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Abstract

We study a di↵use interface model for two-phase flows of similar densities in

superposed free flow and porous media. The model consists of the Navier-

Stokes-Cahn-Hilliard system in free flow and the Darcy-Cahn-Hilliard system in

porous media coupled through a set of domain interface boundary conditions.

These domain interface boundary conditions include the nonlinear Lions inter-

face condition and the linear Beavers-Joseph-Sa↵man-Jones interface condition.

We establish global existence of weak solutions in three dimension. We also

show that the strong solution if exists agrees with the weak solutions.
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1. Introduction

Multiphase flows are important to various engineering processes. In many

applications such as contaminant transport in karst aquifers, oil recovery, the de-

velopment of sinkholes, the biogeochemical processes in hyporheic zone of river
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beds, the proton exchange membrane fuel cell technology and cardiovascular

modeling, multiphase flows in conduits/channels and in porous media interact

with each other, and therefore need to be considered together. See Fig. 2.1

for an illustration of the coupled domain. In this article, we aim to study the

well-posedeness of a di↵use interface model for multiphase flows in conduits and

porous media where the Navier-Stokes-Cahn-Hilliard equations (NSCH) are cou-

pled with the Darcy-Cahn-Hilliard equations (DCH) through a set of domain

interface boundary conditions.

The well-posedness of either the NSCH system or the DCH system in single

domains has been intensively investigated in recent years. Boyer in [1] studies

existence and uniqueness as well as asymptotic stability of solutions of the NSCH

system with both regular and degenerate mobility. Global (weak solutions,

strong solutions in 2D) and local well-posedness (strong solutions in 3D), and

regularity of solutions are further examined by Abels [2] and more recently by

Giorgini et al in [3] for the NSCH system of singular free energy densities and

matched densities, see [4, 5, 6, 7] for results regarding the NSCH type equations

with general densities. Long time behavior of solutions to the NSCH system can

be found in [8, 9, 10]. As for the DCH system (also referred to as Cahn-Hilliard-

Hele-Shaw), the global existence of weak solutions is first established by Feng

and Wise in [11]. Wang and Zhang [12] establish the existence and uniqueness of

regular solutions (global in 2D and local in 3D) for the DCH system of variable

viscosities, cf. [13] for the study on long-time behavior. Global well-posedness

(resp., local) is also established by Zhao et. al. [14] in 2D (resp., 3D) for the

DCH system modeling tumour growth, see also [15, 16, 17, 18, 19, 20]. The CHD

system with the singular potential has been extensively analysed by Giorgini et

al in [16, 21].

The di↵use interface model for two-phase flows in the coupled conduit and

porous media setting is first derived by Han et al. in [22] via Onsager’s ex-

tremum principle. The derivation only takes into account the irreversible part

of the dynamics resulting in the coupling of the Stokes-Cahn-Hiliard equations

in conduit and the DCH system in porous media. The existence and unique-
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ness of global weak finite energy solutions is shown in [23], see [24] for numerical

methods solving the coupled system. A numerical model consisting of the NSCH

system and Richards equation in a coupled free flow and porous media system

is proposed by Chen et al. [25] in which the well-posedness is not analysed.

In this article, we propose a di↵use interface model for two-phase flows in

the superposed free flow and porous media where the free flow is necessarily

governed by the Navier-Stokes equations. The model comprises the NSCH sys-

tem in free flow (hence incorporating the reversible dynamics) and the DCH

system in porous media coupled via a set of domain interface boundary con-

ditions. We establish the global existence of weak solutions in three dimen-

sion. Moreover, provided that there exists a strong solution (not established

in this article), we show that the strong solution agrees with weak solutions

(weak-strong uniqueness). These results are in parallel to those in [23] for the

Cahn-Hilliard-Stokes-Darcy model. Central to our analysis is the utilization of

the Lions interface boundary condition, cf. (2.10), which states that the stress

in the normal direction to the domain interface including the dynamic pressure

in free flow is balanced by the flow pressure in porous media. As a conse-

quence one can show that the model obeys an energy law which implies the

necessary a priori estimates for compactness argument. Compared to the work

[23] for the Cahn-Hilliard-Stokes-Darcy system, the adoption of Navier-Stokes

equations and the nonlinear Lions interface boundary conditions introduces ex-

tra nonlinearity and strong coupling among the equations. For establishing the

existence of weak solutions we develop a divide-and-conquer strategy by taking

advantage of the coupling of the equations via the chemical potential (an idea

from [26]), and by application of the Leray-Schauder principle. We should also

emphasize that the coupling between Cahn-Hilliard-Navier-Stokes system and

Cahn-Hilliard-Darcy system poses new challenge for analysis. For instance, the

uniqueness of weak solution in two dimensions and (local) existence of strong

solutions remain open, even for the case of Cahn-Hilliard-Stokes-Darcy system

[23].

There is a vast literature on single phase flows in the context of coupled free
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flow and porous media. Interested readers can refer to [27, 28, 29, 30, 31, 32, 33,

34, 35, 36, 37, 38, 39]. The rest of the article is organized as follows. In Section

2, we present the Cahn-Hilliard-Navier-Stokes-Darcy model, introduce the weak

formulation and state the main theorem of the article. We prove existence

of weak solutions in Section 3 based on solutions to a time-discrete elliptic

system and compactness arguments. In Section 4 we establish the weak-strong

uniqueness result. We give a brief derivation of the model in the Appendix.

2. The Cahn-Hilliard-Navier-Stokes-Darcy system and main result

In this section, we present the Cahn-Hilliard-Navier-Stokes-Darcy model

(CH-NSD) for two phase flows of matched densities in superposed free flow

and porous media; then we introduce the weak formulation of the model; finally

we state the main results of this article. We will focus on the three dimensional

case with the understanding that similar result holds for the two dimensional

domain.

2.1. The CH-NSD system

The physical setting of the problem is that there is a mixture of two fluids

(say oil and water) occupying the free flow region and porous media region.

Through the domain interface of the two regions fluid in the two systems can

exchange. Detailed discussion of the physical background and the derivation of

the CH-NSD model are given in the Appendix. We also refer to [22] for a simi-

lar model (Cahn-Hilliard-Stokes-Darcy) where the Navier-Stokes equations are

replaced by the Stokes equation equipped with some linear interface boundary

conditions.

We consider a bounded domain ⌦ = ⌦c

S
⌦m ⇢ R3 of C2,1 boundary @⌦,

where ⌦c is the free-flow region and ⌦m is the porous media region. Let @⌦c and

@⌦m, which are assumed to be Lipschitz continuous, denote the boundaries of

⌦c and ⌦m, respectively. Let � = @⌦m \ @⌦c, �m = @⌦m\�, and �c = @⌦c\�.

A two-dimensional geometry is shown in Figure 2.1 for illustration.
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Figure 2.1: A sketch of the porous median domain ⌦m, fluid domain ⌦c, and the interface �.

For analysis purpose, we take the background density ⇢0 and the gravi-

tational constant g to be unity throughout the rest of the article. Define

f(�) = F
0(�) where F (�) is a double-well polynomial: F (�) = 1

4✏ (�
2 � 1)2

with ✏ a measure of the capillary width of the thin interfacial region between

two fluids. Throughout this article, �|⌦i = �i (i = c,m), and �i represents

the phase function (order parameter) in ⌦i (i = c,m), which attains distinct

values (approximately �1 and 1) in the pure phases away from thin interfacial

region and varies smoothly over this interfacial region, for distinguishing the

fluid phases.

The Cahn-Hilliard-Navier-Stokes-Darcy model (cf. the Appendix for a deriva-

tion of the model) for two-phase superposed free flow and porous media com-

prises:

the Darcy-Cahn-Hilliard (DCH) equations in porous media ⌦m

um = � ⇧

⌫(�m)
(rpm � wmr�m), (2.1)

r · um = 0, (2.2)

@�m

@t
+ um ·r�m �r · (M(�m)rwm) = 0, (2.3)

wm = ��✏4�m + �f(�m), (2.4)

the Navier-Stokes-Cahn-Hilliard (NSCH) equations in free flow ⌦c

@uc

@t
+ (uc ·r)uc �r · T(uc, pc)� wcr�c = 0, (2.5)

r · uc = 0, (2.6)
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@�c

@t
+ uc ·r�c �r · (M(�c)rwc) = 0, (2.7)

wc = ��✏4�c + �f(�c), (2.8)

subject to the following domain interface boundary conditions on �

uc · nc = �um · nm, (2.9)

� nc · (T(uc, pc) · nc) +
1

2
(uc · uc) = pm, (2.10)

� ⌧ j · (T(uc, pc) · nc) =
↵B⌫(�c)p

tr(⇧)
⌧ j · uc, j = 1, 2, (2.11)

�m = �c, wc = wm, (2.12)

r�c · nc = �r�m · nm, rwc · nc = �rwm · nm, (2.13)

and the following initial and boundary conditions

um · nm|�m = 0, r�m · nm|�m = 0, rwm · nm|�m = 0, (2.14)

uc|�c = 0, r�c · nc|�c = 0, rwc · nc|�c = 0, (2.15)

�i(0,x) = �
0
i
(x), i = c,m, uc(0,x) = u

0
c
(x), (2.16)

where nc = �nm is the unit outer normal vector relative to ⌦c, cf. the illustra-

tion in Fig. 2.1.

In the model for i = c,m, ui are the fluid velocity; pi are the pressure; �i

are the order parameters; wi are the chemical potentials. In addition, we de-

note by ⇧ the permeability matrix of the porous media, ⌫ the viscosity, M the

scalar mobility function, � the mixing energy density coe�cient proportional to

surface tension, T(uc, pc) = 2⌫(�c)D(uc) � pcI the Cauchy stress tensor with

D(uc) =
1
2 (ruc+rT

uc) the rate of deformation tensor and I the 3⇥3 identity

matrix. In the domain interface boundary conditions (2.9)–(2.13), ↵B is an em-

pirical friction coe�cient, tr(⇧) is the trace of ⇧, ⌧ j (j = 1, 2) denote mutually

orthogonal unit tangential vectors to the interface �. We may also use P⌧ to

denote the orthogonal projection onto �. The domain interface boundary con-

dition (2.10) expresses the balance of force (including the dynamic pressure) in

the normal direction of the interface, also known as the Lions interface boundary
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condition. The Navier slip condition (2.11) is the celebrated Beavers-Joseph-

Sa↵man-Jones (BJS) interface condition[40].

One can verify that the CH-NSD system satisfies an energy law.

Proposition 2.1. Let (um,uc,�, w) be a smooth solution to the initial boundary

value problem (2.1)-(2.16) with

� =

8
><

>:

�c in ⌦c

�m in ⌦m

, w =

8
><

>:

wc in ⌦c

wm in ⌦m

.

Then (um,uc,�, w) satisfies the following energy law:

d

dt
E(uc,�) = �D(t)  0, (2.17)

where the total energy E and the dissipation function D are defined as

E(uc,�) :=
1

2

Z

⌦c

|uc|2dx+
�✏

2

Z

⌦c

|r�c|2 +
�✏

2

Z

⌦m

|r�c|2

+�

Z

⌦c

F (�c)dx,+�

Z

⌦m

F (�m)dx,
(2.18)

D(t) :=

Z

⌦c

M |rwc|2dx+

Z

⌦m

M |rwm|2dx+

Z

⌦c

2⌫|D(uc)|2dx

+

Z

⌦m

⌫|⇧� 1
2um|2dx+

Z

�

↵B⌫p
tr(⇧)

|P⌧uc|2ds.
(2.19)

2.2. The weak formulation

We now provide the weak formulation of the Cahn-Hilliard-Navier-Stokes-

Darcy model (2.1)-(2.13). We use the standard notation for the Sobolev space

W
m,k (⌦), where m is a nonnegative integer and 1  k  1. Let H

m (⌦) =

W
m,2 (⌦) with the norm k·kHm and the semi norm |·|Hm , and L

k (⌦) = W
0,k (⌦)

with the norm k · kLk . The norm k · kL1 denotes the essential supremum. Set

V = [H1
0 (⌦)]

3 = {v 2 [H1(⌦)]3 : v|@⌦ = 0}. Define the space

L̇
2(⌦i) :=

⇢
v 2 L

2(⌦i)

����
Z

⌦i

vdx = 0

�
.

Furthermore, we denote Ḣ
1(⌦i) = H

1(⌦i) \ L̇
2(⌦i), which is a Hilbert space

with inner product (u, v)H1 =
R
⌦i

ru · rv dx due to the classical Poincaré
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inequality for functions with zero mean. Its dual space is simply denoted by

(Ḣ1(⌦i))0. For our coupled system, the spaces that we utilize are

Xc = {v 2 [H1(⌦c)]
3
,v = 0 on �c},

Xc,div =
�
v 2 Xc

��r · v = 0 in ⌦c

 
,

Xm,div =
�
v 2 [L2(⌦m)]3

��r · v = 0,v · nm = 0 on �m

 
,

Y =
�
' 2 H

1(⌦)
 
, Qi = Ḣ

1(⌦i), Yi = H
1(⌦i), i = c,m.

P⌧ denotes the projection onto the tangent space on �, i.e.

P⌧u =
2X

j=1

(u · ⌧ j)⌧ j .

For the domain ⌦i (i = c,m), (·, ·)i denotes the L2 inner product on the domain

⌦j indicated by the subscript of integrated functions, and h·, ·i� denotes the L
2

inner product on the interface �. For convenience, we define the inner product

on L
2(⌦): for 8u 2 L

2(⌦), v 2 L
2(⌦)

(u, v) = (uc, vc)c + (um, vm)m, (2.20)

where uc = u|⌦c and um = u|⌦m , and denote

L
2(⌦i) = [L2(⌦i)]

3
, H

k(⌦i) = [Hk(⌦i)]
3
, i = c,m.

We now introduce the weak formulation for the Cahn-Hilliard-Navier-Stokes-

Darcy model, similar to the weak form defined in [23] for the Cahn-Hilliard-

Stokes-Darcy system.

Definition 2.1. (uc,um, pm,�, w) is called a weak solution to the Cahn-Hilliard-

Navier-Stokes-Darcy system (2.1)-(2.16) if

uc 2 L
1 �

0, T ;L2(⌦c)
�
\ L

2 (0, T ;Xc,div) , (2.21)

um 2 L
2 (0, T ;Xm,div) , (2.22)

pm 2 L
8/5 (0, T ;Qm) , (2.23)

� 2 L
1 �

0, T ;H1(⌦)
�
\ L

2
�
0, T ;H3(⌦)

�
, (2.24)
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w 2 L
2
�
0, T ;H1(⌦)

�
, (2.25)

uc 2 W
1,4/3

�
0, T ; (H1(⌦c))

0�
, � 2 W

1,8/5
�
0, T ; (H1(⌦))

0�
, (2.26)

and for almost all t 2 (0, T ) there hold

⌧
@�

@t
, 

�
+ (u ·r�, ) + (M(�)rw,r ) = 0, 8  2 Y, (2.27)

(w,!)� �✏(r�,r!)� �(f(�),!) = 0, 8 ! 2 Y, (2.28)
⌧
@uc

@t
,vc

�

c

=

✓
⇧

⌫(�m)
wmr�m,rqm

◆

m

+ (wcr�c,vc)c

� ((uc ·r)uc,vc)c � a((uc, pm), (vc, qm)),

8 vc 2 Xc,div, qm 2 Qm,

(2.29)

(um,vm)m =

✓
⇧

⌫(�m)
(�rpm + wmr�m),vm

◆

m

, 8 vm 2 L
2(⌦m), (2.30)

where

a((uc, pm), (vc, qm)) =(2⌫(�c)D(uc),D(vc))c +

✓
⇧

⌫(�m)
rpm,rqm

◆

m

+

*
↵B⌫(�c)p

tr(⇧)
P⌧uc, P⌧vc

+

�

� huc · nc, qmi� +

⌧
pm � 1

2
(uc · uc),vc · nc

�

�

,

(2.31)

and uc|t=0 = u
0
c
, �|t=0 = �

0
.

Remark 2.1. Through interpolation, one has � 2 C(0, T ;L2(⌦)) and uc 2

Cw

�
0, T ;L2(⌦c)

�
Hence the initial conditions in Definition 2.1 make sense.

2.3. The main result

The following conditions on the problem parameters will be assumed through-

out the article, cf. [23]:

(i) M(�) 2 C
1(R), m1  M(s)  m2 and |M 0(s)|  m̃ for s 2 R, where m1,

m2 and m̃ are positive constants.
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(ii) ⌫ 2 C
1(R), ⌫1  ⌫(�)  ⌫2 and |⌫0(s)|  ⌫̃ for s 2 R, where ⌫1, ⌫2 and ⌫̃

are positive constants and ⌫1.

(iii) The permeability ⇧ is isotropic, bounded from above and below, namely,

⇧ = (x)I with I being the d⇥ d identity matrix and (x) 2 L
1(⌦) such

that there exist 2 > 1 > 0, 1  (x)  2 a.e. in ⌦.

The main results of this article are summarized in the following two theo-

rems.

Theorem 2.1 (Existence of weak solutions). Suppose that the assumptions

(i)–(iii) are satisfied. Then for any u
0
c
2 L

2(⌦c), �0 2 H
1(⌦), and T > 0,

there exists at least one weak solution to the Cahn-Hilliard-Navier-Stokes-Darcy

system (2.1)-(2.16) in the sense of Definition 2.1. Moreover, the following energy

inequality holds in the sense of distribution

d

dt
E(uc,�)  �D(t), (2.32)

where E and D are defined in Eqs. (2.18) and (2.19).

Theorem 2.2 (Weak-strong uniqueness). The strong solution to the Cahn-

Hilliard-Navier-Stokes-Darcy system, if exists such that

uc 2 L
1(0, T ;Xc,div),um 2 L

1�
0, T ;H1(⌦m)

�
,

� 2 L
1�

0, T ;H2(⌦)
�
\ L

2
�
0, T ;H4(⌦)

�
,

(2.33)

is unique in the class of the weak solutions in the sense of Definition 2.1.

Remark 2.2. The energy inequality (2.32) can be interpreted as

E(uc(t),�(t))  E(u0
c
,�

0)�
Z

t

0
D(s)ds.

Several remarks are in order. First, for the purpose of establishing the weak-

strong uniqueness, the regularity assumption (2.33) can be weakened as in the

Cahn-Hilliard-Stokes-Darcy model [23]. Second, in the two-dimensional case,

uniqueness of weak solutions to the CH-NSD system is beyond immediate reach,

10



in contrast to the single domain case, see [1, 2] for the Cahn-Hilliard-Navier-

Stokes system and [21] for the Cahn-Hilliard-Darcy system. This is because the

low temporal regularity of the Darcy pressure (cf. Eq. (3.61) in [23]) and the

coupling of Navier-Stokes equations and Darcy equations via domain interface

boundary condition leads to reduced temporal regularity of @uc
@t

. Finally, we

point out that the (finite-time) existence of the strong solution is an outstanding

open question for the coupled Cahn-Hilliard-Navier-Stokes-Darcy system. It is

also open for the Navier-Stokes-Darcy type system in the case of single phase

flow in superposed free flow and porous media. While the spatial regularity

can be iteratively improved in individual domains, to gain further temporal

regularity one needs to di↵erentiate in time the whole system due to the presence

of domain interface boundary conditions. This will be pursued in another work.

3. Existence of weak solutions

In this section, we establish the existence of weak solutions by following the

same semi-discretization method as in our earlier work [23] and the classical

compactness argument. That is, one constructs an approximate solution which

solves an elliptic system resulting from a temporal discretization of the CH-

NSD system, obtains a priori estimates of the approximate solution, and finally

passes to the limit.

For a large positive integer N , let � = T

N
. The time-discrete scheme reads

as follows. Given (uk

c
,�

k) 2 L
2(⌦c)⇥H

1(⌦), k = 0, 1, ..., N � 1, find

(uk+1
c

, p
k+1
m

,�
k+1

, w
k+1) 2 Xc,div ⇥Qm ⇥H

1(⌦)⇥H
1(⌦)

such that

(�k+1
, ) + �(uk+1 ·r�k+1

, ) =

(�k, )� �(M(�k)rw
k+1

,r ), 8  2 Y,

(3.1)

(wk+1
,!)� �✏(r�k+1

,r!)� �(f(�k+1
,�

k),!) = 0, 8 ! 2 Y, (3.2)
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(uk+1
c

,vc)c + �((uk+1
c

·r)uk+1
c

,vc)c =

�

✓
⇧

⌫(�k
m
)
w

k+1
m

r�k+1
m

,rqm

◆

m

� �ã((uk+1
c

, p
k+1
m

), (vc, qm))

+ �(wk+1
c

r�k+1
c

,vc)c + (uk

c
,vc)c, 8vc 2 Xc,div, qm 2 H

1(⌦m),

(3.3)

where

(uk+1
m

,vm)m =

✓
⇧

⌫(�k
m
)
(�rp

k+1
m

+ w
k+1
m

r�k+1
m

),vm

◆

m

, 8 vm 2 L
2(⌦m).

(3.4)

Here f(�k+1
,�

k) = 1
✏2
((�k+1)3 � �

k) and

ã((uk+1
c

, p
k+1
m

), (vc, qm)) =(2⌫(�k
c
)D(uk+1

c
),D(vc))c +

✓
⇧

⌫(�k
m
)
rp

k+1
m

,rqm

◆

m

+

*
↵B⌫(�km)p

tr(⇧)
P⌧u

k+1
c

, P⌧vc

+

�

� huk+1
c

· nc, qmi�

+

⌧
p
k+1
m

� 1

2
(uk+1

c
· uk+1

c
),vc · nc

�

�

.

(3.5)

We note that F (a) � F (b)  f(a, b)(a � b) thanks to the monotonicity of the

cubic function a
3.

Before showing the existence of solutions to the elliptic system (3.1)–(3.4),

we note that the following lemma is proved in [23].

Lemma 3.1. Assume that (uk+1
c

, p
k+1
m

,�
k+1

, w
k+1) 2 Xc,div ⇥Qm ⇥H

3(⌦)⇥

H
1(⌦) is a solution to the system (3.1)–(3.4). Then

u
k+1
m

2 Xm,div, um · nc = uc · nc in H
1
2 (�), (3.6)

Z

⌦
�
k+1

dx =

Z

⌦
�
k
dx. (3.7)

3.1. Existence of weak solutions to the time-discrete scheme

For the sake of simplicity, we will omit the superscript k+1 for the unknown

variables in the following subsection. We follow the idea in [41] for showing the

existence of solutions to the elliptic system (3.1)–(3.3). That is, we apply Leray-

Schauder principle to Eq. (3.1) viewed as a nonlinear equation of w in which

12



the solution operators �(w) and (uc, pm)(w) are properly defined via Eqs. (3.2)

and (3.3), respectively.

Concerning the solvability of the chemical potential equation, i.e.

�✏(r�,r ) + �(f(�,�k), ) = (w, ), 8 2 H
1(⌦), (3.8)

the following result is essentially proved in [22].

Lemma 3.2. Let �
k 2 H

1(⌦). For a given function w 2 H
1(⌦), there is a

unique solution � 2 H
3(⌦) to the problem (3.8). Moreover, the solution operator

�(w) : H1(⌦) 7�! H
3(⌦) is bounded and continuous in the strong topology.

The equation (3.3) can be written as

(uc,v) + �((uc ·r)uc,v)c + �ã((uc, pm), (v, q))c =

�

⇣ ⇧

⌫(�k
m
)
fm,rq

⌘

m

+ �(fc,v)c + (uk

c
,v)c, 8v 2 Xc,div, q 2 H

1(⌦m).
(3.9)

From Lemma 3.2 we know that � is the unique solution of the equation (3.8) for

a given w 2 H
1(⌦). So we can define the source terms fc = wcr�c and fm =

wmr�m, where fc and fm are viewed as functions of wc and wm, respectively.

To establish the well-posedness of (3.9), we define an equivalent norm on the

space W = Xc,div ⇥Qm:

k(uc, pm)kW = kuck2L2 + kD(uc)k2L2 + krpmk2
L2 + kP⌧uck2L2(�) (3.10)

Lemma 3.3. For given u
k

c
2 L

2(⌦c) and w 2 H
1(⌦) the problem (3.9) admits

a solution (uc, pm) 2 Xc,div ⇥ Qm. Moreover, if � is su�ciently small, the

solution operator w 2 H
1(⌦) ! (uc, pm) 2 Xc,div ⇥ Ḣ

1(⌦m) is completely

continuous.

Proof. We employ the Galerkin method for showing existence of solutions.

Since the spaces Xc,div and Qm are separable Hilbert spaces, there exists a se-

quence {(ai, bi)}+1
i=1 2 Xc,div⇥Qm. For a fixed n � 1, let X(n)

c,div
= span{ai, i =

1, ..., n} ⇢ Xc,div and Q
(n)
m = span{bi, i = 1, ..., n} ⇢ Qm, and denote W

(n) =

X
(n)
c,div

⇥ Q
(n)
m . Then a Galerkin approximation to the problem (3.9) is to find

13



(uc,n, pm,n) 2 W
(n) such that

(uc,n,ai)c + �((uc,n ·r)uc,n,ai)c

= �

⇣ ⇧

⌫(�k
m
)
fm,rbi

⌘

m

� �ã
�
(uc,n, pm,n), (ai, bi)

�

+ �(fc,ai)c + (uk

c
,ai)c, 8(ai, bi) 2 W

(n)
.

(3.11)

Eqs. (3.11) are a nonlinear system in a finite dimensional Hilbert space. We

show the existence of a solution to (3.11) by the Brouwer fixed point theorem

in finite dimension, cf. [42] (Lemma 1.4, pp. 110). Since W
(n) is a finite

dimensional Hilbert space, we introduce the mapping: Fn : W
(n) ! W

(n)

defined by

[Fn(u, p), (vc, qm)] = (u,vc)c + �
�
(u ·r)u,vc

�
c

+ �ã
�
(u, p), (vc, qm)

�
� �

⇣ ⇧

⌫(�k
m
)
fm,rqm

⌘

m

� �(fc,vc)c � (uk

c
,vc)c, 8 (vc, qm) 2 W

(n)
.

(3.12)

It is clear that Fn is continuous. Next, we recall the definition of ã in (3.5),

perform integration by parts and calculate

[Fn(vc, qm), (vc, qm)] = (vc,vc)c + �
�
(vc ·r)vc,vc

�
c
+ �ã((vc, qm), (vc, qm))

� �

✓
⇧

⌫(�k
m
)
fm,rqm

◆

m

� �(fc,vc)� (uk

c
,vc)c

� kvck2L2 + �C

h
kD(vc)k2L2 + krqmk2

L2 + kP⌧vck2L2(�)

i

� �kfckL2kvckL2 � C�kfmkL2krqmkL2 � kuk

c
kL2kvckL2

>
1

2
kvck2L2 + �C

h
kD(vc)k2L2 + krqmk2

L2 + kP⌧vck2L2(�)

i

� C
⇥
kfck2L2 + kfmk2

L2 + kuk

c
k2
L2

⇤
, (3.13)

where ((vc · r)vc,vc)c +
⌦
� 1

2 (vc · vc),vc · nc

↵
�

= 0 by integration by parts.

It follows that [Fn(vc, qm), (vc, qm)] > 0 as long as k(vc, qm)kW is su�ciently

large. Hence there exists a solution (uc,n, pm,n) to the Eqs. (3.11).

Now we derive some a priori estimates of (uc,n, pm,n). By performing inte-
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gration by parts, one notes the identity

�
(uc,n ·r)uc,n,vc

�
c
�
⌧
1

2
(uc,n · uc,n),vc · nc

�

�

=
�
(uc,n ·r)uc,n,vc

�
c
�
�
(vc ·r)uc,n,uc,n

�
c
.

(3.14)

Choosing ai = uc,n, bi = pm,n in (3.11) yields

(uc,n,uc,n)c + �
�
(uc,n ·r)uc,n,uc,n

�
c
+ �a((uc,n, pm,n), (uc,n, pm,n))

= �

⇣ ⇧

⌫(�k
m
)
fm,rpm,n

⌘

m

+ �(fc,uc,n)c + (uk

c
,uc,n)c.

(3.15)

By the identity (3.14), the nonlinear term in (3.15) vanishes, i.e.

�
(uc,n ·r)uc,n,uc,n

�
c
�
⌧
1

2
(uc,n · uc,n),uc,n · nc

�

�

= 0.

Eq. (3.15) implies

k(uc,n, pm,n)kW  C
�
kfmkL2 + kfckL2 + kuk

c
kL2

�
. (3.16)

Since Xc,div ⇥ Qm is a reflexive Hilbert space, there exists a subsequence still

denoted by {(uc,n, pm,n)}n2N and a pair (uc, pm) 2 Xc,div ⇥Qm such that

uc,n �! uc weakly in Xc,div, (3.17)

uc,n �! uc strongly in L
4(⌦c), (3.18)

pm,n �! pm weakly in Qm, (3.19)

pm,n �! pm strongly in L
2(⌦m). (3.20)

To pass to the limit in the nonlinear term, one notes that

�
(uc,n ·r)uc,n,vc

�
c
�
�
(uc ·r)uc,vc

�
c

=
�
(uc,n � uc) ·ruc,n,vc

�
c
�
�
(uc ·r)(uc � uc,n),vc

�
c
.

By the identity (3.14), and the convergence (3.17), (3.18), one concludes that

�
(uc,n ·r)uc,n,vc

�
c
�
⌧
1

2
(uc,n · uc,n),vc · nc

�

�

�!

�
(uc ·r)uc,vc

�
c
�
⌧
1

2
(uc · uc),vc · nc

�

�

.
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Then passing to the limit in (3.11) with n ! 1 we find that

(uc,vc)c + �((uc ·r)uc,vc))c + �a((uc, pm), (vc, qm))

= �

⇣ ⇧

⌫(�k
m
)
fm,rqm

⌘

m

+ �(fc,vc))c + (uk

c
,vc))c,

(3.21)

where vc is linear combination of a1, ...,an, ..., and qm is linear combination of

b1, ..., bn, .... Since these combination are dense in Xc,div and Qm, (3.21) hold

for any vc 2 Xc,div, qm 2 Qm by a continuity argument. Hence (uc, pm) is a

solution to Eqs. (3.9).

Given w 2 H
1(⌦), let � 2 H

3(⌦) be the unique solution to Eq. (3.8)

according to Lemma 3.2. We show that the mapping w 2 H
1(⌦) ! (uc, pm) 2

W via Eqs. (3.9) is completely continuous.

Suppose (ui

c
, p

i

m
), i = 1, 2 are two solutions corresponding to f

i
, i = 1, 2

respectively. Define

u
e

c
= u

1
c
� u

2
c
; p

e

m
= p

1
m
� p

2
m
; f

e = f
1 � f

2
.

One obtains

(ue

c
,vc)c + �

⇣
2⌫(�k

c
)D(ue

c
),D(vc)

⌘

c

+ �

✓
⇧

⌫(�k
m
)
rp

e

m
,rqm

◆

m

+ �

*
↵B⌫(�kc )p

tr(⇧)
P⌧u

e

c
, P⌧vc

+

�

= �hue

c
· nc, qmi� � � hpe

m
,vc · nci� + �

⇣ ⇧

⌫(�k
m
)
f
e

m
,rq

⌘

m

+ �(fe

c
,vc)c � �

�
u
e

c
·ru

1
c
,vc

�
c

� �
�
u
2
c
·ru

e

c
,vc

�
c
+ �

�
vc ·ru

e

c
,u

2
c

�
c
+ �

�
vc ·ru

1
c
,u

e

c

�
c
, 8vc 2 Xc,div, q 2 H

1(⌦m),

(3.22)

where one has applied the identity (3.14) in treating the nonlinear terms. Taking

(vc, q) = (ue

c
, p

e

m
) in Eqs. (3.22), and noting that

�|
�
u
2
c
·ru

e

c
,u

e

c

�
c
+
�
u
e

c
·ru

e

c
,u

2
c

�
c
|  �||u2

c
||L4 ||ru

e

c
||L2 ||ue

c
||L4

 �||u2
c
||L4 ||ue

c
||

1
4

L2 ||ru
e

c
||

7
4

L2

 C�||ue

c
||2
L2 + ��||D(ue

c
)||2

L2 ,

one derives for su�ciently small � and � that

||(ue

c
, p

e

m
)||W  C||fe||L2 . (3.23)
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Hence the solution depends continuously on f in the strong topology. On the

other hand, the solution operator w 2 H
1(⌦) ! � 2 H

3(⌦) is continuous by

Lemma 3.2. Since the embedding H
3
,! C

1 is compact, it follows that the

mapping w 2 H
1(⌦) ! f = wr� 2 L

2(⌦) is completely continuous. Thus

the solution operators (uc, pm) : w 2 H
1(⌦) ! (uc, pm) 2 Xc,div ⇥ Ḣ

1(⌦m) is

completely continuous. This completes the proof.

The following lemma is obvious.

Lemma 3.4. For given f 2 (H1(⌦)
0
), there exist a unique solution w to the

problem

(!, ) + �(M(�k)r!,r ) = hf, i for 8 2 Y. (3.24)

In addition, the solution is bounded and depends continuously on the data f .

With the help of Lemmas 3.2–3.4,we finally prove the existence of solutions

to the problem (3.1)-(3.3) by the Leray-Schauder principle. For convenience, we

rewrite Eq. (3.1) as

(�, ) + �(u ·r�, ) + �(M(�k)rw,r ) = (�k, ), 8  2 Y, (3.25)

and view it as an equation for w. We have

Lemma 3.5. Under the assumptions (i)-(iii) and suppose �k 2 H
1(⌦). There

exists at least one weak solution (�, w,uc, pm) to the problem (3.1)-(3.3) such

that

� 2 H
3(⌦), w 2 H

1(⌦), uc 2 Xc,div, pm 2 Xm.

Moreover, there holds the discrete energy law

1

2�
kuck2L2 +

�✏

2�
kr�k2

L2 +
�

�
F (�) +

����
q
2⌫(�k

c
)D(uc)

����
2

L2

+
1

2�
kuc � u

k

c
k2
L2 +

����
q
⇧�1⌫(�k

m
)um

����
L2

+

����
q

M(�k)rw

����
2

L2

+

*
↵B⌫(�km)p

tr(⇧)
P⌧uc, P⌧uc

+
+
�✏

2�
kr(�� �

k)k2
L2

 1

2�
kuk

c
k2
L2 +

�✏

2�
kr�kk2

L2 +
�

�
(F (�k), 1) =

1

�
E(uk

c
,�

k). (3.26)
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Proof. Here we apply the Leray-Schauder principle. One defines an operator

T : H
1(⌦) �! H

1(⌦) as follows. Given w 2 H
1(⌦), one solves (3.2)-(3.3)

according to Lemma 3.1 and Lemma 3.2. Then one introduces

f(w) := w � (�(w)� �
k)� �u(w) ·r�(w). (3.27)

Finally, one defines T (w) as the unique solution to equation (3.24) with the

source function f(w). Since the solution operators w 2 H
1(⌦) �! {�,uc, pm} 2

C
1(⌦̄)⇥Xc,div ⇥H

1(⌦m) is completely continuous by Lemma 3.2 and Lemma

3.3, the mapping w 2 H
1(⌦) �! f(w) 2 L

2(⌦) is completely continuous. Thus

by Lemma 3.4 the operator T : w 2 H
1(⌦) �! T (w) 2 H

1(⌦) is completely

continuous, and hence compact since H
1(⌦) is a Hilbert space. To apply the

Leray-Shauder principle [43], one needs to show that the set

{w 2 H
1(⌦), w = �T (w), for some � 2 (0, 1]}

is bounded. Suppose w = �T (w) for some � 2 (0, 1]. By the definition of T and

the linearity of the Eq. (3.24), w satisfies the following equation

(w, ) + (M(�k)rw,r ) = �(f(w), ), 8  2 H
1(⌦). (3.28)

By taking  = w in (3.28), we have

(1� �)kwk2
L2 + �(�� �

k
, w) + ��(u ·r�, w) = �

����
q
M(�k)rw

����
2

L2

. (3.29)

Setting ! = �(� � �
k) in (3.2) and v = �uc, q = �pm in (3.3), performing

integration by parts and adding the results together, we have

�E(uc,�) + ��

����
q
2⌫(�k

c
)D(uc)

����
2

L2

+ ��

���
p
⇧�1⌫(�m)um

���
2

L2

+
��↵Bp
tr(⇧)

����
q
⌫(�k

m
)P⌧uc

����
2

L2

+

����
q

M(�k)rw

����
2

L2

+ (1� �)kwk2
L2 +

�✏�

2
kr(�� �

k)k2
L2 +

�

2
kuc � u

k

c
k2
L2  �E(uk

c
,�

k).

(3.30)

It follows immediately that

E(uc,�)  E(uk

c
,�

k), krwk2
L2  CE(uk

c
,�

k).
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Setting ! = 1
|⌦| in (3.2), we also have

1

|⌦|

Z

⌦
wdx =

�

|⌦|✏

Z

⌦
(�3 � �

k)dx

 �

|⌦|✏ [
Z

⌦
|�|3dx+

Z

⌦
|�k|dx]

 �

|⌦|✏ [k�k
3
L6 + k�kk2

L2 ]|⌦|
1
2

=
�

|⌦| 12 ✏
[k�k3

H1 + k�kk2
L2 ]  C(⌦, ✏, �, E(u0

c
,�

0)).

(3.31)

Hence by the Poincaré inequality one concludes that kwk2
H1  C. Thus Leray-

Schauder principle implies that there exists a fixed point w = T (w), which

solves (3.1)-(3.3). The energy law (3.26) follows from (3.30) with � = 1. This

completes the proof.

3.2. Construction of the approximation solution and passage to the limit

Recall that � = T

N
for T > 0 and a positive integer N , and that tk = k�,

k = 0, 1 · · ·N . Suppose (uk+1
c

, p
k+1
m

,�
k+1

, w
k+1) 2 Xc,div⇥Qm⇥H

1(⌦)⇥H
1(⌦)

is a solution to the time-discrete system (3.1)–(3.3) according to Lemma 3.5.

We define the approximate solutions to Eqs. (2.27)–(2.30) as follows

�
� :=

tk+1 � t

�
�
k +

t� tk

�
�
k+1

,

u
�

c
:=

tk+1 � t

�
u
k

c
+

t� tk

�
u
k+1
c

,

û
�

m
:= � ⇧

⌫(�m)
(rp

k+1
m

� w
k+1r�k+1

m
),

p̂
�

m
:= p

k+1
m

, �̂
� := �

k+1
, û

�

c
:= u

k+1
c

,

ŵ
� := w

k+1
, �̃

� := �
k
,

for t 2 [tk, tk+1).

With these definitions, one deduces the following equations, cf. (3.1)-(3.3):

(
d�

�

dt
, ) + (û� ·r�̂�, ) + (M(�̃�)rŵ

�
,r ) = 0, 8  2 Y, (3.32)

(ŵ�
,!)� �✏(r�̂�,r!)� �(f(�̂�, �̃�),!) = 0, 8 ! 2 Y, (3.33)

(û�

m
,vm)m =

✓
⇧

⌫(�̃�
m
)
(�rp̂

�

m
+ ŵ

�

m
r�̂�

m
),vm

◆
, 8 vm 2 L

2(⌦m)m, (3.34)
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and the equation

hdu
�

c

dt
,vcic + ((û�

c
·r)û�

c
,vc)c +

⇣
⌫(�̃�

c
)D(û�

c
),D(vc)

⌘

c

+
⇣ ⇧

⌫(�̃�
m
)
rp̂

�

m
,rqm

⌘

m

+

*
↵Bp
tr(⇧)

⌫(�̃�
m
)P⌧ û

�

c
, P⌧vc

+

�

� hû�

c
· nc, qmi� +

⌧
p̂
�

m
� 1

2
(û�

c
· û�

c
),vc · nc

�

�

=
⇣ ⇧

⌫(�̃�
m
)
ŵ

�

m
r�̂�

m
,rqm

⌘

m

+ (ŵ�

c
r�̂�

c
,vc)c, 8vc 2 Xc,div, qm 2 Qm,

(3.35)

with initial conditions

�
�|t=0 = �

0
, u

�

c
|t=0 = u

0
c
. (3.36)

As in [23], we also interpolate the discrete-in-time energy and dissipation

function introducing

E
�(t) =

tk+1 � t

�
E(uk

c
,�

k) +
t� tk

�
E(uk+1

c
,�

k), for t 2 [tk, tk+1] (3.37)

D�(t) =

����
q
M(�k)rw

k+1

����
2

L2

+

����
q

2⌫(�k
c
)D(uk+1

c
)

����
2

L2

+

����
q
⌫(�k

m
)⇧�1um

k+1

����
2

L2

+
↵Bp
tr(⇧)

����
q
⌫(�k

c
)P⌧u

k+1
c

����
2

L2

.

(3.38)

The time-discrete energy law translates to

d

dt
E

�(t)  �D�(t). (3.39)

Integrating (3.39) from 0 to T one immediately derives the following estimates

kû�

c
kL1(0,T ;L2(⌦c)) + k�̂�kL1(0,T ;H1(⌦))  C, (3.40)

krû
�

c
kL2(0,T ;L2(⌦c)) + kP⌧ û

�

c
kL2(0,T ;L2(�))  C, (3.41)

kû�

m
kL2(0,T ;L2(⌦m)) + krŵ

�kL2(0,T ;L2(⌦))  C, (3.42)

where the constant C depends on E(u0
c
,�

0). Based on these estimates and Eqs.

(3.32)–(3.35) the following estimates can be further inferred.
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Lemma 3.6. Let {û�

c
, p̂

�

m
, û

�

m
, �̂

�
, ŵ

�} be satisfying Eqs. (3.32)-(3.35). The

following estimates hold

kŵ�kL2(0,T ;H1(⌦))  CT , (3.43)

k�̂�kL2(0,T ;H3(⌦))  CT , (3.44)

krp̂
�

m
k
L

8
5 (0,T ;L2(⌦m))

 CT , (3.45)

k@t��k
L

8
5 (0,T ;(H1(⌦))0 )

 CT , (3.46)

k@tu�

c
k
L

4
3 (0,T ;(H1(⌦c))

0 )
 CT , (3.47)

Proof. The estimates (3.43)–(3.44) are derived exactly the same as in [23]. We

briefly outline the arguments here for completeness. By the estimates (3.31)

and (3.42) one obtains (3.43) as a result of Poincaré’s inequality. Then inequal-

ity (3.44) follows from Eq. (3.33) and elliptic regularity. Next, by Hölder’s

inequality, the interpolation inequality [44, 45] and Sobolev inequality, we have

kŵ�r�̂�kL2  kr�̂�kL3kŵ�kL6 Ckr�̂�k
3
4

L2kr�̂�k
1
4

H2kŵ�kL6

Ckr�̂�k
3
4

L2kr�̂�k
1
4

H2kŵ�kH1 .

(3.48)

Since kr�̂�k
1
4

H2kŵ�kH1 2 L
8
5 (0, T ) by Hölder’s inequality, one derives that

kŵ�r�̂�k
L

8
5 (0,T ;L2(⌦))

 CT . (3.49)

The inequality (3.45) follows immediately from Eqs. (3.35) with vc = 0 and

qm = p̂m. Likewise, one has

|(û� ·r�̂�, )|  kû�kL2kr�̂�kL3k kL6  kû�kL2kr�̂�k
3
4

L2kr�̂�k
1
4

H2k kH1 .

Hence the inequality (3.46) follows from Eq. (3.32), the estimates (3.40), (3.42)

and (3.44).

By the identity (3.14) and the interpolation inequality, one has
����
�
(û�

c
·r)û�

c
,vc

�
c
�
⌧
1

2
(û�

c
· û�

c
),vc · nc

�

�

����

=
���(û�

c
·r)û�

c
,vc

�
c
�
�
(vc ·r)û�

c
, û

�

c

�
c

��

 2kvckL6kû�

c
kL3krû

�

c
kL2  CkvckH1kû�

c
k

1
2

L2krû
�

c
k

3
2

L2
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It then follows from Eq. (3.35), the trace inequality, the inequality (3.48) and

Korn’s inequality that

|hdu
�

c

dt
,vci| C

✓
kû�

c
k

1
2

L2krû
�

c
k

3
2

L2 + kD(û�

c
)kL2

+ krp̂
�

m
kL2 + kr�̂�k

3
4

L2kr�̂�k
1
4

H2kŵ�kH1

◆
kvckH1

(3.50)

Since the right hand side of (3.50) is in L
4
3 (0, T ), the estimate (3.47) is thus

proved. This completes the proof of the lemma.

We are now ready to pass to the limit and prove the main Theorem 2.1.

Proof. The estimates in (3.40)-(3.45) imply the existence of

uc 2 L
1(0, T ;H(div;⌦c)) \ L

2(0, T ;Xc,div),

um 2 L
2(0, T ;Xm,div), pm 2 L

8/5(0, T ;Qm),

� 2 L
1(0, T ;H1(⌦)) \ L

2(0, T ;H3(⌦)), w 2 L
2(0, T ;H1(⌦)),

@�

@t
2 L

8
5
�
0, T ; (H1(⌦))0

�
,

@uc

@t
2 L

4
3
�
0, T ;X0

c,div

�
,

such that the following convergence (of subsequences) holds as � ! 0

û
�

c
�! uc weakly ⇤ in L

1(0, T ;L2(⌦c)), (3.51)

weakly in L
2(0, T ;H1(⌦c)), (3.52)

p
�

m
�! pm weakly in L

8/5(0, T ;Qm), (3.53)

û
�

m
�! um weakly in L

2(0, T ;L2(⌦m)), (3.54)

�̂
� �! � weakly ⇤ in L

1(0, T ;H1(⌦m)), (3.55)

weakly in L
2(0, T ;H3(⌦)), (3.56)

ŵ
� �! w

✏
weakly in L

2(0, T ;H1(⌦)). (3.57)

By the definition of û�

c
and u

�

c
, �̂�, �̃� and ��, we also have

kû�

c
� u

�

c
k2
L2(L2) =

�

3

N�1X

k=0

kuk+1
c

� u
k

c
k2
L2  C� ! 0 as � ! 0. (3.58)

kr(�̂� � �
�)k2

L2(L2) =
�

3

N�1X

k=0

kr(�k+1 � �
k)k2

L2  C� ! 0 as � ! 0. (3.59)

22



Since
R
⌦ �̂

�
dx =

R
⌦ �̃

�
dx by Lemma 3.1, Poincaré’s inequality gives

k�̂� � �
�kL2(0,T ;H1(⌦)) ! 0 as � ! 0.

Likewise, one has k�̂� � �̃
�kL2(0,T ;H1(⌦)) ! 0 as � ! 0. Thus the sequences

{û�

c
} and {u�

c
}, if convergent, converge to the same limit. So do the sequences

{�̃�}, {��} and �̂�. On the other hand, from the definition of u�

c
, �̃� and ��, as

well as the estimates (3.40)-(3.45), we infer they also satisfy estimates analogous

to (3.40)-(3.45). Hence the convergence (3.51)-(3.52) and (3.55)-(3.56) holds for

u
�

c
and ��, respectively.

Since �� 2 L
1�

0, T ;H1(⌦)
�
\L2

�
0, T ;H3(⌦)

�
and @�

�

@t
2 L

8
5

�
0, T ; (H1(⌦))0

�
,

the Aubin-Lions-Simon lemma (cf. [46] Corollary 4) yields

@�

@t
2 L

8
5
�
0, T ; (H1(⌦))0

�
, �

� �! �

strongly in L
2
�
0, T ;H2(⌦)

�
\ C

�
0, T ;L2(⌦)

�
.

(3.60)

Due to the fact that � 2 L
1�

0, T ;H1(⌦)
�
and @�

@t
2 L

8
5

�
0, T ; (H1(⌦))0

�
, it

follows that (cf. [42] pp. 178)

� 2 Cw

�
0, T ;H1(⌦)

�
, (3.61)

that is

lim
t!t0

�
�(t),'

�
H1 =

�
�(t0),'

�
H1 , 8t0 2 [0, T ] and ' 2 H

1(⌦).

Similarly, one has that

@uc

@t
2 L

4
3
�
0, T ;X0

c,div

�
, u

�

c
�! uc strongly in

L
2
�
0, T ;H1��(⌦c)

�
\ C

�
0, T ;H↵(⌦c)

�
,� 2 (0,

1

2
),↵ 2 (�1, 0),

(3.62)

and that

uc 2 Cw

�
0, T ;L2(⌦c)

�
. (3.63)

Because

k(�̂�)3 � �
3kL2  Ck�̂� � �kL2(k�̂�k2

L1 + k�k2
L1)
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 Ck�̂� � �kL2

�
k�̂�k

3
2

H1k�̂�k
1
2

H3 + k�k
3
2

H1k�k
1
2

H3

�
,

by the strong convergence (3.60), one readily derives that

f
�
�̂
�
, �̃

�
�
�! f(�) strongly in L

4
�
0, T ;L2(⌦)

�
.

Likewise, the weak strong convergence implies that

ŵ
�r�̂� �! wr�, (û�

c
·r)û�

c
�! (uc ·r)uc

in the sense of distributions. For the nonlinear interface term, one has
⌧
1

2
(û�

c
· û�

c
),vc · nc

�

�

= �
�
(vc ·r)û�

c
, û

�

c

�
c
�!

�
�
(vc ·r)uc,uc

�
c
=

⌧
1

2
(uc · uc),vc · nc

�

�

, in D(0, T ), 8vc 2 Xc,div.

In addition by assumptions (1)-(2), one also has

⌫(�̃�) �! ⌫(�) strongly in C
�
0, T ;L2(⌦)

�
,

M(�̃�) �! M(�) strongly in C
�
0, T ;L2(⌦)

�
.

These convergence results allow us pass to the limit in Eqs. (3.32)-(3.35),

first in the sense of distributions, then to corresponding function spaces by

continuity. Specifically, one has for h(t) 2 D(0, T )

Z
T

0

⌧
d�

dt
, 

�
+ (u ·r�, ) + (M(�)rw,r )

�
h(t)dt = 0, 8  2 Y,

Z
T

0
[(w,!)� �✏(r�,r!)� �(f(�),!)]h(t)dt = 0, 8 ! 2 Y,

Z
T

0

⌧
duc

dt
,vc

�

c

+ ((uc ·r)uc,vc)c +
�
⌫(�c)D(uc),D(vc)

�
c

+
⇣ ⇧

⌫(�m)
rpm,rq

⌘

m

+

*
↵⌫(�m)p
tr(⇧)

P⌧uc, P⌧vc

+

�

� huc · nc, qi

+

⌧
pm � 1

2
|uc|2,vc · nc

�
�
⇣ ⇧

⌫(�m)
wmr�m,rq

⌘

m

�(wcr�c,vc)c]h(t)dt = 0, 8vc 2 Xc,div, q 2 H
1(⌦m),

Z
T

0

"
(û�

m
,vm)m �

✓
⇧

⌫(�̃�
m
)
(�rp̂

�

m
+ ŵ

�

m
r�̂�

m
),vm

◆

m

#
h(t)dt = 0,
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8 vm 2 L
2(⌦m), This shows that (uc,um, pm,�, w) almost everywhere in time

satisfies the Eqs. (2.27)–(2.30). Furthermore, in light of the initial conditions

(3.36), the strong convergence (3.60) and (3.62), and by the weak continuity in

time (3.61) and (3.63), one infers that

�|t=0 = �
0
, uc|t=0 = u

0
c
.

Finally, we show that weak solutions satisfy the energy inequality (2.32). The

argument is entirely the same as in [23]. We reproduce it here for completeness.

Multiplying the inequality (3.39) by h(t) for h 2 C
1(0, T ) with h � 0, h(T ) = 0

and integrating, one derives

E(u0
c
,�

0)h(0) +

Z
t

0
E

�(s)h0(s)ds �
Z

t

0
D�(s)h(s)ds.

By the strong convergence (3.60), (3.62), the weak convergence (3.52), (3.54),

(3.57), one passes to the limit to obtain

E(u0
c
,�

0) +

Z
t

0
E(s)h0(s)ds � lim inf

�!0

Z
t

0
D�(s)h(s)ds �

Z
t

0
D(s)h(s)ds,

(3.64)

where the last inequality follows from the lower semi-continuity of norms and

the almost everywhere convergence of ⌫ and M . The energy inequality (2.32)

is thus established. This completes the proof of Theorem 2.1.

4. Weak-strong uniqueness

In this section we prove the weak-strong uniqueness (Theorem 2.2). We

largely follow the lines of proof from [23] for the Cahn-Hilliard-Stokes-Darcy

system. Special care is paid to the treatment of the nonlinear advection term

in the Navier-Stokes equation and the nonlinear Lions interface boundary con-

ditions.

Proof. Suppose (ũc, pm, ũm, �̃, w̃) is a strong solution to the Cahn-Hilliard-

Navier-Stokes-Darcy system such that

ũc 2 L
1(0, T ;Xc,div), ũm 2 L

1�
0, T ;H1(⌦m)

�
,
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�̃ 2 L
1�

0, T ;H2(⌦)
�
\ L

2
�
0, T ;H4(⌦)

�
,

rpm 2 L
1(0, T ;L2(⌦m)).

It follows from Eqs. (2.4) and (2.8) that w̃ 2 L
1�

0, T ;L2(⌦)
�
\L2

�
0, T ;H2(⌦)

�
,

hence w̃ 2 L
4
�
0, T ;H1(⌦)

�
by interpolation. It then follows from the equations

that

@ũc

@t
2 L

1(0, T ;X 0
c,div

),
@�̃

@t
2 L

4(0, T ; (H1(⌦))0).

Owing to the regularity, one can use (w̃, ũc, ũm) as test functions, which gives

the energy equality (2.17). That is

d

dt

⇢
1

2
kũck2L2 +

�✏

2
kr�̃k2

L2 + �(F (�̃), 1)

�

= �k
p
Mrw̃k2

L2 � k
p
2⌫D(ũc)k2L2

� k
p
⌫⇧�1ũmk2

L2 �
↵Bp
tr(⇧)

k
p
⌫P⌧ ũck2L2 .

(4.1)

For the weak solution (uc, pm,um,�, w) in the sense of Definition 2.1, the energy

inequality (2.32) holds (Theorem 2.1), i.e.

d

dt

⇢
1

2
kuck2L2 +

�✏

2
kr�k2

L2 + �(F (�), 1)

�

 �k
p
Mrwk2

L2 � k
p
2⌫D(uc)k2L2

� k
p
⌫⇧�1umk2

L2 �
↵Bp
tr(⇧)

k
p
⌫P⌧uck2L2 .

(4.2)

Since ũc 2 L
1(0, T ;Xc,div), for almost all t 2 (0, T ) it permits to use

vc = ũc and qm = 0 as test functions in Eq. (2.29). Meanwhile one multiplies

by uc the strong form (2.5) for ũc, and performs integration by parts. Adding

together the resultants gives

✓
@uc

@t
, ũc

◆

c

+

✓
@ũc

@t
,uc

◆

c

+
⇣
2⌫(�c)D(uc),D(ũc)

⌘

c

+
⇣
2⌫(�̃c)D(ũc),D(uc)

⌘

c

+

*
↵B⌫(�c)p

tr(⇧)
P⌧uc, P⌧ ũc

+

�

+

*
↵B⌫(�̃c)p

tr(⇧)
P⌧ ũc, P⌧uc

+

�

= �
⇣
(uc ·r)uc, ũc

⌘

c

�
⇣
(ũc ·r) ũc,uc

⌘

c

+
⇣
wcr�c, ũc

⌘

c

+
⇣
w̃cr�̃c,uc

⌘

c
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�
⌧
pm � 1

2
(uc · uc), ũc · nc

�

�

�
⌧
p̃m � 1

2
(ũc · ũc),uc · nc

�

�

= �
⇣
(uc ·r)uc, ũc

⌘

c

�
⇣
(ũc ·r) ũc,uc

⌘

c

+
⇣
wcr�c, ũc

⌘

c

+
⇣
w̃cr�̃c,uc

⌘

c

� hpm, ũc · nci� � hp̃m,uc · nci�

+
⇣
(ũc ·r)uc,uc

⌘

c

+
⇣
(uc ·r) ũc, ũc

⌘

c

= �
⇣
(uc � ũc) ·r(uc � ũc), ũc

⌘

c

+
⇣
ũc ·r(uc � ũc), (uc � ũc)

⌘

c

+
⇣
wcr�c, ũc

⌘

c

+
⇣
w̃cr�̃c,uc

⌘

c

� hpm, ũc · nci� � hp̃m,uc · nci� . (4.3)

Likewise,

�
⇧�1

⌫(�m)um, ũm

�
m
+
⇣
⇧�1

⌫(�̃m)ũm,um

⌘

m

(4.4)

= hpm, ũm · nci� + hp̃m,um · nci� +
⇣
wmr�m, ũm

⌘

m

+
⇣
w̃mr�̃m,um

⌘

m

= hpm, ũc · nci� + hp̃m,uc · nci� +
⇣
wmr�m, ũm

⌘

m

+
⇣
w̃mr�̃m,um

⌘

m

,

where we have utilized the fact that um ·nc = uc ·nc on � (likewise for ũm and

ũc). Take summation of Eqs. (4.3) and (4.4)
⌧
@uc

@t
, ũc

�

c

+

⌧
@ũc

@t
,uc

�

c

+
⇣
2⌫(�c)D(uc),D(ũc)

⌘

c

+
⇣
2⌫(�̃c)D(ũc),D(uc)

⌘

c

+

*
↵B⌫(�c)p

tr(⇧)
P⌧uc, P⌧ ũc

+

�

+

*
↵B⌫(�̃c)p

tr(⇧)
P⌧ ũc, P⌧uc

+

�

+
�
⌫(�m)⇧�1

um, ũm

�
m
+
⇣
⌫(�̃m)⇧�1

ũm,um

⌘

m

= �
⇣
(uc � ũc) ·r(uc � ũc), ũc

⌘

c

+
⇣
ũc ·r(uc � ũc), (uc � ũc)

⌘

c

(4.5)

+
⇣
wcr�c, ũc

⌘

c

+
⇣
w̃cr�̃c,uc

⌘

c

+
⇣
wmr�m, ũm

⌘

m

+
⇣
w̃mr�̃m,um

⌘

m

.

To deal with the Cahn-Hilliard equations, one notes that �̃ 2 L
4
�
0, T ;H3(⌦)

�
,

since by the Gagliardo-Nirenberg inequality

||r��̃||L2  C||��̃||
1
2

L2 ||��̃||
1
2

H2 .

Hence in view of Eq. (2.26), for almost every t 2 (0, T ), (��✏��̃) can be used

as a test function in the weak form (2.27). One obtains

�✏

⌧
@r�
@t

,r�̃
�

c

+ �✏

*
@r�̃
@t

,r�
+

c

+
�
M(�)rw,rw̃

�
+
�
M(�̃)rw̃,rw

�
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= �
�
M(�)rw,rf(�̃)

�
+ �

�
M(�̃)rw̃,rf(�)

�
+ �

�
u ·r�, f(�̃)

�

+ �
�
ũ ·r�̃, f(�)

�
�
�
u ·r�, w̃

�
�
�
ũ ·r�̃, w

�
. (4.6)

Now one adds together Eqs. (4.1) and (4.2), then subtracts Eqs. (4.5) and (4.6)

d

dt

⇢
1

2
kũc � uck2L2 +

�✏

2
kr�̃�r�k2

L2

�
+

d

dt

n
�
�
F (�̃), 1

�
+ �

�
F (�), 1

�o

+

Z

⌦c

2⌫(�c)
��D(ũc)� D(uc)

��2dx+

Z

⌦
M(�)|rw̃ �rw|2dx

+

Z

⌦m

⌫(�m)⇧�1
��ũm � um

��2dx+
↵Bp
tr(⇧)

Z

�
⌫(�c)|P⌧ ũc � P⌧uc|2ds


⇣
(uc � ũc) ·r(uc � ũc), ũc

⌘

c

�
⇣
ũc ·r(uc � ũc), (uc � ũc)

⌘

c
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�
D(uc)� D(ũc)

�⌘

c

�
⇣
[M(�)�M(�̃)]rw̃, (rw �rw̃)

⌘

�
⇣
(⌫(�m)� ⌫(�̃m))⇧�1

ũm, (um � ũm)
⌘

m

� ↵Bp
tr(⇧)

D
[⌫(�c)� ⌫(�̃c)]P⌧ ũc, (P⌧uc � P⌧ ũc)

E

�

�
⇣
(w � w̃)ũ, (r��r�̃)

⌘
�
⇣
w̃(ũ� u), (r��r�̃)

⌘
� �
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M(�)rw,rf(�̃)

�

� �
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M(�̃)rw̃,rf(�)

�
� �

�
u ·r�, f(�̃)
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� �

�
ũ ·r�̃, f(�)

�
. (4.7)

Since � 2 L
1�

0, T ;H1(⌦)
�
\L2

�
0, T ;H3(⌦)

�
, it follows that � 2 L

8
�
0, T ;L1(⌦)

�

by interpolation. Now

||rf(�)||L2  C(||�||2
L1 + 1)||r�||L2 ,

which implies that f(�) 2 L
4(0, T ;H1(⌦)). Hence f(�) can be used as a test

function in Eq. (2.27). Owing to the monotonicity of �3, one has for a.e.

t 2 (0, T )

d

dt

n
�
�
F (�̃), 1

�
+ �

�
F (�), 1

�o
= �

⌧
@�

@t
, f(�)

�
+ �

*
@�̃

@t
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+

= ��
⇣
M(�)rw,rf(�)

⌘
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M(�̃)rw̃,rf(�̃)

⌘
.

Eq. (4.7) can then be written as
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⌫(�c)|P⌧ ũc � P⌧uc|2ds


⇣
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⌘

m

�
*

↵Bp
tr(⇧)

[⌫(�c)� ⌫(�̃c)]P⌧ ũc, (P⌧uc � P⌧ ũc)

+

�

�
⇣
(w � w̃)ũ, (r��r�̃)

⌘
�
⇣
w̃(ũ� u), (r��r�̃)

⌘

+ �

⇣
[M(�̃)�M(�)]rw̃,r[f(�̃)� f(�)]

⌘
+ �

⇣
M(�)r[w̃ � w],r[f(�̃)� f(�)]

⌘

� �

⇣
(u� ũ) ·r(�� �̃), f(�̃)

⌘
� �

⇣
ũ ·r(�� �̃), f(�̃)� f(�)

⌘

:=
8X

j=1

Ij ,

where each Ij corresponds to the jth line on the right hand side of the inequality

(4.8).

The term I1 is estimated as follows

|I1|  C||uc � ũc||L4 ||r(uc � ũc)||L2 ||ũc||L4

 ||uc � ũc||
1
4

L2 ||r(uc � ũc)||
7
4

L2 ||ũc||L4

 �

Z

⌦c

2⌫(�c)
��D(ũc)� D(uc)

��2dx+ C||uc � ũc||2L2 ||ũc||8L4 , (4.9)

where � is a constant to be determined later, and one has utilized the interpo-

lation, as well as the lower and upper bounds of the viscosity ⌫.

Recall that ���̃ is of mean zero. To estimate the rest of the terms, we notice

that the Gagliardo-Nirenberg inequality and the Poincaré inequality imply

||�� �̃||L1  C
�
||r�(�� �̃)||

1
4

L2 ||r(�� �̃)||
3
4

L2 + ||r(�� �̃)||L2

�
. (4.10)

It follows from the definition of the chemical potential, cf. Eq. (2.28), that

�✏||r�(�� �̃)||L2  ||r(w � w̃)||L2 + �||r
�
f(�)� f(�̃)

�
||L2 .
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Since

r(�3 � �̃
3) = 3�̃2r(�� �̃) + 3(�2 � �̃

2)r�,

one has

||r
�
f(�)� f(�̃)

�
||L2

 C||r
�
�� �̃

�
||L2 + ||�̃||2

L1 ||r
�
�� �̃

�
||L2

+ ||�+ �̃||L1 ||�� �̃||L1 ||r�||L2

 C||r
�
�� �̃

�
||L2 + C(1 + ||�||L1)

⇥
⇣
||r�(�� �̃)||

1
4

L2 ||r(�� �̃)||
3
4

L2 + ||r(�� �̃)||L2

⌘

 1

2
||r�(�� �̃)||L2 + C

�
1 + ||�||

4
3
L1

�
||r

�
�� �̃

�
||L2 .

(4.11)

Hence

||r�(�� �̃)||L2  2||r(w � w̃)||L2 + C
�
1 + ||�||

4
3
L1

�
||r

�
�� �̃

�
||L2 . (4.12)

We estimate Ij , j = 2 · · · 8 as follows. By the Lipschitz continuity of ⌫, one

obtains

|I2|  C||�c � �̃c||L1 ||D(ũc)||L2 ||D(ũc)� D(uc)||L2

 C

⇣
||r�(�� �̃)||

1
4

L2 ||r(�� �̃)||
3
4

L2 + ||r(�� �̃)||L2

⌘

⇥ ||D(ũc)||L2 ||D(ũc)� D(uc)||L2

 �1||r�(�� �̃)||2
L2 + �

Z

⌦c

2⌫(�c)
��D(ũc)� D(uc)

��2dx

+ C

⇣
||D(ũc)||

8
3

L2 + ||D(ũc)||2L2

⌘
||r(�� �̃)||2

L2

 �1

Z

⌦
M(�)|rw̃ �rw|2dx+ �

Z

⌦c

2⌫(�c)
��D(ũc)� D(uc)

��2dx

+ C

⇣
1 + ||�||

8
3
L1

⌘
||r

⇣
�� �̃

⌘
||2
L2 .

(4.13)

Likewise, one has

|I3|  C||�c � �̃c||L1 ||rw̃||L2 ||r(w̃ � w)||L2

 �

Z

⌦
M(�)|rw̃ �rw|2dx

+ C

⇣
1 + ||�||

8
3
L1 + ||rw̃||

8
3

L2

⌘
||r

⇣
�� �̃

⌘
||2
L2 ;

(4.14)
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|I4|  �

Z

⌦m

⇧�1
⌫(�m)

��ũm � um

��2dx

+ C
�
1 + ||�||

8
3
L1 + ||ũm||

8
3

L2

�
||r

�
�� �̃

�
||2
L2 ;

(4.15)

By the trace theorem and Sobolev imbedding, i.e., H1(⌦) ,! H
1
2 (�) ,! L

4(�),

one has

|I5| 
↵Bp
tr(⇧)

||⌫(�)� ⌫(�̃)||L4(�)||P⌧ ũc||L4(�)||P⌧ ũc � P⌧uc||L2(�)

 C
↵Bp
tr(⇧)

||�� �̃||H1(⌦)||ũc||H1(⌦c)||P⌧ ũc � P⌧uc||L2(�)

 �
↵Bp
tr(⇧)

Z

�
⌫(�c)|P⌧ ũc � P⌧uc|2ds+ C||r

�
�� �̃

�
||2
L2 ;

(4.16)

Upon performing integration by parts, one derives the estimate for I6 analogous

to the one for I2

|I6| =
���
⇣
(�� �̃)r(w � w̃), ũ

⌘
+
⇣
(�� �̃)(ũ� u),rw̃

⌘���

 �

Z

⌦m

⇧�1
⌫(�m)

��ũm � um

��2dx

+ �

Z

⌦
M(�)|rw̃ �rw|2dx+ C||ũc � uc||2L2

+ C
�
1 + ||�||

8
3
L1 + ||rw̃||

8
3

L2 + ||ũm||
8
3

L2

�
||r

�
�� �̃

�
||2
L2 ;

(4.17)

For I7, by (4.11), (4.10) and (4.12), one has

|I7|  C||�� �̃||L1 ||rw̃||L2 ||r
�
f(�)� f(�̃)

�
||L2

+ C||r(w̃ � w)||L2 ||r
�
f(�)� f(�̃)

�
||L2

 C||�� �̃||L1 ||r(�� �̃)||L2 ||rw̃||L2

+ C||rw̃||L2(1 + ||�||L1)||�� �̃||2
L1

+ C||r(w̃ � w)||L2 ||r(�� �̃)||L2

+ C(1 + ||�||L1)||r(w̃ � w)||L2 ||�� �̃||L1

 �1

Z

⌦
M(�)|rw̃ �rw|2dx (4.18)

+ C(1 + ||rw̃||2
L2 + ||�||2

L1 + ||�||
8
3
L1)||r(�� �̃)||2

L2

+ C
�
||rw̃||L2(1 + ||�||L1) + (1 + ||�||2

L1)
�

⇥
�
||r�(�� �̃)||

1
2

L2 ||r(�� �̃)||
3
2

L2 + ||r(�� �̃)||2
L2

�
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 �

Z

⌦
M(�)|rw̃ �rw|2dx

+ C(1 + ||rw̃||2
L2 + ||rw̃||

8
3

L2 + ||�||2
L1 + ||�||

8
3
L1)||r(�� �̃)||2

L2 ,

where we have used inequality (4.12). Finally,

|I8|  ||f(�̃)||L1 ||u� ũ||L2 ||r(�� �̃)||L2 + C||ũ||L2 ||r(�� �̃)||L2 ||f(�)� f(�̃)||L1

 �

Z

⌦m

⇧�1
⌫(�m)

��ũm � um

��2dx+ C||uc � ũc||2L2 + C||r(�� �̃)||2
L2

+ C(1 + ||�||2
L1)||r(�� �̃)||L2 ||�� �̃||L1 (4.19)

 �

Z

⌦m

⇧�1
⌫(�m)

��ũm � um

��2dx+ C(1 + ||�||2
L1)||r(�� �̃)||2

L2

+ C(1 + ||�||2
L1)||r(�� �̃)||

7
4

L2 ||r�(�� �̃)||
1
4

L2 + C||uc � ũc||2L2

 �

Z

⌦m

⇧�1
⌫(�m)

��ũm � um

��2dx+ �

Z

⌦
M(�)|rw̃ �rw|2dx

+ C(1 + ||�||2
L1 + ||�||

16
7
L1 + ||�||

8
3
L1)||r(�� �̃)||2

L2 + C||uc � ũc||2L2 .

Collecting the inequalities (4.9), and (4.13)–(4.19), choosing su�ciently small

�, one derives from (4.8) that

d

dt

⇢
1

2
kũc � uck2L2 +

�✏

2
kr�̃�r�k2

L2

�
+

Z

⌦c

2⌫(�c)
��D(ũc)� D(uc)

��2dx

+

Z

⌦
M(�)|rw̃ �rw|2dx+

Z

⌦m

⇧�1
⌫(�m)

��ũm � um

��2dx

+
↵Bp
tr(⇧)

Z

�
⌫(�c)|P⌧ ũc � P⌧uc|2ds

 C||uc � ũc||2L2 + Ch(t)||r(�� �̃)||2
L2 ,

with h(t) := 1+ ||rw̃||
8
3

L2 + ||�||
8
3
L1 + ||ũm||

8
3

L2 . Noting that � 2 L
8
�
0, T ;L1(⌦)

�

and w̃ 2 L
4
�
0, T ;H1(⌦)

�
, it follows that h 2 L

1(0, T ). Gronwall’s inequality

and Poincare’s inequality then imply that

uc = ũc, � = �̃, um = ũm.

This completes the proof of Theorem 2.2.
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Appendix

We present a derivation of the Cahn-Hilliard-Navier-Stokes-Darcy model

studied in this article based on the Onsager’s variational principle. We derive

the irreversible part of the dynamics mainly based on the Onsager’s extremum

principle [47, 48]. See [49, 50, 51] for the applications of Onsager’s variational

principle to multiphase flows.

The free flow in ⌦c is assumed to satisfy the following conservation (momen-

tum and mass, resp.) equations

⇢0

⇣
@uc

@t
+ (uc ·r)uc

⌘
�r · S+rpc = Fc, (4.20)

r · uc = 0, (4.21)

@�c

@t
+ uc ·r�c = �r · Jc, (4.22)

with S a symmetric tensor, Fc the force density, Jc the di↵usive flux, to be

determined. The total energy of the free flow is

Ec =

Z

⌦c

⇢0

2
|uc|2dx+ �

Z

⌦c

F (�c) +
✏

2
|r�c|2dx, (4.23)

where the first term is the total kinetic energy, and the second term represents

the total free energy associated with the free flow. As in our work [22], we

identify the dissipation in ⌦c as

�c =

Z

⌦c

|Jc|2

2M(�c)
+

|S|2

4⌫(�c)
dx+

Z

�

↵B⌫(�c)

2
p
tr(⇧)

|P⌧uc|2dS, (4.24)
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where the first term is due to chemical di↵usion, the second term is due to

viscosity, and the last term is because of friction as a result of fluid particles

slipping along the domain interface �. The friction mechanism along the domain

interface is motivated by the study of single phase flow in superposed free flow

and porous media, cf [22] and references therein.

Likewise in ⌦m, we postulate the two-phase flow in porous media satisfies

the following conservation of mass

@�m

@t
+ um ·r�m = �r · Jm. (4.25)

The fluid equations will be derived through the variational procedure. The total

energy and dissipation in porous media are as follows

Em = �

Z

⌦m

F (�m) +
✏

2
|r�m|2dx,

�m =

Z

⌦m

|Jm|2

2M(�m)
+
⌫(�m)

2⇢0g
⇧�1|um|2dx,

where the second term in �m represents the Darcy damping in porous media.

Before we derive the forms of S,Fc,Jc and Fm,Jm, we prescribe boundary

conditions. On �c, the no-slip no penetration boundary condition uc = 0 is

imposed for velocity, and no chemical flux condition Jc · nc = 0 is imposed.

Similarly, one imposes um ·nm = 0 and Jm ·nc = 0 on �m. On �, for conserva-

tion of mass one naturally imposes the following continuity interface boundary

conditions

uc · nc = um · nc, �c = �m, Jc · nc = Jm · nm. (4.26)

One calculates the rate of change of the total energy Ec, by Eqs. (4.20) and

(4.22), and by performing integration by parts

d

dt
Ec =

Z

⌦c

⇢0uc ·
@uc

@t
dx+

Z

⌦c

wc

@�c

@t
dx

+ �✏

Z

�c

r�c · nc

@�c

@t
dS + �✏

Z

�
r�c · nc

@�c

@t
dS

=

Z

⌦c

h
� ⇢0(uc ·r)uc +r · S�rpc + Fc

i
· ucdx
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�
Z

⌦c

wc

⇣
uc ·r�c +r · Jc

⌘
dx

+ �✏

Z

�c

r�c · nc

@�c

@t
dS + �✏

Z

�
r�c · nc

@�c

@t
dS

=�
Z

⌦c

S : D(uc)dx+

Z

⌦c

Fc · ucdx

+

Z

�

h
nc · (Snc)� pc � ⇢0

|uc|2

2

i
uc · ncdS (4.27)

+

Z

�
P⌧ (Snc) · P⌧ucdS +

Z

⌦c

Jc ·rwc � wcuc ·r�cdx

+ �✏

Z

�c

r�c · nc

@�c

@t
dS +

Z

�
�✏r�c · nc

@�c

@t
� wcJc · ncdS,

where wc := �[f(�c) � ✏��c] is the chemical potential and the symmetry of

the tensor S has been utilized. In a similar fashion, one calculates the rate of

change of total energy in porous media

d

dt
Em =

Z

⌦c

Jm ·rwm � wmum ·r�mdx+ �✏

Z

�m

r�m · nm

@�m

@t
dS

�
Z

�
�✏r�m · nc

@�m

@t
+ wmJc · ncdS. (4.28)

If gravity force (matched densities) is the only external force applied in free

flow, one identifies the rate of change of the mechanical work with, cf. [51]

dW

dt
=

Z

⌦c

Fc · uc � wcr�c · uc = 0,

which leads to the choice

Fc = wcr�c. (4.29)

To derive the irreversible part of the dynamics, we resort to Onsager’s vari-

ational principle which theorizes that the configuration is to minimize

d

dt
Ec +

d

dt
Em + �c + �m �

Z

⌦m

pmr · umdx, (4.30)

with respect to rate functions

um, pm, S, {Jc,Jm}, @�c

@t
|�c ,

@�m

@t
|�m ,

@�c

@t
|�, (4.31)
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which results in a dissipative dynamic system such that

d

dt
Ec +

d

dt
Em = �2(�c + �m). (4.32)

The variational procedure gives

⌫(�m)

⇢0g
⇧�1

um = �rpm + wmr�m, r · um = 0, (4.33)

Jc = �M(�c)rwc, Jm = �M(�m)rwm, S = 2⌫(�c)D(uc), (4.34)

r�c · nc|�c = r�m · nm|�m = 0,

r�c · nc|� = r�m · nc|�, wc|� = wm|�.
(4.35)

One recognizes that Eqs.(4.33) are the Darcy’s law with surface tension e↵ect,

cf. [52, 12].

With the help of Eqs. (4.29), (4.33)–(4.35), one may write

d

dt
Ec +

d

dt
Em = �

Z

⌦c

M(�c)|rwc|2 + 2⌫(�c)D(uc) : D(uc)dx

�
Z

⌦m

M(�m)|rwm|2dx+
⌫(�m)

⇢0g
⇧�1|um|2dx

+

Z

�

h
nc · (2⌫D(uc)nc)� pc � ⇢0

|uc|2

2
+ pm

i
uc · ncdS

+

Z

�
P⌧ (2⌫D(uc)nc) · P⌧ucdS.

(4.36)

Comparing Eq. (4.36) to Eq. (4.32) implied by the Onsager extremum principle,

one obtains that

� nc · (T(uc, pc) · nc) +
1

2
(uc · uc) = pm, on �, (4.37)

� ⌧ j · (T(uc, pc) · nc) =
↵B⌫(�c)p

tr(⇧)
⌧ j · uc, j = 1, 2, on �. (4.38)

This completes the derivation of the model.
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coupling of Navier-Stokes and Darcy flows. ESAIM Math. Model. Numer.

Anal., 47(2):539–554, 2013. ISSN 0764-583X. doi: 10.1051/m2an/2012034.

[40] G. Beavers and D. Joseph. Boundary conditions at a naturally per-

41



meable wall. J. Fluid Mech., 30(01):197–207, 1967. doi: 10.1017/

S0022112067001375.

[41] Daozhi Han and Xiaoming Wang. A second order in time, uniquely solvable,

unconditionally stable numerical scheme for Cahn-Hilliard-Navier-Stokes

equation. J. Comput. Phys., 290:139–156, 2015. ISSN 0021-9991. doi:

10.1016/j.jcp.2015.02.046.

[42] Roger Temam. Navier-Stokes equations. AMS Chelsea Publishing, Provi-

dence, RI, 2001. ISBN 0-8218-2737-5. doi: 10.1090/chel/343. Theory and

numerical analysis, Reprint of the 1984 edition.

[43] Eberhard Zeidler. Nonlinear functional analysis and its applica-

tions. I. Springer-Verlag, New York, 1986. ISBN 0-387-90914-

1. doi: 10.1007/978-1-4612-4838-5. URL https://doi.org/10.1007/

978-1-4612-4838-5. Fixed-point theorems, Translated from the German

by Peter R. Wadsack.

[44] Robert A Adams and John JF Fournier. Sobolev spaces, volume 140. Aca-

demic press, 2003.

[45] C. Kahle. An L
1 bound for the Cahn-hilliard equation with relaxed non-

smooth free energy. Int. J. Numer. Anal. Model., 14:243–254, 2017.

[46] Jacques Simon. Compact sets in the space L
p(0, T ;B). Ann. Mat. Pura

Appl. (4), 146:65–96, 1987. ISSN 0003-4622. doi: 10.1007/BF01762360.

[47] Lars Onsager. Reciprocal relations in irreversible processes. i. Phys. Rev.,

37:405–426, Feb 1931. doi: 10.1103/PhysRev.37.405.

[48] Lars Onsager. Reciprocal relations in irreversible processes. ii. Phys. Rev.,

38:2265–2279, Dec 1931. doi: 10.1103/PhysRev.38.2265.

[49] Chun Liu and Jie Shen. A phase field model for the mixture of two incom-

pressible fluids and its approximation by a Fourier-spectral method. Phys.

42

https://doi.org/10.1007/978-1-4612-4838-5
https://doi.org/10.1007/978-1-4612-4838-5


D, 179(3-4):211–228, 2003. ISSN 0167-2789. doi: 10.1016/S0167-2789(03)

00030-7.

[50] Tiezheng Qian, Xiao-Ping Wang, and Ping Sheng. A variational approach

to moving contact line hydrodynamics. J. Fluid Mech., 564:333–360, 2006.

ISSN 0022-1120. doi: 10.1017/S0022112006001935.

[51] Helmut Abels, Harald Garcke, and Günther Grün. Thermodynamically

consistent, frame indi↵erent di↵use interface models for incompressible two-

phase flows with di↵erent densities. Math. Models Methods Appl. Sci., 22

(3):1150013, 40, 2012. ISSN 0218-2025. doi: 10.1142/S0218202511500138.

[52] Hyeong-Gi Lee, J. S. Lowengrub, and J. Goodman. Modeling pincho↵ and

reconnection in a Hele-Shaw cell. I. The models and their calibration. Phys.

Fluids, 14(2):492–513, 2002. ISSN 1070-6631. doi: 10.1063/1.1425843.

43


	Introduction
	The Cahn-Hilliard-Navier-Stokes-Darcy system and main result
	The CH-NSD system
	The weak formulation
	The main result

	Existence of weak solutions
	Existence of weak solutions to the time-discrete scheme
	Construction of the approximation solution and passage to the limit

	Weak-strong uniqueness

