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Abstract In this article we propose the Cahn-Hilliard-Navier-Stokes-Darcy-Boussinesq system that models

thermal convection of two-phase flows in a fluid layer overlying a porous medium. Based on operator

splitting and pressure stabilization we propose a family of fully decoupled numerical schemes such that

the Navier-Stokes equations, the Darcy equations, the heat equation and the Cahn-Hilliard equation are

solved independently at each time step, thus significantly reducing the computational cost. We show that
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the schemes preserve the underlying energy law and hence are unconditionally long-time stable. Numerical

results are presented to demonstrate the accuracy and stability of the algorithms.
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1 Introduction

Many natural and engineering applications involve multiphase flows in superposed free flow and porous

media. One such example is the mixing of surface water and shallow groundwater in the hyporheic zone–a

region of sediment and porous space beneath and alongside a stream bed. Many important hydrodynamic

and biogeochemical processes take place in this zone, and the hyporheic zone plays a major role in maintain-

ing the self-purification function of streams, cf. [3]. Other applications in this context include contaminant

transport in karst aquifers [41], oil recovery in petroleum engineering [19], water management in PEM fuel

cell technology [43], and cardiovascular modeling and simulation [12].

The study of single phase flow in superposed fluid and porous media is usually pursued via either the

Stokes-Darcy coupling or the Navier-Stokes-Darcy coupling [2, 6, 7, 8, 12, 17, 33]. The study of multi-

phase flow in the coupled domain is very challenging, and no sharp interface model is available to date.

A hybrid of the sharp interface model in porous media and the di↵use interface model in the free flow is

recently proposed in [5]. Based on Onsager’s extremum principle and the di↵use interface formalism the

Cahn-Hilliard-Stokes-Darcy system (CHSD) is systematically derived in [25] for two-phase flows in coupled

conduit and porous media, cf. [27] for the well-posedness of the CHSD.

In many applications the free flow is necessarily governed by the Navier-Stokes equations as opposed

to the Stokes equations employed in [5]. Furthermore, flows in hyporheic zone and in oil recovery are

naturally non-isothermal [30]. In this article we propose the Cahn-Hilliard-Navier-Stokes-Darcy-Boussinesq

(CHNSDB) system that models thermal convection of two-phase flows in a fluid layer overlying a porous

medium. Non-isothermal e↵ect is taken into account by the Boussinesq approximation and the suppressing

of thermocapillary e↵ects, which is suitable for most applications of multiphase flow in superposed fluid and

porous media. We note that thermocapillary e↵ect can be considered in the spirit of [22] if surface tension

variation is significant. The CHNSDB model is shown to obey an energy law.
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The CHNSDB model is a complex system that involves four coupled physical processes: the phase

field model (the Cahn-Hilliard equation), the thermal conduction (the heat equation), fluid in free flow

(the Navier-Stokes equations), and fluid flow in porous media (the Darcy system). In order to reduce

the computation cost, we design numerical schemes that totally decouple the computation of the four

processes at a time step. The main ideas are operator splitting and pressure stabilization that are inspired

by [9, 10, 34, 42]. We establish the unconditional unique solvability and unconditional long-time stability

of the algorithms. Numerical experiments are performed to verify the accuracy, the long-time stability, and

the ability to capture convection cells of the proposed algorithms.

The design of energy law preserving numerical schemes are of great importance for solving phase field

fluid models, owing to the sti↵ness associated with the di↵usive interface (sharp transition in thin layers).

Many approaches have been proposed in recent years, including the convex-concave splitting [4, 13, 18, 36],

the stabilized linear approach [39], the Invariant Energy Quadratization (Lagrange multiplier) method

[15, 20, 45, 46], and the Scalar Auxiliary Variable approach [37, 38]. Applications of these methods to phase

field fluid models can be found in [11, 14, 21, 23, 24, 26, 28, 32, 40, 47] among many others.

The rest of the article is organized as follows. In Sec. 2 we introduce the CHNSDB model, establish

the energy law, and introduce the weak formulation. We present the numerical algorithms and prove their

unconditional unique solvability and long-time stability in Sec. 3. Numerical results are provided in Sec. 4.

We conclude the article with some remarks in Sec. 5.

2 The mathematical model

Let us assume that the whole model is confined in a bounded connected domain ⌦ 2 Rd (d = 2, 3)

with su�ciently smooth boundary. The domain ⌦ is split into two non-overlapping regions ⌦c,⌦m such

that ⌦ = ⌦c [ ⌦m and ⌦c \ ⌦m = ;. ⌦c represents the conduit area where the fluids are subject to the

Navier-Stokes equation, and ⌦m represents the porous media where Darcy flow dominates the region. We

denote @⌦c and @⌦m the boundaries of ⌦c and ⌦m respectively, while both boundaries are assumed to

be Lipschitz continuous. The interface between the two regions (i.e., @⌦c \ @⌦m) is denoted by �cm, on

which ncm denotes the unit normal to �cm pointing from ⌦c to ⌦m. We also denote �c = @⌦c\�cm and

�m = @⌦m\�cm with nc,nm being the unit outer normals to �c and �m. On the interface �cm, we denote
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by {⌧ i} (i = 1, ..., d�1) a local orthonormal basis for the tangent plane to �cm. A two dimensional geometry

is illustrated in Fig. 1.

Fig. 1: A 2D illustration of the domain.

The subscript m (or c) represents the regions where the variables locate. m is for the matrix part of the

Darcy system, and c is for the conduit part of the Navier-Stokes system. We denote by u the velocity of the

whole fluid, ' the phase field function and T the overall temperature. We assume the following convention

throughout the paper, that is, for j 2 {c,m}

u|⌦j
= uj , '|⌦j

= 'j , T|⌦j
= Tj .

This also applies to other functions and variables on the whole domain, such as µ, ⌫ and , which will be

introduced in the sequel.

2.1 The model and the energy law

Now let us consider the Cahn-Hilliard-Navier-Stokes-Darcy-Boussinesq(CHNSDB) system as follows:

⇢0

⇣
@tuc + (uc ·r)uc

⌘
�r ·

⇣
2⌫('c,Tc)D(uc)

⌘
+rPc + 'crµc = �⇢0

�
1� ↵(Tc �T⇤)

�
gz, in ⌦c, (2.1)

⇢0

�
@tum + ⌫('m,Tm)⇧�1

um +rPm + 'mrµm = �⇢0
�
1� ↵(Tm �T⇤)

�
gz, in ⌦m,(2.2)

r · uj = 0, in ⌦j , (2.3)

@tTj + uj ·rTj = r · (j(Tj)rTj) , in ⌦j , (2.4)

@t'j +r · (uj'j) = div(M('j)rµj), in ⌦j , (2.5)
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µj = �[
1
✏
('3

j � 'j)� ✏�'j ], in ⌦j , (2.6)

where j 2 {c,m} and D(uc) is given by

D(uc) =
1
2
(ruc +rT

uc), (2.7)

denoting the rate of strain tensor. Here ⇢0 is a constant representing the approximation of the fluid density,

↵ is the thermal expansion coe�cient and T⇤ is a fixed temperature, g is the gravitational acceleration, z

is the unit vector pointing in the inverse direction of gravity, M is a non-negative smooth function which

denotes the mobility, � is the porosity and ⇧ is the permeability matrix with size of d⇥ d, ⌫ is the dynamic

viscosity depending on phase field function ' and temperature T,  is thermal di↵usivity of the fluid mixture

and is dependent on temperature T, µ is the chemical potential and � is a positive parameter related to the

surface tension. Moreover, we assume that the viscosity ⌫, thermal di↵usivity  and mobility M are suitable

functions such that 0 < c̄  ⌫,,M  C̄ for positive constants c̄ and C̄.

The CHNSDB system is subject to the following boundary and interface conditions.

Boundary conditions on �c and �m:

uc = 0,
@Tc

@nc

=
@'c

@nc

=
@µc

@nc

= 0, on �c, (2.8)

um · nm = 0,
@Tm

@nm

=
@'m

@nm

=
@µm

@nm

= 0, on �m. (2.9)

Interface conditions on �cm:

'm = 'c,
@'m

@ncm

=
@'c

@ncm

, on �cm, (2.10)

µm = µc, M('m)
@µm

@ncm

= M('c)
@µc

@ncm

, on �cm, (2.11)

Tm = Tc, m
@Tm

@ncm

= c
@Tc

@ncm

, on �cm, (2.12)

um · ncm = uc · ncm, on �cm, (2.13)

�2⌫('c)ncm · (D(uc)ncm) + Pc +
1
2
⇢0|uc|2 = Pm, on �cm, (2.14)

�⌧i · (D(uc)ncm) =
↵BJSJ

2
p
trace(⇧)

⌧i · uc, i = 1, . . . , d� 1, on �cm, (2.15)

where ↵BJSJ is a parameter in the Beavers-Joseph-Sa↵man-Jones(BJSJ) condition. Here ↵BJSJ is assumed

to be a non-negative constant for simplicity.
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We assert that for all T � 0, T (the mean value of T) is a constant for our CHNSDB system. For the

PDE solution there holds

d

dt

✓Z

⌦

Tdx

◆
=

Z

⌦

@tTdx =
X

j2{c,m}

Z

⌦j

⇣
r · (j(Tj)rTj)� uj ·rTj

⌘
dx

=
X

j2{c,m}

 Z

�j

(Tj)
@Tj

@nj

dx+

Z

⌦j

[Tjr · uj �r · (ujTj)] dx

!

= �
X

j2{c,m}

Z

�j

Tjuj · njdx = 0.

Additionally, we choose z to be the ordinate of the axis parallel to z satisfying rz = z, then for j 2 {c,m}

there holds

�⇢0
�
1� ↵(Tj �T⇤)

�
gz = ↵⇢0g(Tj �T)z� ⇢0

�
1� ↵(T�T⇤)

�
gz

= ↵⇢0g(Tj �T)z�r
�
⇢0
�
1� ↵(T�T⇤)

�
gz
�
.

Hence the second term above can be combined with rPj (j 2 {c,m}) on the left hand side of the fluid

equation, that is to set

ePj = Pj + ⇢0
�
1� ↵(T�T⇤)

�
gz, j{c,m},

and replace Pj with ePj . Notice that ⇢0
�
1� ↵(T�T⇤)

�
gz is a constant so that the interface condition

(2.14) still holds for ePj . By continuing to use Pj instead of ePj for simplicity the PDE system (2.1)–(2.6) is

equivalent to the following system with j 2 {c,m}:

⇢0

⇣
@tuc + (uc ·r)uc

⌘
�r ·

⇣
2⌫('c,Tc)D(uc)

⌘
+rPc + 'crµc = ↵⇢0g(Tc �T)z, in ⌦c, (2.16)

⇢0

�
@tum + ⌫('m,Tm)⇧�1

um +rPm + 'mrµm = ↵⇢0g(Tm �T)z, in ⌦m, (2.17)

r · uj = 0, in ⌦j , (2.18)

@tTj + uj ·rTj = r · (j(Tj)rTj) , in ⌦j , (2.19)

@t'j +r · (uj'j) = div(M('j)rµj), in ⌦j , (2.20)

µj = �[
1
✏
('3

j � 'j)� ✏�'j ], in ⌦j . (2.21)

It is important to declare that the CHNSDB system (2.8)-(2.21) obeys an energy law. Here we need to

introduce some constants. Set � as the upper bound of the largest eigenvalue of ⇧. Let Cp, Ck > 0 be the

coe�cients such that

��T�T
��2
L2(⌦)

 Cp krTk2
L2(⌦) , kuck2L2(⌦c)

 Ck kD(uc)k2L2(⌦c)
(2.22)
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hold for all T 2 H
1(⌦),uc 2 H

1(⌦c). For any constant A such that

A � max{CpCk(↵⇢0g)
2

8c̄2
,
Cp�(↵⇢0g)2

4c̄2
}, (2.23)

we define the total energy of the system as follows:

EA(t) :=
Z

⌦c

⇢0

2
|uc|2dx+

Z

⌦m

⇢0

2�
|um|2dx+A

Z

⌦

1
2
T2

dx+ �

Z

⌦


✏

2
|r'|2 + 1

✏
F (')

�
dx, (2.24)

where F (') = 1
4 ('

2 � 1)2. The last integral term is the free energy function

E(') = �

Z

⌦


1
✏
F (') +

✏

2
|r'|2

�
dx.

It is known from thermodynamics that without external di↵erential heating the total energy of the

system decays in time. The CHNSDB system obeys this principle. Let (um,uc,T,') be a su�ciently smooth

solution to (2.8)-(2.21), then for all t � 0, (um,uc,T,') satisfies the following energy law:

Lemma 1 For constant A that satisfies (2.23), the solution to the PDE system (2.8)-(2.21) satisfies

d

dt
EA(t)  0, 8t � 0. (2.25)

Proof Notice that z is a unit vector, then by the Cauchy-Schwarz inequality, (2.22) and (2.23) we have

Z

⌦c

↵⇢0g(Tc �T)z · ucdx 
Z

⌦c

✓
Ck(↵⇢0g)

2

8⌫('c,Tc)
(Tc �T)2 +

2⌫('c,Tc)
Ck

|uc|2
◆
dx


Z

⌦c

✓
(Tc)A

Cp

(Tc �T)2 + 2⌫('c,Tc)|D(uc)|2
◆
dx. (2.26)

Since

���⇧1/2
z

���
2
= z

>
⇧z  max

|v|=1
v
>
⇧v = �max(⇧)  �, (2.27)

then

Z

⌦m

↵⇢0g(Tm �T)z · umdx =

Z

⌦m

↵⇢0g(Tm �T)⇧1/2
z ·⇧�1/2

umdx


Z

⌦m

✓
(↵⇢0g)2

4⌫('m,Tm)
(Tm �T)2

���⇧1/2
z

���
2
+ ⌫('m,Tm)

���⇧�1/2
um

���
2
◆
dx


Z

⌦m

✓
�(↵⇢0g)2

4⌫('m,Tm)
(Tm �T)2 + ⌫('m,Tm)

���⇧�1/2
um

���
2
◆
dx


Z

⌦m

✓
(Tm)A

Cp

(Tm �T)2 + ⌫('m,Tm)
���⇧�1/2

um

���
2
◆
dx. (2.28)

Inequalities (2.26) and (2.28) imply

Z

⌦c

↵⇢0g(Tc �T)z · ucdx+

Z

⌦m

↵⇢0g(Tm �T)z · umdx
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
Z

⌦

(T)A
Cp

(T�T)2dx+

Z

⌦c

2⌫('c,Tc)|D(uc)|2dx+

Z

⌦m

⌫('m,Tm)
���⇧�1/2

um

���
2
dx


Z

⌦

(T)A|rT|2dx+

Z

⌦c

2⌫('c,Tc)|D(uc)|2dx+

Z

⌦m

⌫('m,Tm)
���⇧�1/2

um

���
2
dx. (2.29)

A standard energy estimate to (2.8)-(2.21) then gives

d

dt
E(t) = �

Z

⌦c

2⌫('c,Tc)|D(uc)|2dx�
Z

⌦m

⌫('m,Tm)
���⇧�1/2

um

���
2
dx�

Z

⌦

(T)A|rT|2dx

�
Z

⌦

M(')|rµ(')|2dx�
Z

�cm

↵BJSJ

⌫(',T)p
trace(⇧)

d�1X

i=1

|⌧i · uc|2dS

+

Z

⌦c

↵⇢0g(Tc �T)z · ucdx+

Z

⌦m

↵⇢0g(Tm �T)z · umdx

 �
Z

⌦c

2⌫('c,Tc)|D(uc)|2dx�
Z

⌦m

⌫('m,Tm)
���⇧�1/2

um

���
2
dx�

Z

⌦

(T)A|rT|2dx

�
Z

⌦

M(')|rµ(')|2dx�
Z

�cm

↵BJSJ

⌫(',T)p
trace(⇧)

d�1X

i=1

|⌧i · uc|2dS

+

Z

⌦

(T)A|rT|2dx+

Z

⌦c

2⌫('c,Tc)|D(uc)|2dx+

Z

⌦m

⌫('m,Tm)
���⇧�1/2

um

���
2
dx

= �
Z

⌦

M(')|rµ(')|2dx�
Z

�cm

↵BJSJ

⌫(',T)p
trace(⇧)

d�1X

i=1

|⌧i · uc|2dS

 0. (2.30)

This completes the proof. ut

2.2 The weak formulation

We introduce the following spaces

H(div;⌦j) := {w 2 L
2(⌦j) | r ·w 2 L

2(⌦j)}, j 2 {c,m},

Hc,0 := {w 2 H
1(⌦c) | w = 0 on �c},

Hc,div := {w 2 Hc,0 | r ·w = 0},

Hm,0 := {w 2 H(div;⌦m) | w · nm = 0 on �m},

Hm,div := {w 2 Hm,0 | r ·w = 0},

Xm := H
1(⌦m) \ L

2
0(⌦m).

Here L2
0(⌦m) is a subspace of L2 whose elements are of mean zero. We denote (·, ·)c, (·, ·)m the inner products

on the spaces L
2(⌦c), L2(⌦m), respectively (also for the corresponding vector spaces). The inner product
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on L
2(⌦) is simply denoted by (·, ·). Then it is clear that

(u, v) = (um, vm)m + (uc, vc)c, kuk2L2(⌦) = kumk2L2(⌦m) + kuck2L2(⌦c),

where um := u|⌦m
and uc := u|⌦c

. We will suppress the dependence on the domain in the L
2 norm if there

is no ambiguity. We also denote H
0 the dual space of H with the duality induced by the L

2 inner product.

The weak formulation of the CHNSDB system in three dimension is given by the following definition. The

formulation in two dimension is defined similarly.

Definition 1 Suppose that d = 3 and T > 0 is arbitrary (distinguish time T from temperature T carefully).

We consider the initial data '0 2 H
1(⌦),uc(0) 2 Hc,div,um(0) 2 Hm,div,T0 2 H

1(⌦). The functions

(uc, Pc,um, Pm,T,', µ) with the following properties

uc 2 L
1(0, T ;L2(⌦c)) \ L

2(0, T ;Hc,0), @uc
@t

2 L
4
3 (0, T ; (Hc,0)0), (2.31)

um 2 L
1(0, T ;L2(⌦m)) \ L

2(0, T ;Hm,0), @um
@t

2 L
4
3 (0, T ; (Hm,0)0), (2.32)

Pc 2 L
4
3 (0, T ;L2(⌦c)), Pm 2 L

4
3 (0, T ;Xm), (2.33)

T 2 L
1(0, T ;L2(⌦)) \ L

2(0, T ;H1(⌦)),Tt 2 L
2(0, T ; (H1(⌦))0), (2.34)

' 2 L
1(0, T ;H1(⌦)) \ L

2(0, T ;H3(⌦)),'t 2 L
2(0, T ; (H1(⌦))0), (2.35)

µ 2 L
2(0, T ;H1(⌦)), (2.36)

is called a finite energy weak solution of the CHNSDB system (2.8)–(2.21), if the following conditions are

satisfied:

(1) For any vc 2 Hc,0 and qc 2 L
2(⌦c),

⇢0h@tuc,vcic + ⇢0
eBc(uc,uc,vc) + 2 (⌫('c,Tc)D(uc),D(vc))c � (Pc,r · vc)c

+
d�1X

i=1

↵BJSJ

Z

�cm

⌫('m)p
trace(⇧)

(uc · ⌧ i)(vc · ⌧ i)dS +

Z

�cm

Pm(vc · ncm)dS

+(r · uc, qc)c + ('crµ('c),vc)c = (↵⇢0g(Tc �T)z,vc)c, (2.37)

where

eBc(u,v,w) =
1
2

Z

⌦c

⇣
(u ·rv)w � (u ·rw)v

⌘
dx+

1
2

Z

�cm

⇣
(v ·w)(u · ncm)� (u · v)(w · ncm)

⌘
dS. (2.38)

(2) For any vm 2 Hm,0 and qm 2 H
1(⌦m),

⇢0

�
h@tum,vmim + (⌫('m,Tm)⇧�1

um,vm)m + (rPm,vm)m � (um,rqm)m
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+('mrµ('m),vm)m �
Z

�cm

uc · ncmqm ds = (↵⇢0g(Tm �T)z,vm)m. (2.39)

(3) For any W 2 H
1(⌦),

h@tT,W i+B(u,T,W ) + ((T)rT,rW ) = 0, (2.40)

where

B(u, v, w) =
1
2

Z

⌦

⇣
u · (wrv)� u · (vrw)

⌘
dx. (2.41)

(4) For any v,� 2 H
1(⌦),

h@t', v) + (M(')rµ('),rv)� (u',rv) = 0, (2.42)

�


1
✏
(f('),�) + ✏(r',r�)

�
� (µ('),�) = 0. (2.43)

(5) '|t=0 = '0(x),T|t=0 = T0(x),uc|t=0 = uc(0),um|t=0 = um(0).

Here we introduce another trilinear term

Bc(u,v,w) =
1
2

Z

⌦c

⇣
(u ·rv)w � (u ·rw)v

⌘
dx+

1
2

Z

�cm

⇣
(u ·w)(v · ncm)� (u · v)(w · ncm)

⌘
dS. (2.44)

We remark that Bc(u,v,w) is antisymmetric with respect to v and w. Moreover, eBc(u,v,w) = Bc(u,v,w)

when u = v. We will replace eBc(u,v,w) with Bc(u,v,w) in the numerical scheme later. We note that the

two trilinear terms Bc(u,v,w) and B(u, v, w) are di↵erent in the integral domains, the presence of integrals

along domain interface, as well as the variables (vector vs scalar). In particular, B(u, v, w) in the heat

equation (2.40) has an implied interfacial integral term 1
2

R
�cm

v(uc �um) · (wncm)dS which is equal to zero

because of the interface condition (2.13) when u is the exact solution to the CHNSDB problem.

We also comment that the mean zero quality is only required in the definition of the space for Pm. Once

Pm is uniquely determined, Pc is then also uniquely determined due to the interface boundary condition

(2.14). We refer to [27] for the study of the existence of such a weak solution for a similar problem. For the

weak solution we also have T ⌘ C due to the following estimate,

d

dt

✓Z

⌦

Tdx

◆
=

Z

⌦

@tTdx = �B(u,T, 1) = �1
2

X

j2{c,m}

Z

⌦j

uj ·rTjdx

= �1
2

✓Z

�cm

uc · ncmTcdS �
Z

⌦c

Tcr · ucdx�
Z

�cm

uc · ncmTmdx

◆

= �1
2

Z

�cm

uc · ncm(Tc �Tm)dx = 0. (2.45)
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3 Numerical schemes

Let ⌧ > 0 be the time step and K = [T /⌧ ]. Set t
k = k⌧ for 0  k  K. Let ⌦

h
c and ⌦

h
m be the quasi-

uniform triangulation of the domain ⌦c and ⌦m with mesh size h respectively. We assume that ⌦
h
c and

⌦
h
m coincide on the interface �cm. Then ⌦

h := ⌦
h
c [⌦

h
m forms a triangulation of the whole domain ⌦. Let

Pr(K) be the space of polynomials of degree equal to or less than r on triangle K 2 ⌦
h. Then Yh refers to

the finite element approximation of H1(⌦) based on the triangulation ⌦
h, such as

Yh = {vh 2 C(⌦̄)
��vh|K 2 Pr(K), 8K 2 ⌦h}.

Denote by X
h
c and M

h
c the finite element approximation of Hc,0 and L

2(⌦c) for the Navier-Stokes velocity

and pressure respectively. We assume that X
h
c and M

h
c satisfy the inf-sup condition, or so-called LBB

condition, that

sup
vh2Xh

c

(r · vh, qh)c
kvhkH1

� ckqhkL2 , 8qh 2 M
h
c . (3.1)

We point out that the classical Taylor-Hood finite element spaces and the Mini finite element spaces are

normally used for Xh
c and M

h
c [16]. Similarly, we define X

h
m,M

h
m to be the finite element spaces of Hm,0, Xm

for Darcy velocity and pressure respectively. In addition, we assume X
h
m and M

h
m satisfy a non-standard

inf-sup condition such that

sup
vh2Xh

m

(vh,rqh)m
kvhkL2

� ckqhkL2 , 8qh 2 M
h
m. (3.2)

The condition above can be supported by Taylor-Hood finite element spaces.

3.1 Energy stable fully decoupled numerical schemes

Now we are ready to discuss our unconditionally stable numerical schemes that fully decouple phase-field

system (Cahn-Hilliard), heat equation and two di↵erent fluid systems (Navier-Stokes and Darcy) during the

computation. We first arrange some notations here. �⌧ denotes the di↵erence quotient operator such that

�⌧'
k+1
h

=
'

k+1
h �'

k
h

⌧
, and f('k+1

h
,'

k

h
) = ('k+1

h
)3 � '

k

h
. The intermediate velocity u

k+1
h

is defined as

u
k+1 =

8
>>><

>>>:

u
k+1
m,h

, x 2 ⌦m,

u
k+1
c,h

, x 2 ⌦c,

(3.3)
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where u
k+1
m,h

and u
k+1
c,h

are defined by the equations below:

⇢0

�

u
k+1
m,h

� u
k

m,h

⌧
+ '

k

m,hrµ
k+1
m,h

= 0, (3.4)

⇢0

u
k+1
c,h

� u
k

c,h

⌧
+ '

k

c,hrµ
k+1
c,h

= 0. (3.5)

Additionally, for all uc,h,vc,h 2 X
h
c , Pc,h, qc,h 2 M

h
c and 0  k  K, we denote

a
k
c (uc,h,vc,h) = 2

⇣
⌫('k

c,h,T
k

c,h)D(uc,h),D(vc,h)
⌘

c

+
d�1X

i=1

Z

�cm

↵BJSJ

⌫('k

c,h
)

p
trace(⇧)

(uc,h · ⌧i)(vc,h · ⌧i)dS, (3.6)

bc(vc,h, qc,h) = �(r · vc,h, qc,h)c. (3.7)

We also define the buoyancy term F
k as follows: for 0  k  K,

F
k = ↵⇢0g(T

k

h �T
k

h)z. (3.8)

In this section, we denote ⌫j = ⌫('k

j,h
,Tk

j,h
), j 2 {c,m},  = (Tk

h
) for simplicity. Then we present the

numerical scheme for solving the CHNSDB model (2.8)-(2.21) as follows.

Step 1: find '
k+1
h

2 Yh and µ
k+1
h

2 Yh such that for any vh,�h 2 Yh,

(�⌧'
k+1
h

, vh) + (M('k

h)rµ
k+1
h

,rvh)� (uk+1
h

'
k

h,rvh) = 0, (3.9)

�

h1
✏
(f('k+1

h
,'

k

h),�h) + ✏(r'
k+1
h

,r�h)
i
� (µk+1

h
,�h) = 0. (3.10)

Step 2: find Tk+1
h

2 Yh such that for any Wh 2 Yh,

(�⌧T
k+1
h

,Wh) + B(uk

h,T
k+1
h

,Wh) +
⇣
(Tk

h)rTk+1
h

,rWh

⌘
= 0, (3.11)

where

u
k

h =

8
>>><

>>>:

u
k

m,h
, x 2 ⌦m,

u
k

c,h
, x 2 ⌦c.

(3.12)

Step 3: find u
k+1
m,h

2 X
h
m and P

k+1
m,h

2 M
h
m such that for any vm,h 2 X

h
m and qm,h 2 M

h
m,

⇣
⇢0

�
�⌧u

k+1
m,h

+
⌫('k

m,h
,Tk

m,h
)

⇧
u
k+1
m,h

+rP
k+1
m,h

+ '
k

m,hrµ
k+1
m,h

,vm,h

⌘

m

=
�
F,vm,h

�
m

.

(3.13)

�⌧(rP
k+1
m,h

,rqm,h)m � (uk+1
m,h

,rqm,h)m �
Z

�cm

u
k

c,h · ncmqm,hdS = 0. (3.14)
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Step 4: find u
k+1
c,h

2 X
h
c and P

k+1
c,h

2 M
h
c such that for any vc,h 2 X

h
c and qc,h 2 M

h
c ,

⇢0(�⌧u
k+1
c,h

,vc,h)c + ⇢0Bc(u
k

c,h,u
k+1
c,h

,vc,h) + a
k
c (u

k+1
c,h

,vc,h) + bc(vc,h, P
k+1
c,h

)� bc(u
k+1
c,h

, qc,h)

+('k

c,hrµ
k+1
c,h

,vc,h)c +

Z

�cm

P
k+1
m,h

(vc,h · ncm)dS =
�
F,vc,h

�
c
, (3.15)

where F is chosen to be F
k or F

k+1. We mention that F
k allows us to compute heat equation and fluid

equations at the same time in each iteration, while the heat equation must be computed before solving

the fluid equations with F
k+1. The di↵erent choices of F cause a di↵erence in the discrete energy law,

which will be presented below. Recall the definition of Bc from (2.44) and that Bc is antisymmetric in the

last two variables. We remark that Bc(uk

c,h
,u

k+1
c,h

,vc,h) in step 4 is not equal to the original trilinear term

eBc(uk

c,h
,u

k+1
c,h

,vc,h) due to the di↵erence between u
k

c,h
and u

k+1
c,h

.

3.2 Discrete energy law

To state the energy stability of the fully decoupled scheme mentioned above, we shall define the total

discrete energy function as follows:

Ek

A =

Z

⌦c

⇢0

2

���uk

c,h

���
2
dx+

Z

⌦m

⇢0

2�

���uk

m,h

���
2
dx+A

Z

⌦

1
2
(Tk

h)
2
dx+ �

Z

⌦


1
✏
F ('k

h) +
✏

2
|r'

k

h|
2

�
dx, (3.16)

where A is the constant that satisfies (2.23). Recalling that c̄ is the lower bound of , we also define a

modified discrete energy

eEk

A =

Z

⌦c

⇢0

2

���uk

c,h

���
2
dx+

Z

⌦m

⇢0

2�

���uk

m,h

���
2
dx+

Z

⌦


A

2
(Tk

h)
2 +

�

✏
F ('k

h) +
�✏

2
|r'

k

h|
2

�
dx+Ac̄⌧

Z

⌦

|rTk

h|
2
dx.

(3.17)

Before we start to prove the discrete energy stability, we recall the following lemma from [9].

Lemma 2 Suppose w 2 Xm, and vc,h 2 X
h
c satisfy

(r · vc,h, qc,h)c = 0, 8qc,h 2 M
h
c , (3.18)

then
����
Z

�cm

vc,h · ncmw dS

����  CkrwkL2(⌦m)kvc,hkL2(⌦c). (3.19)

We also need several lemmas to estimate the buoyancy terms when dealing with the discrete energy.
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Lemma 3 Suppose ('k+1
h

, µ
k+1
h

,Tk+1
h

,u
k+1
c,h

, P
k+1
c,h

,u
k+1
m,h

, P
k+1
m,h

), 0  k  K � 1, is a solution to the numerical

scheme (3.9)-(3.15) with F = F
k, and that A satisfies (2.23). Then for every 0  k  K � 1 there holds

⌧

⇣
↵⇢0g(T

k

c,h �T
k

h)z,u
k+1
c,h

⌘

c

+ ⌧

⇣
↵⇢0g(T

k

m,h �T
k

h)z,u
k+1
m,h

⌘

m

 Ac̄⌧

���rTk

h

���
2

L2
+ ⌧a

k
c

⇣
u
k+1
c,h

,u
k+1
c,h

⌘
+ ⌧

���
p

⌫m/⇧u
k+1
m

���
2

L2
. (3.20)

Proof Recall that c̄ is the lower bound of , � is the upper bound of the largest eigenvalue of ⇧, and positive

constants Cp, Ck are defined in (2.22). For ✓ = ↵⇢0g we have the following estimate

✓

⇣
(Tk

c,h �T
k

h)z,u
k+1
c,h

⌘

c

 ✓

���Tk

c,h �T
k

h

���
L2

���uk+1
c

���
L2

 Ck✓
2

8c̄

���Tk

c,h �T
k

h

���
2

L2
+

2c̄
Ck

���uk+1
c

���
2

L2

 Ac̄

Cp

���Tk

c,h �T
k

h

���
2

L2
+ 2c̄

���D(uk+1
c )

���
2

L2
. (3.21)

Similarly, we obtain

✓

⇣
(Tk

m,h �T
k

h)z,u
k+1
m,h

⌘

m

 Ac̄

Cp

���Tk

m,h �T
k

h

���
2

L2
+

c̄

�

���uk+1
m

���
2

L2
. (3.22)

It follows that

✓

⇣
(Tk

c,h �T
k

h)z,u
k+1
c,h

⌘

c

+ ✓

⇣
(Tk

m,h �T
k

h)z,u
k+1
m,h

⌘

m

 Ac̄

Cp

���Tk

h �T
k

h

���
2

L2
+ 2c̄

���D(uk+1
c )

���
2

L2
+

c̄

�

���uk+1
m

���
2

L2

 Ac̄

���rTk

h

���
2

L2
+ a

k
c

⇣
u
k+1
c,h

,u
k+1
c,h

⌘
+
���
p

⌫m/⇧u
k+1
m

���
2

L2
. (3.23)

Multiplying the inequality by ⌧ , we derive

⌧

⇣
↵⇢0g(T

k

c,h �T
k

h)z,u
k+1
c,h

⌘

c

+ ⌧

⇣
↵⇢0g(T

k

m,h �T
k

h)z,u
k+1
m,h

⌘

m

 Ac̄⌧

���rTk

h

���
2

L2
+ ⌧a

k
c

⇣
u
k+1
c,h

,u
k+1
c,h

⌘
+ ⌧

���
p

⌫m/⇧u
k+1
m

���
2

L2
. (3.24)

This concludes the proof of the lemma. ut

Similarly, we have the following lemma.

Lemma 4 Suppose ('k+1
h

, µ
k+1
h

,Tk+1
h

,u
k+1
c,h

, P
k+1
c,h

,u
k+1
m,h

, P
k+1
m,h

), 0  k  K � 1, is a solution to the numerical

scheme (3.9)-(3.15) with F = F
k+1. Recall c̄ the lower bound of . Then for every 0  k  K � 1 there holds

⌧

⇣
↵⇢0g(T

k+1
c,h

�T
k+1
h )z,uk+1

c,h

⌘

c

+ ⌧

⇣
↵⇢0g(T

k+1
m,h

�T
k+1
h )z,uk+1

m,h

⌘

m

 Ac̄⌧

���rTk+1
h

���
2

L2
+ ⌧a

k
c

⇣
u
k+1
c,h

,u
k+1
c,h

⌘
+ ⌧

���
p

⌫m/⇧u
k+1
m

���
2

L2
. (3.25)
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Now we are able to demonstrate the uniquely solvability and energy stability of the scheme by the

following theorem.

Theorem 1 The numerical scheme (3.9)-(3.15) with F = F
k is unconditionally uniquely solvable at each time

step, and it satisfies the following energy law that for all 0  k  K � 1,

eEk+1
A

� eEk

A + ⌧ ||
p
Mrµ

k+1
h

||2L2 +
�⌧

2

2
||rP

k+1
m,h

||2L2 +
⌧
2

4⇢0

⇣
�k'k

m,hrµ
k+1
m,h

k2 + k'k

c,hrµ
k+1
c,h

k2
⌘

 ��✏

2
||r('k+1

h
� '

k

h)||
2
L2 � ⇢0

12
kuk+1

c,h
� u

k

c,hk
2
L2 � ⇢0

6�
kuk+1

m,h
� u

k

m,hk
2
L2�A

2
kTk+1

h
�Tk

hk
2
L2 , (3.26)

where M = M('k

h
), and A is a constant satisfying (2.23).

Proof First, we show the unique solvability. Note that the non-linear Cahn-Hilliard equations (3.9)-(3.10) are

completely decoupled from heat equation (3.11), Darcy equations (3.13)-(3.14) and Navier-Stokes equation

(3.15). In detail, the intermediate velocity function u
k+1
h

is determined by u
k

h
, 'k

h
calculated at the former

time step and the unknown µ
k+1
h

, then the third term in (3.9) is a linear term with respect to rµ
k+1
h

just as the second term. Thus, given u
k

h
,'

k

h
, (3.9)-(3.10) can be viewed as a first-order convex-splitting

discretization of the Cahn-Hilliard equation with known source terms, and the unique solvability of the

Cahn-Hilliard system can be explained with a gradient flow argument [31] [35] [44]. With µ
k+1
h

obtained,

(3.11)-(3.15) define a finite linear system for Tk+1
h

,u
k+1
m,h

, P
k+1
m,h

,u
k+1
c,h

, P
k+1
c,h

. Thus we only need to show

that the solutions are unique. Suppose there are two solutions to (3.11)-(3.15). Denote eT , e
u
c , e

p
c , e

u
m, e

p
m the

di↵erences between two solutions respectively. Then the following estimate holds for any Wh 2 Yh,

(
eT

⌧
,Wh) + B(uk

h, eT ,Wh) +
⇣
(T k

h )reT ,rWh

⌘
= 0. (3.27)

Take Wh = eT and recall the definition (2.41) for B(u, v, w), one gets

(
eT

⌧
, eT ) +

⇣
(T k

h )reT ,reT

⌘
= 0, (3.28)

and so eT = 0. Thus Tk+1
h

is uniquely determined and so are the viscosity coe�cients ⌫c, ⌫m in the fluid

system at the same time step. Next, for all vc,h 2 X
h
c , qc,h 2 M

h
c , vm,h 2 X

h
m, qm,h 2 M

h
m, we have

✓
⇢0

�⌧
e
u
m +

⌫m

⇧
e
u
m +re

p
m,vm,h

◆

m

= 0, (3.29)

�⌧
�
re

p
m,rqm,h

�
m

�
�
e
u
m,rqm,h

�
m

= 0, (3.30)

⇢0

⌧
(euc ,vc,h)c + ⇢0Bc(u

k

c,h, e
u
c ,vc,h) + a

k
c (e

u
c ,vc,h) + bc(vc,h, e

p
c)
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+

Z

�cm

e
p
m(vc,h · ncm)dS � bc(e

u
c , qc,h) = 0. (3.31)

Set vm,h = e
u
m, qm,h = e

p
m, adding (3.29) and (3.30) together, and by the fact that e

p
m 2 M

h
m where the

mean value on ⌦m is zero, we obtain e
u
m = 0, epm = 0. Similarly, set vc,h = e

u
c , qc,h = e

p
c . Thanks to the

definition of Bc(u,v,w), we have Bc(uk

c,h
, e

u
c , e

u
c ) = 0, and then, applying e

p
m = 0, (3.31) is equivalent to

⇢0

⌧
(euc , e

u
c )c + a

k
c (e

u
c , e

u
c ) = 0, (3.32)

hence e
u
c = 0. Now (3.31) can be derived as bc(vc,h, e

p
c) = 0, which holds for all vc,h 2 X

h
c . By inf-sup

condition (3.1) one obtains e
p
c = 0. This ends the proof of unique solvability.

Then we prove the discrete energy law (3.26). Take vh = ⌧µ
k+1
h

in (3.9), �h = '
k+1
h

� '
k

h
in (3.10),

adding them together and thanks to the following estimate due to the convexity

F ('k+1
h

)� F ('k

h)  f('k+1
h

,'
k

h)('
k+1
h

� '
k

h), (3.33)

one obtains

E('k+1
h

)� E('k

h) + ⌧k
p
Mrµ

k+1
h

k2L2 +
�✏

2
kr('k+1

h
� '

k

h)k
2
L2  ⌧(uk+1

h
'
k

h,rµ
k+1
h

). (3.34)

By (3.4) and (3.5), we can rewrite (3.34) as follows

E('k+1
h

)� E('k

h) + ⌧k
p
Mrµ

k+1
h

k2L2 +
�✏

2
kr('k+1

h
� '

k

h)k
2
L2

+
⌧
2

⇢0

⇣
�k'k

m,hrµ
k+1
m,h

k2 + k'k

c,hrµ
k+1
c,h

k2
⌘

 ⌧(uk

h'
k

h,rµ
k+1
h

). (3.35)

Taking Wh = A⌧Tk+1
h

in (3.11), we get

A

2
{kTk+1

h
k2L2 � kTk

hk
2
L2 + kTk+1

h
�Tk

hk
2
L2}+A⌧k

p
rTk+1

h
k2L2 = 0. (3.36)

Letting vc,h = ⌧u
k+1
c,h

and qc,h = ⌧P
k+1
c,h

in (3.15), using the antisymmetric quality of Bc(u,v,w) with respect

to the variables v and w, one has

⇢0

2
{||uk+1

c,h
||2L2 � ||uk

c,h||
2
L2 + ||uk+1

c,h
� u

k

c,h||
2
L2}+ ⌧a

k
c (u

k+1
c,h

,u
k+1
c,h

)

+⌧

Z

�cm

P
k+1
m,h

(uk+1
c,h

· ncm)dS + ⌧(uk+1
c,h

'
k

c,h,rµ
k+1
c,h

)c = ⌧

⇣
↵⇢0g(T

k

c,h �T
k

h)z,u
k+1
c,h

⌘

c

. (3.37)

Similarly, set vm,h = ⌧u
k+1
m,h

in (3.13) and qm,h = ⌧P
k+1
m,h

in (3.14), summing up the results and we derive

⇢0

2�
{||uk+1

m,h
||2L2 � ||uk

m,h||
2
L2 + ||uk+1

m,h
� u

k

m,h||
2
L2}+ ⌧

��p⌫m/⇧u
k+1
m,h

��2
L2 + �⌧

2||rP
k+1
m,h

||2L2
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+⌧(uk+1
m,h

'
k

m,h,rµ
k+1
m,h

)m � ⌧

Z

�cm

u
k

c,h · ncmP
k+1
m,h

dS = ⌧

⇣
↵⇢0g(T

k

m,h �T
k

h)z,u
k+1
m,h

⌘

m

. (3.38)

By summing up the above estimates (3.35), (3.36), (3.37) and (3.38), we obtain

Ek+1
A

� Ek

A + ⌧ ||
p
Mrµ

k+1
h

||2L2 + ⌧a
k
c (u

k+1
c,h

,u
k+1
c,h

) + ⌧

��p⌫m/⇧u
k+1
m,h

��2
L2 +A⌧k

p
rTk+1

h
k2L2

+�⌧
2||rP

k+1
m,h

||2L2 +
⌧
2

⇢0

⇣
�k'k

m,hrµ
k+1
m,h

k2 + k'k

c,hrµ
k+1
c,h

k2
⌘
+

A

2
kTk+1

h
�Tk

hk
2
L2

+
�✏

2
||r('k+1

h
� '

k

h)||
2
L2 +

⇢0

2
kuk+1

c,h
� u

k

c,hk
2
L2 +

⇢0

2�
kuk+1

m,h
� u

k

m,hk
2
L2

 � ⌧(uk+1
h

� u
k

h,'
k

hrµ
k+1
h

) � ⌧

Z

�cm

(uk+1
c,h

� u
k

c,h) · ncmP
k+1
m,h

dS

+⌧

⇣
↵⇢0g(T

k

c,h �T
k

h)z,u
k+1
c,h

⌘

c

+ ⌧

⇣
↵⇢0g(T

k

m,h �T
k

h)z,u
k+1
m,h

⌘

m

. (3.39)

By the inequality (a, b)  a
2

3 + 3b2

4 , we have

�⌧(uk+1
h

� u
k

h,'
k

hrµ
k+1
h

)  ⇢0

3
||uk+1

c,h
� u

k

c,h||
2
L2 +

⇢0

3�
||uk+1

m,h
� u

k

m,h||
2
L2

+
3⌧2

4⇢0

⇣
�k'k

m,hrµ
k+1
m,h

k2 + k'k

c,hrµ
k+1
c,h

k2
⌘
. (3.40)

Using Lemma 2, we have the following estimate

�⌧

Z

�cm

(uk+1
c,h

� u
k

c,h) · ncmP
k+1
m,h

dS  C⌧kuk+1
c,h

� u
k

c,hkL2krP
k+1
m,h

kL2

 ⇢0

12
kuk+1

c,h
� u

k

c,hk
2
L2 + C1⌧

2krP
k+1
m,h

kL2 , (3.41)

where C1 depends only on ⌦m, ⌦c and ⇢0. Adding (3.39), (3.40) and (3.41) together we obtain

Ek+1
A

� Ek

A + ⌧ ||
p
Mrµ

k+1
h

||2L2 + ⌧a
k
c (u

k+1
c,h

,u
k+1
c,h

) + ⌧

��p⌫m/⇧u
k+1
m,h

��2
L2 +A⌧k

p
rTk+1

h
k2L2

+
�⌧

2

2
||rP

k+1
m,h

||2L2 +
⌧
2

4⇢0

⇣
�k'k

m,hrµ
k+1
m,h

k2 + k'k

c,hrµ
k+1
c,h

k2
⌘
+

A

2
kTk+1

h
�Tk

hk
2
L2

+
�✏

2
||r('k+1

h
� '

k

h)||
2
L2 +

⇢0

12
kuk+1

c,h
� u

k

c,hk
2
L2 +

⇢0

6�
kuk+1

m,h
� u

k

m,hk
2
L2

 ⌧

⇣
↵⇢0g(T

k

c,h �T
k

h)z,u
k+1
c,h

⌘

c

+ ⌧

⇣
↵⇢0g(T

k

m,h �T
k

h)z,u
k+1
m,h

⌘

m

, (3.42)

where � � 2C1. Now we use the estimate in Lemma 3 for the right-hand-side(RHS) term of (3.42), and we

obtain

Ek+1
A

� Ek

A + ⌧ ||
p
Mrµ

k+1
h

||2L2 + ⌧a
k
c (u

k+1
c,h

,u
k+1
c,h

) + ⌧

��p⌫m/⇧u
k+1
m,h

��2
L2 +A⌧k

p
rTk+1

h
k2L2

+
�⌧

2

2
||rP

k+1
m,h

||2L2 +
⌧
2

4⇢0

⇣
�k'k

m,hrµ
k+1
m,h

k2 + k'k

c,hrµ
k+1
c,h

k2
⌘
+

A

2
kTk+1

h
�Tk

hk
2
L2

+
�✏

2
||r('k+1

h
� '

k

h)||
2
L2 +

⇢0

12
kuk+1

c,h
� u

k

c,hk
2
L2 +

⇢0

6�
kuk+1

m,h
� u

k

m,hk
2
L2
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 Ac̄⌧

���rTk

h

���
2

L2
+ ⌧a

k
c

⇣
u
k+1
c,h

,u
k+1
c,h

⌘
+ ⌧

���
p

⌫m/⇧u
k+1
m

���
2

L2
. (3.43)

Notice that

eEk+1
A

= Ek+1
A

+Ac̄⌧

���rTk+1
h

���
2

L2
 Ek+1

A
+A⌧

���
p
rTk+1

h

���
2

L2
,

eEk

A = Ek

A +Ac̄⌧

���rTk

h

���
2

L2
,

then we obtain the following modified discrete energy law

eEk+1
A

� eEk

A + ⌧ ||
p
Mrµ

k+1
h

||2L2 +
�⌧

2

2
||rP

k+1
m,h

||2L2 +
⌧
2

4⇢0

⇣
�k'k

m,hrµ
k+1
m,h

k2 + k'k

c,hrµ
k+1
c,h

k2
⌘

 ��✏

2
||r('k+1

h
� '

k

h)||
2
L2 � ⇢0

12
kuk+1

c,h
� u

k

c,hk
2
L2 � ⇢0

6�
kuk+1

m,h
� u

k

m,hk
2
L2�A

2
kTk+1

h
�Tk

hk
2
L2 . (3.44)

This completes the proof. ut

Theorem 2 The numerical scheme (3.9)-(3.15) with F = F
k+1 is unconditionally uniquely solvable at each time

step, and it satisfies the following energy laws that for all 0  k  K � 1,

Ek+1
A

� Ek

A + ⌧ ||
p
Mrµ

k+1
h

||2L2 +
�⌧

2

2
||rP

k+1
m,h

||2L2 +
⌧
2

4⇢0

⇣
�k'k

m,hrµ
k+1
m,h

k2 + k'k

c,hrµ
k+1
c,h

k2
⌘

+
A

2
kTk+1

h
�Tk

hk
2
L2 +

�✏

2
||r('k+1

h
� '

k

h)||
2
L2 +

⇢0

12
kuk+1

c,h
� u

k

c,hk
2
L2 +

⇢0

6�
kuk+1

m,h
� u

k

m,hk
2
L2  0, (3.45)

where M = M('k

h
), and A is the constant satisfying (2.23).

Proof The unique solvability is the same as Theorem 1. Additionally, the RHS term in (3.42) is changed

here while the left-hand side remains unchanged, that is

Ek+1
A

� Ek

A + ⌧ ||
p
Mrµ

k+1
h

||2L2 + ⌧a
k
c (u

k+1
c,h

,u
k+1
c,h

) + ⌧

��p⌫m/⇧u
k+1
m,h

��2
L2 +A⌧k

p
rTk+1

h
k2L2

+
�⌧

2

2
||rP

k+1
m,h

||2L2 +
⌧
2

4⇢0

⇣
�k'k

m,hrµ
k+1
m,h

k2 + k'k

c,hrµ
k+1
c,h

k2
⌘
+

A

2
kTk+1

h
�Tk

hk
2
L2

+
�✏

2
||r('k+1

h
� '

k

h)||
2
L2 +

⇢0

12
kuk+1

c,h
� u

k

c,hk
2
L2 +

⇢0

6�
kuk+1

m,h
� u

k

m,hk
2
L2

 ⌧

⇣
↵⇢0g(T

k+1
c,h

�T
k+1
h )z,uk+1

c,h

⌘

c

+ ⌧

⇣
↵⇢0g(T

k+1
m,h

�T
k+1
h )z,uk+1

m,h

⌘

m

, (3.46)

with � � 2C1 and C1 is the positive constant in (3.41). Now applying the estimate in Lemma 4 to (3.46),

we derive

Ek+1
A

� Ek

A + ⌧ ||
p
Mrµ

k+1
h

||2L2 + ⌧a
k
c (u

k+1
c,h

,u
k+1
c,h

) + ⌧

��p⌫m/⇧u
k+1
m,h

��2
L2 +A⌧k

p
rTk+1

h
k2L2

+
�⌧

2

2
||rP

k+1
m,h

||2L2 +
⌧
2

4⇢0

⇣
�k'k

m,hrµ
k+1
m,h

k2 + k'k

c,hrµ
k+1
c,h

k2
⌘
+

A

2
kTk+1

h
�Tk

hk
2
L2
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+
�✏

2
||r('k+1

h
� '

k

h)||
2
L2 +

⇢0

12
kuk+1

c,h
� u

k

c,hk
2
L2 +

⇢0

6�
kuk+1

m,h
� u

k

m,hk
2
L2

 Ac̄⌧

���rTk+1
h

���
2

L2
+ ⌧a

k
c

⇣
u
k+1
c,h

,u
k+1
c,h

⌘
+ ⌧

���
p

⌫m/⇧u
k+1
m

���
2

L2

 A⌧

���
p
rTk+1

h

���
2

L2
+ ⌧a

k
c

⇣
u
k+1
c,h

,u
k+1
c,h

⌘
+ ⌧

���
p

⌫m/⇧u
k+1
m

���
2

L2
, (3.47)

thus the following estimate holds

Ek+1
A

� Ek

A + ⌧ ||
p
Mrµ

k+1
h

||2L2 +
�⌧

2

2
||rP

k+1
m,h

||2L2 +
⌧
2

4⇢0

⇣
�k'k

m,hrµ
k+1
m,h

k2 + k'k

c,hrµ
k+1
c,h

k2
⌘

+
A

2
kTk+1

h
�Tk

hk
2
L2 +

�✏

2
||r('k+1

h
� '

k

h)||
2
L2 +

⇢0

12
kuk+1

c,h
� u

k

c,hk
2
L2 +

⇢0

6�
kuk+1

m,h
� u

k

m,hk
2
L2  0. (3.48)

This completes the proof. ut

4 Numerical experiments

In this section, we present some numerical examples to show that our scheme is accurate for the sim-

ulation of two-phase flow with thermal conduction. In the first subsection, we use di↵erent examples to

numerically demonstrate that our scheme is of first order accuracy in time. The second subsection indicates

that the scheme is long-time stable. In the last subsection, we show that our model illustrates well in the

sense of convection cells (also called Bénard Cells [1]) where the temperature at top is lower than that at

bottom. All the numerical experiments are operated using the software FreeFem++[29].

4.1 Convergence

Now we consider the convergence results of the numerical scheme. In the experiment we set the dimension

of the PDE system d = 2. Set ⌦m = [0, 1] ⇥ [0, 1], ⌦c = [0, 1] ⇥ [�1, 0], ⌦ = ⌦m [ ⌦c = [0, 1] ⇥ [�1, 1],

�cm = [0, 1] ⇥ {0}. The value of parameters in the PDE system are showed in Table 1. Note that for

simplicity, ⌫(',T) is set to be constant in the convergence test.

PDE parameters  ⇢0 � ⌫c ⌫m ⇧ M(Mobility) � ✏ ↵BJSJ � ↵ g

Value in test 0.001 1 1 0.1 0.1 0.1I2 0.1 0.1 0.1
p
0.1 1 0.01 10

Table 1: PDE parameters in convergence experiment. I2 represents the two-dimensional unit matrix.
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Here we build the exact solution as follows: for t 2 [0, T ],

' = e
�t cos(⇡x) cos(⇡y), (x, y) 2 ⌦, (4.1)

T = 2 + e
�t cos(⇡x) cos(⇡y), (x, y) 2 ⌦, (4.2)

8
>>>>>><

>>>>>>:

uj = e
�t

0

BB@
�1

2 sin2(⇡x) sin(⇡(y + 1))

sin(2⇡x) sin2(⇡(y+1)
2 )

1

CCA , (x, y) 2 ⌦j ,

Pj =
1
⇡
e
�t sin2(⇡x) sin2(⇡y), (x, y) 2 ⌦j ,

j 2 {c,m}. (4.3)

It satisfies the following PDE system with the right hand side terms f1, f2, f3, f4,

⇢0(@tuc + (uc ·r)uc)�r · T(uc, Pc) + 'crµc � ↵⇢0g(Tc �T)z = f1, in ⌦c, (4.4)

⇢0

�
@tum + ⌫('m)⇧�1

um +rPm + 'mrµm � ↵⇢0g(Tm �T)z = f2, in ⌦m, (4.5)

r · uj = 0, in ⌦j , (4.6)

@tTj + uj ·rTj � j�Tj = f3, in ⌦j , (4.7)

@t'j +r · (uj'j)� div(M('j)rµj) = f4, in ⌦j , (4.8)

where f1, f2, f3, f4 can be determined by (4.1)-(4.3).The exact solution above satisfies the same boundary

and interface conditions as (2.8)-(2.13), except for the last two interface conditions (2.14)-(2.15). Here these

two interface conditions will have additional terms g1, g2 on the right hand side, as showed below,

�2⌫cncm · D(uc)ncm + Pc +
1
2
⇢0|uc|2 = Pm + g1, on �cm, (4.9)

�⌧i · D(uc)ncm =
↵BJSJ

2
p
trace(⇧)

⌧i · uc + g2, i = 1, . . . , d� 1, on �cm, (4.10)

where

g1 =
⇢0

2
e
�2t sin2(2⇡x), g2 = �e

�t

⇣
⇡ cos(2⇡x) +

⇡

4
sin2(⇡x)

⌘
. (4.11)

Now we can start our experiment with the initial data set to be the exact solution above where t = 0,

and we should calculate the relative error of the numerical solution with respect to the exact solution at

t = T = 1. In order to separate the convergence orders of both ⌧ and h, we make separate experiments for

⌧ = h and ⌧ = h
3. We also run the convergence tests for both F = F

k and F = F
k+1 respectively. The

experiment results are showed in Table 2-5.

Comparing the numerical results in the experiment A1 with those in A2, we can see that, when F = F
k,

Pc, Pm,',T, Uc, Um are all of first order in time, while the finite element of velocity and pressure (u, P ) is set
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to be (P2,P1) elements and ',T are set to be P1 elements. Similar results can be obtained when F = F
k+1

by comparing the data in the experiments B1 and B2.

⌧ = h h 1/8 1/16 1/32 1/64 1/128

Pc, Pm :
P1 element.

Pm L2 error 5.14109E-01 3.44479E-01 1.94682E-01 1.03525E-01 5.35046E-02

Order 0.57766 0.82330 0.91114 0.95224

Pc L2 error 6.14029E-01 3.98281E-01 2.17864E-01 1.12533E-01 5.70615E-02

Order 0.62452 0.87036 0.95308 0.97976

',T :
P1 element.

' L2 error 1.06701 6.18081E-01 3.40457E-01 1.79831E-01 9.25595E-02

Order 0.78771 0.86032 0.92083 0.95819

T L2 error 8.85859E-02 4.94954E-02 2.62929E-02 1.36469E-02 6.96698E-03

Order 0.83978 0.91262 0.94610 0.96997

T, Uc, Um :
P2 element.

uc L2 error 2.23059E-02 9.96694E-03 4.78455E-03 2.51573E-03 1.32212E-03

Order 1.16220 1.05877 0.92741 0.92812

um L2 error 2.86016E-01 1.20892E-01 5.4497E-02 2.61285E-02 1.28782E-02

Order 1.24238 1.14947 1.06055 1.02069

Table 2: Convergence test A1 where T0 = 0, T = 1, ⌧ = h and F = F
k.

4.2 Stability

In this section we numerically validate that the numerical methods satisfy discrete energy laws. The

domain is given as ⌦m = [0, 1]⇥ [0, 1], ⌦c = [0, 1]⇥ [�1, 0], ⌦ = ⌦m [⌦c = [0, 1]⇥ [�1, 1], �cm = [0, 1]⇥ {0}.

The parameters in the PDE system are set as in Table 6. The initial conditions are '0 = 0.2+0.4y, T0 = �xy,

and

uj(0) =

0

BB@
�1

2 sin2(⇡x) sin(⇡(y + 1))

sin(2⇡x) sin2(⇡(y+1)
2 )

1

CCA , (x, y) 2 ⌦j , j 2 {c,m}, (4.12)

which satisfies r · u0 = 0. We take the mesh size h = 1
64 and the time step ⌧ = 1

64 . We let the constant

A to be either 10 or 100 in di↵erent tests in order to demonstrate the necessity of the condition (2.23).

The numerical results for both F = F
k and F = F

k+1 are shown in Fig. 2 (non-decay) and Fig. 3 (decay),

respectively. Note that the discrete energy for the case F = F
k is eEk

A
, while the one for F = F

k+1 is Ek

A
.

Observe that the discrete energy curves for F = F
k and F = F

k+1 in both figures are almost identical
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⌧ = h3 h 1/4 1/8 1/16 1/32 1/64

Pc, Pm :
P1 element.

Pm L2 error 1.68465E-01 5.36559E-02 1.58287E-02 4.20343E-03 1.07305E-03

Order 1.65064 1.76119 1.91290 1.96985

Pc L2 error 3.12905E-01 7.542E-02 1.79264E-02 4.41531E-03 1.10148E-03

Order 2.05271 2.07286 2.02150 2.00307

',T :
P1 element.

' L2 error 2.72186E-01 6.0609E-02 1.65777E-02 4.36422E-03 1.11381E-03

Order 2.16699 1.87029 1.92545 1.97022

T L2 error 2.84411E-02 6.27661E-03 1.48027E-03 3.62503E-04 9.01073E-05

Order 2.17992 2.08413 2.02980 2.00828

Uc, Um :
P2 element.

uc L2 error 1.49899E-02 2.46298E-03 4.67624E-04 9.78403E-05 2.30435E-05

Order 2.60551 2.39698 2.25685 2.08607

um L2 error 5.65454E-01 2.30529E-01 7.28347E-02 2.16234E-02 6.51941E-03

Order 1.29446 1.66225 1.75203 1.72978

Table 3: Convergence test A2 where T0 = 0, T = 1, ⌧ = h
3 and F = F

k.

⌧ = h h 1/8 1/16 1/32 1/64 1/128

Pc, Pm :
P1 element.

Pm L2 error 5.14864E-01 3.44618E-01 1.94666E-01 1.035E-01 5.34892E-02

Order 0.57919 0.82400 0.91137 0.95231

Pc L2 error 6.08379E-01 3.95556E-01 2.16468E-01 1.1184E-01 5.67197E-02

Order 0.62109 0.86973 0.95272 0.97951

',T :
P1 element.

' L2 error 1.06538 6.1707E-01 3.39933E-01 1.79575E-01 9.24359E-02

Order 0.78786 0.86018 0.92066 0.95806

T L2 error 8.86183E-02 4.94925E-02 2.6292E-02 1.36471E-02 6.96733E-03

Order 0.84039 0.91259 0.94603 0.96992

Uc, Um :
P2 element.

uc L2 error 2.41098E-02 1.0395E-02 4.68559E-03 2.36767E-03 1.22548E-03

Order 1.21373 1.14959 0.98476 0.95012

um L2 error 2.86063E-01 1.20653E-01 5.4234E-02 2.59563E-02 1.27824E-02

Order 1.24547 1.15359 1.06311 1.02193

Table 4: Convergence test B1 where T0 = 0, T = 1, ⌧ = h and F = F
k+1.

thanks to the smallness of ⌧ , c̄ and ↵.
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⌧ = h3 h 1/4 1/8 1/16 1/32 1/64

Pc, Pm :
P1 element.

Pm L2 error 1.68303E-01 5.36625E-02 1.583E-02 4.20359E-03 1.07307E-03

Order 1.64907 1.76125 1.91297 1.96988

Pc L2 error 3.12831E-01 7.54368E-02 1.79284E-02 4.41556E-03 1.10152E-03

Order 2.05204 2.07302 2.02158 2.00310

',T :
P1 element.

' L2 error 2.72286E-01 6.06491E-02 1.65832E-02 4.3649E-03 1.11389E-03

Order 2.16656 1.87076 1.92570 1.97034

T L2 error 2.84537E-02 6.27789E-03 1.48044E-03 3.62525E-04 9.011E-05

Order 2.18026 2.08425 2.02987 2.00832

Uc, Um :
P2 element.

uc L2 error 1.51309E-02 2.45832E-03 4.66922E-04 9.78889E-05 2.30651E-05

Order 2.62175 2.39642 2.25396 2.08543

um L2 error 5.65455E-01 2.30532E-01 7.2835E-02 2.16234E-02 6.51941E-03

Order 1.29445 1.66226 1.75204 1.72978

Table 5: Convergence test B2 where T0 = 0, T = 1, ⌧ = h
3 and F = F

k+1.

PDE parameters ↵  ⇢0 � ⌫c ⌫m ⇧ M(Mobility) � ✏ ↵BJSJ � g

Value in test 0.5 1e�3 1 1 0.1 0.1 0.1I2 0.1 0.1 0.1
p
0.1 1 10

Table 6: Parameters in the discrete energy experiments. I2 represents the two-dimensional unit matrix.

4.3 Buoyancy-driven flow

In this numerical experiment we set ⌦m = [0, 2] ⇥ [0, 0.5], ⌦c = [0, 2] ⇥ [�0.5, 0], ⌦ = ⌦m [ ⌦c =

[0, 2]⇥[�0.5, 0.5], �cm = [0, 2]⇥{0}. The discrete parameters ⌧, h are set to be 1
128 identically. The parameters

in the PDE system are set as in Table 7.

 ⇢0 � ⌫c ⌫m ⇧ M(Mobility) � ✏ ↵BJSJ � ↵ g

1.1e�4 1 0.125 8.9e-7 8.9e-7 0.001⇥ I2 ✏
p

(1� '2)2 + ✏2 0.001 0.02 0.1 10 0.05 10

Table 7: Parameters in thermal conduction experiment. I2 represents the two-dimensional unit matrix.

We choose the initial data as u0 = 0, '0 to be a random function with uniform distribution in [�1, 1], and

T0 = �2y. Additionally, for all t � 0 we set constant hot bottom and cold top to this system, i.e. T
��
y=�0.5

⌘ 1

and T
��
y=0.5

⌘ �1 as Dirichlet boundary condition, while T is endowed with Neumann condition on the rest
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Fig. 2: Evolution of discrete energy with the constant A = 10. The two energy curves are almost identical.

Point A (0.5156,1.602) and Point B (1.063,1.622) show that the discrete energy is non-decaying.

of the boundary. The setup of the boundary conditions leads to the convection phenomenon. We run the

numerical experiment for su�ciently long time so that steady convection cells (Benard Cells) are observable.

The snapshots of velocity functions are shown in Fig. 4,5, representing the numerical scheme with F = F
k

and F = F
k+1 respectively.

We see from Figure 4 that there are initially two convection cells extending throughout the whole domain

(Fig. 4(a)). As it progresses, the fluid in the lower sub-domain governed by the Navier-Stokes equations

becomes “turbulent” and breaks the big convection cells (Fig. 4(b)). Afterwards several small convection

cells appear in the upper sub-domain (porous media), cf. Fig. 4(c). In long time, the convection cells are

mostly confined in porous media and become steady. Similar phenomena are observed in Fig. 5.

5 Conclusions

In this article, we propose the Cahn-Hilliard-Navier-Stokes-Darcy-Boussinesq (CHNSDB) system for

thermal convection of two-phase flows in a fluid layer overlying a porous medium. The physical model

satisfies an energy law, and encompasses four processes: the phase field model governed by the Cahn-
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Fig. 3: Evolution of discrete energy with the constant A = 100. The two energy curves are visibly identical

and monotonically deceasing.

Hilliard equations, the thermal convection governed by the heat equation, fluid systems governed by the

Darcy equations in porous media and the Navier-Stokes equations in free flow. We design uniquely solvable

algorithms that preserve the underlying energy law. Moreover, our algorithms fully decouple the Cahn-

Hilliard equations, the heat equation, the Navier-Stokes equations and the Darcy equations, so that each

sub-system can be computed independently at each time step. Several numerical experiments are performed

to gauge the accuracy and robustness of the proposed algorithms. The error estimates of the numerical

schemes will be pursued in a future work.
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