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This paper describes a primarily experimental study in which a nonlinear structural com-
ponent (a slender, mechanically buckled panel) is subject to probing. That is, equilibrium
configurations are explored when a specific location on the panel is subject to the applica-
tion of a (variable) displacement constraint and characterized by a corresponding probe
force. This probe force (in this study located at the center of the rectangular panels) is mea-
sured using a load cell and the resulting shape(s), taken up by the panel, measured using
digital image correlation (DIC). Although the probe is only applied at a single location,
this arrangement supplies considerable information about the changing equilibrium land-
scape including revealing co-existing equilibrium configurations using large perturbations
and associated hysteresis phenomena. In addition, monitoring the probing force, and spe-
cifically when it drops to zero, provides a window into “free” equilibria that would other-
wise be unstable and unobservable. Finally, it is shown that the probed equilibrium
configurations provide the “landscape” within which any dynamically induced trajectories
evolve including snap-through oscillations. [DOI: 10.1115/1.4048197]

Keywords: post-buckling, digital image correlation, potential energy, experimental
mechanics

1 Introduction
The aerospace community needs greater understanding of the

complex, post-buckled static and dynamic behavior of slender aero-
space structures. This is especially true as analysts/designers pursue
ever more efficient commercial air-vehicles with accompanying
light-weight structural configurations. It is important to understand
how these structures move between competing, stable equilibrium
configurations while maintaining appropriate design margins,
resulting in robust aerospace designs [1].
A nonlinear structure may possess multiple stable equilibrium

configurations [2]. Under quasi-static but evolving loading condi-
tions, the “natural” equilibrium path follows the route associated
with a local minimum of the underlying potential energy. The path
is robust against small perturbations, at least until buckling occurs,
and the local potential minimum is lost. In nominally symmetric
systems, for example, the classic Euler column [3], there is typically
a post-critical pair of paths emanating from the initially trivial (unde-
formed) state, i.e., the stability transition is classified as a super-
critical pitchfork bifurcation [4]. Which path is followed depends
on any inevitable (small) bias, initial imperfection, or indeed any
parameter that has a tendency to break symmetry and can be difficult
to predict in a practical situation. However, once this post-buckled
regime is entered, there are still two (near-symmetric) stable equilib-
ria, even though only one path can be followed under the smooth
change in a control parameter. Locations on the “other” path, the
road not taken, can be viewed as remote equilibria. Therefore,
under fixed post-buckled axial loading conditions, it is possible to
perturb between these two equilibria, providing the perturbation is
large enough. This is the focus of the current paper: experimental
determination of equilibrium states (both stable and unstable) by

probing the configuration space. Other approaches to the experimen-
tal determination of unstable equilibria can be found in Refs. [5–10].
Consider the scenarios illustrated in Fig. 1. They all appear to be

quite similar—near straight beams in equilibrium (initially
unloaded), with fixed boundary conditions, and then subject to a
lateral load. In part (a), we have a beam that undergoes a unique
deflection under loading, with a linear stiffness; in part (b) a beam
with a non-straight equilibrium configuration is subject to a lateral
force in the direction of the initial shape, and again the subsequent
deflection is unique and predominantly linear. However, in part
(c), we apply the load in the opposite direction to the initial shape,
and now subsequent deflection can suddenly pop-through to an
inverted equilibrium configuration (shown by the dashed line),
clearly a nonlinear situation [11]. In part (d), we have an initial
shape that is somewhat “deeper” than that in part (c), and now a
lateral load will typically result in marked asymmetric behavior
(characterized by the angle θ in Figs. 1 and 2, but later simply
using separated lateral displacements) during the transition to the
snapped-through shape. The multiple stable equilibria in parts (c)
and (d) must be accompanied by unstable equilibria, and these are
indicated by the grey (red) lines.
Each of these shapes represent an equilibrium configuration:

some stable (associated with a minimum of the underlying potential
energy) and some unstable (also associated with turning points in
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Fig. 1 Laterally loaded slender structures and the influence of
initial curvature. The black lines show stable equilibria: continu-
ous—initial shape; dashed lines—a “remote” equilibrium shape.
The grey (red) lines show possible unstable equilibria when F
drops to zero during the transition between stable states.
(Color version online.)
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the underlying potential energy, but now at least one dimension has
a negative curvature). These (free) equilibria correspond to effec-
tively unloaded states when (F→ 0), and would feature in the mea-
surement of F under increasing or decreasing conditions. In part
(c), we would expect F to increase (a positive stiffness) and then
drop to zero at the straight (red/grey) configuration, followed by a
negative force that also curves back to zero for the complementary
stable equilibrium configuration (dashed line). We observe that in
part (d), there are essentially two degrees- of-freedom (an angle in
addition to the vertical deflection), and thus, strictly speaking, we
would also require a zero torque to display the equilibria. In this
sense, a degree-of-freedom can be constrained and the corresponding
force required gives some information about features of the configu-
ration space, and hence the underlying potential energy. Clearly, this
is a much more challenging scenario in higher-dimensional spaces.
Suppose we fix a system in a stable equilibrium configuration that

is not unique, e.g., in parts (c) and (d) of Fig. 1. In a conventional
experimental scenario, i.e., under conditions of dead loading for
example, the path follows the stable equilibria only. But suppose
we attach a load cell to the structure, such that moving the structure
(at the point of attachment) requires a pushing, or pulling, force that
is measured. Under these conditions, we can seek to identify equi-
libria, including those that are unstable (when the probe force F
drops to zero), e.g., saddle-points. We shall initially focus on the
type of situation described in part (d), that is, an identification of
probing force to extract equilibria in which there are two dominant
modes of deflection (a translation δ and a rotation θ). The specific
structures chosen are thin rectangular plates, a prime example of
super-critical pitchfork bifurcational behavior and a form of impor-
tant practical application and intense previous studies [12–20].
Under various degrees of post-buckling, we shall examine the evo-
lution of certain characteristic “buckled” shapes due to probing. The
unstable equilibria play an important role in estimating the global
robustness of a given configuration as well as strongly influencing
large deflection dynamic behavior, a major concern in sonic fatigue,
for example, Refs. [21–24]. Highly nonlinear structures with
perhaps many active degrees-of-freedom present significant chal-
lenges, with the current approach considering a somewhat limited
view based on probing at a specific spatial location.

1.1 Post-Buckling. One of the natural ways in which the
above scenario occurs is via the process of stable-symmetric

buckling [4]. As an axial load P is increased, the initial trivial
(straight configuration) loses stability and results in two stable equi-
libria, which can be thought of as buckled “in” and buckled “out”
(see Fig. 2(a)). If we next introduce an applied lateral load F at a
fixed level of P, we essentially obtain the scenarios described in
Fig. 1(d ), with P identified as the control parameter that determines
the initial buckled shape.
Suppose we load a slender structure to level P1, as shown in

Fig. 2(a). The structure sits naturally in a configuration character-
ized by (P,− δ). We then apply the probe force F in this direction
and introduce an incremental coordinate X (in the δ-direction), mea-
sured from equilibrium. As the load cell is moved in the X-direction
the corresponding force follows the path shown schematically in the
lower part of Fig. 2(a). Each time the probe force passes through
zero corresponds to equilibrium. And we see the possibility of equi-
libria in another mode (characterized by an angle θ, and away from
the δ axis in this example). Figure 2(b) also shows this scenario, in
which the probe initially causes a symmetric deflection (in X only),
but then a (pitchfork) bifurcation occurs and deflection grows in an
asymmetric mode. Upon subsequent increase in the lateral probe
position the force traces out configuration shapes with a subsequent
return to symmetry as the system enters its fully snapped-through
configuration. In this way, we monitor (probe), the force-deflection
relation at different axial loading levels with a specific focus on
where the force drops to zero. For example, at force level P2, the
structure is more buckled with correspondingly greater deflection.
We assume this situation is entirely elastic, i.e., very slender struc-
tures, but by no means path-independent, since conducting a reverse
sweep would result in an eventual return to the initial equilibrium
configuration but with the possibility of hysteresis.
The extent of the buckled configuration is broadly related to the

lateral force required to deflect the panel into a given shape. That
is, we elastically bend a panel from an initially flat shape and then
clamp it at the edges to maintain a deflected configuration that we
refer to as “buckled.” In an experimental context, clamping in a
deflected configuration is easier to accomplish than maintaining a
fixed axial load, including thermal loading, say [25]. That is, the
panel under initially loose boundary conditions is pushed with a
lateral side-force and then clamped at the perimeter to stay in that con-
figuration. The greater the initial lateral force, the greater the initial
deflected configuration. Some approximate analysis relevant to the
initial shapes can be found in the Appendix. For a mildly buckled
(almost flat) structure, the probing would result in symmetric snap-
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Fig. 2 (a) A typical example of nominally symmetric buckling (a super-critical pitchfork bifurcation), producing co-existing post-
critical non-trivial equilibria and (b) typical (probing) equilibrium paths with the appearance of a second (asymmetric)
degree-of-freedom as buckling progresses
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through, sometimes termed a fold, and characterized by a single
mode, but in general, the complexity increases with nonlinearity.

2 The Specific Panels
We shall focus on two panels, both made of 0.508mm thick alu-

minum (2024-T4):

• Panel 1: Clamped-free (on opposite edges), aspect ratio a/b=
228.6mm/127 mm= 1.8.

• Panel 2: Fully clamped (on all four sides), aspect ratio a/b=
228.6mm/177.8 mm= 1.286.

These are shown schematically in Fig. 3.
Both panels are relatively slender with a/d≈ 400 (d is the thick-

ness) and relatively easily pushed into a deformed shape (elasti-
cally), with δ (later to be identified with Y), typically on the order
of a few millimeters.
It is interesting to note the relation between mid-length lateral, δ,

and axial deflection, ϵ, (assuming inextensibility). For a mildly
buckled column, it can be shown that the relation between these
two is given by ΔL = ϵ = −1/2

!L
0(dy/dx)

2dx and given boundary
conditions fixed against lateral deflection and rotation, this leads
to δ/L ≈ (2/π)

""""
ϵ/L

√
. Thus, it only takes a relatively small axial

deflection to cause the buckling relevant to the current study. In
any case, a central lateral point load is applied to the panels with
relaxed (in-plane) boundary conditions and then clamped in
place. Such a state then defines an initial “free” equilibrium config-
uration, i.e., one of the continuous black lines in Fig. 2, about
which probing is initiated. The initial buckled shape could have
just as easily been obtained in the opposite direction. However,
this alternative equilibrium configuration (close to a mirror
image) is still present, separated from the initial equilibrium config-
uration by unstable configuration(s). Probing causes the system to
pass through (interrogate) the potential energy landscape, and it is

the monitoring of the probing force and corresponding panel
deflected shape, and what this tells us, that is the primary focus
of this paper.

3 Experiment Setup
The two panel geometries were setup in a rigid frame in the lab,

as shown in Fig. 4. The panels were first loosely installed in the
frame and then each panel was laterally deflected to varying
extents (governed by the approximate linear behavior described in
the Appendix), clamped uniformly around the perimeter to a
pre-determined and consistent torque of 81Nm, and rigidly attached
to the stiff loading frame.
The digital image correlation (DIC) system was used to measure

the full-field initial (buckled) shape and its snapped-through
configuration.
The linear displacement controller was then incremented to push

the load cell (via a conical steel tip) onto the center of the panel.
Snap-shots of the deflected shape were taken at small increments
of the corresponding load. Small, powerful magnets, (cylindrical
and conical rare-earth magnets of about 12mm in diameter) suffi-
ciently strong to maintain contact between the panel and the tip
of the load cell were used on the backside of the panel (opposite
to the load cell tip), allowing the load cell to pull-back on the
panel and record negative load values (see Fig. 3(d )). An alternative
to this could involve either attaching the load cell (stinger) to the
panel, or applying a load cell to both sides, however, both of
these approaches had their practical drawbacks. Even for the least
buckled shape, it was apparent that some asymmetric behavior
occurred. Whenever this occurred, the panel was manually
pushed through to the mirror-image asymmetric shape, and data
recorded as the load cell moved forward and backward, and under
further large perturbations in order to explore the configuration
space. The choice of magnets was based on trial and error, with a
variety of magnet shapes, e.g., a “bullet”-shaped tip was used to
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Fig. 3 The two panel geometries under consideration, (a) Panel 1, (b) Panel 2, (c) a typical deflection shape. The asymmetry about
the center is based on (YA−YC)/(XA−XC) or (YD−YE)/(ZD−ZE) for asymmetry in the X- and Z-directions, respectively, (d) detail of the
force probe application.
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Fig. 4 Overall views of the experimental setup, showing (a) the digital force gage mounted on a linear bearing dis-
placement control, (b) the speckled panel, and (c) the DIC cameras
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reduce any constraint on rotation at the probing point, or
“flat-faced’-shaped magnets used to constrain rotation in order to
explore (unstable) symmetric equilibrium paths although this was
only achieved for the smallest buckled configuration due to the
much higher strain energy associated with those paths. For these
panels with greater initial deflection, the equilibrium path followed
the asymmetric one denoted in Fig. 2(b) (see pitchfork bifurcation).
The panels were speckled with a randomized black/white pattern,

based on previous studies. Full-field deflection shapes at every level
of probing were measured using the cameras shown in Fig. 4(c)—a
quasi-static 3D-DIC system composed of two Allied 6MP
(2752 pixels× 2200 pixels) CCD cameras. A calibration target
was used to determine a calibration deviation of 0.021 pixels or
0.0023mm. Images were individually triggered with a shutter
speed of 1/15 s. Deflections in 3D at each deformed state were com-
puted with the commercial digital image correlation software
ARAMIS and post-processing using MATLAB.

4 Experimental Results
4.1 Panel 1: The Clamped-Free Panel. The first step in the

experimental procedure is to deflect the panel into an elastically
deformed shape(s) with relatively loose boundary conditions, prior
to clamping. Using the approximate beam theory in the Appendix
(and bearing in mind that the boundary conditions are quite fixed,
out of plane), and assuming the panels are initially flat, if we apply
a lateral central point force, we would expect a corresponding
central lateral deflection roughly according to the linear theory in
the Appendix. The lateral load was measured with the digital load
cell. For loads ofF0= 1.8, 2.8, 5, 7.1, and 10N,wewould expect cor-
responding initial central deflections in the vicinity of YB≈ 1.0, 1.6,
3.1, 4.0, and 5.7mm, based on the linear theoryF0= 1.76YB from the
Appendix, i.e., the linear lateral stiffness is E d3/(0.1 a2)= 1.76
N/mm. These approximate values were used in order to provide a
broad spread of “buckled-shapes” to be probed, i.e., both F0, and P
(in the introduction) govern the degree of initial deformation,
although they then play no further role in the study. It is also likely
that the nonlinearmembrane effectwould start to influence (increase)
the stiffness for these relatively large deformations.
Figure 5 shows a summary of the experimental data for panel 1

under various degrees of initial buckled shapes. Here, although
“F” is still a lateral, central point load, it is now designated as a
measure of the probe load applied to the already deformed shape
(in the opposite direction to the original F0). The deflection, YB,
is measured at the geometric center of the panel, and this has
been shifted in each case so that the origin corresponds to the nom-
inally flat (unloaded) configuration.

Part (b) shows a plot of the maximum load (at which a snap insta-
bility would occur under conditions of force-loading). Clearly, the
greater the initial extent of buckling, the greater the lateral force
needed to push the system to snap-through, and this relation is
nearly linear. In this plot the deflection is measured from the flat
panel, which under the buckled condition is highly unstable. Inter-
estingly, as a function of deflection measured from the buckled state
itself, the additional deflection prior to buckling is somewhat inde-
pendent of the degree of buckling. As will be seen a little later,
the snap-buckling is initiated by asymmetric bifurcation where the
deflection is characterized by a marked angular component. The
slight, but inevitable, asymmetry in the unloaded panel results in
the slightly different buckling loads when loading from each side.
From the F= 0 intercept of the data in Fig. 5, we see that the

initial buckled amplitudes are relatively close to the values pre-
dicted by linear theory (discussed in the Appendix), especially
given the imprecise theory and boundary conditions (prior to clamp-
ing). Initially, the panels are relatively stiff, but then a pitchfork
bifurcation is encountered and the load starts to (suddenly) decline.
The sudden change in the vicinity of the maximum load is an arti-
fact of projection. That is, at the bifurcation, the panel starts to
deform asymmetrically (out of the plane of the figure). However,
since the full-field is measured with DIC, we can approximate the
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Fig. 5 (a) Probe force versus displacement at the plate center for various degrees of initial deformation and (b)
maximum load carrying capacity (snap under force control) versus corresponding deflection (measured from flat).
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between loading paths.
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central angle (and hence asymmetry) by using the deflection of the
quarter-points YA and YC, say, with their locations shown in Fig. 3.
Plotting the difference between these two deflections YA− YC

against YB gives the results shown in Fig. 6. The force axis is into
the page, with initial data in this direction as the center of the
panel deflects symmetrically at first (with YA− YC≈ 0). After a
range of asymmetric deformation the behavior returns to a sym-
metric shape as the probe pushes through to the remote free equilib-
rium, and beyond. It is interesting to note that there is a small jump
in the response as the system snaps back to the symmetric response,
and this may be partly attributed to any small off-center aspect to the
probe, and an inevitable bias in the initial symmetry of the equilib-
ria. We also note that for the panel under the mildest buckled con-
dition, the magnets attaching the load cell to the panel were
sufficiently strong (relative to the probe loading) that it was possible
to follow the symmetric path (which would ordinarily be unstable)
along its length by suppressing the angle at the center. Data were not
acquired for the larger buckled configurations under “pulling” con-
ditions due to the limited strength of the magnet.
For a more complete picture, we plot both the symmetric and

asymmetric deflections versus lateral load in Fig. 7.
This provides a real-data version of the schematic behavior

shown in Fig. 2.

4.1.1 Panel Shapes Under Load. As mentioned, the DIC
system provides a powerful full-field, non-contacting tool for mea-
suring the complete deflected shape. We provide samples of the
typical deflection shapes here, and corresponding to the probing
of the lowest initial buckled state as shown in an expanded view
in Fig. 8(a).
Figures 8(b) and 8(c) show examples of the two forms that dom-

inate the behavior, plus an additional shape that was possible
(part d). They can be identified with specific points in the load-
deflection space by the symbols as indicated in the key. In part
(b), we observe a symmetrical shape corresponding to the initial
equilibrium configuration, and representative of the deformed
shape under small increasing probe loading, i.e., the “natural”
loading path. Part (c) shows the asymmetrical shape resulting
from a bifurcation and can be thought of as a second mode-type
shape (with a significant angle near the panel center). Part (d)
shows a deformed shape in which the asymmetry is in the vertical
orientation. In each, we might anticipate a corresponding “mirror-
image” shape. For example, the shape in part (b) can be thought
of as buckled-in, with a remote snapped-through buckled-out
shape present. As mentioned earlier, these boundary conditions
lead to a panel that is not significantly different from a beam or
shallow arch, with the two shapes shown in Figs. 8(b) and 8(c) dom-
inating behavior.

4.2 Panel 2: A Clamped-Clamped Panel. This section
describes some probing experiments conducted on a thin panel,
clamped on all four sides. Since the same support frame used in
the previous section was re-used, the aspect ratio became 9:7
(it was 9:5 for panel 1), with essentially the same procedure fol-
lowed, i.e., deflecting the panel to various extents prior to clamping
and then investigating the possible configuration under an applied
constraint at the geometric center of the panel.
In this section, we subject the panel to three different levels of

deflection prior to clamping (buckling extent). Given the increased
complexity of possible behavior, we start by listing the typical
shapes to be encountered, and consider each buckled panel sepa-
rately. Again the deflection is shifted such that the origin corre-
sponds to the flat panel. Shown in Fig. 9 are representative
shapes observed under central point loading.

4.2.1 The Mildly-Buckled Case. Initially, the panel was placed
loosely in the support frame and then deformed prior to clamping,
such that the central lateral deflection, and its snapped through
mirror-image, were in the range 0.80–0.83mm, i.e., about one
and a half the panel thickness (0.508mm). The centrally loaded
probe (the load cell) was again used to explore possible configura-
tions under a displacement constraint at the center of the panel, as
shown in Fig. 10(a). For this case, the panel transitioned from the
positive symmetrical buckled shape 1 (shown in Fig. 9(b)) to the
negative symmetrical shape 1 through the asymmetrical shape 2
(Fig. 9(c)). At the second zero crossing in the force-deflection
curve shown in Fig. 10, only a single branch of the asymmetrical
shape 2 was found.
This mildly-buckled case is closest to panel 1 and confirms the

dominance of the first two shapes (1 and 2).

4.2.2 The Moderately Buckled Case. The panel was then loos-
ened at the boundary, again elastically deformed (but to a greater
extent) and re-clamped, with a “buckled” amplitude(s) of about
1.1mm or roughly twice the panel thickness. The force-deflection
curve, Fig. 11(a), is color coded to show the presence of two
curves: blue (dark grey) corresponds to the primary buckling
branch including a transition from the symmetrical shape 1 to the
asymmetrical shape 2 and red (light grey) corresponds to a jump
to the asymmetrical shape 3. For visual clarity, in this plot (and sub-
sequently), the data is projected onto the buckled shapes: q=Φz,
where Φm×n is a matrix of m buckled shapes (with F= 0), and
zn×1 is a vector of measured deformation at n points, with Φ
scaled to unity (giving units of millimeters). There are four distinct
regions shown in Fig. 11(b) and emphasized with marker type:
circles correspond to the positive primary buckling branch,
squares to the negative, triangles to the asymmetrical shape 3, and
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Fig. 7 A 3D view of the load deflection characteristics for the clamped-free panel under various degrees
of initial deformation
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inverted triangles to the asymmetrical shape 3 inverted along the Z
center-line of the panel. In this case, we have superimposed some of
the data from the mirror-image responses. A number of equilibrium
paths can be followed, and these paths may include discrete jumps,
and the application of large perturbations can be used to cause a
transition between them. All branches were reached multiple
times throughout testing, leading to the conclusion that this is a
product of buckling level and not just the experimental setup. The
convoluted nature of the paths illustrate that under nominally
fixed (force) conditions, the panel may exhibit a variety of
co-existing stable equilibrium shapes.

4.2.3 A More Heavily Buckled Case. Finally, the panel was
subject to a relatively high lateral force prior to clamping. The
“buckled” amplitude was about 1.72mm or about three times the
panel thickness.
In this case, and not dissimilar to a deep arch, the force-deflection

behavior is more complicated. Figure 12(a) shows the force-
deflection projected onto the initial shape (q1). After the initially
growing symmetric shape the system undergoes a number of
branch switches, some of which involve sudden jumps. This is
also the case for a reversal of the loading. The data points in
Fig. 12 thus present a necessarily severe projection from a relatively

higher-order space. This space is spanned by the shapes shown in
Fig. 9 including some mirror images. For discussion, the higher
order buckling shapes are plotted versus the first buckled shape in
Figs. 12(b)–12(d ). The plots are color coded as follows: blue
(shape 1), red (shape 2), magenta (shape 3), and light blue (shape
4). The force deflection (Fig. 12(a)) curve shows the transition
from positive shape 1 to negative shape 1 through several buckling
transitions. A closer examination of Fig. 12(b) clearly shows an iso-
lated location of shape 2 through this transition. The deflection path
following shape 3 is the most complex as seen in all plots in Fig. 12.
In each plot, groupings of shape 3 deflections represent coupling
between shape 3 and all other shapes. Finally, the deflections corre-
sponding to shape 4 are shown as continuations of shape 1 in
Fig. 12(d ). The complexity of the possible stable equilibrium
states under lateral force probing for this level of buckling is
striking.

5 Dynamic Response
This paper has focused on the mechanics of a classical bi-stable

system, in which equilibrium configurations could be accessed by
probing with a quasi-static force, in this case at the center of the
panel. Probing can also be accomplished by pushing (or pulling)
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at any location on the panel. Alternatively, if the panel is subject to
dynamic excitation, the forces generated might be sufficient to
cause the panel to move (dynamically) through an equilibrium land-
scape that is dominated by various stable (and unstable) equilibrium
configurations.

To give a specific example, we return to a mildly buckled case,
in which the clamped-free panel is subject to a lateral load of
approximately 2.5N and then clamped in place. That is, broadly
corresponding to the magenta static results in Fig. 6. The complete
testing system (the panel and its support structure) was then placed
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on a large-scale shaker and subject to a harmonic excitation of magnitude 2.45 g at a frequency of 100Hz. Dynamic DIC
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(sampling at a frame rate of 5000Hz) was then used to measure the
panel motion and plotted in terms of the first two buckled modes,
the trajectories are shown superimposed on the static probing
results in Fig. 13.
The trajectories are not surprisingly heavily influenced by the two

co-existing stable equilibria (the initial buckled shape and its
inverted near mirror-image, with central amplitude of a little less
than 2mm), but we also see the influence of the asymmetric paths
taken by the trajectories in the transitions—despite the fact that
the static load was applied as a point load at the center and the effec-
tive inertial loading is distributed. The preferred paths (both stati-
cally and dynamically) can be viewed as energetically favorable
valleys in a potential energy landscape.
A final result from dynamic testing is shown in Fig. 14, in terms

of typical times series, in which the data from three discrete loca-
tions along the panel centerline have been superimposed. Specifi-
cally, the blue data (Yframe) were the motion of the frame, the red
data were taken from the quarter point YA, and the green data corre-
spond to the lateral motion at the center of the plate YB, snapping
erratically between the underlying stable equilibria.
Here, the system is subject to a ramped loading, i.e., the excita-

tion is still single frequency but now the magnitude is slowly
ramped from 1 g to 4 g. After a very brief transient (starting from
the shaker being switched on), we initially observe a gradually

increasing, predominantly harmonic, response. When the magni-
tude reaches approximately 2 g (after about 11 s), the motion
starts to exhibit erratic, nonlinear behavior, quickly followed by
snap-through (after about 13 s), bringing with it serious implications
for fatigue. The form of these oscillations are familiar from the
study of chaotic behavior in other similarly bi-stable systems [5,26].
If we take the final 15 s of the time series from Fig. 14 for YB, we

observe persistent snap-through. This is shown in Fig. 15(a), and
although this is mildly non-stationary due to the slow ramp in
force magnitude, the behavior exhibits the main features of chaos,
i.e., an erratic random-like response. The underlying influence of
the stable equilibria (shown as the grey/red dashed lines) is appar-
ent. Figure 15(b) shows a histogram that reflects the time the trajec-
tory spends in certain values of YB, binned into one hundred
divisions. In this way we see that the trajectory dwells (oscillates)
in the vicinity of the stable equilibria at YB≈ 0mm and YB≈ 4
mm and tends to pass relatively quickly between them. Even
though the velocity was not measured, the rate of change of position
can be studied with the use of time-lag embedding [27]. This tech-
nique involves plotting a measured variable against delayed ver-
sions of itself as a proxy for velocity. Figure 15(c) shows how
plotting the time series against itself but delayed by Δt produces
a pseudo phase projection. Since the forcing frequency is 100Hz,
and the sampling rate is 5000Hz, a delay of 10 time-steps was
chosen as a suitable value, i.e., a fifth of the forcing period, and
we obtain a useful plot of the erratic snap-through behavior that
is topologically equivalent to a conventional position-velocity
phase projection. The relatively severe snapping behavior (com-
pared with small amplitude periodic behavior) has clear implica-
tions for fatigue, and the sudden onset of this type of behavior
suggests a threshold that would be crucial to know in practice.

6 Discussion
Nonlinear structures are capable of exhibiting a variety of

co-existing equilibrium configurations under nominally fixed
(force and boundary) conditions. This is especially true in a
typical post-buckled scenario. Under the quasi-static increase in
axial loading a structure will (elastically) deflect into energetically
favorable states along an equilibrium path. Under a reversal of
loading direction, the system may, or may not, follow the original
path: hysteresis may occur. Also, the paths may not be continuous
and sudden dynamic jumps occur [28–32]. However, it is only pos-
sible to follow one path at a time. Any remote equilibrium
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configurations can typically only be accessed using large perturba-
tions or via a special loading history. Exploiting lateral probing
(using a displacement-controlled point force) is used here to identify
certain otherwise unstable equilibria, for example, when the probe
force drops to zero, and provide a more detailed summary of equi-
librium configurations. A complete picture would require multiple
force (and torque) probes [9] commensurate with the higher-order
space in which the system evolves, i.e., essentially an actuator for
every generalized coordinate. The DIC system allows a full-field
displacement description while recognizing the limited constraint
location of the probe (a point force applied at the panel center).
However, this general approach provides a window into the equilib-
rium configuration space of a nonlinear structure.

7 Conclusions
This paper described a set of experiments in which slender,

buckled rectangular panels are subject to lateral probing in the
form of a displacement-controlled central point force. Measuring
the full-field deflection of the panel, as a function of the applied
(probe) force, sheds light on possible equilibrium configurations
including “free” equilibria when the applied force drops to zero.

The central constraint then allows a deeper exploration of multiple
equilibrium paths and the transition between co-existing equilibria.
The thin panels were made of aluminum, with two sets of boundary
conditions, with the spatial complexity made clear by the use of
DIC, and are representative of components commonly used in aero-
space applications.
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Appendix: Some Approximate Analysis of the Initial
Shapes
Given the geometric similarity of panel 1 to a wide beam, it

seems reasonable to appeal to small deflection beam theory in
order to provide a rough guide to lateral deflection resulting from
a lateral point load, i.e., δ=F0 L3/(192 EI), in which δ is the
central lateral deflection (and ≡YB), F0 is the lateral load, L≡ a is
the longitudinal span (in the clamped-to-clamped direction), E is
Young’s modulus, I= bd3/12 is the second moment of area for a
rectangular cross-section of width b and thickness d. However,
since this is not a strictly 1D structural component, it seems reason-
able (and suggested in Ref. [33]) to include a correction associated
with anti-clastic bending and replace E by E/(1− ν2), where ν is the
Poisson’s ratio (taken as 0.33), and thus δ= 0.0557F0a

3/(Ebd3), and
for a/b= 1.8, we get δ= 0.1F0a

2/Ed3.
Prior to clamping, in addition to in-plane sliding, the (loose)

boundary conditions would allow a little rotation along the edges,
and the central deflection under a central point load with simply sup-
ported boundary conditions is given by F0 L

3/(48EI), i.e., a quarter
as stiff, all other things being equal. We might therefore expect the
post-buckled central deflection to depend on the lateral push load
somewhere between these two values, but closer to the former. Fur-
thermore, the in-plane boundary conditions are assumed to provide
no resistance (i.e., sliders, until after clamping has taken place).
These relations are used as a guide in order to provide a reasonable
proxy for the extent of the post-buckling, with actual deflections
measured accurately using DIC.
In the experiments described in this paper, the buckled central

deflection was on the order of a few millimeters, and hence,
δc/d ≈ 1→ 10, which is not necessarily considered small. In the
cases with larger deflection, it is more appropriate to estimate a
lateral force-deflection relation based on large deflection theory
[16]. For the purposes of this study, we simply state that this is a
hardening spring effect, and despite the allowance for in-plane
edge movement, it means that the approximate forces used to
cause an initial buckle result in somewhat smaller deflections than
the linear theory suggests.
For panel 2 (clamped on all four sides), we can also appeal to

analysis but this time the boundary conditions require the use of
(thin, small deflection) plate theory incorporating all four boundary
conditions and the aspect ratio of the panel. In this case, the central
lateral deflection is given in Ref. [16] as δ= 0.0067F0a

2/D (specifi-
cally for a/b= 1.286), and since D=Ed3/12(1− ν2), we get δ=
0.0716 F0a

2/(Ed3). We see that clamping the two free sides
results in less deflection, and thus an increase in linear stiffness as
compared to panel 1, although they have different aspect ratios.
For square panels, the additional clamped edges provide a
roughly 36% increase in stiffness over the wide-beam panel with
a central point load, based on plate theory and confirmed by FEA
(using ABAQUS). The same comments mentioned above about
large deflections also apply to this case.
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