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We report on measurements of the dynamics of the total magnetization and spin populations in an almost
unit-filled lattice system comprising about 104 spin S ¼ 3 chromium atoms, under the effect of dipolar
interactions. The observed spin population dynamics is unaffected by the use of a spin echo and fully
consistent with numerical simulations of the S ¼ 3 XXZ spin model. On the contrary, the observed
magnetization decays slower than in simulations and, surprisingly, reaches a small but nonzero asymptotic
value within the longest timescale. Our findings show that spin coherences are sensitive probes to
systematic effects affecting quantum many-body behavior that cannot be diagnosed by merely measuring
spin populations.
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Synthetic atom-based materials are emerging as unique
quantum laboratories for the exploration of collective
behaviors in interacting many-body systems [1]. In parti-
cular, both electric and magnetic dipolar gases featuring
long-range spin-spin interactions are opening great oppor-
tunities for the exploration of quantum magnetism in
regimes inaccessible to gases interacting via purely contact
interactions [2].
While electric dipolar interactions are fundamentally

stronger and have led to important breakthroughs, as
demonstrated by recent experiments using KRb molecules
in 3D lattices [3] and Rydberg atoms in bulk gases [4],
as well as in optical tweezers arrays [5–10], magnetic
quantum dipoles offer complementary unique opportunities
for quantum simulations. For example, they provide the
possibility to trap low entropy and dense macroscopic
arrays of S > 1=2 atoms in close to unit-filled 3D optical
lattice potentials where a truly collective many-body
behavior manifests itself. Under these conditions, it is
possible to study spin models with large spins [11–13],
which cost exponentially more resources to classically
simulate [14] than conventional S ¼ 1=2 models of
magnetism. These capabilities have started to be explored
in experiments working both with bosonic chromium and
fermionic erbium atoms in 3D lattices [12,13,15–17],
which have observed already signatures of rich many-body
dynamics, including quantum thermalization and the
buildup of many-body correlations. However, so far all

the information has only been extracted from measure-
ments of spin populations without direct access to quantum
coherences, which contain key signatures of the underlying
quantum dynamics [3,4].
Here we make a step forward and report time-resolved

measurements of the spin coherence and also populations
of a many-body strongly interacting S ¼ 3 dipolar gas of
52Cr atoms in a deep 3D lattice. The spin coherence is
extracted from measurements of the collective transverse
magnetization of the gas J⊥ via Ramsey spectroscopy.
Since the longitudinal magnetization remains zero at all
times, the transverse magnetization is equal to the total
magnetization (which is the norm of the collective spin)
of the ensemble. The system is initially prepared in a spin
coherent state with maximal transverse magnetization
J⊥ ¼ NS, which is let to evolve due to magnetic dipolar
couplings. Our experimental protocol includes a spin-echo
pulse at the middle of the dynamics to reduce the effect of
magnetic field inhomogeneities.
In agreement with previous results [15–17], we find that

the spin population dynamics is well captured by a semi-
classical method, referred to as the generalized discrete
truncated Wigner approximation (GDTWA), based on a
Monte Carlo sampling in phase space [18,19]. In addition,
we find that spin population dynamics is barely affected by
the spin echo. However, we observe that the transverse
magnetization decays at a slower rate than the one expected
from numerical simulations based on a pure spin XXZ
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model. In addition, the magnetization surprisingly saturates
at a nonzero value in the experimentally investigated
timescale. We attribute these discrepancies to effects not
included in the pure spin model, such as tunneling induced
by lattice heating. We provide toy model simulations
that support this claim. Our observations highlight the
relevance of quantum coherence to characterize many-body
phenomena.
Our experimental platform differs from previous studies

on the transverse magnetization of ensembles of dipolar
particles [3,4] in that it consists of a high density ordered
array of S ¼ 3 spin particles. It is obtained by loading a
52Cr Bose-Einstein condensate (BEC) in a 3D optical lattice
deep into the Mott regime. The lattice implemented, made
with five lasers at λL ¼ 532 nm, is a parallelepiped with
periodicities of (268,299,597) nm and a total lattice depth
of 90 recoil energy at λL. We estimate the tunneling time to
be ≃100 ms. We obtain typically N ¼ 104 atoms close to
unit filling (see [15] for more details). Initially the sample is
prepared in a spin coherent state, with all spins in the
maximally stretched state mS ¼ −3 and antialigned with
the external magnetic field B. Spin dynamics is triggered
by rotating all spins at t ¼ 0 by π=2, with the use of a
resonant rf pulse [15] (see Fig. 1); the estimated accuracy
on the rotation angle is �2%. We measure the dynamical
evolution of the seven spin populations NmS

in the basis set
by the external magnetic field through Stern-Gerlach
separation. We also probe the norm of the collective spin

J ¼ PN
i¼1 Si, which reads jjJjj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hJxi2 þ hJyi2 þ hJzi2

q
;

this quantity, ranging from 0 to 3N, is equal to the total
magnetization and is maximal for the initial spin state. In
the following, we will use normalized quantities: j ¼ J=N
and l ¼ jjjjj.
To measure l we use a Ramsey protocol, in which a

second π=2 rotation is imparted just before population
measurements (see Fig. 1). B is along z. In the rotating
frame (turning around z at the rf frequency), rf pulses
ensure rotation of the spins around an axis called y.
After the first π=2 pulse, jt¼0 ∝ x̂. During the spin
dynamics, fluctuations of the external magnetic field
make j rotate in the xy plane. We call ϕðtÞ the angle
between j and x̂ and use it to define a new basis XYz
where jkX̂, i.e., l ¼ hĵXi. All our data are based on the
measurement of the component of the collective spin along
the axis of the external magnetic field z through a
Stern-Gerlach separation. We call Mz ¼

P
mS

pmS
mS the

normalized value of the measured spin component, with
pmS

the fractional spin population of the mS component
(
P

mS
pmS

¼ 1). Since the second π=2 pulse again rotates
spins around y, Mz corresponds to a measurement of
ĵx ¼ cosðϕÞĵX − sinðϕÞĵY when using a Ramsey sequence.
As ϕðtÞ is different from trial to trial, we deduce the
magnetization of the sample from statistical analysis
(see below).

If one can neglect tunneling, the prepared ensemble of N
coupled spins, which are pinned at the individual sites of a
3D lattice, evolve under a pure spin model. The mean
external magnetic field amplitude, B0 ¼ 1.5 G, being
strong enough to generate Zeeman splittings larger than
nearest-neighbor dipolar interactions, the dynamics is
described by the following XXZ spin model [12]:

Ĥdd ¼
XN

i>j

Vij

�

Ŝzi Ŝ
z
j −

1

2
ðŜxi Ŝxj þ Ŝyi Ŝ

y
jÞ
�

; ð1Þ

where Vi;j ¼ Vdd½ð1 − 3cos2θi;jÞ=r3i;j�, with Vdd ¼
f½μ0ðgμBÞ2�=4πg, μ0 as the magnetic permeability of
vacuum, g ≃ 2 as the Landé factor, and μB as the Bohr
magneton. The sum runs over all pairs of particles (i,j). ri;j
is the distance between atoms, θi;j is the angle between
their interatomic axis and the external magnetic field,
and Ŝi ¼ fŜxi ; Ŝyi ; Ŝzig are spin-three angular momentum
operators, associated with atom i. The strongest dipolar

(a)

(c)

(b)

FIG. 1. (a) The experimental system consists of a 3D array of
dipolar Cr atoms, with a spatially varying magnetic field BðrÞ.
(b) Experimental rf sequence: Cr atoms are initialized in the
ms ¼ −3 spin state and rotated by the first π=2 pulse to align with
the x direction; the second π=2 pulse is used to measure the
magnetization. Because of magnetic noise, the collective spin
makes an angle ϕ with respect to x when this second pulse is
imparted. We impart or not an echo pulse using an additional π
pulse at half the evolution time t=2. (c) Time evolution of the
fractional populations pms

of four ms spin components, with and
without spin echo (full circles and empty triangles, respectively).
Each data point corresponds to the average of ten realizations.
Error bars correspond to statistical uncertainties. The solid
(dashed) lines show the numerical results obtained with GDTWA
with (without) spin echo, for a lattice with unit filling and
BQ=h ¼ −4 Hz. From bottom to top: ms ¼ −3 (black), ms ¼ −2
(green), ms ¼ −1 (orange), ms ¼ 0 (blue). The colored bands in
the GDTWA calculations account for a �2% experimental error
in the first pulse area.
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coupling is obtained from the shortest intersite distance
rmin ¼ 268 nm in our lattice [15], and Vdd=r3min ≃ 3 Hz.
For an ensemble of dipolar spins, the normalized magneti-
zation l decreases as a result of interactions, which at short
time reads

lðtÞ ¼ 3 −
81t2V2

eff

16ℏ2
; ð2Þ

where Veff=h ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=N ×

P
N
i≠j V

2
ij

q
=h ≃ 6 Hz for a unit-

filled lattice in our experiment. This leads to a typical
timescale τdd ≃ 20 ms for l to reach zero. This is a pure
quantum effect since a mean-field ansatz predicts no decay
[15,20,21]. We note that similar dipolar-induced magneti-
zation decay and evidence of the buildup of multiple-spin
coherences has been reported in NMR systems, where,
however, the system starts in a highly mixed state [22].
In addition to Ĥdd, atoms experience a tensor light

shift ĤQ ¼ P
i BQðŜzi Þ2. For a noninteracting gas, this

leads to a periodic evolution of l, with a timescale
τq ¼ ½h=ð4jBQjÞ� ≈ 50 ms to reach zero for the first time,
for a typical jBQj=h ≈ 5 Hz in our experiment. This
one-body term has to be taken into account in simulations.

At short time, it leads to a replacement of Veff →

Veff

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 40B2

Q=27V
2
eff

q
in Eq. (2).

Furthermore, magnetic field inhomogeneities described
by gradients for the Larmor frequency, ωL;i ¼
gμB=ℏðB0 þ  b ·  riÞ, lead to another term in the
Hamiltonian, ĤB ¼ P

i ℏωL;iðŜzi Þ, which generates
dephasing and leads to a damping of l. The damping
timescale is τb ¼ ½h=2gμBbR� ≃ 3 ms with b ≃ 13 Gm−1,
and R ≃ 5 μm is the typical size of the sample. In order to
compensate for this dephasing, we implement a spin-echo
technique, in which spins are rotated by π in the middle of
the dynamics (see Fig. 1).
One question that naturally arises is whether the spin

echo changes as well the evolution of the population on
different Zeeman levels. As shown in Fig. 1, the observed
spin population dynamics is roughly identical with and
without the echo, which is confirmed by GDTWA numeri-
cal simulations using the experimental gradient. This
behavior is consistent with a short time perturbative
analysis, which predicts that magnetic field gradients
only enter at quartic order in the population dyna
mics, i.e., ∝ ð5t4=256NÞf15PN

i¼1½
P

N
j≠i VijðωLi−ωLjÞ�2−

27
P

N
i;j≠iðωLi−ωLjÞ2V2

ijg, while dipolar effects enter at
second order ∝ t2V2

eff (see Supplemental Material [23]).
Our raw experimental results to measure the magneti-

zation are shown in Fig. 2. Without a spin echo, a fast
damping of the measured values of Mz is observed, in a
timescale consistent with τb. There is here a striking
difference with our previous measurements in a bulk
BEC [21], where a gap due to spin-dependent interactions

prevents the reduction of magnetization. When a spin echo
is applied, the raw data show that l decays with a
significantly longer timescale, compatible with τdd. We
note that, given that Ĥdd does not commute with ĤB, the
utility of a spin echo to protect the decay of l is parameter
and geometry dependent [25].
To obtain a quantitative estimate of l as a function of

time, we have investigated the probability distributions
(PDs) associated with the data. Figure 2 shows that a
mostly Gaussian PD is obtained for experiments without
echo. On the contrary, data with spin echo only show a
Gaussian-like shape at long times. At short time, PDs of a
totally different kind are obtained, with a maximum of the
probability for large values of jMzj. To account for this
observation, we introduce the probability distribution of a
“classical spin” (CS), i.e., associated with a classical vector
with norm l and no fluctuations. The corresponding
number dn of realization of Mz reads [23]

dn
dMzCS

¼ 1

πl
1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − M2

z

l2

q : ð3Þ

In order to characterize the observed PDs, we evaluate
from the data the square root of the kurtosis

FIG. 2. Normalized spin component Mz measured after a
Ramsey sequence, with 60–100 realizations for each spin
dynamics duration. Top: absolute values of Mz; blue triangles
and green circles correspond to experiments without and with
spin echo, respectively. Inset: the parameter η (see text) is
evaluated from the corresponding Mz distributions. The horizon-
tal lines show the expected value for respectively the PD of a
classical spin (dashed, red) and the Gaussian PD (dotted, purple).
Bottom: histograms of the Mz distributions are shown together
with the PD used to fit them (solid line); see text.
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η ¼ ð ffiffiffiffiffiffiffi
M4

p
=M2Þ with Mn ¼

R
PDðxÞxndx: η ¼

ffiffi
3
2

q
for

the PD of Eq. (3), and η ¼ ffiffiffi
3

p
for a Gaussian PD,

ðdn=dMzÞG ¼ ð1= ffiffiffi
π

p
σÞ exp ½−ðM2

z=σ2Þ�. The experimen-
tal values of η are shown in Fig. 2. Data without echo show
a good agreement with a Gaussian PD. For data with a spin
echo, the value of η is in good agreement with the classical
value for tf ≃ 5–30 ms, and it gradually approaches a
Gaussian value for t > 60 ms. This first qualitative analysis
shows trends for the measured PDs. In order to get
numerical values of l, we have used a convolution of
the two PDs described above to fit the data, as shown in
Fig. 2; this method assumes that a total dephasing has
occurred, which requires t ≥ 10 ms in our experiment
(for t ¼ 1, 5 ms, see the Supplemental Material [23]).
The corresponding results of l for each time t are shown

in Fig. 3. As expected, without applying the echo pulse,
l decays rapidly; the actual damping rate depends on the
system size and lattice geometry. On the other hand, the
measured data of l after applying the echo pulse reveal an
exponential damping of the magnetization toward a small
but not zero value, lðtÞ ≃ ð3 − l0Þ expð−t=τeÞ þ l0, with
l0 ¼ 0.15 and τe ¼ 22 ms. This contrasts with the glassy
dynamics observed in, e.g., Ref. [4].
In order to model the dynamics of l in the absence of the

echo pulse, it is crucial to appropriately account for the
actual sample geometry in experiment and to capture

the effects of inhomogeneities. For this purpose, we imple-
ment a Gaussian truncated Wigner approximation (TWA)
approach in our numerical calculation (blue dashed line in
Fig. 3) [23,26], which allows for efficiently simulating
systems with N ∼ 104, much larger than the size previously
investigated [15]. When the echo pulse is applied, we first
use GDTWA simulations with the same parameters as those
used in Fig. 1. We explicitly insert a π rotation around the y
axis at half of the evolution time (see Supplemental Material
[23]). While the GDTWA captures the population dynamics
at all times (see Fig. 1), it is only able to reproduce the
magnetization measurements at t ≤ 10 ms (black dashed
line in Fig. 3). Interestingly, the magnetization dynamically
evolves for t > 30 ms, whereas the population dynamics
and pure spin model numerical simulations have then
essentially reached a plateau. This indicates that measuring
the magnetization constitutes a more sensitive probe than
simply monitoring spin population dynamics.
While tunneling in the lowest band (where atoms are

initially loaded) is too slow to explain the discrepancy
between the magnetization data and the GDTWA simula-
tions, one possibility could be that phase noise in the lattice
could promote particles to higher bands, where tunneling is
non-negligible. This type of heating process was, for
example, also reported with KRb molecules [27]. To model
this possible scenario, we performed numerical simulations
assuming frozen atoms but relaxing the requirement for
them to be pinned in the regular grid imposed by the lattice
potential, while keeping the same average density [23]. This
emulates the idea that, during a tunneling process, on
average, an atom can be in between two adjacent lattice
sites. The calculated dynamics of spin populations resulting
from this toy model is consistent with the experimental
measurements (see the Supplemental Material [23]). The
result for l is shown with a solid line in Fig. 3: the agreement
with the experimental data is much better than the one
obtained with GDTWA (black dashed line). However, our
toy model predicts a zero relaxation value of the magneti-
zation within the experimental time range investigated, in
contrast with the experimental observations.
In order to confirm our measurements of l, we

performed a noise analysis of the components of the
collective spin. Whether we apply the final π=2 pulse
(Ramsey experiment, labeled R) or not (labeled noR), we
measure ĵx or ĵz. Taking into account the randomness of ϕ
[28], one obtains the following expressions for the variance
of Mz when averaging over many realizations:

VarðMzÞR ¼ l2

2
þ VarðĵXÞ þ VarðĵYÞ

2
þ σ2exp ≡ hj2xiexp;

VarðMzÞnoR ¼ 3

2N
þ σ2exp ≡ hj2ziexp: ð4Þ

To derive Eq. (4) we add a technical noise (with an
associated standard deviation σexp) to the theoretical

FIG. 3. Values of the normalized magnetization l derived by
fitting the distributions of Mz after the Ramsey sequence. Error
bars represent the 68% confidence interval and are detailed in the
Supplemental Material [23]. Filled circles and empty triangles are
measurements with and without the spin-echo pulse, respectively.
The black dashed line shows the numerical results with the spin-
echo pulse applied, obtained with GDTWA for the same lattice
configuration as in Fig. 1. The blue dashed line shows the
dynamics without the spin echo, obtained from the Gaussian
TWA simulations [23]. The blue solid line corresponds to
GDTWA simulations effectively accounting for atomic motion
in the lattice, with BQ=h ¼ −2 Hz. Inset: difference between the
two experimental determinations of l, comparing the results of
the fit of the experimental probability distributions to Eq. (5).
Error bars correspond to the quadratic average of the standard
deviations associated with either methods.
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expectations. We assume that measurements of ĵz and ĵx
are affected by the same technical noise (an insufficient
signal to noise ratio in the absorption images). Since
½Ĥdd; Ĵz� ¼ 0, the theoretically expected value of hĵ2zi
remains equal to its value at t ¼ 0, i.e., to the standard
quantum noise (SQN) 3=2N.
The experimental standard deviation without Ramsey

pulse is about 3 times the SQN for t ¼ 0 and gets larger
as t increases [23]. We thus consider that hj2ziexp ≃ σ2exp.

In our simulations for the quantum noise of ĵx [23], we get
σ2exp;min > 4 × f½VarðĵXÞ þ VarðĵYÞ�=2gmax ≃ ð32=NÞ. We
therefore assume that hj2xiexp ≃ ðl2=2Þ þ σ2exp and get

hj2xiexp ≃
l2

2
þ hj2ziexp: ð5Þ

When the dephasing is complete, Eq. (5) provides a
second method for measuring l, which is in good agree-
ment with the first method described above (see inset
of Fig. 3).
Obtaining a coherence time longer than expected from

frozen particles models is unusual. It brings up the
interesting observation that motion is not always a detri-
mental effect, which has been learned in NMR (motional
narrowing, see [29]). In our case, the scenario of quantum
thermalization links the damping of the collective spin to
the growth of entanglement. Motion generates disorder in
the lattice, which may disrupt the growth of entanglement
generated by dipolar couplings and slow down thermal-
ization, hence the slower decay of l.
In conclusion, our experiment demonstrates the remark-

ably different effects of a spin echo on the dynamics of a
strongly interacting quantum system for spin populations
and spin magnetization. Notably, our measurements show
that the decay of the magnetization in our experiment is
slower than expected by a spin model of frozen particles, a
finding that could not be previously deduced from the
measurements on population dynamics. This illustrates
how measurements of spin coherences provide valuable
information on quantum many-body systems that
are crucial to benchmarking experiments as quantum
simulators.
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Huckans, P. Pedri, L. Santos, O. Gorceix, L. Vernac, and
B. Laburthe-Tolra, Phys. Rev. Lett. 111, 185305 (2013).

[13] A. de Paz, P. Pedri, A. Sharma, M. Efremov, B. Naylor,
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