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We quantified the equilibrium (un)folding free energy ΔG0 of an eight-amino-acid region starting from
the fully folded state of the model membrane-protein bacteriorhodopsin using single-molecule force
spectroscopy. Analysis of equilibrium and nonequilibrium data yielded consistent, high-precision
determinations of ΔG0 via multiple techniques (force-dependent kinetics, Crooks fluctuation theorem,
and inverse Boltzmann analysis). We also deduced the full 1D projection of the free-energy landscape in
this region. Importantly, ΔG0 was determined in bacteriorhodopsin’s native bilayer, an advance over
traditional results obtained by chemical denaturation in nonphysiological detergent micelles.
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Precise quantification of membrane-protein folding
energetics is a long-sought goal. While membrane proteins
fold in vivo via the translocon [1], the final folded state is
believed to be at thermodynamic equilibrium [1–3]. Thus,
in vitro measurements of the free energy of unfolding ΔG0

give insight into the balance of interactions stabilizing
the folded structure (e.g., van der Waals, hydrophobicity,
hydrogen bonding) [4]. ΔG0 for globally unfolding mem-
brane proteins is typically determined by chemical denatu-
ration using sodium dodecyl sulfate [5–11]. ΔG0 for the
model membrane-protein bacteriorhodopsin (BR) is par-
ticularly well characterized [6,12–17]. However, four
notable limitations of these chemical-denaturation mea-
surements are (i) the measurements are made in a non-
native lipid environment; (ii) they involve extrapolation
from high denaturant concentration to zero [18]; (iii) the
denatured “unfolded” state is ill-defined and retains ∼60%
of its native-state α-helical secondary structure [Fig. 1(a),
inset] [19–21]; and (iv) the requirement of reversible
unfolding and refolding excludes the vast majority of
proteins, including G-protein coupled receptors [22].
These limitations motivate the development of alternate
techniques with different underlying assumptions, includ-
ing steric trapping [18] and magnetic-tweezers-based [23]
assays. In this Letter, we demonstrate an approach based on
local unfolding and refolding of BR in its native bilayer by
atomic-force microscopy (AFM).
Force-induced unfolding of BR by AFM overcomes

many limitations of chemical-denaturation experiments
[Fig. 1(a)] [24–26]. In particular, measurements can be
made in the native bilayer (i.e., purple membrane), pre-
serving native protein-lipid and protein-protein inter-
actions. Moreover, mechanical denaturation leads to a
well-defined, fully stretched unfolded state. Finally, local

unfolding of a small region of the protein means that
unfolding need not be globally reversible and that tertiary
interactions with the rest of the protein are maintained.
Notwithstanding these advantages, prior AFM measure-
ments of ΔG0 [27–29] have had their own limitations.
Prior studies measured ΔG0 for removing the final five of
BR’s seven transmembrane helices and were therefore
insensitive to the full set of tertiary interactions present
in the fully folded structure. These AFM measurements
were also performed far from equilibrium, making it
difficult to recover equilibrium thermodynamic quantities
[30]. Finally, earlier studies did not account for the work of
stretching the unfolded polypeptide, adding an anomalous
contribution to ΔG0.
To overcome these limitations, we required an AFM with

sufficient spatiotemporal resolution to detect rapid unfolding
and refolding transitions and an assay that could repeatedly
unfold and refold individual molecules over many seconds.
We achieved this by incorporating recent advancements in
AFM-based force spectroscopy into the assay depicted in
Fig. 1(a). In this assay, the AFM cantilever exerts force on
the C-terminal tail of BR, causing it to unfold in a series of
steps, each corresponding to a metastable unfolding inter-
mediate [24,31]. We used ultrashort cantilevers (L ¼ 9 μm)
modified with a focused ion beam [32–34] to have ∼2-μs
resolution, ∼10–25 pN=nm stiffness, and sub-pN force
stability over ∼5–10 s (see Fig. S1 in the Supplemental
Material [35]). To allow precise unfolding of the first helix
pair over long timescales and with reduced nonspecific
adhesion, we used copper-free click chemistry to establish
in situ, site-specific covalent coupling of the AFM tip to BR
(see Supplemental Material) [32,35,39].
BR unfolding satisfied the biophysical requirements of

these measurements because BR undergoes rapid reversible
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transitions between three states—termed I0G, I
1
G, and I2G—

spanning eight amino acids during initial unfolding from
its fully folded state. Local unfolding while the rest of
the protein remains folded enables access to the underlying
energetics including intact native tertiary interactions. These
three states were probed over multiple seconds without full
unfolding because I2G is mechanically stabilized by the
retinal cofactor [32]. Two AFM data-acquisition protocols
were used to acquire nonequilibrium and equilibrium data on

single molecules [40]. In the nonequilibrium protocol, the
cantilever was alternatingly retracted from and moved
toward the surface, inducing unfolding and refolding.
For each molecule, we obtained 38–65 unfolding and
refolding cycles over three pulling velocities (v ¼ 200,
300, and 500 nm=s). A partial example cycle is shown in
Fig. 1(b), where near-equilibrium transitions occurred
between three states; each state was well modeled by a
wormlike chain (WLC) [41,42] in series with a PEG linker
[43]. In the equilibrium protocol, the position of the
cantilever base was fixed and the protein repeatedly transi-
tioned between states [Fig. 1(c)] [40,44]. Both protocols
could be applied sequentially to the same molecule, leading
to ∼104 detected transitions per molecule over ∼10 s. From
these data, we determined ΔG0 for this eight-amino-acid
region via three methods: force-dependent transition kinetics
[45], the Crooks fluctuation theorem [46], and inverse-
Boltzmann analysis [45].

In the first of these methods, we analyzed nonequili-
brium trajectories of unfolding and refolding to obtain the
force-dependent transition rates between states i and j,
kijðFÞ, which encode properties of the underlying equilib-
rium free-energy landscape. Transition rates are a valuable
approach to analyzing multistate force-spectroscopy data
because they are not biased by sequential transitions that
occur at similar forces [47], in contrast to analyses of
rupture-force distributions. We calculated kijðFÞ based
upon the method of Zhang and Dudko, which involves
counting transitions in force bins [47]. To do so, we
smoothed the data to 35–90 kHz to obtain an acceptable
signal-to-noise ratio for resolving transitions [Fig. 2(a)],
and then identified transitions using a hidden-Markov
model [48]. Technical details of this and other analyses
are presented in the Supplemental Material [35].
We computed the force-dependent kinetics in two steps.

We first divided the force domain into 10-pN bins and, for
each bin, determined the number of transitions from state i
to state j, NijðFÞ, and the amount of time spent occupying
state i, tiðFÞ. We found initial force-dependent rate con-
stants by evaluating

kijðFÞ ¼
NijðFÞ
tiðFÞ

: ð1Þ

We used this formula [49], rather than that proposed by
Zhang and Dudko [47], to avoid dividing by zero for
sparsely occupied states. Second, we corrected this initial
rate map for the effective instrument time resolution of
τ ¼ 13–29 μs, including the effect of smoothing. This
correction, detailed and verified by simulations in an
accompanying paper [50], was based on the Poisson
statistics of barrier-crossing transitions and allowed rates
to be calculated even when of order 1=τ. The corrected rate
map is shown in Fig. 2(b).
To determine ΔG0 for each transition, we next obtained

F1=2, the force of equal unfolding and refolding rates, from
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FIG. 1. Probing the energetics of bacteriorhodopsin (BR)
starting from its fully folded state. (a) In this AFM assay, BR
embedded in native membrane is unfolded from its C-terminal
tail into a well-defined, fully stretched state with extension x.
Inset: sketch of the unfolded state in a traditional chemical-
denaturation experiment. Note, ∼60% of native α-helical secon-
dary structure remains. (b) Reversible nonequilibrium force-
extension curves span three structural states, separated by five
and three amino acids, respectively. The graph shows one cycle of
cantilever retraction (pink) and approach (blue). Segments
corresponding to individual states were well fit by an elastic
model (dashed lines). Insets: structures of two of the states.
(c) Force- vs time record shows equilibrium transitions between
the same three states (dashed lines). Data smoothed to 17 kHz.
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the intersection of Bell-model fits [51] to the rate maps.
These fits also yielded two energy-landscape parameters:
the zero-force rate constant k0 and the distance to the
transition state Δx‡ [Fig. 2(c)]. Unfortunately, we could not
use a more sophisticated model [52] to additionally con-
strain the height of the transition barrier ΔG‡ because
curvature was not observed in logðkÞ vs F.
Finally, we determined ΔG0 between states by multi-

plying F1=2 by the unfolding extension change and then
correcting for the work to stretch the newly unfolded
segment [45,53]. Because F1=2 is the unfolding force in
the constant-force ensemble, the equilibrium work done on

the system at unfolding is simply this force times the
unfolding extension change at F1=2 [45,53,54]. The result-
ing work included both the work done to unfold the protein
and that done to stretch the newly unfolded portion of the
protein to F1=2. Unlike prior membrane-protein studies, we
subtracted the latter correction—here an 18% effect—to
yield the free-energy change associated specifically with
unfolding the protein:

ΔG0 ¼ F1=2ðΔx − ΔdÞ −
Z

Δx

Δd
FWLCðx0Þdx0; ð2Þ

where Δx is the extension of the unfolded region and Δd is
the nonzero extension of that region along the pulling axis
before unfolding [44,55] (see Supplemental Material,
Fig. S2 [35]). We obtained Δd from the crystal structure
of BR [56], an approach that could introduce an error for
less-constrained proteins (e.g., significantly unfolded or in
non-native membrane). Evaluating Eq. (2) for each of ten
molecules (18 541 total transitions), we obtained ΔG01

0 ¼
18.2� 0.7 kBT (mean� SEM) for the first transition
and ΔG12

0 ¼ 9.5� 0.4 kBT for the second, totaling to
ΔG02

0 ¼ 27.7� 0.8 kBT.
In the second nonequilibrium data analysis, we applied

the Crooks fluctuation theorem (CFT) to calculate equi-
librium ΔG0 from the nonequilibrium work Wraw done to
drive unfolding or refolding [46,57]. This work is the area
under the curve of F versus cantilever height Z [Fig. 3(a)]
and includes the work done on the proteinW, as well as the
work done to deflect the cantilever and to stretch the
unfolded polypeptide chain. The latter contributions were
subtracted to give the work done on the folded protein:

W ¼ Wraw − ΔGcant − ΔGlinker − ΔGreleased; ð3Þ

where ΔGcant is the work done on the cantilever (modeled
as a linear spring), ΔGlinker is the work done on the
C-terminal polypeptide tail (modeled as a WLC) and
PEG linker (modeled following Oesterhelt et al. [43]),
and ΔGreleased is the work done to stretch the eight-amino-
acid region upon unfolding (terms defined in Supplemental
Material [35]). These corrections may be made either
before or after applying the CFT because they depend
only on the limits of the integration. ΔG0 was calculated
using

PUðWÞ
PRð−WÞ ¼ exp

�
W − ΔG0

kBT

�
; ð4Þ

where PUðWÞ and PRð−WÞ are the histograms of works
during unfolding and refolding, respectively [46].
Equation (4) implies that ΔG0 ¼ W where the two histo-
grams cross. This analysis is shown for the v ¼ 500 nm=s
data of one representative molecule in Fig. 3(b). Because
the histogram widths were large compared with their

20 ms

Time
20

60

100

140
F

o
rc

e 
(p

N
)

(a)

10
 p

N

4 ms

IG IG IG
0 1 2

103

104

102

Tr
an

si
ti

o
n

 r
at

e 
(s

-1
)

(b)

80 100 120
Force (pN)

F1/2

F
o

rc
e

Extension

F1/2

G0

F
re

e 
en

er
g

y

(c)

140

IG IG IG
0 1 2

x

v = 500 nm/s

raw

Extension

IG
0

IG
1

IG
2

x01
‡ x10

‡

G12
‡

G0
01

G0
02

FIG. 2. ΔG0 determined from transition kinetics of nonequili-
brium data. (a) Left: example unfolding and refolding cycle. A
typical single-molecule record has ∼40–60 such cycles. Right:
enlargement showing individual transitions (colored circles).
(b) Force-dependent rates for all four transitions. Error bars
are standard errors of the mean from a bootstrap analysis. Lines
are Bell-model fits. Line crossings reveal F1=2, the equilibrium
unfolding force. Inset: illustration of how the uncorrected
unfolding free energy was obtained as ΔGraw

0 ¼ F1=2 Δx, which
was then corrected for work done to stretch the unfolded section
of the protein. (c) Scheme of the underlying free-energy land-
scape. ΔG0 denotes a change in free energy between stable states,
ΔG‡ is the height of a transition barrier, and Δx‡ is the distance
from a stable state to that barrier.
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separation due to minimal hysteresis, we computed ΔG0

by simply averaging W over all molecules and velocities
to yield ΔG02

0 ¼ 33.9� 2.2 kBT [mean� SEM (10 mole-
cules, 3 velocities, 530 total cycles of unfolding and
refolding)]. The CFT is a more general nonequilibrium
analysis than the kinetic rate-map strategy because it does
not require identifying discrete states. However, here CFT
analysis could not separately determine ΔG01

0 and ΔG12
0

because there was no Z at which state I1G was stably
occupied.
Our third method for determining ΔG0 analyzed

equilibrium data [Fig. 1(c)]. We inverted the canonical
Boltzmann distribution and accounted for the work done in
stretching the protein using

ΔGij
0 ¼ −kBT ln

�
Pj

Pi

�
− ΔGcant − ΔGlinker − ΔGreleased;

ð5Þ
where the Pi are relative occupancies of states [i.e., local
maxima in Fig. 4(a)] [58]. The correction terms are
the same as in Eq. (3). Applying Eq. (5) to three-state
equilibrium records for nine molecules gave ΔG01

0 ¼
16.6� 0.6 kBT (mean� SEM) for the first transition

and ΔG12
0 ¼ 10.1� 0.6 kBT for the second, totaling

to ΔG02
0 ¼ 26.8� 0.8 kBT.

The high quality of the data allowed us to go beyond
determiningΔG0 to also reconstruct the full one-dimensional
free-energy landscape for select molecules [Fig. 4], similar
to pioneering DNA-hairpin [59] and globular-protein [60]
studies. To do so, we recorded ∼1000 transitions in indi-
vidual equilibrium trajectories over hundreds of millisec-
onds. We then recovered the intrinsic molecular landscape
by deconvolving the compliance effects of the cantilever
and linkers [Fig. 4(a)] [60]. The resulting free-energy land-
scape showed distinct barriers that were not present prior to
deconvolution [Fig. 4(b), red vs cyan]. Finally, we tilted the
measured free-energy landscape to zero applied force.
We found that the zero-force landscapes for an individual
molecule acquired at three different cantilever positions
overlapped, lending confidence in the reliability of the
deconvolution [Fig. 4(c)]. Moreover, the higher energy
barrier of transition I0G ↔ I1G compared to I1G ↔ I2G is
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consistent with the slower kinetics for that transition in the
rate map of Fig. 2(b). Hence, complementary information
from the energy landscape aids in interpreting the rate maps.
The general agreement in ΔG0 between the three differ-

ent free-energy analyses (Table I) validates the robustness
of each analysis individually and provides a basis for
comparison with prior results. Notably, the approaches
agreed despite being based on complementary assumptions
and utilizing both equilibrium and nonequilibrium data.
Application of the Crooks fluctuation theorem was the
most challenging; residual noise broadened the work
distributions and may have introduced larger uncertainty
in determining ΔG0.
The consensus value of ΔG0 per amino acid (AA) to

unfold the 8-AA region under study was 3.4–4.2 kBT=AA.
Despite our explicitly removing the work to stretch the
unfolded peptide, this value was larger than the 0.8–
2.2 kBT=AA of prior AFM measurements that averaged
over the final five helices extracted [27–29]. The simplest
explanation of our higher value is that it arose from probing
the local energetics of initial BR unfolding when all
stabilizing tertiary interactions were present. Indeed, prior
AFM studies show it is much easier to extract the final 80%
of a particular pair of transmembrane helices than to initiate
unfolding [29,31,44]. Finally, we note that our value is
close to the 4.6 kBT=AA determined when probing a 3-AA
region in the initial unfolding of the ED helix pair of
BR [44].
Our ΔG0 values from force-induced unfolding were

∼20-fold larger than those previously measured in chemi-
cal-denaturation experiments. This effect is attributable
primarily to the very different unfolded states in the two
techniques. In particular, force-induced unfolding disrupts
both secondary and tertiary structure and transfers most of
the unfolded residues from the bilayer into an aqueous
environment [Fig. 1(a)]. Thus, our observed ΔG0 are close
to the 22.9 kBT computed based only on the free-energy
change of octanol-water partition (8.0 kBT [4,61]) and the
enthalpic cost of breaking the backbone hydrogen bonds
(14.9 kBT, based on ΔH ¼ 1.1 kcal=mol=AA [62,63], an
arguably simplistic assumption [64]). By contrast, the
chemically denatured state retains ∼60% secondary struc-
ture and remains solvated in detergent.
In conclusion, we have demonstrated a force-spectros-

copy-based method for measuring the stabilizing energetics
of individual membrane proteins in the native lipid bilayer
starting from the fully folded state. Importantly, mechanical

unfolding of a single molecule avoids the ambiguities of
chemical-denaturation experiments (i.e., poorly defined
denatured state, detergent interactions). All three of our
analyses determined ΔG0 of the protein’s intrinsic, bio-
logically relevant energy landscape by subtracting the
energetics associated with the linker and force probe.
Each analysis was previously individually validated in
nucleic-acid or globular-protein systems [57,59,60]. Now,
the general agreement between techniques in membrane-
protein studies establishes any of them, separately, as a
robust thermodynamic basis for future studies of point-
mutant free-energy changes, reconstituted BR in controlled
lipid samples, and membrane-protein–ligand interactions.
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