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Abstract— This paper proposes an MPC-based controller to
efficiently execute multiple hierarchical tasks for underactuated
and constrained robotic systems. Existing task-space controllers
or whole-body controllers solve instantaneous optimization
problems given task trajectories and the robot plant dynamics.
However, the task-space control method we propose here relies
on the prediction of future state trajectories and the correspond-
ing costs-to-go terms over a finite time-horizon for computing
control commands. We employ acceleration energy error as the
performance index for the optimization problem and extend it
over the finite-time horizon of our MPC. Our approach em-
ploys quadratically constrained quadratic programming, which
includes quadratic constraints to handle multiple hierarchical
tasks, and is computationally more efficient than nonlinear
MPC-based approaches that rely on nonlinear programming.
We validate our approach using numerical simulations of a new
type of robot manipulator system, which contains underactu-
ated and constrained mechanical structures.

I. INTRODUCTION

Highly articulated robots are increasingly employed and

rely on hierarchical task execution to operate in dynamic

environments. The Operational Space Control (OSC) method

considers manipulators’ end-effector dynamics, virtually de-

coupling closed-loop task-dynamics in the end-effector’s op-

erational space [1]. In particular, OSC computes dynamically

consistent torque commands needed for robots to effectively

track motion and force trajectories. A detailed analysis of

OSC for constrained and underactuated robotic systems is

presented in [2]. In recent times, the OSC method has

been extended to the Whole Body Control (WBC) method

which incorporates floating base robots [3], multi-contact,

and dynamically consistent constraints, task and posture

primitives [4]. WBC has been broadly applied to bipedal

humanoid robots [5]–[8] and mobile humanoid robots [9].

In the case of bipedal humanoids, the WBC method has

been employed to achieve multi-contact balance behaviors

[5], [10] and various complex motions such as dynamically

walking, jumping, climbing up a ladder [11], and hand

manipulation [12]. Several other relevant whole-body control

techniques have been proposed such as [13], which relies on

the manipulation of contact forces on the ground and multi-

contact points.
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Although OSC and WBC are capable of computing control

commands fast and establishing a real-time feedback loop,

they are both based on instantaneous optimization, e.g., least-

square error minimization. For this reason, the control com-

mand is only optimal locally at each time instance. Model

Predictive Control (MPC) offers an alternative in which

an optimal control problem can be recursively solved over

a finite-time horizon [14], [15]. MPC has been employed

successfully for the control of robotic manipulators [16],

[17]. Nonlinear MPC (NMPC) is employed for the control of

manipulators in the presence of external disturbances [18],

for image-based visual servoing with visibility constraints

[19], and as a robust control strategy [20]. Also, MPC solves

practical problems in robotics such as collision avoidance

[21] or singularity avoidance [22] over a finite time horizon.

In addition, whole body MPC is achieved using Sequential

Linear Quadratic (SLQ) programming for mobile manipula-

tors [23]. In the case of locomotion for quadruped robots,

MPC has been employed to find contact forces that allow a

lumped mass model of the robot to track desired trajectories

obtained via WBC [24].

Two significant issues arise when trying to replace the

conventional OSC or WBC with MPC: 1) Dealing with

the whole-body nonlinear dynamics, and 2) Dealing with

the task hierarchy commonly imposed in highly articulated

robots performing multiple tasks. Most robotic systems are

nonlinear, constrained, and sometimes underactuated. Of-

ten, simplified models such as a linearized CoM model

of a walking robot are employed to approximate contact

forces during locomotion and used in MPC structures [24].

However, such methods employ an additional WBC step to

generate actuator commands. In our approach, we remove

the need to rely on simplified models for control and directly

linearize complex multi-body models of robotic systems to

reduce the computation time of MPC [25]. The main reason

why robots have been employing OSC and WBC methods

is that they can be simply executed using a single Quadratic

Programming (QP) optimization step, which is substantially

faster than employing MPC or NMPC. Another reason why

OSC and WBC have become popular is because they can

compute control commands achieving multiple task goals

and organized as a hierarchy, for instance using projection-

based methods [26] or Hierarchical QP (HQP) [27] at each

time instance. To achieve better control performance over

a finite-time horizon, we propose to transform OSC and

WBC into a convex MPC while fulfilling multiple task goals

and constraints as required for control of complex robotic

systems.



Next, we summarize the main contributions of our work.

We formulate a new MPC as a transformation of WBC

and OSC for effective control of underactuated and con-

strained robots. To the best of our knowledge, this is the

first study to propose an MPC-based extension of WBC

for the execution of hierarchical tasks. We linearize the

nonlinear robot dynamics with respect to nominal joint space

trajectories obtained via Inverse Kinematics (IK) or Inverse

Dynamics (ID) operations applied to previously defined task

trajectories. The running cost for the proposed MPC is

constructed to mimic the optimization cost associated with

WBC and OSC. Furthermore, we classify the task hierarchy

as being either a weak hierarchy or a strong hierarchy

each associated with a corresponding quadratic inequality

constraint. Weak hierarchy implies that the tracking error of

higher prioritized task must be equal or smaller than that

of lower prioritized task. Strong hierarchy of multiple tasks

impose the constraints that the higher prioritized task error

has to be strictly smaller than that of lower prioritized task. In

our MPC-based approach, the cost and constraint functions

associated with the execution of the hierarchical tasks are

convex quadratic functions and the system dynamics are

linearized as previously mentioned; thus, each finite-horizon

optimal control problem can be associated with a Quadrati-

cally Constrained Quadratic Program (QCQP), which can be

solved using convex optimization tools.

For validation, we apply the proposed convex MPC-based

approach to Scorpio, a unique robotic manipulator equipped

with 7 moving DOF, where two of them are implemented

using mechanical parallelograms corresponding to movement

elevations. Although the robotic manipulator is able to handle

high-payload objects effectively due to the distinctive mech-

anisms, the control problem of the robotic system becomes

more complicated. More specifically, in each parallelogram,

there exist one driving joint, two passive joints, and one

kinematic constraint. We validate the proposed QCQP-based

MPC by demonstrating numerical simulations of this robot

Scorpio, while the results are compared with the behavior

resulting from using a simpler WBC controller.

The remainder of this paper is organized as follows. We

briefly review WBC for underactuated and constrained robots

in Section II. In Section III, we present the proposed MPC-

based approach and explain its implementation via convex

optimization tools. In Section IV, we apply the proposed

methodology to Scorpio, which is a unique underactuated

and constrained manipulator. Numerical simulations are also

provided to show the effectiveness of the proposed control

method.

II. PRELIMINARIES

A. Notation

We represent the sets of n dimensional real vectors and

m × n matrices by R
n and R

m×n, respectively. S
n
+ and

S
n
++ denote the sets of n × n positive semi-definite and

positive definite matrices, respectively. Given n real numbers

a1, · · · , an, diag(a1, · · · , an) represents the n × n matrix

whose diagonal terms are a1, · · · , an. bdiag(A1, · · · ,An)

denotes the block diagonal matrix constructed by matrices

A1, · · · ,An of compatible dimensions. A† denotes the

Moore-Penrose pseudo inverse of A, which is a real matrix.

In addition, we express a discretized interval of [a, b] as

[a, b]d where a and b are integers with a ≤ b. Finally, 1n ∈
R

n denotes the n-dimensional vector whose components are

all equal to 1.

B. Whole Body Controller

The rigid body dynamics equation for n DOF robots

actuated by m joints (m ≤ n) is expressed as follows:

M(q)q̈ + b (q̇, q) + J>
c (q)Fc = U>Γ (1)

where q ∈ R
n, M(q) ∈ R

n×n, b(q, q̇) ∈ R
n, Jc(q) ∈

R
nc×n, Fc ∈ R

nc , U ∈ R
m×n, and Γ ∈ R

m de-

note the joint position vector, mass/inertia matrix, sum of

Coriolis/Centrifugal and gravity forces, constraint Jacobian,

constraint force, selection matrix, and torque command,

respectively. For the simple notations, let us consider M,

b, and Jc to be equal to M(q), b(q̇, q), and Jc(q). The

constraints that we consider are xc = fc(q) = c where

fc : R
n 7→ SE(3) and c is a constant vector in SE(3), then,

ẋc =
∂fc

∂q
q̇ = Jcq̇ = 0,

ẍc = J̇cq̇ + Jcq̈ = 0.

(2)

To incorporate these constraints in the equation of motion,

the null-space projection matrix of the constraint Jacobian

is defined as Nc = I − JcJc ∈ R
n×n where Jc =

M−1J>
c (JcM

−1J>
c )

†. The constraint force Fc can be ob-

tained as follows:

Fc = J
>

c (U
>Γa − b) +ΛcJ̇cq̇ (3)

where Λc = (JcM
−1J>

c )
†. After substituting equation (3)

into (1), we obtain the constrained dynamics equation of a

robot as follows:

Mq̈ + bc = N>
c U

>Γ. (4)

where bc = N>
c b + J>

c ΛcJ̇cq̇. The dynamics equation in

the constrained task space could be formulated by right

multiplying the above equation by J1M
−1, where J1 denotes

the task Jacobian for x1. The operational space dynamics

then becomes

ẍ1 − J̇1|cq̇ + J1M
−1bc = J1|cM

−1U>Γ (5)

where ẍ1 denotes the acceleration for the task x1 in the

constrained task space and J1|c = J1Nc. Given q, q̇ and

the desired task acceleration, ẍd1, a constrained optimization

problem is formulated to obtain the torque command as

follows:

min
Γ

(MΓ− b)>Λ1|UNc
(MΓ− b) (6)

where M = J1|cM
−1U>, b = ẍd1−J̇1|cq̇+J1|cM

−1bc, and

Φ−1 = UM−1 (UNc)
>

. The weighting matrix is computed



as follows:

Λ−1
1|UNc

=MΦM>

=J1|cM
−1U>

(
UM−1N>

c U
>
)†

UM−1J>
1|c

=J1UNcUNcM
−1J>

1

(7)

where UNc := M−1N>
c U

>
(
UNcM

−1N>
c U

>
)†

and

Nc = N2
c is an idempotent matrix. When UNcUNc = Nc,

it is clear that Λ−1
1|UNc

= J1NcM
−1J>

1 = Λ−1
1|c .

When there exists many solutions for Γ to achieve MΓ =
b?, WBC minimizes the weighted torque norm fulfilling the

optimization

min
Γ

Γ>Φ−1Γ

s.t. MΓ = b?.
(8)

When b? = b and UNcUNc = Nc, the optimal solution for

the above optimization problem (8) can be explicitly written

as

Γ? = ΦM>(MΦM>)−1b = ΦM>Λ1|UNc
b

= UNc
>
J>
1|cΛ1|UNc

b = UNc
>
J>
1|cΛ1|cb

(9)

because NcM
−1 = M−1N>

c . This control command for

the task x1 is identical to the WBC command proposed in

[5]. What we’ve newly done above is to formalize the WBC

controller as an optimization problem. One advantage of this

optimization-form WBC is the ability to incorporate equal-

ity or inequality constraints embedded in the optimization

problem. When we want to consider more constraints, it is

possible to add explicit constrains directly.

C. Multiple Tasks with Hierarchies

We consider multiple hierarchical tasks using WBC.

Definition 1. Let us consider nt hierarchical tasks,

x1, · · · , xnt
. We can express a task hierarchy among the

given tasks as x1 � · · · � xnt
where xa � xb represents

that xa has higher priority than xb.

The basic approach of WBC for multiple tasks is to

employ lexicographical optimization. Given nt hierarchical

tasks, the solution to the hierarchical WBC problem leads to

the control command:

Γ? =UNc
>
N>

c

nt∑

k=1

Γk = UNc
>
N>

c

nt∑

k=1

J>
prec(k)Fk,

Fk =(Jprec(k)|cM
−1U>UNc

>
J>
prec(k)|c)

−1bk (10)

=Λprec(k)|cbk (when UNcUNc = Nc),

bk =ẍdk − J̇prec(k)|cq̇ + Jprec(k)|cM
−1b

where Jprec(k) = JkNk−1, Nk = Nk−1 − Jprec(k)Jprec(k),

N0 = I, and Jprec(k)|c = Jprec(k)Nc. We note that the tasks

are controllable using actuated joints when UNcUNc = Nc,

because

Mq̈ +N>
c b+ J>

c ΛcJ̇cq̇ = (UNc)
>Γ?

= N>
c

nt∑

k=1

J>
prec(k)Fk.

(11)

The task space dynamics for the k-th prioritized task xk are

obtained by left-multiplying by JkM
−1 as follows:

ẍk − J̇k|cq̇ + JkM
−1(N>

c b+ J>
c ΛcJ̇cq̇)

= JkM
−1N>

c

k∑

j=1

J>
prec(j)F j

(12)

where JkM
−1N>

c J
>
prec(j)F j = 0 for all j > k. Because

JkM
−1N>

c J
>
prec(j)F j = JkM

−1N>
c N

>
j−1J

>
j F j

= JkNj−1NcM
−1J>

j F j = 0

where JkNj−1 = 0 as shown in Appendix A in [26]. Based

on the previous recursive null space projections and the

above decoupled task space dynamics, the desired hierar-

chical tasks are effectively controlled in order of priority.

Although this WBC projection-based method is straightfor-

ward, it does not allow to incorporate inequality constraints

and it is only instantaneously optimal.

III. THE PROPOSED MPC

We propose to replace WBC with MPC to execute multiple

hierarchical tasks more efficiently. Before constructing an

MPC, we specify the state space model of the robot dynamics

from (1) as follows:

ẋ(t) = f(x(t)) + g(x(t))u(t),

f(x(t)) =

[
q̇

−M−1b

]
,

g(x(t)) =

[
0n×m 0n×nc

M−1U> −M−1J>
c

] (13)

where x = [q>, q̇>]> ∈ R
nx , and u = [Γ>, F>

c ]> ∈ R
nu .

More specifically, the dimensions of the state and the input

are nx = 2n and nu = m+ nc. Given a finite-time horizon

[t0, tf ], we formulate an optimal control problem as follows:

min
x(.),u(.)

`f (x(tf )) +

∫ tf

t0

`(x(t),u(t))dt

s.t. ẋ(t) = f(x(t)) + g(x(t))u(t),

hi(x(t),u(t)) ≤ 0,

he(x(t),u(t)) = 0, x(t0) = x0

(14)

where hi and he are inequality and equality constraint

functions, respectively. `f (.) and `(.) are the cost at the

terminal state x(tf ) and the running cost, respectively. In

view of (6), the performance index for the WBC problem is

equal to:

`(.) = u
>Wuuu− 2b>Wbuu+ b>Λ1|UNc

b,

`f (x(tf )) = b>Λ1|UNc
b

(15)

where Wuu = bdiag(M>Λ1|UNc
M,Wc), Wbu =

[Λ1|UNc
M, 0], and Wc ∈ S

nc

+ denotes a weighting matrix

for the constraint force. In addition, we choose the classical

PD control law:

ẍd1(t) = Kp(x
d
1(t)− x1(t)) +Kv(ẋ

d
1(t)− ẋ1(t)) (16)



where Kp = diag(Kp1
, · · · ,Kpdim(x1)

) and Kv =
diag(Kv1

, · · · ,Kvdim(x1)
) are proportional and derivative

gain matrices, respectively. We note that Wu, Wbu, Λ1|UNc
,

and b depend on the state x. In addition, both the running

cost ` and the final cost `f are nonlinear. The state space

model of the system is also nonlinear. Therefore, we have

formulated a nonlinear optimal control problem. The rest

of this section explains the process of formulating this non-

linear optimization as a convex MPC problem in the discrete

time domain.

A. QCQP to Control Hierarchical Tasks in the Discrete

Domain

As a first step, we obtain a linearized state space model of

the robotic systems in (13). Consider the finite-time horizon

TN = [t0, tN ]. The time domain is normalized by using a

dilation coefficient σ = tN − t0 and let τ = σ−1(t − t0) ∈
[0, 1] for the unit interval. Then, we can convert the nonlinear

dynamics of the robot as

ẋτ =
dxτ

dt
=
dxτ

σdτ
= f(xτ ) + g(xτ )uτ . (17)

Note that the dynamics in (17) are expressed in the normal-

ized time domain. We now linearize these nonlinear dynam-

ics given a reference trajectory (xd
τ ,u

d
τ ). By neglecting terms

of order higher than 1, this process produces the following

approximated linear system

dxτ ≈ (Ad
τxτ +Bd

τuτ + rdτ )dτ (18)

where rdτ = σ
[
f(xd

τ ) + g(xd
τ )u

d
τ

]
−Ad

τx
d
τ −Bd

τu
d
τ , Ad

τ =
σ∇x(f(x) + g(x)u)|(xd

τ ,u
d
τ )

, and Bd
τ = σ∇u(f(x) +

g(x)u)|(xd
τ ,u

d
τ )

= σg(xd
τ ). A simple method to obtain the

discrete-time state space model is to integrate the above

differential equation:
∫ τi+∆τ

τi

dxτ =

∫ τi+∆τ

τi

(
Ad

τxτ +Bd
τuτ + rdτ

)
dτ (19)

from which we obtain the following discrete-time state space

model:

xi+1 = Ad
ixi +Bd

iui + rdi (20)

where Ad
i = Ad

τi
∆τ + I, Bd

i = Bd
τi
∆τ , and rdi = rdτi∆τ .

The concatenated state vector and control input are defined

as

X i = [x>
0 , x

>
1 , · · · ,x

>
i ]

> ∈ R
(i+1)nx ,

U i = [u>
0 , u

>
1 , · · · ,u

>
i ]

> ∈ R
(i+1)nu .

(21)

Using these vectors, we can re-write the state space model

as

xi = Aix0 +BiU i−1 +Ri1i,

Bi = [Bi−1|0, · · · , Bi−1|i−2, Bi−1|i−1],

Ri = [Ri−1|0, · · · , Ri−1|i−2, Ri−1|i−1]

(22)

where Ai =
∏i

j=0 A
d
i−j when i ≥ 1 and A0 = I.

In addition, Bi|i−β = (
∏β−1

j=0 Ad
i−j)B

d
i−β , and Ri|i−β =

(
∏β−1

j=0 Ad
i−j)r

d
i−β when β ≥ 1. Otherwise, when β = 0,

Bi|i = Bd
i and Ri|i = rdi , respectively. By concatenating the

equation (22) for all i ∈ {0, · · · , N}, the state equation can

be written as follows:

XN = Ad
x0 +BdUN−1 +Rd

N1nX
(23)

where nX = dim(X ) = (N +1)nx. Also Ad, Bd, and Rd
N

are formed by stacking the terms from i = 0 to i = N in

(22).

Definition 2. Consider nt hierarchical tasks, x1 � x2 �
· · · � xnt

. Let the position trajectories, xdk(t), be given. We

can also express the hierarchy in terms of the resulting task

tracking errors over a finite-time horizon [t0, tf ] as follows:

‖e1(t)‖
2 + ε1 ≤ · · · ≤ ‖ent

(t)‖2 + εnt

where ek(t) = xdk(t)− xk(t) for all t ∈ [t0, tf ]. In addition,

εk ≥ 0 where εk−1 ≤ εk, k ∈ {1, · · · , nt}, and ε0 = 0.

Let qi = q(ti) and q̇i = q̇(ti) where ti ∈ [t0, tN ]d. We

can specify and approximate the constraint ‖ek(qi)‖+ εk ≤
‖ek+1(qi)‖ + εk+1 where ek(qi) = xdk(ti) − ftk(qi) with

ftk : Rn 7→ R
dim(xk) being a continuous function for the

k-th task xk as follows:

‖ek(qi)‖
2 − ‖ek+1(qi)‖

2 + εk − εk+1 (24)

≈ (qdi − qi)
>
(
J>
kd
i
Jkd

i
− J>

k+1d
i
Jk+1d

i

)
(qdi − qi) + εk(k+1)

= q>i Jkd
i
q − 2q>i Jkd

i
qdi + qd>i Jkd

i
qdi + εk(k+1) ≤ 0

where Jkd
i

= J>
kd
i

Jkd
i
− J>

k+1d
i

Jk+1d
i
, Jkd

i
=

∂ftk
∂q

(qdi ),

and εk(k+1) = εk − εk+1. Now, the above approximated

constraints are convex quadratic functions. The concatenated

form of the above equations is as follows:

X>
NJ d

ki
XN +Zd

ki
XN + Ed

ki
≤ 0 (25)

where J d
ki

= bdiag(0, · · · , Ĵki
, · · · ,0) ∈ R

nX×nX , Zd
ki

=

[0, · · · , Ẑ>
ki
, · · · ,0] ∈ R

1×nX , and Ed
ki

= qd>ki
Jkd

i
qdki

+
εk(k+1). Each sub-matrix is specified as follows:

Ĵki
=

[
Jkd

i
0

0 0

]
∈ R

nx×nx ,

Ẑki
=

[
(−2qd>ki

Jkd
i
)>, 0

]>
∈ R

nx .

(26)

We consider the quadratic constraints expressed by (25) for

all k ∈ {1, · · · , nt} and i ∈ {1, · · · , N} then simply express

the entire quadratic inequality constraint as G(XN ) ≤ 0. The

case ε(k−1)k = 0 is called as weak hierarchy, which means

to allow that the tracking error of the higher prioritized task

can be equal to that of the lower prioritized task. The case,

ε(k−1)k < 0, the error norm for the (k−1)-th task ‖ek−1‖ is

strictly smaller than the k-th task error ‖ek‖, which is called

a strong hierarchy.

Thirdly, we construct a convex (quadratic) approximation

of the nonlinear performance index in (15) to make the

problem tractable. We aim to solve the nonlinear optimal

control problem in (14), which we call PQCQP (x0,TN ) as



follows:

min
XN ,UN−1

L(XN ,UN−1)

s.t. XN = Ad
x0 +BdUN−1 +Rd

N1nX
,

G(XN ) ≤ 0,

H(XN ) = 0,

x(t0) = x0

(27)

and

L(XN ,UN−1) =X>
NWxxXN +WxXN

+ U>
N−1WuuUN−1 +WuUN−1

(28)

where H : R
nX 7→ R

(N+1)nc is the linearized constraint

function in terms of the stacked state vector XN . In detail,

the kinematic constraint is approximated as follows:

fc(qi) ≈ fc(q
d
i ) + Jc(q

d
i )(qi − qdi ) = c (29)

where qdi denote the nominal joint position in the i-th

discrete time step. In turn we can express the above equality

constraint in terms of the state.

[
Jc(q

d
i ) 0

]
xi +

[
−Jc(q

d
i )q

d
i + fc(q

d
i )− c

]
= 0

(30)

We consider this linear equality constraint for all i ∈
{1, · · · , N} in the convex optimization by concatenating in

an appropriate form. In addition, Wxx, Wx, Wuu, and Wu

represent the weighting matrices, respectively. We utilize the

nominal trajectories to shape the quadratic cost by assuming

there exists feedback control gains Kp and Kv for b̌:

b̌i ≈
[
−ǨpJ̌id −ǨvJ̌id

]
︸ ︷︷ ︸

Cd
i

xi +
[
ǨpJ̌idq

d
i + Ǩvψid

]
︸ ︷︷ ︸

cd
i

where ψkd
i
=

[
ẋd>1 (ti), · · · , ẋ

d>
nt

(ti)
]>

, Ǩp = bdiag(Kp1
,

· · · ,Kpnt
), Ǩv = bdiag(Kv1

, · · · ,Kvnt
), and J̌id is the

stack of the Jacobians for all tasks such as

J̌id =




J1d
i

...

Jnt
d
i


 ∈ R

∑nt
i=1 dim(xi)×n. (31)

Then, the running and final costs can be approximated as

˜̀(ti) = u
>
i W

d
uui

ui + x
>
i W

d
xxi

xi +Wd
ui
ui +Wd

xi
xi + C1,

˜̀
f (x(tN )) = x

>
NWd

xxN
xN +Wd

xN
xN + C2

where

Wd
uui

=Wuu|(xd
i
),

Wd
xxi

=Cd>
i Λǐ|UNc

Cd
i |(xd

i
),

Wd
ui

=− 2b̌>
i Wbu|(xd

i
),

Wd
xi

=2cd>i Λǐ|UNc
Cd

i |(xd
i
)

(32)

Λǐ|UNc
is the task inertia matrix computed by using the

stacked Jacobian J̌id . C1 and C2 is the sum of the remaining

terms in the running and terminal costs, which are dropped in

the quadratic approximation of the latter. The approximated

running cost can be stacked for the augmented vectors XN

and UN−1 such that

Wuu =bdiag(Wd
uu0

, · · · ,Wd
uuN−1

),

Wxx =bdiag(Wd
xx0

, · · · ,Wd
xxN

),

Wu =[Wd
u0
, · · · ,Wd

uN−1
],

Wx =[Wd
x0
, · · · ,Wd

xN
].

(33)

Finally, the formulated MPC problem in (27) becomes a

QCQP by approximating the performance index, the system

dynamics, and the constraints along the nominal trajectories.

The detailed process is described in Algorithm 1.

B. Nominal Trajectories from IK and ID

We assume trajectories for the hierarchical tasks, x1 �
x2 � · · · � xnt

, are given over a finite-time horizon xdk(t)
where k ∈ {1, · · · , nt} and t ∈ [t0, tf ]. We need to convert

these task trajectories into state space reference trajectories to

be employed in our MPC. In this section, we obtain nominal

trajectories in joint position and velocity space by solving the

inverse kinematics problem. Let the initial state be given as

x0 = [q>0 , q̇
>
0 ]

>. We can recursively compute the nominal

trajectories with respect to the desired task specifications.

Let us consider the discretized time domain as described in

Section III-A. We start from xdki+1
− xdki

= Jkd
i
(qdi+1 − qdi ).

We can update the desired joint velocity for nt hierarchical

tasks using the null space projection method proposed in

[26]:

Qi = J
†

1d
i

(xd1i+1
− xd1i) +

nt∑

k=2

∆qki
,

∆qki
= (Jkd

i
Pk−1d

i
)†
(
xdki+1

− xdki
− Jkd

i
∆qk−1i

)
,

Pkd
i
= Pk−1d

i
− (Jkd

i
Pk−1d

i
)†(Jkd

i
Pk−1d

i
)

(34)

where P0d
i
= I, and ∆q0 = 0. The (i+ 1)-th desired value

for the state x
d
i = [q>i , q̇

>
i ]

> is obtained as follows:

qdi+1 = qdi +Qi,

q̇di+1 = (qdi+1 − qdi )σN
−1

(35)

where i ∈ {0, · · · , N − 1}, qd0 = q0, and q̇d0 = q̇0.

Given the desired state trajectories x
d
i , WBC can be utilized

to obtain the instantaneous input reference, u
d
i to control

the hierarchical tasks as described in (10). These nominal

trajectories for the state and input are utilized to compute

the matrices Ad, Bd, Rd
N , Wxx, Wx, Wuu, and Wu in

(27).

C. The proposed convex MPC

Based on the formulated QCQP, we construct a convex

MPC problem considering an Np prediction horizon, Tp|s =
[tsNe

, tsNe+Np
]d and an Ne execution horizon, Te|s =

[tsNe
, t(s+1)Ne

]d where s ∈ {0, · · · , N−1
e N−1}. Our MPC

consists of an iterative process solving the formulated QCQP

over different prediction horizons as shown in Algorithm

1. The output of this algorithm consists of the entire state

trajectory X ? and the corresponding control input U?.
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Fig. 3. Error of the wrist positioning task: the upper graph shows the
wrist positioning error in the x direction and the lower graph shows the
positioning error in the y direction.

Ne = 3, respectively. The initial configuration of the robot

is [−90◦, 0◦, 0◦, 0◦, −90◦]. We set the desired trajectories

of both tasks using a linear interpolation between the initial

and final positions. More specifically, we consider xe(t0) =
[0.0780, −0.3622], xe(tf ) = [0.1780, −0.1597], xw(t0) =
[0.0531, −0.4634], and xw(tf ) = [−0.0469, −0.5634].

C. Comparison with WBC

In this section, we compare the simulation results con-

trolled by the proposed MPC controller with those exe-

cuted by WBC as described in Section II. Fig. 2 shows

the simulation results implemented by both WBC and the

proposed MPC. Firstly, WBC instantaneously minimizes the

positioning error by considering the task hierarchy shown

(a) and (b) in Fig. 2. WBC minimizes the higher prioritized

task xw error. Sequentially, the lower prioritized task xe is

controlled by keeping the optimized task error for xw. On

the other hand, the proposed MPC considers the finite-time

prediction horizon and we do not have cascaded optimization

structures. For these reasons, the wrist positioning task xw
has a little bit larger errors than those by WBC as shown

(a) and (c) in Fig. 2. However, the proposed MPC-based

approach reduces the errors of the elbow positioning task

which has lower hierarchy as shown in (b) and (d) subfigures

of Fig. 2.

The position errors of both tasks are shown in Fig. 3 and

Fig. 4. The maximum errors of the wrist position driven

by WBC and the proposed MPC are [0.0177, 0.0375] and

[0.0208, 0.0413], respectively. For the elbow positioning

task, both control approach produce the maximum errors

[0.1310, 0.3033] and [0.0577, 0.3057] respectively. We also

compute the norm of each error to show that the defined

task hierarchy is valid in these numerical simulations. Fig.

5 shows the error norms of all tasks over the finite-time

horizon TN . The error norms for the wrist positioning task

is smaller than those for the elbow positioning task over TN .
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Fig. 4. Error of the elbow positioning task: the upper and lower graphs show
the position errors of the elbow positioning task in the x and z directions,
respectively.
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Fig. 5. Task error comparison over the time horizon TN : (a) task
error norms when applying WBC, (b) task error norms when applying the
proposed MPC, (c) accumulated task error norms over TN .

Also, we accumulated the error norms, which are 15.7235
and 11.5531, and compare them with each other in Fig. 5(c).

The proposed MPC-based control approach obtains smaller

task error and keeps the defined hierarchy over the finite-time

horizon.

V. CONCLUSION

This paper proposes a control approach for executing

multiple hierarchical tasks on underactuated and constrained

robots. To the best of our knowledge, this paper is the first

one to implement WBC to constrained and underactuated

robots executing hierarchical tasks within the framework

of (convex) MPC. Conventional WBCs and OSCs generate

instantaneously optimal (myopic) solutions which are not

optimal over longer time horizons. However, the proposed

control approach can obtain recursively optimal solutions

over finite time horizons. Another contribution of this paper

is the formulation of quadratic constraints that reflect the

hierarchy of tasks assigned to the robots. Compared to WBC,



the proposed MPC-based method reduces significantly the

sum of errors for all tasks over the full time horizon.

Our extensive numerical simulations have shown that the

computational time can be significantly reduced by lineariz-

ing the state equation and by convexifying all costs and

constraint functions. In future work, we will analyze the

computational cost of the algorithm in more detail and we

will propose ways to reduce it. Furthermore, we will validate

the proposed method through numerous (real) experiments

using real robots like Scorpio. Furthermore, we will extend

our approach for the case of robotic systems operating in

uncertain (stochastic) environments (subject to, for instance,

stochastic disturbances) by employing stochastic MPC tech-

niques.
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