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Abstract

Global hydroclimatic changes from 1950 to 2018 are analyzed using updated data of land precipitation, streamflow, and an
improved form of the Palmer Drought Severity Index. The historical changes are then compared with climate model-simulated
response to external forcing to determine how much of the recent change is forced response. It is found that precipitation has
increased from 1950 to 2018 over mid-high latitude Eurasia, most North America, Southeast South America, and Northwest
Australia, while it has decreased over most Africa, eastern Australia, the Mediterranean region, the Middle East, and parts of
East Asia, central South America, and the Pacific coasts of Canada. Streamflow records largely confirm these precipitation
changes. The wetting trend over Northwest Australia and Southeast South America is most pronounced in austral summer
while the drying over Africa and wetting trend over mid-high latitude Eurasia are seen in all seasons. Coupled with the
drying caused by rising surface temperatures, these precipitation changes have greatly increased the risk of drought over
Africa, southern Europe, East Asia, eastern Australia, Northwest Canada, and southern Brazil. Global land precipitation
and continental freshwater discharge show large interannual and inter-decadal variations, with negative anomalies during El
Nifio and following major volcanic eruptions in 1963, 1982, and 1991; whereas their decadal variations are correlated with
the Interdecadal Pacific Oscillation (IPO) with IPO’s warm phase associated with low land precipitation and continental
discharge. The IPO and Atlantic multidecadal variability also dominate multidecadal variations in land aridity, account-
ing for 90 % of the multidecadal variance. CMIP5 multi-model ensemble mean shows decreased precipitation and runoff
and increased risk of drought during 1950-2018 over Southwest North America, Central America, northern and central
South America (including the Amazon), southern and West Africa, the Mediterranean region, and Southeast Asia; while
the northern mid-high latitudes, Southeast South America, and Northwest Australia see increased precipitation and runoff.
The consistent spatial patterns between the observed changes and the model-simulated response suggest that many of the
observed drying and wetting trends since 1950 may have resulted at least partly from historical external forcing. However,
the drying over Southeast Asia and wetting over Northwest Australia are absent in the 21st century projections.
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1 Introduction

Increased CO, and other greenhouse gases (GHGs) in the
atmosphere will not only raise Earth’s surface temperature,
but also induce large changes in precipitation, runoff and
streamflow, drought and other hydroclimatic fields (Meehl
et al. 2007; Scheff and Frierson 2012; Collins et al. 2013;
Dai 2013a, 2016; Cook et al. 2014, 2020; Trenberth et al.
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2014; Zhao and Dai 2017; Dai et al. 2018), which may cause
larger damages to human society and the environment than
the concurring warming. Thus, documenting and under-
standing long-term changes in these hydroclimatic fields are
critically important under our changing climate.

Under increasing GHGs, climate models project
increased precipitation over most of the globe except for
the subtropical subsidence regions (e.g., Meehl et al. 2007;
Collins et al. 2013), where enhanced drying from increased
vertical gradients of specific humidity and increased subsid-
ence make it hard to form clouds and precipitation in the
future warmer climate (Chou et al. 2009; Dai et al. 2018;
Huang et al. 2021). Surface runoff and streamflow changes
generally follow those of precipitation (Meehl et al. 2007;
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Collins et al. 2013; Zhao and Dai 2015; Dai 2016), although
changes in precipitation characteristics (Trenberth et al.
2003; Sun et al. 2007), evapotranspiration (Dong and Dai
2017; Dai et al. 2018) and human activities (D61l et al. 2009;
Vicente-Serrano et al. 2019) can induce additional features.
Rising air temperatures, coupled with small decreases in
near-surface relative humidity (Collins et al. 2013; Vicente-
Serrano et al. 2018; Chen et al. 2020), lead to large increases
in atmospheric demand for moisture (often measured by
potential evapotranspiration PET) over all land areas (Feng
and Fu 2013; Scheff and Frierson 2014; Fu and Feng 2014;
Fu et al. 2016; Zhao and Dai 2015, 2017). Combined with
decreased precipitation over many subtropical regions and
a flattening of the histograms of soil moisture, runoff and
the Palmer Drought Severity Index (PDSI) (Zhao and Dai
2015), the enhanced PET greatly increases the risk of future
drought over most land areas (Burke and Brown 2008; Dai
2011a, 2013a; Cook et al. 2014, 2020; Prudhomme et al.
2014; Zhao and Dai 2015, 2017).

These model-projected long-term changes in response
to increased GHGs are, however, often overshadowed by
large internal variability, especially at the local and regional
scales, making them unapparent in individual realizations
(such as the observations or individual model simulations)
during the recent and near-future decades (Deser et al.
2012a, b, 2014; Dai and Bloecker 2019). Furthermore, large
uncertainties due to instrumental and sampling errors exist
in the available datasets for precipitation, runoff and stream-
flow, PDSI and other hydroclimatic fields (Dai 2016; Dai
and Zhao 2017); they make it difficult to reliably quantify
historical changes in these fields over the global land (Tren-
berth et al. 2014). In contrast to the model-projected future
changes, the historical changes also include externally-
forced response to episodic volcanic eruptions and dec-
adal variations in anthropogenic aerosols, ozone and CFCs
(Meinshausen et al. 2011); these forced short-term changes
are often merged with other internal variations (Hua et al.
2019; Qin et al. 2020a, b), further complicating the detection
and separation of the forced signal in historical data.

Many studies have attempted to quantify historical
changes in the mean of land precipitation, streamflow, PDSI
and other drought indices, although few of them were able to
synthesize/compare these changes or quantify the changes
resulting from external forcing and internal variability. For
land precipitation, many raingauge-derived datasets go back
to around 1900, but raingauge coverage was poor over many
regions before the 1950s (Dai et al. 1997; Harris et al. 2014;
Schneider et al. 2018; Sun et al. 2018); and these datasets
have been used to quantify historical changes in monsoon
rainfall (Wang and Ding 2006; Wang et al. 2012; Zhang
and Zhou 2011), precipitation over dry and wet regions (Liu
and Allen 2013; Huang et al. 2017) and global land (Dai
and Zhao 2017). These studies show that precipitation has
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increased since 1950 over northern and eastern Europe, the
central United States, northwestern Australia and southeast-
ern South American, but decreased over most Africa, East
and South Asia, southern Europe, and eastern Australia (Dai
and Zhao 2017); and some of these changes over the United
State, Africa, Australia and South America are associated
with the phase change in the Interdecadal Pacific Oscillation
(IPO) (Dai 2013b; Dong and Dai 2015), rather than GHG-
induced global warming. This appears to be also the case for
recent precipitation changes over the tropical Pacific (Gu and
Adler 2013). The precipitation change patterns since 1950
are broadly consistent among different datasets and largely
confirmed by the basin-mean runoff changes inferred from
streamflow records (Dai et al. 2009, 2016). The regional
decreases in precipitation and increased PET under rising
air temperatures lead to surface drying, as measured by
PDSI and SPEI (Vicente-Serrano et al. 2020), since 1950
over most Africa, East and South Asia, southern Europe,
high-latitude North America and eastern Australia (Dai et al.
2004; Dai 2011b; Trenberth et al. 2014; Dai and Zhao 2017;
Vicente-Serrano et al. 2020), although uncertainties in radia-
tion and surface wind data as well as issues in land precipita-
tion data since the 1990s in some of the widely used datasets
could weaken the PDSI trends (van der Schrier et al. 2011,
2013; Sheffield et al. 2012; Dai and Zhao 2017).

As mentioned above, detecting anthropogenic influences
in historical precipitation and other related hydroclimatic
fields is difficult due to their large internal variability. Nev-
ertheless, precipitation increases in northern mid-high lati-
tudes and decreases in the subtropics in the 20th century (Dai
et al. 1997) is attributed partly to human influences (Zhang
et al. 2007). On the other hand, many studies attributed a
large part of recent changes since the 1950s in regional pre-
cipitation over the United States, Africa, Australia and South
America, as well as the tropical Pacific rainfall since 1979
(Gu and Adler 2013), to the phase changes in the IPO (Dai
2013a; Dong and Dai 2015) and the Atlantic Multidecadal
Oscillation (AMO) (Knight et al. 2006; Hua et al. 2019),
although some of the AMO-like multi-decadal variations
may be forced by volcanic and anthropogenic aerosols (Qin
et al. 2020a). The IPO-induced and other internal variability
makes the local and regional precipitation trends since 1979
statistically insignificant over most of the globe up to now
and for the near future (Dai and Bloecker 2019). The inter-
nal variability also makes the PDSI trends since 1920 differ
from the externally-forced response over the United State,
West Africa, and other regions, even though the global-mean
trend is consistent with the model-simulated change (Dai
2013).

While many previous studies have examined historical
changes in a single hydroclimatic field, very few of them
have examined them together to make a physically consistent
picture about historical hydroclimatic changes over global
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land. In this study, I attempt to (1) update the trend analy-
sis up to 2018 for land precipitation, streamflow or runoff
and PDSI using available new data; (2) compare, verify
and synthesize their trends to present a more complete and
convincing picture of the historical hydroclimatic trends;
and (3) perform a first-order estimate of the contribution
by historical external forcing to the historical trends using
CMIP5-model simulated response and a maximum covari-
ance analysis (MCA). Here I focus on the mean changes in
various hydroclimate fields, rather than changes in extremes
such as drought events. Also, the goal of the comparison
with model-simulated changes is to provide a large-scale
assessment of whether the observed change patterns are
qualitatively consistent with the observations, rather than
to provide a quantitative attribution analysis, as done pre-
viously (e.g., Marvel et al. 2019; Bonfils et al. 2020). The
results should provide an updated and more complete view
on historical hydroclimatic trends and on the role of external
forcing. This paper will also serve as the reference for our
updated streamflow (https://rda.ucar.edu/datasets/ds551.0/)
and PDSI (https://rda.ucar.edu/datasets/ds299.0/) datasets
that have been widely used by the community.

2 Data and method

We used the updated versions of the gridded monthly precip-
itation products (on 2.5° grids) from the Global Precipitation
Climatology Centre (GPCC v2018 or v8, for 1891-2016;
Schneider et al. 2018), the Climate Research Unit (CRU, TS
4.02, for 1901-2017; Harris et al. 2014), a merged precipita-
tion product (referred to as DaiP) using precipitation from
Dai et al. (1997) (for years before 1948), Chen et al. (2002)
(for 1948-1978), and GPCP v2.3 dataset (for 1979-2018;
Adler et al. 2018), and the University of Delaware precipi-
tation data set v5.01 for 1900-2017 (referred to as UDelP,
see http://climate.geog.udel.edu/~climate/html_pages/Globa
12017/README.GlobalTsP2017.html). These are analyzed
precipitation products based on raingauge records, except for
GPCP data, which also used satellite estimates over sparsely
sampled land areas by raingauges. Typically, raingauge cov-
erages are poor over central Africa, the Amazon, the Tibetan
Plateau and other sparsely populated areas, especially before
about 1950. The coverage also decreases since the 1990s
in all these products (Sheffield et al. 2012; Trenberth et al.
2014) partly due to the time delay in the archiving process
and loss of manually operated stations. For the period with
good raingauge coverage from about 1950-1990, all these
products show very similar global land precipitation vari-
ations, but they differ substantially for the earlier decades
and the most recent years since the middle 1990s (Dai and
Zhao 2017). The GPCC product used much more raingauge
records and thus is likely to be more reliable than the other

products for the recent years since the 1990s (Dai and Zhao
2017). Thus, we will mainly use the GPCC product for long-
term precipitation trend analyses, although the other prod-
ucts were also examined. Since only the GPCP v2.3 product
is continuously updated to near real time, we used the GPCP
data for the last few years to extend the other products to the
end of 2018 (the latest time with data in spring 2019 when I
started the analysis) by adding GPCP’s anomalies (relative
to 1961-1990 mean) to the 1961-1990 mean of the product
being extended, so that all the products analyzed here end in
December 2018 and are homogeneous. The GPCP used the
land data analysis from GPCC and it has similar variations
and change for land precipitation to GPCC and the other
products for the period since 1979.

To update our continental discharge analysis (Dai and
Trenberth 2002; Dai et al. 2009; Dai 2016), I devoted a
major effort to obtain and process updated downstream
river-flow gauge data from the Global Ruff Data Centre
(https://www.bafg.de) for about 220 ocean-reaching rivers
around the world, from USGS (https://nwis.waterdata.usgs.
gov/nwis) for 71 U.S. rivers, the Water Service of Canada
(http://www.ec.gc.ca/rhc-wsc/) for 15 Canadian rivers, and
the Brazilian National Water Agency (http://www.snirh
.gov.br/hidroweb/publico/apresentacao.jsf) for 131 Brazil-
ian rivers. Together, 261 of the 921 world’s largest rivers
included in the Dai and Trenberth river discharge dataset
(https://rda.ucar.edu/datasets/ds551.0/) were updated to as
late as December 2018. For updating our continental dis-
charge estimates of Dai et al. (2009), streamflow data for
other 146 rivers were also updated to December 2018 using
either basin-mean precipitation data or scPDSIpm that is
significantly correlated with historical streamflow records
using linear regression following Dai et al. (2009). Annual
river flow rates are highly correlated with basin-mean pre-
cipitation rates for most of world’s major rivers (Dai et al.
2009; Dai 2016), thus the river flow and precipitation data
provide us an opportunity to cross check and verify the long-
term trends in these physically-related, but independently
measured hydroclimatic fields.

Another hydroclimate field examined here is the self-
calibrated PDSI with the Penman-Monteith potential evap-
otranspiration (scPDSIpm), which is a calculated index
using monthly precipitation, surface air temperature, and
other meteorological data (Dai 2011b). The scPDSIpm is
an improved version of the original PDSI devised by Palmer
(1965); it is a smoothed measure of near-surface dryness
departures estimated using a simple surface water balance
model that has been used to quantify drought and arid-
ity changes over the United States and other regions (Dai
2011b; van der Schrier et al. 2011, 2013). The use of the
more realistic Penman-Monteith PET requires data for sur-
face net radiation, vapor pressure, surface air pressure and
wind speed, whose historical data are less reliable (Dai and
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Zhao 2017). We used the CRU TS4.02 data for surface air
temperature, vapor pressure and cloud cover, and other rea-
nalysis data for the other variables, as described in Dai and
Zhao (2017). Because scPDSIpm used the same precipita-
tion products analyzed here, its changes are not independent
of those in precipitation data, although the scPDSIpm also
includes the influences from rising surface air temperatures
and water vapor deficits. We included the scPDSIpm here
as a measure of surface aridity partly because it or its vari-
ants have been widely used in the literature. Like all other
drought indices, the PDSI has its limitations (Dai 2011a).
However, our previous validation using observed soil mois-
ture, streamflow, and land water storage (Dai et al. 1997,
2004; Dai 2011b) and comparisons with model-projected
soil moisture and runoff changes (Zhao and Dai 2015) sug-
gest that it is a reasonable measure of aridity and drought
that can help us quantify the drying effect from rising tem-
peratures alone.

Although the precipitation (P), streamflow or run-
off (R), and scPDSIpm data are available back to around
1900 over many land areas, our trend analysis will focus on
1950-2018 as data before 1950 are less reliable and have
poor global coverage. We also focus on the annual-mean
trends, although seasonal differences in P trends are exam-
ined. To estimate how much of the observed trends may
result from historical GHG and other external forcing, we
also analyzed the 1950-2018 trends in P, R, and scPDSIpm
from the multi-model ensemble mean (MMM) of the all-
forcing historical (up to 2005) and RCP4.5 (for 2006-2018)
simulations by the models (40 models for P, 33 models for
R and 14 models for scPDSIpm) participated in the phase
5 of the Coupled Model Inter-comparison Project (CMIP5)
(Taylor et al. 2012; https://pcmdi.llnl.gov/mips/cmip5/). We
used the CMIP5 data because these model data were used
and described in our previous studies (Zhao and Dai 2015,
2017; Dai 2016; Dai et al. 2018) and the number of models
with required data from the new CMIP6 archive was small
at the time of my analysis. Besides comparing the trend pat-
terns between observations and the CMIP5 MMM, we also
performed maximum covariance analyses (MCA, Bretherton
et al. 1992) of the observed and model-simulated precipita-
tion or scPDSIpm fields, with the goal to identify the compo-
nent in historical P or scPDSIpm whose temporal and spatial
patterns are similar to those in the CMIP5 MMM. Since
the CMIP5 MMM represents primarily the forced response
to GHG and other historical forcing as internal variations
are uncorrelated among the individual model simulations
and thus are smoothed out during the ensemble averaging,
we may consider this component in the historical data as
the forced response to historical GHG and other forcing. As
the model-simulated historical changes may contain dec-
adal changes forced by historical changes in volcanic and
anthropogenic aerosols (Qin et al. 2020a) that are absent in
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the future forcing, we also compare the historical and future
change patterns to identify any regional differences.

3 Historical trends from 1950 to 2018

3.1 Historical changes in land precipitation,
streamflow and discharge

Figure 1 shows the 1950-2018 trend maps for annual pre-
cipitation (from GPCCv8), basin-mean runoff inferred from
trends in downstream river flow data, and scPDSIpm. The
P trend patterns are similar in the other three datasets with
some regional differences (not shown). In general, both the
precipitation and streamflow records show wetting trends
over the central and eastern US, Alaska, Southeast South
America, mid-high latitude Asia, and Northwest Australia,
but drying trends over most Africa, southern Europe, the
Middle East, northern India, Northeast China, Japan, and
eastern Australia (Fig. la, b). However, over northern
Europe, precipitation increases in all the P products while
the river flow data show mixed signals (Fig. 1a, b), likely
due to insufficient streamflow data over there. Over the
Amazon river basin, streamflow data show an insignificant
increasing trend while precipitation data show both increases
and decreases within the basin (Fig. 1a, b), which are also
seen in the other P products. Overall, the trend patterns from
the raingauge and streamflow records are broadly consistent
with each other, which provides us some confidence in these
trends. The scPDSIpm trend patterns largely follow those of
precipitation, with widespread drying over Africa, southern
Europe, the Middle East, Southeast Asia, eastern Australia,
Northwest Canada, and parts of Brazil; but wetting over the
regions with large precipitation increases.

The precipitation increases over mid-high latitude Eurasia
occur mainly in the cold season, while the P increase over the
US is most widespread during September—October—Novem-
ber (SON) (Fig. 2). Over western Australia, precipitation
increases greatly during austral summer but decreases in
its winter, while the drying over eastern Australia is par-
ticularly strong during March—-April-May (MAM) (Fig. 2).
Over Southeast South America, precipitation increases in
all seasons except its winter when it decreases. On the other
hand, precipitation over most Africa decreases throughout
the year, especially during MAM and SON (Fig. 2). Thus,
precipitation trends during 1950-2018 differ greatly among
the seasons over many land regions.

To further examine the precipitation changes for the 16
regions outlined in Fig. 1a, in Fig. 3 we show their region-
ally-averaged precipitation anomalies from 1950 to 2018
using the four P datasets, which show similar variations and
changes over most of the years for all the regions. Some
noticeable differences are seen over Alaska, Northwest
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Fig. 1 Linear trends during 1950-2018 in annual a precipitation from
GPCC v8 (in 0.1mm/day per 50 years), b runoff inferred from records
of downstream river flow rates (in 0.lmm/day per 50 years), and ¢
scPDSIpm. The GPCCv8 dataset, which ends in December 2016, was
extended to December 2018 using anomalies from GPCP v2.3 data.

North America (region 2, after 2013), the central-eastern
US (after 2005), central Eurasia (before 1977), and Siberia
(during the 1960s and 1970s for UDelP) (Fig. 3). Long-term
P changes are evident for West and Southern Africa, the
Mediterranean, central Eurasia, the Middle East, Siberia,
and eastern Australia. In general, large year-to-year fluc-
tuations overshadow the long-term trend, making it less
obvious. Some regions (e.g., West Africa and Siberia) show

-120 -60 0

60 120 180

Blank land areas in b do not have runoff into the oceans or do not
have enough observations. Stippling indicates the trend is statistically
significant at the 5% level based on a Student 7 test with the autocor-
relation being accounted for. The 16 outlined boxes in a represent the
16 regions used in Fig. 3 for regional precipitation

multi-decadal variations, rather than a monotonic decreasing
or increasing trend from 1950 to 2018.

As an example, Fig. 4 shows the time series of the
yearly (October—September) river flow rate from the far-
thest downstream gauge (thick solid line) together with
the basin-averaged yearly precipitation rate (dashed line,
from GPCCv8) for world’s six largest rivers. The two time
series are significantly correlated for the six rivers (with the
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correlation coefficient r ~ 0.6-0.8). Given the large spa-
tial sampling errors in basin-mean precipitation (especially
over the Brahmaputra and Amazon) and the variations and
changes in evapotranspiration (ET) (Dong and Dai 2017), it
is remarkable that the streamflow and precipitation correla-
tion would reach as high as over 0.80 for some of the rivers
(e.g., the Orinoco and Changjiang or Yangtze). Such a high
consistency between the two independent records suggests
that the variations and long-term changes in these data are
likely to be real, although some discrepancies exist during
certain years, e.g., during 2007-2010 for Amazon, and dur-
ing 1984-1990 and 1994-1997 for Congo (Fig. 4). To the
first order, the basin-mean precipitation appears to be the
primary driver of the fluctuations and long-term changes
in downstream yearly river flow rates for the world’s larg-
est rivers, while human influences (through damning and
withdrawal of stream-water) and changes in ET play only a
secondary role as noticed previously (Dai et al. 2009).
Streamflow in the Amazon river declined from the late
1940s to around 1970 and then recovered to a stable and
normal level with large interannual fluctuations compared
with the 1950s and 1960s, and relatively low levels for
20162018 (Fig. 4a). In contrast, streamflow in Congo was
relatively high from around 1960-1971, thereafter it stayed
in relatively low levels until the middle 1990s (Fig. 4b).
Streamflow in Orinoco changed little during 1948-2018,
with large multi-year fluctuations (e.g., low from 1957 to

80

Fig.3 Time series of annual precipitation anomalies (relative to p
1950-2018 mean, in mm/day) from 1950-2018 averaged over the 16
regions outlined in Fig. 1a based on the GPCCv8 (black), DaiP (red),
CRU TS4.02 (blue), and University of Delaware (magenta) datasets.
The 16 regions include: a Alaska (130-167.5° W, 57.5-62.5° N), b
Northwest North America (120-137.5° W, 35-57.5° N), ¢ Central-
eastern US (60-110° W, 27.5-47.5° N), d Southeast South America
( 47.5-72.5° W, 20-47.5° S), (e) Northern Europe (10 W-30° E
50-72.5° N), f the Mediterranean region (10° W-30° E, 30-46° N),
g West Africa (17.5° W-22.5°E, 0-20° N), h Southern Africa (12.5-
40°E, 5S-35°8S), (i) Central Eurasia (30-97.5°E, 42.5-72.5°N), j the
Middle East (30-65° E, 23-40° N), k Northern India (75-87.5° E
22.5-32.5° N), 1 Northeast China (110-127.5° E, 35-47.5° N), m
Japan(122.5-127.5° E, 22.5-27.5° N; 127.5-132.5° E, 25-32.5° N
132.5-140°E, 30-40°N; and 140-145°E, 40-45° N), n Siberia (100-
170°E, 55-72.5° N), o Northwest Australia (115-137.5°E, 30-10°S),
and p Eastern Australia (140-155°E, 17.5-40°S)

1966 and 1973-1976) (Fig. 4c), while an increasing trend
from 1954 to 1993 is evident in the streamflow (and precipi-
tation) for the Mississippi river (Fig. 4f). In general, large
year-to-year fluctuations overshadow any long-term changes
in the streamflow records, although some multi-decadal and
long-term trends are evident in some of the time series (e.g.,
for Congo, Orinoco, and Mississippi).

Continental freshwater discharge into the oceans rep-
resents a major water flux of the global water cycle that
returns the water vapor flux transported from the oceans to
land by winds back to the oceans (Trenberth et al. 2007).

80 MAM Premp Trend, 1950- 201 8 GPCCVS
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It also represents the renewal freshwater resource avail-
able to all inhabitants on land (Dai et al. 2009). Thus
variations and long-term changes in continental discharge

accumulation of water on land or in the oceans), sea-level

)

the estimate of

rise and human society. Figure 5 updates
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Fig.4 Time series from 1948-2018 of yearly (October of the previ-
ous year—September of the plotted year) mean streamflow rate (in
km? year’l) from observations (thick solid line) and estimated using
basin-mean PDSI or precipitation (thin solid line) at the farthest
downstream station for world’s six largest rivers, with the river name

the global continental freshwater discharge of Dai et al.
(2009) and Dai (2016) using the updated streamflow data
(for 261 largest rivers) and the updated precipitation or

(station name) shown on top of each panel. Also shown (dashed line)
is the basin-averaged precipitation anomaly (right ordinate, normal-
ized by its standard deviation) from GPCC v8. The correlation r (D,
P) between the thick solid and dashed lines is also shown

scPDSIpm data (for other 146 rivers) that is correlated
with streamflow and thus is used to extend or infill the gaps
in the streamflow gauge records (cf. Fig. 4). As noticed
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Fig.5 Yearly time series of October—September mean total continen-
tal discharge (in Sv or 1 X 106 m3 s~1, excluding that from Greenland
and Antarctica) from 1949-2004 (thick solid line) estimated based on
streamflow observations from 925 world’s largest rivers (from Dai
et al. 2009), and for 2005-2018 (thin solid line) estimated based on
updated streamflow data for 407 of world’s largest rivers and a lin-
ear regression with the think solid line. The dashed line is the Octo-

previously (e.g., Dai et al. 2009), continental discharge is
highly correlated with land precipitation (r=0.67) dur-
ing 1948-2018, and they both correlate negatively with
the Nifio3.4 sea surface temperatures (SSTs) (r = — 0.60)
(Fig. 5). That is, land precipitation and continental dis-
charge tend to be below (above) normal during warm El
Nifios (cold La Nifias), as these events affect precipitation
over many land areas (Dai and Wigley 2000). In particu-
lar, since 2011 the Nifio3.4 SSTs have increased, leading
to below normal land precipitation and discharge for the
recent several years. While large multi-year variations
dominate the Nifio3.4 index and the land precipitation and
discharge time series, decadal to multi-decadal variations
(referred to as the Interdecadal Pacific Oscillation or IPO,
Dong and Dai 2015) are evident in Fig. 5, with below-
normal (above-normal) land precipitation and discharge
during the IPO warm phrase from 1977 to 1998 (cold
phases from 1948 to 1976 and from about 1999-2014).
Thus, the IPO’s influences on regional precipitation over
the U.S. (Dai 2013b) and other regions (Dong and Dai
2015) lead to decadal-multidecadal variations in global
land precipitation and continental discharge with below-
normal (above-normal) values during IPO’s warm (cold)
phases. The return to cold SST anomalies after the strong
2015/2016 El Nifio suggests that the IPO’s current cold
phase, which started around 1999, may not be over yet,

@ Springer

ber—September mean precipitation averaged over global (60° S—75°
N) land areas. The red line is the Nino3.4 (170° W-120° W, 5° S-5°
N) SST index (positive downward, range from —3.0 to +3.0). Also
shown are the correlation coefficients between the discharge (D), pre-
cipitation (P) and Nino3.4 index. The x axis indicates the year of the
September (e.g., 1948 refers to the average for 10/1947-9/1948)

as the previous cold phase lasted for about 31 years from
1946 to 1976 with reduced SST negative anomalies from
the late 1950s to middle 1960s (Dai 2013).

3.2 Historical drying trends in scPDSIpm

To understand the long-term changes in scPDSIpm, in
Fig. 6 we plotted the global land-averaged meteorologi-
cal variables whose gridded values were used to calculate
the local scPDSIpm. For surface air temperature (Tas),
the variations and changes are very similar among three
datasets, and thus we only used the CRUTEM4 (with its
gaps infilled with data from CRU TS4.02) Tas data in the
calculation. For precipitation, four datasets were used to
create different versions of the scPDSIpm with the other
forcing data being the same. The other forcing data include
surface net radiation, which requires estimates of the sur-
face longwave and shortwave radiation, with the latter
being estimated based on cloud cover data (Fig. 6d) from
CRU TS4.02 (see Dai and Zhao 2017 for details). Besides
precipitation, the other important driver of the scPDSIpm
is the surface vapor pressure deficit (VPD, Fig. 6e), which
was derived based on the CRU TS4.02 vapor pressure and
Tas data. Figure 6f also shows the PET calculated using
these forcing data (plus surface wind speed data from the
20th century reanalysis, see Dai and Zhao 2017) and the
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Fig.6 Globally (60° S—75° N)-averaged annual anomaly (relative to
1950-2018 mean) time series of the meteorological forcing data over
land used in this study: a surface air temperature [three lines overlap
each other: black=CRUTEM4 (Osborn and Jones 2014), blue=CRU
TS4.02 (Harris et al. 2014), magenta= Univ. of Delaware or UDel T),
b precipitation (black = GPCC v8, blue = CRU TS4.02, red = DaiP,
magenta = UDel, ¢ surface net radiation (solid) and surface net solar

Penman-Monteith equation (PET_pm) or the Thornthwaite
equation (PET_th) (see Dai 2011b for details), as the PET
is a critical factor in the Palmer model (Palmer 1965) used
to calculate the PDSI.

Year

radiation (dashed), both positive downward, d cloud cover (black
solid), surface air pressure (black dashed) and wind speed (red), e
surface air vapor pressure (solid) and vapor pressure deficit (dashed),
and f calculated PET_pm (black solid), PET_th (black dashed, i.e.,
PET from the Thornthwaite Eq. see Dai 2011b), and the PET_pm
with constant T and vapor pressure (red)

Figure 6 shows that while surface radiation exhibits
some decadal and multi-year variations (e.g., low values
from 1972 to 1985 and 1996-2000) associated with cloudi-
ness changes, significant long-term trends exist mainly in
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Fig.7 a Globally (60° S-75° N)-averaged annual land precipitation
anomaly (relative to 1950-1979 mean) from 1950 to 2018 calcu-
lated using the CRU TS4.02 (blue), CPC (for 1950-1978) plus GPCP
v3 (for 1979-2018) (red), GPCC v8 (black), and Willmott or UDel
(magenta) dataset. The slope (b, mm/day per year) and its p-value are
also shown for each line. b Globally (60° S—75° N)-averaged annual
scPDSIpm time series from 1950 to 2018 calculated using the same
meteorological forcing data (from CRU TS4.02) except for precipi-
tation, which was from CRU TS4.02 (blue), GPCC v8 (black), and
CPC+GPCP (red). The slope (b, change per year) and its p value
are also shown for each line. The UDelP case has a slope of — 0.008
(p=0.00) with much larger decreases for scPDSIpm and is not shown
inb

the VPD associated with rising Tas coupled with small
changes in surface relative humidity (Dai 2006; Willett
et al. 2019). The rising Tas and VPD lead to large increases
in PET, especially in PET_th, which tends to overestimate
the impact of surface warming on PET and thus on PDSI
(Burke and Brown 2008; Dai 2011b; van der Shrier 2011).
Thus, any long-term drying trends in the calculated scPD-
SIpm is likely caused by surface warming and the associated
increase in PET, although below-normal precipitation in the
1980s and 1990s, early 2000s, and around 2015 (due to the
strong 2015/2016 El Nifio, Fig. 5) also contributes to the
dry conditions in these years (Fig. 7). As shown in Fig. 1,
significant drying trends occurred over Africa, East Asia,
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southern Europe, eastern Australia and other regions, but
they are partially offset by the wetting trends over central
and northern Eurasia, the central US, Northwest Australia
and other areas. As a result, the global-mean scPDSIpm
(Fig. 7b) shows only a small decreasing (i.e., drying) trend
from 1950 to 2018 (mainly from the early 1970s to middle
1990s). The global-mean scPDSIpm shows large interannual
variations that are caused primarily by land precipitation
variations (Fig. 7) associated with El Nifio-Southern Oscil-
lation (ENSO) events (Fig. 5). Substantial differences exist
among the four land precipitation products since the middle
1990s (Fig. 7a) due to the large decline in the number of
rain-gauges with data (Sheffield et al. 2012; Trenberth et al.
2014), with the GPCP v2.3 (used by DaiP) and UDelP being
drier than the GPCCv8 and CRU TS4.02. These P differ-
ences contribute to the scPDSIpm differences for the recent
20-30 years, with the GPCCv8 case being wetter relative to
the CRU and DaiP cases (Fig. 7b). Nevertheless, the drying
trend from the early 1970s to middle 1990s is evident in
all the precipitation cases, although the global-mean arid-
ity conditions may differ substantially for the recent years
when different precipitation products are used. This suggests
that improvements to global land precipitation products are
needed for the period since the middle 1990s.

Besides the declining precipitation over Africa and many
other regions (Fig. 1a), rising Tas over land, especially over
central and northern Eurasia, Alaska and northern Canada
(Fig. 8c) is also driving up the PET (Fig. 6f), which in turn
causes scPDSIpm to decrease (Fig. 8a, b). The surface
warming is most pronounced since the late 1970s (Fig. 6a),
when the drying effect of the warming becomes evident
(Fig. 8a). Thus, the scPDSIpm trends shown in Fig. Ic,
including the drying trends over East Asia, southern Europe,
and parts of North America, result partly from the drying
trend caused by the recent surface warming, although pre-
cipitation changes still dominate the scPDSIpm trends over
central and northern Eurasia, Africa, South America, and
Australia.

On decadal and longer time scales, the scPDSIpm from
1920 to 2018 shows a long-term trend (drying over most of
Africa, South and East Asia, southern Europe and wetting
over most of the northern mid-high latitudes and Northwest
Australia) that is associated with global warming (thus it is
largely forced by GHG increases), together with a multi-
decadal mode (i.e., MCA?2) that is associated with the multi-
decadal variability in Pacific and North Atlantic sea surface
temperatures (Fig. 9). The spatial patterns of the second
mode (Fig. 9c) resemble those of the IPO in the Pacific (Dai
2013b; Dong and Dai 2015) and the Atlantic Multidecadal
Variability (AMV) in the Atlantic (Enfield et al. 2001), and
its temporal evolution (Fig. 9b) is correlated with the IPO
(r=0.79) and AMV (r=0.58) during 1920-2014. Together,
the IPO and AMYV explain 90 % of the temporal variations
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of the second mode (Fig. 9b). Thus, this multidecadal mode
is associated with the IPO and AMYV, which are thought
to originate from oceanic processes and air-sea interactions
(Liu 2012). Therefore, we may consider the associated scP-
DSIpm mode (Fig. 9b,f) as being caused by the IPO and
AMV. This mode shows that, on top of the long-term trend
represented by the first mode (Fig. 9a,d), the period from
about 1975-1998 was relatively dry (wet) over the Sahel,
northeastern Asia, Alaska and northern Canada (southwest-
ern North America, most of South America, the Middle East,
and most of Europe and Australia); whereas it is the opposite
for the periods from about 1945-1974 and since about 1999
(Fig. 9b,f). While the IPO since 1920 resulted primarily

from internal variability (Hua et al. 2018), the recent AMV
may have partly resulted from decadal variations in volcanic
and anthropogenic aerosols (Qin et al. 2020b). Thus, the
multi-decadal mode (i.e., MCA?2) shown in Fig. 9 may have
partly resulted from aerosol forcing, besides the contribution
from the internal SST variability in the Pacific (i.e., IPO)
and Atlantic (i.e., the internal component of the AMYV, Qin
et al. 2020b).

On interannual to multi-year time scales, the scPDSIpm is
dominated by ENSO (Fig. 10a,c,d)., which causes wet con-
ditions over southwestern North America, southern South
America, southwestern Asia but dry conditions over Australia,
the maritime continent, South Asia, northern South America,
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Fig.9 Temporal (a, b, black for SST, red for scPDSIpm) and spatial
(c—f) patterns of the two leading modes from a maximum covari-
ance analysis (MCA, Bretherton et al. 1992) of the observed SST
(from HadSST3, Kennedy et al. 2011) and the DaiP-based scPD-
SIpm from 1920-2018. Panels a, ¢ and d are for the first MCA mode
(MCA1) and b, e and f are for the second MCA mode (MCA2).
Nine-year moving-averaged data were used in the analysis. The blue
line in a is the similarly smoothed global-mean surface temperature
anomaly (on the right y-axis) obtained from the Climate Research
Unit (CRU, http://www.cru.uea.ac.uk/cru/data/temperature/HadCR
UT4-gl.dat, Osborn and Jones 2014). The dashed black line in b is
the estimated SST PC coefficient using a linear regression with the
normalized IPO (blue, from Hua et al. 2018) and AMV (green, for a
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negative phase, from Qin et al. 2020b) indices: dashed black line =
— 0.0006+0.0895*blue line +0.0635*green line. In a-b, SFC is the
squared fractional covariance explained by the MCA mode and the r1
and r2 are the correlation coefficients between, respectively, the black
and red, and black and blue lines. 73 is the correlation coefficient
between the red and blue lines in a and the black and green lines in
b. r4 in b is the correlation coefficient between the solid and dashed
black lines. pVar is the percentage variance explained by the MCA
mode in c—f. The corresponding MCA modes depict the statistically
associated temporal and spatial patterns in the SST and scPDSIpm
fields. The product of the temporal and spatial coefficients at a given
location is the SST or scPDSIpm anomaly represented by the MCA
mode
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and southern Africa during El Nifio, and the opposite during
La Nifia (Fig. 10d). Interestingly, there is another interannual
mode (MCA2) with warm SST anomalies in both the equato-
rial eastern Pacific and northwestern Pacific and cold SST
anomalies in the western Pacific and tropical Atlantic that lag
the ENSO mode by about six months (Fig. 10b,e). Thus, the
SST anomalies of this mode peak around May-June following
the December-January peak of the ENSO event (Fig. 10a).
This suggests that this mode is also likely related to ENSO,

despite its non-conventional ENSO-like SST patterns and
the delayed temporal evolution. Associated with this SST
mode, the scPDSIpm anomalies show quite different patterns
compared with those associated with typical ENSO, with dry
conditions over central Asia, most Europe, and southeastern
Australia but wet conditions over Alaska and western Canada,
most of South America, southern Africa, the Middle East and
northeastern Asia (Fig. 10f).
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Fig. 11 a—c Same as Fig. 1 except for the trends in the ensemble
mean of a annual precipitation from 81 runs from 40 CMIP5 models,
b total runoff from 66 runs from 33 CMIP5 models, and ¢ scPDSIpm
calculated using data from 14 runs from 14 CMIP5 models. The
historical all-forcing (for 1950-2005) and the RCP4.5 scenario (for

4 Comparison with CMIP5 model-simulated
trends

4.1 Differences in model-simulated historical
and future trends

Before comparing with the trends estimated from observa-
tional data, we first examine the model-simulated ensemble-
mean trends from 1950 to 2018 and from 2000 to 2099 for
annual precipitation, runoff, and scPDSIpm in Fig. 11. The
ensemble averaging over multi-model simulations smooths
out most of the regional variations caused by internal vari-
ability, making Fig. 11 much smoother spatially than Fig. 1.
The drying reflected by the scPDSIpm trend (Fig. 11c¢) is
more widespread than that seen in precipitation or run-
off trend (Fig. 11a, b), mainly due to the additional dry-
ing caused by increased PET under rising air temperatures
(Zhao and Dai 2015). Many of these historical trend pat-
terns are consistent with those expected to occur in the 21st
century under increasing GHGs (Fig. 11d, f; Collins et al.
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2006-2018) are used for the model simulations. The data are masked
to have similar spatial coverage as in Fig. 1. d—f Same as a—c except
for trends during 2000-2099 under the RCP4.5 scenario. Each row
shares the color bar on the right side, with the units shown on top of
the panels

2013; Zhao and Dai 2015, 2017; Dai et al. 2018), such as
the increased (decreased) precipitation, runoff and scPD-
SIpm over most of North America and Eurasia (Southwest
North America, northern and central South America, the
Mediterranean region, and southern Europe). However, the
large precipitation and runoff decreases over Southeast Asia
during 1950-2018 are absent in the projected future changes
(Fig. 11). Furthermore, compared with the changes in the
21st century from the same model runs (Fig. 11d, f) and
other CMIP5 models (Collins et al. 2013; Dai et al. 2018),
over Northwest Australia precipitation and runoff increase
during 1950-2018 whereas precipitation decreases and run-
off changes little there in the 21st century, and the drying
over southern Brazil during 1950-2018 is more intense and
widespread than in the 21st century while it is the opposite
for northern Africa (Fig. 11).

Seasonal precipitation trend maps for 1950-2018 from
the CMIP5 MMM (Fig. 12a—d) show patterns similar to
those for annual precipitation (Fig. 11a), except that the wet-
ting trend over Northwest Australia is most pronounced in
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Fig. 12 Linear trend maps in seasonal precipitation from the ensemble mean of 81 runs from 40 CMIP5 models during 1950-2018 (left column)

and 2000-2099 (right column, RCP4.5 scenario)

DJF and MAM but absent in JJA. The drying over Southeast
Asia and northern-central South America is seen over all
seasons, especially in SON for the South American drying
(Fig. 12d). The drying over Central America is largest in
JJA but lest in SON (Fig. 12c—d). In contrast, during the 21st
century (Fig. 12e—h) precipitation decreases over Australia
and increases in Southeast Asia in all seasons, while precipi-
tation over southern Brazil increases in DJF. Furthermore,
the drying over Europe, the Middle East and northern Africa

in JJA and MAM is more widespread in the 21st century
than during 1950-2018 (Fig. 12). Thus, large differences in
the model-simulated precipitation response to external forc-
ing between 1950-2018 and 2000-2099 exist over Australia
(mainly in DJF and MAM), Southeast Asia (in all seasons),
and a few other places.

The above regional differences in the model-simulated
responses to external forcing between 1950-2018 and the
21st century may partly result from the different aerosol
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forcing during the two periods, since historical anthropo-
genic and volcanic aerosols, which differ in the RCP4.5
scenario for the 21st century, may have played an impor-
tant role in the recent surface warming in the North Atlantic
(Booth et al. 2012; Murphy et al. 2017; Bellomo et al. 2018;
Hua et al. 2019; Qin et al. 2020b) and other regions (Qin
et al. 2020a), and that the aerosol forcing may have caused
a drying trend since the 1970s over Southeast Amazon and
a wetting trend over the Sahel in West Africa (Hua et al.
2019). The different precipitation responses over South-
east Asia and Northwest Australia between 1950-2018 and
2000-2099 may also be related to different aerosol forcing
over East Asia. However, how the historical aerosol forcing
has contributed to the drying over Southeast Asia and south-
ern Brazil and the wetting over Northwest Australia requires
further investigation.

4.2 Comparison between observed and model-
simulated historical trends

Many of the observed trend patterns shown in Fig. 1 are
qualitatively (and statistically) consistent with the model-
simulated trends shown in Fig. 11a—c for the same period
from 1950 to 2018. For example, increased precipitation and
runoff and wetting trends of comparable magnitudes are seen
in both observations and models over many northern mid-
high latitudes, Northwest Australia, and southeastern South
America; while decreased precipitation and runoff and dry-
ing trends are seen over southern Europe, southern Africa,
and Southeast Asia. These consistent trend patterns sug-
gest that GHG and other external forcing may have already
caused detectable changes in these hydroclimatic fields dur-
ing 1950-2018. On the other hand, some of the regional
trends shown in Fig. 1 are likely caused by multi-decadal
internal variations and thus are not directly comparable
to the forced trends shown in Fig. 11a—c. A more precise
assessment of the statistical consistency or inconsistency
between the observed and model-simulated trends would
require a comparison of the observed trends with the 5th
-95th percentiles of the model-simulated trends at each grid
point, as done in Knutson and Zeng (2018) for historical
precipitation trends. Also, internal variability should have a
larger impact on the seasonal trends shown in Fig. 2, mak-
ing them less comparable with the forced trends shown in
Fig. 12a—d.

To find out to what extent the trend patterns shown in
Fig. 1 estimated from historical data, which include both
externally-forced and internally-generated changes, are
forced by external forcing, we used the SST field from
the CMIP5 MMM as the forced response and performed
an MCA analysis of the SST field together with the pre-
cipitation field from either CMIP5 MMM or observations.
Figure 13 compares the leading MCA mode from these
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MCA analyses. Clearly, the MCA1 of the SST captures
the global warming mode and it accounts for most (93.6 %)
of the smoothed SST’s temporal-spatial variations dur-
ing 1920-2018 (Fig. 13a-b). Associated with this warm-
ing mode, precipitation in the models shows a trend patten
that resembles the linear trend pattern shown in Fig. 11a,
with drying over some subtropical regions and Southeast
Asia but wetting elsewhere (Fig. 13c). Associated with
the warming mode, the MCA1 in observed precipitation
from both the GPCC v8 and DaiP shows a similar long-
term trend (Fig. 13a) with spatial patterns broadly consist-
ent with the model-simulated precipitation response, with
wetting over northern mid-high latitudes, Australia, and
southeastern South America, but drying over parts of South
Asia and Africa, and central South America (Fig. 13c—e).
As the observed precipitation is from one single realiza-
tion, it contains large unforced internal variations, leading
to a much smaller fraction of the variance explained by this
global warming mode than in the CMIP5 MMM (Fig. 13).
Furthermore, the large internal variations make it difficult
for the MCA technique to cleanly exact the forced precipi-
tation component from other changes at many locations
(such as West Africa and East Asia) where precipitation’s
internal variability is large. This is particularly true for the
weaker forced signal represented by the second and third
MCA modes of precipitation (figure not shown), which show
consistent temporal coefficients but with different regional
patterns between the CMIPS MMM and observations.

For 9-year smoothed scPDSIpm, the first MCA mode
is associated with the global warming (Fig. 14a), whose
spatial patterns (Fig. 14d) resemble the trend map shown
in Fig. 11c. This long-term trend mode is seen in histori-
cal scPDSIpm calculated based on either GPCC v8 P or
DaiP, except over southwestern North America and northern
Africa (Fig. 14a,d,g). The second and third MCA modes
show multi-decadal changes over Africa, East Asia, and
North America and other regions (Fig. 14b,c,e,f), which are
likely forced by decadal variations in external forcing, such
as anthropogenic and volcanic aerosols (Qin et al. 2020a,
b). Many of these multi-decadal variations are evident in the
historical scPDSIpm data (Fig. 14b,c,h,i), although notice-
able differences exist (e.g., over South Asia for MCA2, and
over Africa for MCA3), again likely due to sampling errors
(i.e., impact of internal variability) in the estimated MCAs
for the historical scPDSIpm data.

In summary, the linear trend patterns (Figs. 1 and 11a—c)
and the MCA patterns (Fig. 13) suggest that the recent wet-
ting (drying) trends over northern mid-high latitudes, North-
west Australia, and southeastern South America (southern
Europe, Southeast Asia, and West and southern Africa) seen
in historical data may be partly forced by external forcing;
while the wetting trends over Southwest North America and
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Fig. 13 Same as Fig. 9 except for the leading MCA mode of the
9-year smoothed annual SST (black line in a) from the multi-model
ensemble mean (MMM) of the 68 all-forcing runs by 34 CMIP5
models and precipitation (red line in a) from the MMM of the 81
all-forcing runs from 40 CMIP5 models. The CMIPS5 all-forcing his-
torical runs were extended to 2018 using the corresponding RCP4.5
runs. The leading MCA mode of the same CMIP5 SST and 9-year

drying trend over eastern Australia may be mainly related to
IPO and other internal variability.

5 Summary and discussion

In this study, I have updated our streamflow and scPDSIpm
datasets to December 2018 and used the updated data to
present a synthesized picture of the changes from 1950 to
2018 in land precipitation, streamflow, and scPDSIpm, an
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smoothed precipitation from GPCC v8 (blue line in a, and d) or DaiP
(magenta line in a, and e) is also shown, with its temporal and spa-
tial patterns for SST are similar to those shown in a and b. The r in
a is the correlation coefficient between the black line and red, blue, or
magenta line, respectively. Panel b uses the left color bar while pan-
els c—e use the right color bar

improved form of the PDSI that measures surface dryness or
aridity relative to local mean conditions. A comparison with
the CMIP5 model-simulated response to historical forcing is
also made to assess how much of the historical changes may
be forced by historical external forcing. In general, the rain-
gauge and streamflow records from independent measure-
ments show consistent change patterns, thus increasing our
confidence in these historical data. Together, the raingauge
and streamflow data suggest increased precipitation and
runoff from 1950 to 2018 over mid-high latitude Eurasia,
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Fig. 14 Same as Fig. 9 except 0.6 T
for the three leading MCA —
modes of the 9-year smoothed 0.3
annual scPDSIpm based on the
GPCC v8 precipitation (red in
a-c, and g—i) or DaiP (blue line
in a—c¢) and from the multi-
model ensemble mean (MMM) -0.3—
(black line in a—c, and d-f) of -
the scPDSIpm from 14 CMIP5
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most North America, Southeast South America, and North-
west Australia; but decreased precipitation and runoff over
most Africa, eastern Australia, the Mediterranean region,
the Middle East, parts of East Asia, central South America,
and the Pacific coasts of Canada. The wetting trend over
Northwest Australia and Southeast South America is most
pronounced in DJF while the drying over Africa and wet-
ting over mid-high latitude Eurasia are seen in all seasons.
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These precipitation changes and the drying caused by rising
surface temperatures and increasing water vapor deficit have
caused surface drying trends and increased risk of drought
from 1950 to 2018 over Africa, southern Europe, East Asia,
eastern Australia, Northwest Canada, and southern Brazil.
Besides the long-term changes, land precipitation and
continental freshwater discharge also show large interannual
and inter-decadal variations, with negative anomalies during
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El Nifio and following major volcanic eruptions in 1963,
1982, and 1991; and their decadal variations are correlated
with the IPO with [PO’s warm phase associated with below-
normal land precipitation and continental discharge. ENSO
also dominates the inter-annual variations in scPDSIpm or
surface aridity over global land, with wet (dry) conditions
during El Nifio over Southwest North America, southern
South America, and southwestern Asia (northern South
America, Australia, South Asia and southern Africa); and
the opposite during La Nifia. An ENSO-related mode with
altered SST patterns and a delayed peak (by ~6 months)
also has a significant impact on land aridity. On longer time
scales, besides a global trend pattern, the scPDSIpm also
shows a multidecadal mode with the period from 1975 to
1998 being relatively dry (wet) over the Sahel, northeast-
ern Asia, Alaska and northern Canada (southwestern North
America, most of South America, the Middle East, and
most of Europe and Australia); whereas it is the opposite
for the periods from about 1945-1974 and since about 1999.
This multidecadal mode of land aridity is associated with
the multidecadal variability in Pacific and North Atlantic
SSTs; together the IPO and AMYV account for about 90 % of
the temporal variations of this mode. Although some of the
recent AMV may be externally forced by decadal variations
in volcanic and anthropogenic aerosols (Qin et al. 2020a, b),
this result still suggests that the [PO and AMV dominate the
multidecadal variations in land aridity. While the impact of
the IPO and AMYV on land precipitation (Dai 2013b; Dong
and Dai 2015; Hua et al. 2018) and streamflow (Enfield
2001; Knight et al. 2006) have been examined previously,
and the ENSO’s impact on land aridity has also been noticed
previously (Dai et al. 2004; Dai 2011b; Bonfils et al. 2017;
Dai and Zhao 2017), the combined impact by the IPO and
AMYV on land aridity discussed here is a new finding.
CMIP5 multi-model ensemble mean shows decreased
precipitation and runoff and increased aridity and risk of
drought during 1950-2018 over Southwest North Amer-
ica, Central America, northern and central South America
(including the Amazon), southern and West Africa, the Med-
iterranean region, and Southeast Asia; while the northern
mid-high latitudes, Southeast South America, and Northwest
Australia see increased precipitation and runoff. The linear
trend patterns and the MCA patterns suggest that the recent
wetting (drying) trends from 1950 to 2018 over the northern
mid-high latitudes, Northwest Australia, and southeastern
South America (southern Europe, Southeast Asia, and West
and southern Africa) seen in historical data may be partly
forced by external forcing; while the wetting trends over
Southwest North America and drying trend over eastern
Australia may be mainly related to IPO and other internal
variability. Some of the regional trends during 1950-2018
seen in CMIP5 MMM and observations, such as the dry-
ing over Southeast Asia (in all seasons) and wetting over

Northwest Australia (mainly in DJF and MAM), are absent
in the model projections for the 21st century. This suggests
that recent volcanic and anthropogenic aerosols and other
short-term forcing may have caused these regional changes.
Since future emissions scenarios have large uncertainties
regarding future volcanic eruptions and other short-term
forcing, current model projections of the 21st century hydro-
climatic changes may contain large uncertainties over South-
east Asia, Northwest Australia, and other regions that are
sensitive to such forcing.
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