mechanistic and kinetic analysis, 9 strongly favors
a conformation that places the tert-butyl group in the
equatorial position, which greatly simplifies an assessment of
the stereochemical course of transmetalation. Using PtBu3 as a
ligand, Suzuki coupling of cis-9 occurs rapidly (half-life of
approximately 10 min) and exclusively generates trans-10 with
clean stereoinvertive transmetalation. In contrast, Suzuki
coupling of trans-9 proceeds very slowly (half-life of
approximately 2 h) and occurs with stereoretentive trans-
metalation, also generating trans-10 as the exclusive reaction
product (Figure 6).21 These results are easily rationalized, as
cis-9 freezes the boron group in an axial position from which
the stereoinvertive SE2 pathway of transmetalation is readily
accessed, while trans-9 freezes the boron substituent in an
equatorial position from which the stereoinvertive SE2 pathway
of transmetalation is hindered by axial repulsions (Figure 6,

Figure 4. 2H-decoupled 1H NMR (800 MHz) spectra showing vicinal
JH−H coupling constants for deuterium-labeled (a) alkyltrifluorobo-
rates syn-5 and anti-5 (0.66−0.70 ppm range shown) and (b) cross-
coupling products syn-7c and anti-7c (1.42−1.46 ppm range shown).
Minor peaks appearing in (a) alongside syn-5 arise from isotopic
impurities (e.g., t-BuCH2CHD-BPin and/or t-BuCHDCH2−BPin
see refs14 and 16).

ACS Catalysis pubs.acs.org/acscatalysis Research Article

https://dx.doi.org/10.1021/acscatal.0c04325
ACS Catal. 2021, 11, 2504−2510

2506

http://pubs.acs.org/doi/suppl/10.1021/acscatal.0c04325/suppl_file/cs0c04325_si_001.pdf
https://pubs.acs.org/doi/10.1021/acscatal.0c04325?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acscatal.0c04325?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acscatal.0c04325?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acscatal.0c04325?fig=fig4&ref=pdf
pubs.acs.org/acscatalysis?ref=pdf
https://dx.doi.org/10.1021/acscatal.0c04325?ref=pdf


inset). Because trans-9 cannot undergo stereoinvertive trans-
metalation, the slow stereoretentive SE2 pathway emerges as
the only viable option. The comparative kinetics of these
reactions, alongside the exclusive formation of trans-10 from
both reactions, is consistent with sterically controlled trans-
metalation for trans-9. On the basis of these results, we
propose that the stereoretentive Suzuki reaction of 3, which
was demonstrated by Molander and Dreher using PtBu3, arises
from steric control of the transmetalation pathway (Figure 7a).
Stereoinvertive transmetalation of conformer 3a is impeded by
axial repulsions, while stereoinvertive transmetalation of
conformer 3b is impeded by its lower abundance at
equilibrium as well as potential steric effects arising from the
β-anti-methyl group. Thus, it is vital that potential steric ef fects
also be considered when predicting or rationalizing the stereo-
chemical course of alkylboron transmetalation.

In order to minimize the potential steric effect on the
stereochemistry of transmetalation using primary alkyltrifluor-
oborates, we redesigned our stereochemical probe. In our new

Table 1. Pd-Catalyzed Suzuki Cross-Coupling Reactions of Vicinally Deuterated anti-6 Using the Electron-Rich Ligand PtBu3
and the Electron-Deficient Ligand 1

aVicinal JH−H coupling constant of alkylBPin derivative 5. bCalibrated GC yields (average of two runs).

Figure 5. Pd-catalyzed Suzuki cross-coupling reaction of vicinally
deuterated pinacol boronate anti-5 using the conditions of ref 17k.

Figure 6. Relative reaction rates of cis-9 and trans-9 in Pd-catalyzed
Suzuki reactions using PtBu3 as a ligand.

ACS Catalysis pubs.acs.org/acscatalysis Research Article

https://dx.doi.org/10.1021/acscatal.0c04325
ACS Catal. 2021, 11, 2504−2510

2507

https://pubs.acs.org/doi/10.1021/acscatal.0c04325?fig=tbl1&ref=pdf
https://pubs.acs.org/doi/10.1021/acscatal.0c04325?fig=tbl1&ref=pdf
https://pubs.acs.org/doi/10.1021/acscatal.0c04325?fig=tbl1&ref=pdf
https://pubs.acs.org/doi/10.1021/acscatal.0c04325?fig=tbl1&ref=pdf
https://pubs.acs.org/doi/10.1021/acscatal.0c04325?fig=tbl1&ref=pdf
https://pubs.acs.org/doi/10.1021/acscatal.0c04325?fig=tbl1&ref=pdf
https://pubs.acs.org/doi/10.1021/acscatal.0c04325?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acscatal.0c04325?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acscatal.0c04325?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acscatal.0c04325?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acscatal.0c04325?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acscatal.0c04325?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acscatal.0c04325?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acscatal.0c04325?fig=fig6&ref=pdf
pubs.acs.org/acscatalysis?ref=pdf
https://dx.doi.org/10.1021/acscatal.0c04325?ref=pdf


approach, we employed a CH2OSiPh2
tBu group as the bulky β

substituent, which enables an assessment of syn and anti
stereochemistry in the cross-coupling products, as shown by
Woerpel (Figure 7b,c).15 However, following preparation of
vicinally deuterated alkylBPin compound 13, the bulky silyl
group was removed and replaced with a much smaller
CH2OMe (MOM) protecting group on the alkylboron probe
(12) (Figure 8). Thus, the mechanism for stereoinvertive

transmetalation of 12 should be significantly less sensitive in
comparison to 11 to the steric properties of the β substituent
(Figure 6b,c). Following the use of 12 in cross-coupling
reactions, the bulky silyl group was reinstalled to enable
differentiation of syn- and anti-14. When cross-coupling
reactions were performed using 12, the stereoretentive
pathway of transmetalation was again observed, independent
of the ligand and the electronic properties of the aryl
electrophile (Table 2).22 These results strongly suggest that
the general stereochemical course of transmetalation for
primary alkylboron nucleophiles proceeds via a stereoretentive
mechanism and that the stereospecificity is not influenced by
steric perturbations of the alkylboron nucleophile or by the
electronic properties of the phosphine ligand and aryl
electrophile. These results stand in stark contrast to the
mechanism of transmetalation of secondary alkylboron
nucleophiles, which is strongly influenced by subtle electronic
and steric properties of the supporting ligand and coupling
partners.
In summary, we have shown that primary alkyltrifluor-

oborate nucleophiles undergo transmetalation to palladium
exclusively via a stereoretentive pathway and that the resulting
stereospecificity is broadly independent of electronic and steric
effects. This contrasts with the pathway of transmetalation for
secondary alkyltrifluoroborates, which varies between net
stereoretention and net stereoinversion depending upon the

electronic properties of the supporting phosphine ligands, the
electronic properties of the aryl electrophile, and the steric
properties of the alkyltrifluoroborate nucleophile. During these
studies, sterically controlled transmetalation of secondary
alkylboron nucleophiles was also demonstrated for the first
time, which highlights the importance of considering steric
effects in attempting to predict or rationalize the stereo-
chemistry of secondary alkyl Suzuki reactions. The insensitivity
of the stereochemical course of primary alkylboron trans-
metalation to electronic (ligand and substrate) and steric
properties indicates that the mechanisms of transmetalation for
primary and secondary alkylboron nucleophiles are mutually
distinct and underscores the intrinsic complexity of alkylboron
transmetalation. These mechanistic insights should help to
guide the future design of new strategies for Pd-catalyzed B-
alkyl Suzuki cross-coupling reactions involving primary and
secondary alkylboron reagents.
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