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Abstract

Mosquito-borne diseases have become a significant health issue in many regions around
the world. For tropical countries, diseases such as Dengue, Zika, and Chikungunya, became
epidemic in the last decades. Health surveillance reports during this period were crucial in
providing scientific-based information to guide decision making and resources allocation to
control outbreaks. In this work, we perform data analysis of the last Chikungunya epidemics
in the city of Rio de Janeiro by applying a compartmental mathematical model. Sensitivity
analyses were performed in order to describe the contribution of each parameter to the out-
break incidence. We estimate the “basic reproduction number” for those outbreaks and
predict the potential epidemic outbreak of the Mayaro virus. We also simulated several sce-
narios with different public interventions to decrease the number of infected people. Such
scenarios should provide insights about possible strategies to control future outbreaks.

Introduction

In the last decades, Mosquito-borne diseases have become a significant health issue in many
regions around the world. Projections indicate that around 2050, half of the population will be
at risk of some arbovirus infection [1]. These arboviruses, which include diseases such as Den-
gue, Zika, and Chikungunya, are epidemic in most of the tropical countries. Besides temperature
and humidity, human migrations and sanitation also contribute to the epidemic conditions in
these places [2, 3]. For example, around 300.000 people were infected by Dengue, Zika, or Chi-
kungunya by the end of the 11™ week of 2019 in Brazil. This number represents almost three
times the reported cases in 2018 for the same period [4]. These surveillance reports over time
are essential in providing scientific-based information to guide decision making, resources allo-
cation, and interventions [5]. The usage of mathematical models has demonstrated to be a pow-
erful tool in contributing to these data analysis [6-8]. One of the most significant parameters
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extracted from these analyses is the basic reproduction number R,. R, is defined as the number
of secondary infections derived from one single infectious subject and is widely used as an epi-
demiological metric employed to describe the transmissibility of infectious agents [9].

Here we apply a compartmental mathematical model to investigate the dynamics of Chi-
kungunya outbreaks in the city of Rio de Janeiro in Brazil. The model consists of ordinary dif-
ferential equations that describe the transmission and the transition of the diseases in humans
and vectors [10, 11]. The model’s parameters were extracted from the literature or obtained
from the best fit from the data of Rio de Janeiro surveillance report for the years of 2016, 2018
and 2019 [12]. Based on these parameters, we estimate the basic reproduction number R, for
Chikungunya outbreaks in those years. We also simulate a scenario predicting if the Mayaro
virus could be a potential epidemic disease in Rio de Janeiro. Modifications in the standard
model equations were implemented to introduce different possible interventions in order to
decrease the number of infected people [13]. Those simulated interventions include actions
such as killing adult mosquitoes by fogging, decreasing mosquitoes birth rate by removing
places where the vector lays eggs, e.g., removing standing water and, decreasing the contact

Fig 1. Model diagram representation of the disease dynamics. The blocks blue and red are related to human and
mosquitoes, respectively. The parameter and variable descriptions are presented in Tables 1 and 2. The dashed lines
represent the transmission of the disease between the two groups.

https://doi.org/10.1371/journal.pone.0222900.g001
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between an infected human with mosquitoes by stimulating repellent usage. A scenario con-
taining all interventions was also performed for different intensities of those actions.

Materials and methods

In this work, we perform mathematical modeling of Chikungunya outbreaks in Rio de Janeiro
for the years 2016, 2017 and 2019 [12]. The Chikungunya virus infects humans through mos-
quitoes as the disease vector. The model adopted here is a compartmental model known as
SEIR (Susceptible, Exposed, Infected, and Recovered) [8, 10, 14]. The approaches using this
class of models have been successful in modeling epidemic related to human vector dynamics
[11, 15]. Fig 1 presents a schematic description of this modeling.

The human disease flow is presented by the blue blocks where § is the susceptible propor-
tion of humans, which become exposed to the virus, E, at a rate f, after the contact with
infectious mosquitoes Z. After the latent period Ay, the exposed humans become infectious:
either symptomatically I or asymptomatically I; the parameter ¢ determines the ratio
between the infectious states. Finally, the infected humans recover reaching the state R at
rate a.

In the case of the vectors disease flow, shown by the red blocks in Fig 1, the susceptible mos-
quitoes X become exposed Y at a rate 3, after acquiring the virus from infectious humans. A,
defines the latent period for the exposed mosquito to transition to the infectious state Z. In
this modeling, we assume that human mortality and birth rates are the same, keeping the
human population constant. For the vectors, we set the parameter y and y, as the mortality
and birth rate, respectively. The model is represented by the following set of differential equa-
tions:
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Table 1 shows the definition of each state in the model for both humans and mosquitoes.
Those states will dynamically vary during the model simulation in which the parameter I
related to the number of cases reported by the surveillance data will be the variable used in the
fitting of the model simulation.
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Table 1. Definition of the state variables used in the model for both humans and mosquitoes.
Symbol Definition

S Susceptible proportion of human population

Exposed proportion of human population

I Symptomatically infectious proportion of human population
I, Asymptomatically infectious proportion of human population
R Recovered proportion of human population

X Susceptible proportion of mosquito population

Y Exposed proportion of mosquito population

Z Infectious proportion of mosquito population

https://doi.org/10.1371/journal.pone.0222900.t001

Table 2 describes the parameters and ranges used in the model. Some data information
comes from the literature, and for the parameter which we have no description, they will be
obtained from the model best fit.

In this work we estimate the basic reproduction number R, by applying the next generation
matrix method [21, 22]. R, indicates the number of secondary infections derived from one sin-
gle infectious subject and can be described by:

R, = —p(IIT") (1)

o

Where p(K) is the spectral radius of the matrix K = I I is the transmission matrix that
contains the rates of humans to get infected by the vector and vice-versa:

0 0 0 B,
00 0 0

= (2)
0B, 0 0
00 0 0

Table 2. Description of the parameters and range used in the model simulation.

Definition Range (days)

B Proportional rate at which humans get infected Unknown

Bm Proportional rate at which mosquitoes get infected Unknown
/A Human latent period of infection 2-10 [16, 17]
1/ Mosquito latent period of infection 2-6 [18, 19]

o Rate of recovery 1-7

Uo Mosquito birth rate 0.05-0.03

U Mosquito mortality rate 0.05-0.03

¢ Asymptomatically-Symptomatically infectious ratio 0.72-0.97 [16, 20]

https://doi.org/10.1371/journal.pone.0222900.t002
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I" is the transition matrix that takes into account the transitions from being exposed to
become infectious:

-, 0O 0 0
A, o 0 0
0 0 —(u+nr,) O

0 0 0 Y

The mathematical solution of (1) gives an expression [11]:

_ [_BBM
A =) <“>

The Eq 4 has parameters in which there is no information available such as §;, and f3,,,. In
order to estimate R,, these parameters will be obtained from the best fit of the model simula-
tions using data from the surveillance reports [12].

Results and discussion

The usage of the SEIR model to investigate diseases epidemics provides a tool to quantify dif-
ferent parameters in outbreaks. The basic reproduction number R, is the most important
quantity, and it is defined as the number of secondary infections caused by an infected individ-
ual [3, 23]. It estimates the potential of an outbreak to occur in the case of R, > 1 [10, 24]. The
knowledge of R, also gives insights into the understanding of the epidemiology of a particular
disease and its spreading changes over time and geography [25].

The number of secondary infections in humans from an infected human, defined as Ry, the
type reproduction number [26], can be obtained by R, squared (Ry = R,?) [11]. The information
of Rt can be used to estimate the number of people that need to be isolated or vaccinated (Q)
to contain the epidemic using the relation Q = 1 — 1/Ry. We present the application of the
SEIR model in the data of Chikungunya in Rio de Janeiro—Brazil in different years (2016,
2018 and 2019). We also provide an estimation of the potential outbreak of Mayaro virus in
Rio de Janeiro. Some additions on the model are also proposed in a way to simulated possible
interventions in the epidemic control [13, 27].

Basic reproduction number—R,

The data which contains the weekly number of infected people of Chikungunya outbreak in
Rio de Janeiro was obtained from the surveillance report for the years 2016, 2018, and 2019,
which are publicly available [12]. The ratio between the number of reported cases and the total
population is presented in red circles Fig 2. The total number of cases reported in 2019 is
22896 until the 26" week when the data was collected. This number is almost two times higher
in comparison with 2016 and 2018 in 52 weeks, 14203 and 10700, respectively. In 2017 the
total number of cases was 1870, which will not be used in this study. Then, the SEIR model
was applied to fit the incidence data where the upper and the lower bound of the model param-
eters were set to vary in a range described in the literature. The transmissions coefficients A,
A @, B and B, values are obtained from the model best-fit since there are no values reports
in literature about these parameters for Rio de Janeiro [11]. The simulated number of cases
from the best-fit are presented as bars in Fig 2A, 2B and 2C for the years 2016, 2018, and 2019,
respectively. The least square error obtained for 2016 was of 0.0186, while for 2018 and 2019
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Fig 2. The number of infected people distribution by Chikungunya in Rio de Janeiro for 2016, 2018 and 2019, A, B, and C, respectively. The red
dots describe the informed data obtained from the surveillance report [12] per week. The bars indicate the simulation best fit distribution
compared to the reported data.

https://doi.org/10.1371/journal.pone.0222900.9002

this measure reached 0.032 and 0.331 respectively. The parameters obtained from the fitting
and used to plot Fig 2 are described in Table 3. Table 3 also shows in the last row, the estima-
tion of R, using Eq (4) for each investigated year.

All the estimated R, values for the three studied years are greater than one describing how
severe were the outbreaks in which 2019 has the highest value R’ = 1.95 compared with
R = 1.82 and R?"® = 1.38. Considering other epidemic diseases in Rio de Janeiro as Den-
gue and Zika, which are transmitted by the same vector, the parameters estimated here are
similar to other registered outbreaks studies [25, 28]. It is worthwhile to mention that these
parameters give insights from a city as a whole, which is invariant on how heterogeneous the
sanitary conditions could be at different neighborhoods [7, 25, 29, 30].

The last column in Table 3 presents the estimated parameters for Mayaro virus using the
data for the Chikungunya outbreak in 2018, which is the most recent complete data available.
The assumption is based on the similarities between these two alphavirus in which they can
also be transmitted by the same mosquito vector: Aedes aegypti [6, 31, 34-36]. The estimated
RYAYV for Mayaro presents values between 1.18 and 3.51 for the lower and upper limits. Even
the lower bound RY*"" is greater than 1, suggesting that Mayaro has the potential to be an epi-
demic disease as recent reports are signaling for different locations [37-39].

Sensitivity analysis

The usage of the SEIR model allows us to estimate the importance of each parameter in the
characterization of an outbreak by performing a parameter sensitivity analysis (Fig 3). It was
carried out a hundred thousand Monte Carlo simulations sampling around the +5% range
from the best fit value of the Chikungunya epidemic data of 2018. From these simulations, the
time-shift on the peak and the total number of infected people were obtained. Additionally,

Table 3. Best fitted parameter values in different years for Chikungunya (CHKV) in Rio de Janeiro. Estimated parameter are also presented in the last column for
Mayaro virus. The last row shows the values of the estimated R, for both Chikungunya and Mayaro.

Parameter

B
Bon
My
A

a

R,

CHKV—2016 CHKV—2018 CHKV—2019 Mayaro
0.1 0.1 0.194 0.1-0.194
0.732 0.562 0.298 0.298-0.732
0.17 0.5 0.17 -

0.17 0.181 0.17 0.17-0.33 [31, 32]
0.343 0.464 0.235 0.2-0.33 [33]
1.82 1.38 1.95 1.18-3.51

https://doi.org/10.1371/journal.pone.0222900.t003
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Fig 3. Monte Carlo simulations sensitivity analysis. A present the Spearman correlation of each parameter value with the peak shift on time
and B shows the Spearman correlation of each parameter value with the total number of infected people. The values were obtain by 100.000
Monte Carlo simulations around +5% the best fit values the 2018 outbreak.

https://doi.org/10.1371/journal.pone.0222900.9003

the Spearman correlation for each parameter with the time-shift and the total number of
infected people was calculated. [11]. In Fig 3 the transmission parameters (5, and f3,,,) in both:
peak shift and total population infected, exhibit as an important contribution to the outbreak
characterization [40]. Fig 3A shows that the rate of recovery plays a significant role in the time
scale of the epidemic. The parameter presented a negative correlation, which means that posi-
tive variations in this parameter will modify the shift by delaying the peak reaching point; the
same is observed about the mosquito birth-death rate. On the other hand, Fig 3B shows that by
decreasing the magnitude of the transmission coefficients or increasing the value of y and y
may reduce the number to total cases of infected people. These parameters modification can
be related by triggering public interventions, which will be discussed in the next section. Intui-
tively, a fast recovery would decrease the probability of a mosquito to bit an infected person,
while the increase on the birth-death rate of the mosquito will create similar effect: an infected
mosquito would die quickly, therefore it may not be able to transmit the disease. Sensitivity
analyses based on the outbreak time dependence are presented in the Supporting Information.

Interventions

In this section, we will discuss the outcome of different possible intervention strategies to con-
trol the epidemic disease spreading [13, 23]. The simulations were carried out using the Chi-
kungunya epidemic outbreak data from Rio de Janeiro in 2018. The first approach simulates
the action of killing adult mosquitoes, which is related to the use of insecticide as fogging. In
the model, this strategy appears as an increase in the mosquitoes mortality rate y presented in
Eq 5:

w(Ct) = p.(1 - w0(C—-C,)) (5)

where 6(. . .) is the unitary step function, y, is the natural rate of birth/death of the mosquito, C
is the cumulative number of infected people and, w is the parameter related to the intensity of
the fogging action reflected in the mosquito death rate u. The fogging action is triggered when
the cumulative number of infected people C, described in Eq 6, reaches the value C, which is
30% of the total number of cases from the real data. For all the interventions discussed in this
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study, the trigger event will be the same as the one present here in the fogging action.

< 0

Fig 4 presents the distribution of the number of cases and the cumulative number of cases
as a function time for different fogging intensities, A and B, respectively. In Fig 4A, once the
fogging action starts, the number of cases per week stop to grow and starts to decrease over
time. The strength of the parameter w dictates how fast these curves decay. The cumulative
number of cases also reflects the fogging action for different intensities, as presented in Fig 4B.
The total number of case drops to 70.0% when w = 0.25 presented in dashed red line and
drops to 54.0% when w = 0.5 shown in the dotted yellow line when compared with the real
data without fogging action w = 0.0.

The second simulated intervention is the action of reducing the birth rate of the vector.
This approach can be associated with population orientation or better social sanitary condi-
tions. These actions may produce a decrease in the number of places where the mosquitoes lay
the eggs such as standing water, for example. Here, this intervention appears in the model by
decreasing the mosquito birth rate y,, as shown in Eq 7:

#(C) = 1 (1 -0, 0(C - C,)) (7)

where 6(.. .) is the unitary step function, y, is the natural rate of birth/death of the mosquito, C
is the cumulative number of infected people, C, represents the cumulative amount of infected
people needed to trigger the action and, w, is the parameter related to how efficient are the
population and government actions in preventing the vector from laying the eggs, which led to
decrease the mosquito birth rate .

Fig 5 shows the distribution of the number of cases and the cumulative number of cases as a
function time for different intensities of the mosquito birth rate reduction. Similar behavior as
the fogging intervention is observed here. In Fig 5A, the number of cases reaches the peak of
infected people sooner and then starts a decay in the number of cases per week. The total
number of case drops to 85.3% when w, = 0.25 presented in dashed red line and drops to
70.7% for w, = 0.5 shown in the dotted yellow line when compared with the data without the

x10™ B x107#
8r w=0 N i
el o | = =w=025
o Q w = 0.50
i} @ ok
. o
(] —
54 =
— B 4
g £
E 2t =]
S Z2}
4 . y
3
0 2 2 0 g " 2 2
0 100 200 300 0 100 200 300
Days Days

Fig 4. Simulated intervention results in increasing the mosquitoes mortality rate by fogging action. A and B present the number of cases
and the cumulative number of infect people, respectively. The solid blue line is the simulation without intervention w = 0.0. The dashed red line
presents the data for w = 0.25, and the dotted yellow shows the data for w = 0.5.

https://doi.org/10.1371/journal.pone.0222900.9004
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Fig 5. Simulated intervention results in decreasing the vector birth rate by the action of removing the places where mosquitoes lay the
eggs. A and B present the number of cases and the cumulative number of infect people, respectively. The solid blue line is the simulation
without intervention w, = 0.0. The dashed red line presents the data for w, = 0.25, and the dotted yellow shows the data for w, = 0.5.

https://doi.org/10.1371/journal.pone.0222900.9005

intervention w, = 0.0 presented in Fig 5B. Although the behavior is similar to the fogging
action, the response of decreasing the mosquito birth rate to the total number of cases is less
efficient during the outbreak. It is worthwhile to mention that this kind of action, different
from the fogging, can be inherited and passed to the following years and avoid new outbreaks
to occurs in the future.

The third and the last studied intervention acts as the reduction of the rate in which infected
humans transmit the disease to the mosquitoes. This effect can be associated as a quarantine
action, isolating infected people or, more realistic, the usage of repellents by the infected
human. Both strategies go in the direction of decreasing the contact between infected humans
and the vector which is simulated using the Eq 8.

B, (C) = B.(1 —€0(C—C,)) (8)

where 0(. . .) is the unitary step function, f. is the natural rate at which humans infect mosqui-
toes, C is the cumulative number of infected people, C,, represents the cumulative amount of
infected people needed to trigger the action and, e is the parameter that modulates how intense
is the decrease in the rate at which humans infect mosquitoes £,,..

Fig 6 presents the results for this last intervention. The curves in Fig 6A and 6B show a simi-
lar pattern, as observed in the other two previous actions. The number of cases shows a decay
after the intervention starts for different intensities of e. In Fig 6B the total number of cases
curves present results closer to the birth control intervention than the fogging action. For € =
0.25, the total number of cases decreased to 82.7% of the initial value, meanwhile, for € = 0.5
this number drops to 64.1%.

A combined simulation applying all the three interventions was carried out, and the results
are presented in Fig 7. The combined intervention presents, as expected, the most effective
strategy to decrease the number of infected people. The distribution curve of the number of
cases per week shows more intense decay in Fig 7A. The total number of cases drops to 54.3%
from the initial value when w, w,, € = 0.25 and reduce to 43.6% for the parameters w, w,, € =
0.5 in Fig 7B.
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Fig 7. Simulated intervention results by the combination of all the other three actions discussed in this work. A and B present the number
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dashed red line presents the data for w, w,, € = 0.25, and the dotted yellow shows the data for w, w,, € = 0.5.

https://doi.org/10.1371/journal.pone.0222900.9007

Conclusion
The last three Chikungunya outbreaks in the city of Rio de Janeiro, Brazil, were modeled using
the SEIR model and estimates the Basic Reproduction Number R, for the years 2016, 2018,
and 2019. The simulations results register values greater than 1 for all of them, and 2019 is the
most severe, even though the data was limited for the first six months. The calculation of R,
gives a global overview of the impact and scale of the outbreak. Sensitivity analyses were per-
formed to indicate, quantitatively, the importance of each parameter to the epidemic profile in
different stages of the outbreak. A more detailed approach could take into account the number
of infected people in each neighborhood with different sanitary conditions, and such details
are not explored in this work. This study was expanded to include the Mayaro virus, which
was reported as an emerging disease in South America [37, 39, 41]. Based on the assumption

PLOS ONE | https://doi.org/10.1371/journal.pone.0222900 January 28, 2020

10/13



@ PLOS|ONE

Modeling Chikungunya control strategies and Mayaro potential outbreak in Rio de Janeiro

that Mayaro and Chikungunya viruses have a similar spreading mechanism [37], since both
viruses have the same vector [31, 36, 42, 43], we used parameters fitted from the Chikungunya
outbreak from 2018 to estimate the R*"" from Mayaro. The results indicate that Mayaro has
the potential to be an epidemic disease in Rio de Janeiro with R¥"" values in a range of 1.18
and 3.51. Also, to possibly stop or at least decrease the intensity of an outbreak, three interven-
tions strategies were proposed by modifying the basic equations of the SEIR model. These
interventions are associated to the increase of the vector mortality rate by fogging techniques,
the decrease of mosquito birth rate by decreasing the amount of places where the mosquito lay
the eggs and, the decrease of the rate in which humans transmit the disease to mosquitoes by
the isolation of infected people or the usage of repellent. Although those simulations do not
retract real data, they can contribute to discussions about public and government policies

directions.
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