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Abstract

We study a diffuse interface model for two-phase flows of similar densities in
superposed free flow and porous media. The model consists of the Navier-
Stokes-Cahn-Hilliard system in free flow and the Darcy-Cahn-Hilliard system in
porous media coupled through a set of domain interface boundary conditions.
These domain interface boundary conditions include the nonlinear Lions inter-
face condition and the linear Beavers-Joseph-Saffman-Jones interface condition.
We establish global existence of weak solutions in three dimension. We also
show that the strong solution if exists agrees with the weak solutions.
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1. Introduction

Multiphase flows are important to various engineering processes. In many
applications such as contaminant transport in karst aquifers, oil recovery, the de-

velopment of sinkholes, the biogeochemical processes in hyporheic zone of river
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beds, the proton exchange membrane fuel cell technology and cardiovascular
modeling, multiphase flows in conduits/channels and in porous media interact
with each other, and therefore need to be considered together. See Fig. 2.1
for an illustration of the coupled domain. In this article, we aim to study the
well-posedeness of a diffuse interface model for multiphase flows in conduits and
porous media where the Navier-Stokes-Cahn-Hilliard equations (NSCH) are cou-
pled with the Darcy-Cahn-Hilliard equations (DCH) through a set of domain
interface boundary conditions.

The well-posedness of either the NSCH system or the DCH system in single
domains has been intensively investigated in recent years. Boyer in [1] studies
existence and uniqueness as well as asymptotic stability of solutions of the NSCH
system with both regular and degenerate mobility. Global (weak solutions,
strong solutions in 2D) and local well-posedness (strong solutions in 3D), and
regularity of solutions are further examined by Abels [2] and more recently by
Giorgini et al in [3] for the NSCH system of singular free energy densities and
matched densities, see [4, 5, 6, 7] for results regarding the NSCH type equations
with general densities. Long time behavior of solutions to the NSCH system can
be found in [8, 9, 10]. As for the DCH system (also referred to as Cahn-Hilliard-
Hele-Shaw), the global existence of weak solutions is first established by Feng
and Wise in [11]. Wang and Zhang [12] establish the existence and uniqueness of
regular solutions (global in 2D and local in 3D) for the DCH system of variable
viscosities, cf. [13] for the study on long-time behavior. Global well-posedness
(resp., local) is also established by Zhao et. al. [14] in 2D (resp., 3D) for the
DCH system modeling tumour growth, see also [15, 16, 17, 18, 19, 20]. The CHD
system with the singular potential has been extensively analysed by Giorgini et
al in [16, 21].

The diffuse interface model for two-phase flows in the coupled conduit and
porous media setting is first derived by Han et al. in [22] via Onsager’s ex-
tremum principle. The derivation only takes into account the irreversible part
of the dynamics resulting in the coupling of the Stokes-Cahn-Hiliard equations

in conduit and the DCH system in porous media. The existence and unique-



ness of global weak finite energy solutions is shown in [23], see [24] for numerical
methods solving the coupled system. A numerical model consisting of the NSCH
system and Richards equation in a coupled free flow and porous media system
is proposed by Chen et al. [25] in which the well-posedness is not analysed.

In this article, we propose a diffuse interface model for two-phase flows in
the superposed free flow and porous media where the free flow is necessarily
governed by the Navier-Stokes equations. The model comprises the NSCH sys-
tem in free flow (hence incorporating the reversible dynamics) and the DCH
system in porous media coupled via a set of domain interface boundary con-
ditions. We establish the global existence of weak solutions in three dimen-
sion. Moreover, provided that there exists a strong solution (not established
in this article), we show that the strong solution agrees with weak solutions
(weak-strong uniqueness). These results are in parallel to those in [23] for the
Cahn-Hilliard-Stokes-Darcy model. Central to our analysis is the utilization of
the Lions interface boundary condition, cf. (2.10), which states that the stress
in the normal direction to the domain interface including the dynamic pressure
in free flow is balanced by the flow pressure in porous media. As a conse-
quence one can show that the model obeys an energy law which implies the
necessary a priori estimates for compactness argument. Compared to the work
[23] for the Cahn-Hilliard-Stokes-Darcy system, the adoption of Navier-Stokes
equations and the nonlinear Lions interface boundary conditions introduces ex-
tra nonlinearity and strong coupling among the equations. For establishing the
existence of weak solutions we develop a divide-and-conquer strategy by taking
advantage of the coupling of the equations via the chemical potential (an idea
from [26]), and by application of the Leray-Schauder principle. We should also
emphasize that the coupling between Cahn-Hilliard-Navier-Stokes system and
Cahn-Hilliard-Darcy system poses new challenge for analysis. For instance, the
uniqueness of weak solution in two dimensions and (local) existence of strong
solutions remain open, even for the case of Cahn-Hilliard-Stokes-Darcy system
[23].

There is a vast literature on single phase flows in the context of coupled free



flow and porous media. Interested readers can refer to [27, 28, 29, 30, 31, 32, 33,
34, 35, 36, 37, 38, 39]. The rest of the article is organized as follows. In Section
2, we present the Cahn-Hilliard-Navier-Stokes-Darcy model, introduce the weak
formulation and state the main theorem of the article. We prove existence
of weak solutions in Section 3 based on solutions to a time-discrete elliptic
system and compactness arguments. In Section 4 we establish the weak-strong

uniqueness result. We give a brief derivation of the model in the Appendix.

2. The Cahn-Hilliard-Navier-Stokes-Darcy system and main result

In this section, we present the Cahn-Hilliard-Navier-Stokes-Darcy model
(CH-NSD) for two phase flows of matched densities in superposed free flow
and porous media; then we introduce the weak formulation of the model; finally
we state the main results of this article. We will focus on the three dimensional
case with the understanding that similar result holds for the two dimensional

domain.

2.1. The CH-NSD system

The physical setting of the problem is that there is a mixture of two fluids
(say oil and water) occupying the free flow region and porous media region.
Through the domain interface of the two regions fluid in the two systems can
exchange. Detailed discussion of the physical background and the derivation of
the CH-NSD model are given in the Appendix. We also refer to [22] for a simi-
lar model (Cahn-Hilliard-Stokes-Darcy) where the Navier-Stokes equations are
replaced by the Stokes equation equipped with some linear interface boundary
conditions.

We consider a bounded domain = Q.JQ,, C R?® of C*! boundary 02,
where €. is the free-flow region and €, is the porous media region. Let 92, and
0y, which are assumed to be Lipschitz continuous, denote the boundaries of
Q. and Q,,, respectively. Let I' = 9Q,,, N 0Q¢, Ty = 0, \I, and T, = QAT

A two-dimensional geometry is shown in Figure 2.1 for illustration.
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Figure 2.1: A sketch of the porous median domain €,,, fluid domain ., and the interface I'.

For analysis purpose, we take the background density pp and the gravi-
tational constant g to be unity throughout the rest of the article. Define
f(¢) = F'(¢) where F(¢) is a double-well polynomial: F(¢) = ;- (¢* — 1)
with € a measure of the capillary width of the thin interfacial region between

two fluids. Throughout this article, ¢

Q, = ¢; (i = ¢,m), and ¢; represents
the phase function (order parameter) in §2; (i = ¢,m), which attains distinct
values (approximately —1 and 1) in the pure phases away from thin interfacial
region and varies smoothly over this interfacial region, for distinguishing the
fluid phases.

The Cahn-Hilliard-Navier-Stokes-Darcy model (cf. the Appendix for a deriva-
tion of the model) for two-phase superposed free flow and porous media com-
prises:

the Darcy-Cahn-Hilliard (DCH) equations in porous media €,

II

V-u, =0, (2.2)
O,

Rttt Vo = V- (M(9) Vi) =0, (2.3)
W = _rYeAQSm + ’Yf(qsm)a (24)

the Navier-Stokes-Cahn-Hilliard (NSCH) equations in free flow €2,

58’utc + (e - VIu. — V- T(ue, pe) — w.Vo. =0, (2.5)
V-u, =0, (2.6)



2.
ot

We = _7€A¢c + 7f(¢c)7 (28)

+u. Voo — V- (M(¢p:)Vw,) =0, (2.7)

subject to the following domain interface boundary conditions on I"

Ue " N = — Uy, - Ny, (2.9)
1
— e (T(ucvpc) ’ nc) + §(UC : uc) = Pm, (210)
OéBV(d)c) .
=75 (T(ue,pe) “ D) = —F—=T; " U, =1,2, 2.11
i (T(ue,pe) - nc) I j (2.11)
Om = de, We = Wiy, (212)
Voo n.=-Vo, N, Vw. n.=—-Vw,: n,, (2.13)

and the following initial and boundary conditions

Um - Ny |T, = 0, Vo, n, T'm — 0, Vwy - -ngy, Tm = 0, (214)
telr, =0, Voo -n.r, =0, Vw. n.r, =0, (2.15)
¢i(07w) = ¢?(w)v i=c,m, uC(va) = ug(w), (2'16)
where n. = —n,,, is the unit outer normal vector relative to 2., cf. the illustra-

tion in Fig. 2.1.

In the model for ¢ = ¢,m, u; are the fluid velocity; p; are the pressure; ¢;
are the order parameters; w; are the chemical potentials. In addition, we de-
note by II the permeability matrix of the porous media, v the viscosity, M the
scalar mobility function, v the mixing energy density coefficient proportional to
surface tension, T(uc,p.) = 2v(p:)D(u.) — p.l the Cauchy stress tensor with
D(u.) = 3(Vu,+ V7Tu,) the rate of deformation tensor and I the 3 x 3 identity
matrix. In the domain interface boundary conditions (2.9)—(2.13), ap is an em-
pirical friction coefficient, ¢r(II) is the trace of I, 7; (j = 1,2) denote mutually
orthogonal unit tangential vectors to the interface I'. We may also use P, to
denote the orthogonal projection onto I'. The domain interface boundary con-
dition (2.10) expresses the balance of force (including the dynamic pressure) in

the normal direction of the interface, also known as the Lions interface boundary



condition. The Navier slip condition (2.11) is the celebrated Beavers-Joseph-
Saffman-Jones (BJS) interface condition[40].

One can verify that the CH-NSD system satisfies an energy law.

Proposition 2.1. Let (U, U, d,w) be a smooth solution to the initial boundary

value problem (2.1)-(2.16) with

o in we n Q.
Om  in O, Wy, I Qpy

Then (U, ue, @, w) satisfies the following energy law:

d
%E(uc,qﬁ) =-D(t) <0, (2.17)

where the total energy E and the dissipation function D are defined as

1
E(ue,¢) =2 / et 26 [ v+ 26 / Ve[
2 Jo. 2 Jo. 2 Jo. 215)
y / F(¢e)dz, ++ / F(ém)de,
QC Q

m

D(t) ;:/ M|Vwc|2dx+/ M|Vwm|2da;+/ 2v|D(u.)|*dx
QC Q77‘L QC

any (2.19)

+/ V|H*%um|2dac+
Q

- r /tr(Il)

2.2. The weak formulation

| Pru|?ds.

We now provide the weak formulation of the Cahn-Hilliard-Navier-Stokes-
Darcy model (2.1)-(2.13). We use the standard notation for the Sobolev space
WmF (), where m is a nonnegative integer and 1 < k < co. Let H™ () =
W™2 () with the norm ||-|| z= and the semi norm |-| gm, and L* (Q) = W% (Q)
with the norm || - ||zx . The norm || - ||L~ denotes the essential supremum. Set

V = [H}(Q)]? = {v e [H*(Q)]? : v|sa = 0}. Define the space

/ vdm:O}.
Q;

Furthermore, we denote H'(€;) = H'(Q;) N L?(Q;), which is a Hilbert space

L) == {u e L*()

with inner product (u,v)y1 = [, Vu - Vodz due to the classical Poincaré



inequality for functions with zero mean. Its dual space is simply denoted by

(H'(£%))". For our coupled system, the spaces that we utilize are

X, ={ve[H(Q)]*v=00nT.}
Xe.div = {v IS XC|V -v=01in QC} ,
vadi” = {'l) € [L2(Qm)]3|v ‘v =0,v-n,; =0o0n Fm}a

Y={pcH'(Q)}, Q=H"(Y), Yi=H(Q), i=cm

P. denotes the projection onto the tangent space on I, i.e.

2

Pu= Z(u ST

j=1
For the domain Q; (i = ¢,m), (-, -); denotes the L? inner product on the domain
), indicated by the subscript of integrated functions, and (-, -)r denotes the L?
inner product on the interface I'. For convenience, we define the inner product

on L2(Q): for Yu € L*(Q), v € L*(Q)
(u,0) = (te; Ve)e + (Ums Vm)ms (2.20)
where u. = u|q, and u,, = u|q,,, and denote
L2(Q) = [L2()]?, HEQ) = [HY(W)]?, i=c,m.

We now introduce the weak formulation for the Cahn-Hilliard-Navier-Stokes-
Darcy model, similar to the weak form defined in [23] for the Cahn-Hilliard-

Stokes-Darcy system.

Definition 2.1. (uc, U, Pm, @, w) is called a weak solution to the Cahn-Hilliard-

Navier-Stokes-Darcy system (2.1)-(2.16) if

u. € L™ (0,T5;L2(Q)) N L* (0, T; X aiv) (2.21)
U € L2 (0,T; X div) » (2.22)
Pm € L¥%(0,T:Qm) , (2.23)
¢ L™ (0,T;H'(Q)) N L (0,T; H*(Q)), (2.24)



weL*(0,T;H'(Q)), (2.25)

u. € WHY3(0,T; (HY(Q))), ¢ € WH/5(0,T; (HY(Q)), (2.26)

and for almost all t € (0,T) there hold

(G} + (e Tor0) + M@V, T0) =0, Ve, (2.27)

(w,w) —ve(Vo, Vw) —y(f(¢),w) =0, YVweY, (2.28)
du,

<(;:;u vc>c = (V(Hm)wmv¢mu VQm)m + (wcv¢6a vc)c

— (e - V) ue, ’vc)c —a((we, pm)s (Vey @m)), (2.29)

Vv € Xc,divv am € @Qm,

(umvvm)m = (V(gm)(—me + wmv¢m)7vm> , Vo, € LQ(Qm); (230)

where

(e D) (Ver Gm)) =(20(6)D(tte), D))o + (me, qu>

v(pm) m

+ <O”3;((?[C))P7uc,Prvc>F (2.31)

1
7<uc‘n67Qm>F+ pmfi(uc'uc)avc'nc 5
I

and weli—o = ul, ¢li=o = ¢°.

Remark 2.1. Through interpolation, one has ¢ € C(0,T;L*(Q)) and u. €
Cw(0,T; L*()) Hence the initial conditions in Definition 2.1 make sense.

2.8. The main result

The following conditions on the problem parameters will be assumed through-

out the article, cf. [23]:

(i) M(¢) € CYHR), m; < M(s) < mg and |[M'(s)| < m for s € R, where my,

mo and m are positive constants.



(i) v € CYR), 11 < v(¢) < v and |V/(s)| < ¥ for s € R, where vy, 15 and ¥

are positive constants and v;.

(iii) The permeability IT is isotropic, bounded from above and below, namely,
IT = k(z)I with T being the d x d identity matrix and x(z) € L () such

that there exist kg > k1 > 0, k1 < k(z) < kg a.e. in Q.

The main results of this article are summarized in the following two theo-

rems.

Theorem 2.1 (Existence of weak solutions). Suppose that the assumptions

(i)-(iii) are satisfied. Then for any ul € L?*(Q.), ¢° € HY(Q), and T > 0,
there exists at least one weak solution to the Cahn-Hilliard-Navier-Stokes-Darcy
system (2.1)-(2.16) in the sense of Definition 2.1. Moreover, the following energy

inequality holds in the sense of distribution

%E(uc,qb) < —D(¥), (2.32)

where E and D are defined in Eqs. (2.18) and (2.19).

Theorem 2.2 (Weak-strong uniqueness). The strong solution to the Cahn-

Hilliard-Navier-Stokes-Darcy system, if exists such that

ue € L®(0,T; X aiv), m € L(0,T; H (D)),
(2.33)
¢ € L>(0,T; H*(Q)) N L*(0,T; H*(Q)),

s unique in the class of the weak solutions in the sense of Definition 2.1.

Remark 2.2. The energy inequality (2.32) can be interpreted as

E(u(t), 6(t)) < E(ul, 6°) - / D(s)ds.

Several remarks are in order. First, for the purpose of establishing the weak-
strong uniqueness, the regularity assumption (2.33) can be weakened as in the
Cahn-Hilliard-Stokes-Darcy model [23]. Second, in the two-dimensional case,

uniqueness of weak solutions to the CH-NSD system is beyond immediate reach,

10



in contrast to the single domain case, see [1, 2] for the Cahn-Hilliard-Navier-
Stokes system and [21] for the Cahn-Hilliard-Darcy system. This is because the
low temporal regularity of the Darcy pressure (cf. Eq. (3.61) in [23]) and the
coupling of Navier-Stokes equations and Darcy equations via domain interface

6{;‘; . Finally, we

boundary condition leads to reduced temporal regularity of
point out that the (finite-time) existence of the strong solution is an outstanding
open question for the coupled Cahn-Hilliard-Navier-Stokes-Darcy system. It is
also open for the Navier-Stokes-Darcy type system in the case of single phase
flow in superposed free flow and porous media. While the spatial regularity
can be iteratively improved in individual domains, to gain further temporal
regularity one needs to differentiate in time the whole system due to the presence

of domain interface boundary conditions. This will be pursued in another work.

3. Existence of weak solutions

In this section, we establish the existence of weak solutions by following the
same semi-discretization method as in our earlier work [23] and the classical
compactness argument. That is, one constructs an approximate solution which
solves an elliptic system resulting from a temporal discretization of the CH-
NSD system, obtains a priori estimates of the approximate solution, and finally
passes to the limit.

%. The time-discrete scheme reads
as follows. Given (uF, ¢*) € L2(Q.) x H*(Q), k=0,1,..., N — 1, find

For a large positive integer N, let § =

(uF T ph L P kY € X gip X Qu x HY(Q) x HY()

C
such that

(" 0) + 5(uh T VT ) =

(3.1)
(¢F, 1) — (M (¢") VT, V), V¢ €,

(WM w) —7e(VeM V) — 7 (f(¢", ¢"),w) =0, Yw e Y, (3.2)

11



(uch_lv Ve)e + 6((ulc€+1 : v)'“’]cﬂ_lv Ve)e =

’ (wgm

+ 5(wlc€+1v¢(]f+17 UC)C + (u]cc7v(!)(!7 v’U(: E Xc,d'hn CIm E Hl(Qm)7

whH vkt qu) — da((ul ™, pk™), (ve, am)) (3.3)

m

where

(_vp’ﬁ;‘rl + wfn+1v¢7’?n+1)a vm) 5 v Uy € L2(9m>

m

(3.4)

Here f(¢"*1, ¢%) = Z((¢"11)* — ¢*) and

a((ug™pl™), (e, m)) =(2V(¢'§)D(U'§“),D(vc))c+( Hk fon“,qu)

V(o)
k
+ MPTu’Z+17PTvC — (ug™ ng, g)r
tr(II) r
1
+ <pi%“ - 5 ult) v “C> '
I

(3.5)

We note that F'(a) — F(b) < f(a,b)(a — b) thanks to the monotonicity of the
cubic function a3.
Before showing the existence of solutions to the elliptic system (3.1)—(3.4),

we note that the following lemma is proved in [23].

Lemma 3.1. Assume that (ub™, pi oF T wh 1) € X giv X Qm x H3(Q) x

HY() is a solution to the system (3.1)—(3.4). Then

u’:n“ € X divy, Um  Ne=Ug N, in H%(I‘)7 (3.6)

/Q¢k+1dx:/9¢kdx. (3.7)

3.1. FEzistence of weak solutions to the time-discrete scheme

For the sake of simplicity, we will omit the superscript &£+ 1 for the unknown
variables in the following subsection. We follow the idea in [41] for showing the
existence of solutions to the elliptic system (3.1)—(3.3). That is, we apply Leray-

Schauder principle to Eq. (3.1) viewed as a nonlinear equation of w in which

12



the solution operators ¢(w) and (u., p,, )(w) are properly defined via Eqs. (3.2)
and (3.3), respectively.

Concerning the solvability of the chemical potential equation, i.e.

¥e(Ve, Vi) +5(F(9,6"),9) = (w,¥), Wy € H'(Q), (3.8)
the following result is essentially proved in [22].

Lemma 3.2. Let ¢¥ € HY(Q). For a given function w € H*(Q), there is a
unique solution ¢ € H3(Q) to the problem (3.8). Moreover, the solution operator

d(w) : HY(Q) — H3(Q) is bounded and continuous in the strong topology.

The equation (3.3) can be written as

(e, v) +6((Ue - V)Ue, V) + 6a((Ue, Prm); (V,9))e =
11

e k , 1
5(1/@5176”) fm7VQ)m + 5(f0711)c + (Umv)m Yo € Xc,dw, q € H (Qm)

From Lemma 3.2 we know that ¢ is the unique solution of the equation (3.8) for

(3.9)

a given w € H'(Q). So we can define the source terms f. = w.V¢, and f,, =
W VP, where f. and f,, are viewed as functions of w. and w,,, respectively.
To establish the well-posedness of (3.9), we define an equivalent norm on the

space W = X giv X Qp:
(e, pm)[w = l[wclZz + [D(ue)ll7e + [ VomlZe + [ PruclZery  (3.10)

Lemma 3.3. For given u® € L%(Q.) and w € H*(Q) the problem (3.9) admits
a solution (Uc,pm) € Xediv X Qm. Moreover, if § is sufficiently small, the
solution operator w € HY(Q) — (e, pm) € Xeaiw X H' (Qn) is completely

continuous.

Proof. We employ the Galerkin method for showing existence of solutions.
Since the spaces X q4i, and Q,, are separable Hilbert spaces, there exists a se-
quence {(a;,b;)}:15 € X, giv X Q. For a fixed n > 1, let Xc(:i)w = span{a;,i =

1,....,n} C X¢giv and Qfﬁ) = span{b;,i = 1,....,n} C Q.,, and denote wm) =
XM Q%L). Then a Galerkin approximation to the problem (3.9) is to find

c,div

13



(Uens Pmon) € W (™) such that

(uc,n7 ai)c + 6((uc,n : v)'U'c,'ru ai)c

5(V((1;§n)fmavbz)m —5&((uc,mpm,n),(ai,bi)) (3_11)

+ 5(f67 ai)c + (ulg,ai)c, V(ai, bi) € W(n).

Egs. (3.11) are a nonlinear system in a finite dimensional Hilbert space. We
show the existence of a solution to (3.11) by the Brouwer fixed point theorem
in finite dimension, cf. [42] (Lemma 1.4, pp. 110). Since W) is a finite
dimensional Hilbert space, we introduce the mapping: F, : W — W)
defined by

[fn(u’p)v (vcv qm)] = (uv UC)C + 5((“ : V)u, UC)C

+ 6a((w,p), (ve, qm)) — 5(%fm,wm)m (3.12)

- §(fCa vc)c - (ulg7vc)(:7 V (vm Qm) € W(n)

It is clear that F,, is continuous. Next, we recall the definition of @ in (3.5),

perform integration by parts and calculate

[‘Fn(vw Qm)a ('UCa Qm)] = (UCa vc)c + 5((”0 : V)vw vc)c + 5&((1)0’ Qm)7 (vm Qm))

-0 (Hfm7 VQm> - 6(.fcy vc) - (U];’Uc)c

V(95 .
> el + 6C [IB(OZ: + Va3 + [ ProclEae
=8l fellezllvell e = Coll frnll 21V g | 22 — [l |2 [[vell 2
> 2lvel3s +6C (D@3 + Va3 + 1 ProvclZaqe
= C [IIfellzz + 1 fmll 22 + llugzz] . (3.13)
where ((ve -+ V)ve,ve)e + (=3 (ve - ve),ve - ne), = 0 by integration by parts.
It follows that [F,(Ve, Gm), (Ve, Gm)] > 0 as long as ||(ve, ¢m)|lw is sufficiently

large. Hence there exists a solution (w¢ ., Pm,n) to the Egs. (3.11).

Now we derive some a priori estimates of (U, Pm,n). By performing inte-

14



gration by parts, one notes the identity

1

((uc,n : v)uc,nv vc)c - <2(u’c,n . uc,n)7 Ve - nc>
r (3.14)

= ((uc,n . v>uc,n; vc)c - (('Uc ' v)uc;ru ucm)c-

Choosing a; = U¢,pn, b; = Pm,pn in (3.11) yields

(uc,'ru uc,n)c + 6((uc,n . v)uc,na uc,n)c + 6a((uc,n7pm,n)7 (uc,napm,n))

I (3.15)
= 5<mfm7 me,n>m + §(fCa u’c,n)c + (ufv uc,n)c-
By the identity (3.14), the nonlinear term in (3.15) vanishes, i.e.
1
((uc,n : v)uc,nauc,n) - <( c,n ’ uc,n)auc n’ nc> = 0
c 2 ) , -
Eq. (3.15) implies
(e ) lw < O finllze + [ fellze + llug] ). (3.16)

Since X giv X @ is a reflexive Hilbert space, there exists a subsequence still

denoted by {(tcn,Pmn)}nen and a pair (ue, pm) € X¢ dgiv X Qm such that

Uey — U weakly in X giv,
Uep —> U Strongly in L4(QC),
Pmn — Pm weakly n va

DPmn — Pm  Strongly in L2(Q).
To pass to the limit in the nonlinear term, one notes that

((uc,n : v)uc,na vc)c - ((uc : V)Uc, Uc)c

= ((uc,n - uc) . Vuc,navc)c - ((uc . V)(uc - uc,n)vvc)c~

By the identity (3.14), and the convergence (3.17), (3.18), one concludes that

((ucm : v)uc;ru UC>C - <;(uc7n . uc,n)a Ve - nc> —
r
((uc : v)umvc)c - <;(uc . uc)7vc : nc>

r
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Then passing to the limit in (3.11) with n — oo we find that

(e, Ve)e + 0((Ue - Ve, ve))e + 0a((Ue, Pin), (Ve, )

S o 5 . (3.21)
= 0( gy V), 0 ve))e + (g w))e

where v, is linear combination of a1, ..., @, ..., and ¢, is linear combination of
b1, ..., by, ... Since these combination are dense in X, 4; and @, (3.21) hold

for any v, € X¢ div, gm € Qm by a continuity argument. Hence (uc,pm) is a
solution to Egs. (3.9).

Given w € H'(Q), let ¢ € H3(Q) be the unique solution to Eq. (3.8)
according to Lemma 3.2. We show that the mapping w € H'(Q) — (u¢, pm) €
W via Egs. (3.9) is completely continuous.

Suppose (ul,pi,),i = 1,2 are two solutions corresponding to fi,i = 1,2

respectively. Define

e _ .1 2. e __ .1 2. e _ ¢l 2
U, = U, — U5 Py = Py — P fe =1 —f-

One obtains

1I k
(vl + 8 (2D, D(w0)) +6 (5 ey T ) +0 <“Bt”(§c)m§, vac>
¢ m m 1"( ) T
e e 11 e e e 1
= 6(ug - ne, gm)r — 0 (P, Ve - o) + 5<W - Vq)m +0(f5,ve)e — 6(uc -Vug, 'vc)C

Vv, € Xc,di’ua qec Hl(Qm)7
(3.22)

—6(u?- Vuﬁ,vc)c +0(ve - Vui,ug)c + 6 (ve - V!, uf)

C7

where one has applied the identity (3.14) in treating the nonlinear terms. Taking

(ve,q) = (us,ps,) in Eqgs. (3.22), and noting that

0l (ud - Vg, ug), + (ug - Vug, ug) | < ol[ud]| s ][ Vug]| Lol [ug]| s

2 e 5 e 7
< Ollugl|pallul 72 [[ Vg 7.

< O |ug]| 72 + x0|D(ug)][7z,
one derives for sufficiently small § and x that

(g, pr)llw < C[IE°][ 2. (3.23)
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Hence the solution depends continuously on f in the strong topology. On the
other hand, the solution operator w € H'(Q2) — ¢ € H3(Q) is continuous by
Lemma 3.2. Since the embedding H? — C! is compact, it follows that the
mapping w € H' () — f = wV¢ € L?(Q) is completely continuous. Thus
the solution operators (e, pm) : w € HY(Q) = (e, pm) € Xedin X H' (Qpn) is

completely continuous. This completes the proof. O

The following lemma is obvious.

Lemma 3.4. For given f € (H'(Q)), there exist a unique solution w to the

problem
(W, ¥) + 6(M(¢*)Vw, Vip) = (f,¥)) for Vo €Y. (3.24)

In addition, the solution is bounded and depends continuously on the data f.

With the help of Lemmas 3.2-3.4,we finally prove the existence of solutions
to the problem (3.1)-(3.3) by the Leray-Schauder principle. For convenience, we
rewrite Eq. (3.1) as

(6,0) + 0(w- Vo, ) + 6(M(¢*)Vw, Vi) = (¢*,¢), V¢ €Y, (3.25)
and view it as an equation for w. We have

Lemma 3.5. Under the assumptions (i)-(iii) and suppose ¢* € H'(Q2). There
exists at least one weak solution (¢, w, u., pm) to the problem (3.1)-(3.3) such

that
¢€H3(Q)’ weHl(Q), uceXc,diva Pm € Xm.

Moreover, there holds the discrete energy law

1 2 | € 2 7 k ’
sgllucl + 5IVolE: + 370+ | yartetptun)|

1 k|12 -1 k k
gl — bl + [y Tebu| 4 |y

2
L2

apv(oh) e o 2
<tr(1_[)PT’u’C7 PTuC> + %”V(Qﬁ — )72
1 1
< gllubl3: + ZIVetlEe + 3(F(94),1) = zBub,¢h).  (3.26)
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Proof. Here we apply the Leray-Schauder principle. One defines an operator
T : HY(Q) — HY(Q) as follows. Given w € H(f), one solves (3.2)-(3.3)

according to Lemma 3.1 and Lemma 3.2. Then one introduces

Fw) = w— (¢(w) — %) — u(w) - Vo(w). (3.27)

Finally, one defines T'(w) as the unique solution to equation (3.24) with the
source function f(w). Since the solution operators w € HY(Q) — {#, ¢, pm} €
CH(Q) x X aiv X H' () is completely continuous by Lemma 3.2 and Lemma
3.3, the mapping w € H'(Q) — f(w) € L*() is completely continuous. Thus
by Lemma 3.4 the operator T : w € HY(Q) — T(w) € H'(Q) is completely
continuous, and hence compact since H!(Q) is a Hilbert space. To apply the

Leray-Shauder principle [43], one needs to show that the set
{we HY(Q),w = \T(w), for some X\ € (0,1]}

is bounded. Suppose w = AT (w) for some A € (0, 1]. By the definition of 7" and
the linearity of the Eq. (3.24), w satisfies the following equation

(w,¥) + (M(¢")Vw, Vi) = A(f(w),¥), ¥ veH(Q). (3.28)
By taking 1) = w in (3.28), we have

(1= Nlw|2z + Ao — ¢",w) + Ao(u - Vo, w) = — H\/M((bk)Vw . (3.29)
L2

Setting w = A(¢ — ¢F) in (3.2) and v = Au., ¢ = Ap,, in (3.3), performing

integration by parts and adding the results together, we have
2
AE(ug, 6) + A0 H VD) A VI (Gt
L2
A0 ?
= ]\/v(m)PTuc VM5V

V/tr(II)
YEA A
+ (L= Nlwliz + =1V (0 = 67 + Sllue — uillf: < AB(ue, ¢").

2
L2

(3.30)

2
- +
L2

L2

It follows immediately that
B(uc,¢) < E(uf, ¢"), |Vw|?. < CE(uf,¢").

18



Setting w = ﬁ in (3.2), we also have

1 B CR
ﬁ/gwdx_|9|€/g(¢ ¢ )dx

(] |6 ¥
<l [ ofar+ [ [otas

: (3.31)
— 3 k2 1

< Il + I 11

:|Q,|Y%E[H¢H§'{1 + ||¢k||%2] < C(Q76777E(u8,¢0)).

Hence by the Poincaré inequality one concludes that ||w||%,, < C. Thus Leray-
Schauder principle implies that there exists a fixed point w = T(w), which
solves (3.1)-(3.3). The energy law (3.26) follows from (3.30) with A = 1. This
completes the proof. O

3.2. Construction of the approximation solution and passage to the limit

Recall that § = % for T > 0 and a positive integer N, and that t;, = kd,
k=0,1---N. Suppose (ufT1 phtl @b+l h+1) € X, iy X Qm x H (Q)x H ()

is a solution to the time-discrete system (3.1)—(3.3) according to Lemma 3.5.

We define the approximate solutions to Eqgs. (2.27)—(2.30) as follows

ley1 — 1 t—tg
¢ = 5 oF + 5 AR
t —1 t—t
5. Uk+1 k kK
u. = 5 u, 3 uc+1a
N 11
= — (Vpktl — kL yghtly  for t € [t tri1).
v(¢m)
D =pp ' 60 =0 = ul

- k+1 76 k
W’ = wt ¢ = g,

With these definitions, one deduces the following equations, cf. (3.1)-(3.3):

5
(%’ V) + (@ V%, ) + (M(6°)Va’, Vi) =0, YV ey, (3.32)
(1, w) — ¥e(V§’, Vw) = 1(f(¢°, %), w) =0, YweY, (3.33)

(@, V) m = ( 1? (=i, +w§nv$fn)7vm> , Vv, €L Qn)m, (3.34)
v(¢3,)
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and the equation

u? '
<%, ve)e + (@ - V)ad, vo)e + (v(6D)D(@), D(w.)

c

L A5 ap -5 N
+ (V(&%)me,VQm)m + < tr(H) V(¢m)PTuC,PTUC>

. . 1 s .
_ <u‘2 ‘N, )T + <pfn — §(u‘2 .ug),vc . nc>

r

r

II - A
= (= 00,900 Van )+ (00908 ve)er Voo € Xetiv, Gm € Qs

V(o) "
(3.35)

with initial conditions
Flimo = ¢°, ud|i—o = u®. (3.36)

As in [23], we also interpolate the discrete-in-time energy and dissipation

function introducing

t —1 t—t
E(t) = HITE(U’C“,QS’“) + T’“E(u’gﬂ,w), for t € [ty,trya]  (3.37)
2 2
DO(t) = ||/ M (¢F)Vwk+! —|—‘ 2v(pF ) D(uf
= |yorenwers| e aviebmin| -
2 2 :
_ B k+1
et |2 oot
\/7 L2 tr(H) L2
The time-discrete energy law translates to
d s s
&E (t) < =D°(t). (3.39)

Integrating (3.39) from 0 to 7" one immediately derives the following estimates

||ﬁi||L°o(o,T;L2(QC)) + ||<136HL°°(0,T;H1(Q)) <, (3.40)
IV @2 20, 7:22(0.0) + |1 Prad]| 20, r:02(ry) < C, (3.41)
[, 1| 2207322 () + IV | 2207322 (02)) < C,s (3.42)

where the constant C' depends on E(u?, ¢"). Based on these estimates and Eqs.

(3.32)—(3.35) the following estimates can be further inferred.
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Lemma 3.6. Let {uS,p% a5, ¢% @} be satisfying Eqs. (3.32)-(3.35). The

following estimates hold

||’lf16HL2(o,T;H1(Q)) < Cr, (3.43)
16° | 20,7513 ) < Crrs (3.44)
IVEmll 5 (0 ooy S OT (3.45)
10:°|| s <Cr, (3.46)

L5(0,T3(H (©2)") —

Lo @) < O (3.47)

10|
Proof. The estimates (3.43)—(3.44) are derived exactly the same as in [23]. We
briefly outline the arguments here for completeness. By the estimates (3.31)
and (3.42) one obtains (3.43) as a result of Poincaré’s inequality. Then inequal-
ity (3.44) follows from Eq. (3.33) and elliptic regularity. Next, by Holder’s
inequality, the interpolation inequality [44, 45] and Sobolev inequality, we have

. . as 3 ag 1
[0° Y [lz2 < IV lloll’l|ze <CIVE |71V 72 l10° ze

o . (3.48)
<C|VS LIV fpa 100 | 11

a1
Since ||V @? || 42 |0° || 1 € L5(0,T) by Hélder’s inequality, one derives that

~Ox7 16
16"Vl 5 o pupagey) S O (3.49)

The inequality (3.45) follows immediately from Eqgs. (3.35) with v, = 0 and
Gm = Dm. Likewise, one has
3 5 a5 3 a5l
(@° - V®, )| < [|8°]] 2|V | a9l o < 8% 22 VS |22 V0| e ]| a1

Hence the inequality (3.46) follows from Eq. (3.32), the estimates (3.40), (3.42)
and (3.44).

By the identity (3.14) and the interpolation inequality, one has

(@2 Vyiv), - (G(at-ad).o. )

= [ (a2 - Vyag,ve), = ((ve - V)ag ) |

< 2ol o ||| s | V|| 12 < C ANk
< 2fvel[zellael el Vaelre < Cllvellm(ael 72 IVaL| 2.
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It then follows from Eq. (3.35), the trace inequality, the inequality (3.48) and

Korn’s inequality that

du; 5% oadd -

(2 vl <0(||ui||L2||Vui||L2 + D)2
(3.50)

PR | P B

+ [IVDmllL2 + IIV¢5||22||V¢5II§Zwéllm) l[vell s

Since the right hand side of (3.50) is in L3 (0,T), the estimate (3.47) is thus
proved. This completes the proof of the lemma. O

We are now ready to pass to the limit and prove the main Theorem 2.1.
Proof. The estimates in (3.40)-(3.45) imply the existence of
ue € L0, T; H(div; Q) N L*(0,T; Xe aiv ),

U € L2(0,T; Xon div)s  Pm € LY2(0,T;Qn),

¢ € L=(0,T; HY(Q)) N L*(0,T; H3(Q)), w € L*(0,T; H(R)),
¢ ou,
at ot

€ L0, T3 (H (Q))), ot e L3(0.T5 X0 4.

c,div

such that the following convergence (of subsequences) holds as § — 0

al — u, weakly xin L°°(0,T; L*(Q.)), (3.51)

weakly in L*(0,T; H*(Q,)), (3.52)

p‘sm — Dm weakly in [/8/5(07 T;Qm), (3.53)

al, — u,  weakly in L*(0,T; L*(Qy,)), (3.54)

¢ — ¢ weakly * in L=(0,T; H (D)), (3.55)

weakly in L*(0,T; H3(Q)), (3.56)

W — we weakly in L*(0,T; H'(Q)). (3.57)

By the definition of ¢ and u?, (ﬁ‘;, #° and ¢°, we also have
5 N1
42— uglfa (12 = 3 kZ [t —uf|7: <C5—0ass—0.  (3.58)

N-1

0 S IVt = 6" < C6—0as 5 0. (3.59)
k=0

IV(@° = ¢")[7212) = 3
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Since [, Pdx = Jo #°dz by Lemma 3.1, Poincaré’s inequality gives

16° — ° | 120,711 (02)) — 0 as & — 0.

Likewise, one has ||(;A55 - (Z’;(SHLZ((LT;HI(Q)) — 0 as & — 0. Thus the sequences
{a®} and {u?}, if convergent, converge to the same limit. So do the sequences
{g?)‘s}, {¢?} and #°. On the other hand, from the definition of u?, #° and ¢°, as
well as the estimates (3.40)-(3.45), we infer they also satisfy estimates analogous
to (3.40)-(3.45). Hence the convergence (3.51)-(3.52) and (3.55)-(3.56) holds for
u‘g and ¢°, respectively.

Since ¢° € L= (0, T; H())NL2(0,T; H3(Q)) and 22" € L} (0,T; (H'(Q))),
the Aubin-Lions-Simon lemma (cf. [46] Corollary 4) yields

9 c 30,1, (H\Q)Y), ¢ — o

ot (3.60)
strongly in L*(0,T; H*(Q)) N C(0,T; L*(R2)).
Due to the fact that ¢ € L>(0,T; H'()) and 22 € L3 (0,T;(H'())), it
follows that (cf. [42] pp. 178)

¢ € Cy(0,T; H (), (3.61)
that is

lim (¢(t>7 L)O)Hl = ((b(tO)’ (p)HlthO € [O?T] and pEe Hl(Q>

t—to

Similarly, one has that

ou,

5 C L3 (0,7:X. i), ud —>u. strongly in
t . (3.62)
L*(0,T; HP(Q)) nC(0,T; H*(.)), B € (0, 5),a € (~1,0),
and that
uc € Cy (0,T; L* (). (3.63)
Because

16°)* = ¢*ll2 < Cl16° = Bll2 (6117 + I BlI7)
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< €167 = 8l (167153 16 1 s + 1913 101150,
by the strong convergence (3.60), one readily derives that
f(g%‘s, ¢~>5) — f(¢) strongly in L* (O,T; LZ(Q)).
Likewise, the weak strong convergence implies that
WOV — wVe, (4 V)ad — (u- V)u,
in the sense of distributions. For the nonlinear interface term, one has

<;(a5 al), vc.nc> = —((v.- V)&, al), —
I

1
— ((ve - V)uc,'u,c)C = <2(uc ), Ve - nc> , in D(0,T), Vv, € Xcaiv-
r

In addition by assumptions (1)-(2), one also has

v(¢°) — v(p)  strongly in C(0,T; L*(Q)),

M(¢%) — M(¢)  strongly in C(0,T; L*(Q2)).

These convergence results allow us pass to the limit in Eqgs. (3.32)-(3.35),
first in the sense of distributions, then to corresponding function spaces by

continuity. Specifically, one has for h(t) € D(0,T)
[ {%.0) + e vo + (iorvw, wn] =0, v v e,

T
/0 [(10,w) — 1e(Vé, Vo) — A(f (&), )] h(t)dt = 0, ¥ w € ¥,

av(¢m)
(5 Ve 1), L+< tr<n>PT“C’PT”C>F_<“C'“‘”q>

1 2
+ <pm - §|uc| y Ue - nc> - ( (¢m)wmv¢ma V(])
_(wCV¢C7UC)C] h(t)dt = Oa v’UC e quiva q 6 Hl(Qm))

T s I
/0 [(umvvm)m - (V(ngn)( van +w7nv¢m) ’Um>

24
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V v, € L%(Q), This shows that (we, W, Pm, ¢, w) almost everywhere in time
satisfies the Eqs. (2.27)—(2.30). Furthermore, in light of the initial conditions
(3.36), the strong convergence (3.60) and (3.62), and by the weak continuity in
time (3.61) and (3.63), one infers that

Blico = 8",  ucli—o = ul.

Finally, we show that weak solutions satisfy the energy inequality (2.32). The
argument is entirely the same as in [23]. We reproduce it here for completeness.
Multiplying the inequality (3.39) by h(t) for h € C*(0,T) with h > 0,h(T) =0

and integrating, one derives

E(ug, ¢°)h( / E°(s)h/(s)ds > /O tD6(s)h(s)ds

By the strong convergence (3.60), (3.62), the weak convergence (3.52), (3.54),
(3.57), one passes to the limit to obtain

E(ug, ¢°) + /E ds>hgnl(1§1f D5 ds>/ D(s
—

(3.64)

where the last inequality follows from the lower semi-continuity of norms and
the almost everywhere convergence of v and M. The energy inequality (2.32)

is thus established. This completes the proof of Theorem 2.1. O

4. Weak-strong uniqueness

In this section we prove the weak-strong uniqueness (Theorem 2.2). We
largely follow the lines of proof from [23] for the Cahn-Hilliard-Stokes-Darcy
system. Special care is paid to the treatment of the nonlinear advection term
in the Navier-Stokes equation and the nonlinear Lions interface boundary con-

ditions.

Proof. Suppose (ﬁc,pm,&m,d;,w) is a strong solution to the Cahn-Hilliard-
Navier-Stokes-Darcy system such that

Ge € L®(0,T; Xeogiv),  @m € L®(0,T;HY (Q)),
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¢ € L>=(0,T; H*(Q)) N L*(0,T; H*(Q)),

Vpm € L*(0,T; L*(Q))-

It follows from Egs. (2.4) and (2.8) that @ € L>(0,T; L?(Q))NL2 (0, T; H*(12)),
hence w € L*(0,T; H*(£2)) by interpolation. It then follows from the equations
that

0t

ot

€ N7 XL gi), o0 € L0, T; (H'()').

Owing to the regularity, one can use (W, @, @y,) as test functions, which gives

the energy equality (2.17). That is

d (1, . 5 Y€ _ v -
G {31l + ZIVaIE: + (7). 1)}
— VI ~ VD) s @)
~ (07 -
— VYT |7 — —= | V¥ Prie .
V/tr(II)

For the weak solution (w., pm, Um, ¢, w) in the sense of Definition 2.1, the energy

inequality (2.32) holds (Theorem 2.1), i.e.

d 1 2 e 2
G {3l + ZIVolE: + (7). 1)}
< IVAIwls — V2D (o) s (12
= VT 72 = 2= Vo Py uclla.
V/tr(IT)

Since @, € L*(0,T; X, 4iv), for almost all ¢ € (0,7) it permits to use
v. = U, and g, = 0 as test functions in Eq. (2.29). Meanwhile one multiplies
by u. the strong form (2.5) for @., and performs integration by parts. Adding
together the resultants gives

ou, . o, . ~ -
(Gievae) + (Few) + (200D D@)_+ (2(GID(E) D)

+ <QBV(¢C)PTuC,PTm> + <QBV(&C)PT110,PTW>
tr(TT) - tr(IT)

= (e Vyue ) = ((@e- V)i ue) + (wVoeae) + (550, u)

c

r

c
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1 . _ 1.
- <pm = 5 (e ue) g nc>F - <pm = 5 (e ) ue nc>F
= (e Vue ) = (e V)t u) +(wVoe i)
BeVGe ) = (s ite Do)y = (P e 1)

(e - V) ue, uc) + ((uc - V) T, ac)

C C

= (e = ) - Vue = ), )+ (G- Vute — o), (e — )

+ (weVoe i) + (0Véeiu) = (pmvite - ne)p = (Pnsuc- nc;F (43
Likewise,

(T (S Yt i), + (H*lu(({sm)am, um)m (4.4)

= (P o)+ (P 1)+ (0 V) (0 V)

4
= <pm»ﬂ'c : nc>1’* + <]5m,uc : nc>r + (wmv¢mvﬁm) + (wmvéma um) )

where we have utilized the fact that u,, -n. = u.-n. on I (likewise for @,, and

U.). Take summation of Eqgs. (4.3) and (4.4)

<387:c, u> n <a;2 u> + (20(60)D(ue), Dl@)) + (20(8e)D (i), Dlue))

+ <O‘B”(¢c>PTuc, PTac> + <O“3”(<5“)Pmc, PTuc>
tr(11) r tr(II)

- ()T s ), (VG )T i, 1)

T

- —((uc — ) - V(ue — u)u) n (u V(e — ), (e — ac)) (4.5)

(& (&

+ (wcv%ﬁc)c n (wcvéc,uc)c n (wmv¢m,am)m + (wmvém,um)m

To deal with the Cahn-Hilliard equations, one notes that ¢ € L*(0,T; H3(2)),
since by the Gagliardo-Nirenberg inequality

IVAG|z: < Cl|AG]| 71| Al 72

Hence in view of Eq. (2.26), for almost every ¢ € (0,T), (—veAg) can be used

as a test function in the weak form (2.27). One obtains

e <3§j’ v¢3> e <3§t¢’,v¢> + (M(§)Vw, Vi) + (M($) Vi, Vu)
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= v(M(¢)Vw,Vf(0)) +v(M(¢)Vii, V f(0)) +v(u- Vo, f(9))
+7(@- Ve, f(9)) — (u- Vo, w) — (& Vo,w). (4.6)

Now one adds together Egs. (4.1) and (4.2), then subtracts Eqs. (4.5) and (4.6)

d(1,. - d 7
’ {2“% |+ gnvm v¢||2Lz} + = {’Y(F(@, 1) H(F(sb),l)}

+/Q 2v(¢e) | D(e) — D(ue)| dm—i—/QM(qz’))|Vﬁ1—Vw| dx

+/ ((bm) 1‘um _um‘2d$+ o5 V((bc)lp‘r’ac_PTuCPdS
Qum tr(II) Jr

< (e =) Ve =) iie) = (- Ve — o), (we — )
~ (21(90) ~ (BB (ake), (Dlwe) ~ D)) - (166~ M(@)Vi, (Vi — Vi) )
~ (W6m) = (@)L i, (2 — am>)

m \/r < (bc - V(¢c)]P uc (PTuC - P‘rﬂ’c)>r
— (w=w)a, (Vo - V) - (@@ —w), (Vo - V9)) = (M(¢)Vu, V£(3)
—y(M($)Vio, V() —v(u- Ve, f(¢)) — (@ &,f(sb))- (4.7)

Since ¢ € L (0, T; Hl(Q))ﬂL2 (0, T, H?’(Q))7 it follows that ¢ € L® (07 T, LOO(Q))
by interpolation. Now

V()22 < ClIol[~ + 1)Vl Lz,

which implies that f(¢) € L*(0,T; H'(£2)). Hence f(¢) can be used as a test
function in Eq. (2.27). Owing to the monotonicity of ¢3, one has for a.e.

€ (0,7)

G hE@n e} = (GFr0)+ <3¢ f(¢>)>
= —(M(@)Vw, V1(6)) = 1(M &)V, V(3))-

Eq. (4.7) can then be written as

d (1. YE,  ~
{31~ wells + F 106 - vl |

u 2 b — Vw|?dz
+ [ 20(00)|B(ik) - Dlue) ' + [ @)va - vufa
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+/lwwﬂﬂmrwﬁw+ — /wmmm—amms
I

Qm V/tr(II)

< (e =) Ve — ) iie) — (- Ve — o), (we — )
- ([M(¢) — M(9)|Vi, (Vw — vw)) (4.8)

~ (0m) = DI s, (10, = ) )

m

- < tI‘(H) [V((bc) - V((bc)]P‘rﬁca (P‘ruc - PTﬁC)>F
- ((w—@)a, (V6 - V) ~ (@@ - w). (Vo - V)
V(IM(9) = M@V, VI£(6) — F(9)]) +7(M($) VI~ w], VIF(J) — (&)

~ (=) V(o - ), 1(8)) = (@ (6~ 9), £(J) - [(5))

where each I; corresponds to the jth line on the right hand side of the inequality
(4.8).

The term I is estimated as follows
(L] < Cllue — tel[14]|V (v — e[ 2 ][tel[ s
1 -
< Jue = el 12|V (we — te)|| 1|t s

~ 2 ~ ~
<x [ 200[D(@) - Do) Pdo + Cllue — aclallal e (19)

c

where x is a constant to be determined later, and one has utilized the interpo-
lation, as well as the lower and upper bounds of the viscosity v.
Recall that (;5—(;3 is of mean zero. To estimate the rest of the terms, we notice

that the Gagliardo-Nirenberg inequality and the Poincaré inequality imply
16 = Bllz < C(IVAG = BIELNIV@ = D)l f2 + V(6 = D)llz).  (4.10)
It follows from the definition of the chemical potential, cf. Eq. (2.28), that
Vel [VA(S = )2 < [V (w = @)[[z2 + AV (F(8) = F(9))]]22-
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Since

V(¢ - ¢°) = 36°V (¢ — ¢) + 3(¢* — $*) Vo,

one has
IV(£(8) = £())]]2
< ClIV(6 — B)llze + 181511V (6 — 6) ]2
116+ Bllze 16 — Bll= [Vl 2
< ClIV (6 - @)llzz + CL+ [16ll)
% (IVAG = I V6 = DI + 16— d)llz2 )
< IVAG =Pl + OO+ 91 )V (6~ )l
Hence

VA = @)lz2 < 2V (w — B)||z2 + C(1+ 8]l ) IV (& — &)]|2-

(4.11)

(4.12)

We estimate I;,j = 2---8 as follows. By the Lipschitz continuity of v, one

obtains
112] < Clle — el o~ ID(@e) |2 [D (@) — D)2
< (IVAG = N5V = D2 +11V(6 = DIz )
x (D) 2D () — D)1
<A@ - dffa +x [ 2w(60[Dl) ~Dlue)'dr
+ O (ID@e) 15 + D@32 1V(6 - 613
< [ M)V~ Vuldstx [ 20000 |D() - Dlwe) s
+C (14 16l17 ) IV (&= 8) 13-
Likewise, one has
13] < Cllde = dell e V]| 12 1V (i — w)] |
<x [ M)V - Vufs

+C (L1161 + IV ) 1V (6 - 6) I
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(4.14)



|I4| SX/ H_ly(¢m)‘ﬁm_um‘2d$
Qm (4.15)

5 _s -
+ O+ ¢l F + [aml22) IV (¢ = ¢)|[72:
By the trace theorem and Sobolev imbedding, i.e., H'(Q) < H2(T') < L4(T),

one has

a ~ _ .
|55 < —==|Iv(8) = v(A)lpary || Pritel | s ry | Prtie — Pruel| 2y
V/tr(IT)

ap

= mm
ap

=X e /p'/(

Upon performing integration by parts, one derives the estimate for I analogous

16 = Bl (@l 1el |11 (20) [ Prite — Pruel|2(r) (4.16)

¢e)|Prite — Pruc?ds + C||V (¢ — §)|[22;

to the one for I
15 = |((6 = §)V(w @), @) + (6~ &)@ u), Vo)

< X/ H_ly(¢m)|ﬁ'm - um‘le‘
rm (4.17)

+X/ M)V — Vwdz + it — ue| %
Q
+ C(L+|9l[Foe + VD35 + [|Tm] 3V (¢ — B) |22

For I, by (4.11), (4.10) and (4.12), one has

Iz < Cllg — 6l 1|V @[ 2] |V (f(8) — £())]]12
+ ||V (@ = w)||2 ||V (f(8) = £(9)) |2
< O|¢ = @l IV (¢ — d)||2 ][V [ 2
+ ||Vl |2 (1+ [|0]z<)l16 — Sl
+C|V (i = w)||2|[V (¢ — )| 2
+C(1+16][1)|IV (@ — w)[[ 2|6 — Bl [ £

<x1 /Q M (¢)|Vio — Vw|?dx (4.18)

+ O+ [[VB] 2 + [[6]2 + [[6]1 3V (6 — D)2
+ OVl |12 (1 + [[6]]p) + (1 + [|6]2))
% (IIVA(S = )12V (6 — D)1 22 + IV (6 — )I[22)
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< x/ M(¢)|V — Vw|*dx
Q
+C(1+[|Vd||72 + [V }5 + [[6][T= + 16113V (6 = D)l[72,

where we have used inequality (4.12). Finally,

s| < 1fD)lzelle = @l 12][V (¢ = D)l 22 + Cll]| 2]V (¢ — D[22 f(#) = f ()] L=

_ ~ 2 ~ ~
< x/ T 0 (o) [y — |2z + Clltte — |22 + C||V(6 — &) 2

m

+ O+ [[l[7)IV (9 = D)l 2] — S| (4.19)

< X/Q T 1 ()i — |+ C(1+ (|61 2V (6 — D)2

m

+ O+ [16]2)IV(6 = DIZ VA — B[22 + Cllute — e 2

< [ o) — e+ x [ MO0~ Vulds
Q Q

m

+ O+ (¢l + 18] = + 181111V (@ = D)7z + Clluc — tcl|Zs-

Collecting the inequalities (4.9), and (4.13)—(4.19), choosing sufficiently small
X, one derives from (4.8) that

d (1, . €, ~ - 2
4 {2||uc el + LV - wn’ig} + [ 200[D(@) - D(ue)'ds
Q.

M(¢)|Vi — Vw|*dz + / T () [, — | da
Q

m

ap ~ 2
+\/tI'(7H)/I-‘V(¢C)|PTuC Pru|“ds

< Cllue — |32 + Ch(t)[|V (6 — 8)|[32,

8 8 8
with a(t) := 1+ ||V@||}2 + ||¢]|}~ +||@m]| ;.. Noting that ¢ € L®(0,T; L°(Q))
and w € L*(0,T; H*(2)), it follows that h € L*(0,7T). Gronwall’s inequality

and Poincare’s inequality then imply that
U = Ug, ¢:Q~57 Uy = Uy

This completes the proof of Theorem 2.2. O
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Appendix

We present a derivation of the Cahn-Hilliard-Navier-Stokes-Darcy model
studied in this article based on the Onsager’s variational principle. We derive
the irreversible part of the dynamics mainly based on the Onsager’s extremum
principle [47, 48]. See [49, 50, 51] for the applications of Onsager’s variational
principle to multiphase flows.

The free flow in €2, is assumed to satisfy the following conservation (momen-

tum and mass, resp.) equations

Ju.
po( ; + (e - V)uc> ~V-S+Vp.=F,, (4.20)
V- =0, (4.21)
a(;ic + u, - V(bc =-V- va (422)

with S a symmetric tensor, F. the force density, J. the diffusive flux, to be
determined. The total energy of the free flow is
_ POy 12 € 2
Ec - 5‘u6| dx + F(¢c) + §|V¢c| dxa (423)
Q. Q.

where the first term is the total kinetic energy, and the second term represents
the total free energy associated with the free flow. As in our work [22], we
identify the dissipation in €2, as

— |Jc|2 |S|2 %(Qsc) )
e = /Q oM () 4y(¢)c)d$ +/F Q\M(—H)IPTUCI ds, (4.24)
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where the first term is due to chemical diffusion, the second term is due to
viscosity, and the last term is because of friction as a result of fluid particles
slipping along the domain interface I'. The friction mechanism along the domain
interface is motivated by the study of single phase flow in superposed free flow
and porous media, cf [22] and references therein.

Likewise in €2,,, we postulate the two-phase flow in porous media satisfies

the following conservation of mass

ag% Uy Vo ==V - Ty (4.25)

The fluid equations will be derived through the variational procedure. The total

energy and dissipation in porous media are as follows
€
E, = 7/ F(ém) + 5|v¢m|2da;,
92

|Jm|2 v(Pm) -1 2
b, = / + I |, |“dx,
Q,, 2M(dm)  2pog [l

where the second term in ®,,, represents the Darcy damping in porous media.
Before we derive the forms of S,F.,J. and F,,,J,,, we prescribe boundary
conditions. On T';, the no-slip no penetration boundary condition w, = 0 is
imposed for velocity, and no chemical flux condition J. - n, = 0 is imposed.
Similarly, one imposes U, -n,, =0 and J,,, -n.=0o0nI',,. On I, for conserva-
tion of mass one naturally imposes the following continuity interface boundary

conditions
U - N = Uy, - N, ¢c:¢m7 Jo ne=Jp -0y, (426)

One calculates the rate of change of the total energy E., by Egs. (4.20) and
(4.22), and by performing integration by parts

d auc a¢c
LE, = e ey
dt /Qcpou ot “TJF/ch ot

+76/ Vo, - nca¢0d5+ve/ V. - n, 20
I'. I

ot

at a5

:/ {_Po(uc'v)uc+V'S—Vpc+Fc}'Ucdl‘
Qe
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—/ MC(UC'V¢C+V'JC)(ZZ{E
Qe

+ ’76/ Vo, n (b( ds + 'ye/ Vo, ng 38(;50 ds
—/ S : D(u.)dx +/ F. u.dz
Q. Q.
2
+/ [nc - (Sn.) — pe — po [se }uc -n.dS (4.27)
F 2

+ / P, (Sn.) - Pyu.dS —|—/ J. - Vw, — weue - Vooda
r Q

0. / 0.
+76/FCV¢C 68 dS+ [ vV, - n. 5

c

—wJe - nedS,

where w, := Y[f(¢.) — €eAdp.] is the chemical potential and the symmetry of
the tensor S has been utilized. In a similar fashion, one calculates the rate of

change of total energy in porous media

%Em /Q Jm - Vwy, — wpty, - Vo de + e /F YV, - nmé)g;n s
_ / YeV Py, - N ——" b, + Wy de - n.dS. (4.28)
r ot

If gravity force (matched densities) is the only external force applied in free

flow, one identifies the rate of change of the mechanical work with, cf. [51]

AW
W: QCFc'uc_ch(bc'uc:Oy

which leads to the choice
F.=w. V.. (4.29)

To derive the irreversible part of the dynamics, we resort to Onsager’s vari-
ational principle which theorizes that the configuration is to minimize

d d
—FE.+ —F b, + b, — . 4.
dt ct dt m T Pec+ Py / pmv umda:, ( 30)

m

with respect to rate functions

Ope O Oc

Uy Dy S, {va']m}a at ‘ch 8t |Fm7 W'Fv

(4.31)
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which results in a dissipative dynamic system such that

d d
—E, 4+ —E,, = -2(®,+ ®,,). 4.32
dt c+dtm (®c + &) (4.32)

The variational procedure gives

V(¢m)
pog

Jo=—M($e)Vwe, T =—M(bn)Vm, S=2(¢)D(u,),  (4.34)

Ve - HC‘FC =Vopn - nm|1“m =0,

Hilum = —me + wmvdjma V- gy = 07 (433)

(4.35)
Voo ncr = Vo, nclr, welr =wnlr.
One recognizes that Eqs.(4.33) are the Darcy’s law with surface tension effect,
cf. [52, 12].
With the help of Egs. (4.29), (4.33)—(4.35), one may write

‘ot g, = / M(60) [V ? + 20(6.)D(u,) : Dlu,)da

dt dt
(¢m) 71|Um|2d.’£
pPog

/ M () |V, 2da + 22m0

2
+ / [nc - (2uD(ue)ne) — pe — po [tee] }uc -n.dS
r 2

—|—/PT(2VD(UC)IIC) - P u.dS.
r
(4.36)

Comparing Eq. (4.36) to Eq. (4.32) implied by the Onsager extremum principle,

one obtains that

1
— ¢ (T(ucapc) ' nc) + 5(’“"6 . uc) = Pm, Ol F> (437)
7y (T(epe) me) = 229Dy 12 T (4.38)

tr(1I)
This completes the derivation of the model.
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