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Abstract. In this article, we aim to classify the dynamic transitions and bifurcations for a family of axisym-5
metric geophysical fluid problems of a generic fourth-second order structure. A transition theorem is6
established by reducing the governing partial di↵erential equations to a complex-valued ordinary dif-7
ferential equation, derived by employing approximate invariant manifolds. We develop an algorithm8
for the numerical determination of the transition/bifurcation types. Finally we apply the transi-9
tion theorem and algorithm to examine the baroclinic instability in a two–layer quasi-geostrophic10
system in an annular channel and with di↵erent bathymetry profiles. Our numerical results show11
that with concave bathymetry the transition (bifurcation) is always continuous (supercritical Hopf12
bifurcation), whereas for convex bathymetry a jump transition (subcritical Hopf bifurcation) may13
occur in the basic azimuthal currents that rotate in the same direction.14
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1. Introduction. Dynamic transitions are the transitions from one state of a system to18

another state, which are ubiquitous in geophysical fluid dynamics. The physical state of a19

system is described by the qualitative behaviour or topological structure of solutions to the20

governing equations. The phenomena of dynamic transitions and bifurcations are usually21

studied by the classical bifurcation theory, see for instance [19, 26] and references therein.22

In some applications the local bifurcation theory is insu�cient to classify the transitions23

especially when there is no bifurcation of solutions involved. In recent years, Ma and Wang24

[36] develop another paradigm-phase transition dynamics to probe the types of transitions25

and the structure of transition states. Under the principle of exchange of stabilities (PES)26

they establish that dynamic transitions of all dissipative systems can be classified into three27

categories: continuous (attractor bifurcation), jump, and mixed, cf. Section 2 for the precise28

definition. Roughly speaking, a continuous transition means that the basic state bifurcates to a29

local attractor; a jump transition says that a system will jump to another state discontinuously,30

and a random transition indicates that both continuous and jump transitions are possible31

depending on the initial perturbation. It should be pointed out that the theory of phase32

transition would recover the results from classical bifurcation theory in applications where33

the latter is applicable. The theory has been successfully applied in the study of many34
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2 D. HAN, M. HERNANDEZ, AND Q. WANG

instability problems in fluid dynamics, for instance, the instabilities and transitions of quasi-35

geostrophic channel flows [14, 27, 32], tropical atmospheric circulations [21, 28], Rayleigh-36

Benard convection [33, 47, 46, 17], instabilities associated with magnetic fluid flows [52, 31],37

and many transition problems with random e↵ects [10, 11, 12, 30, 20].38

Many phase transition phenomena in geophysical fluid dynamics exhibit the formation of39

periodic and quasi-periodic patterns of fluid flows. For instance, the transitions associated40

with the baroclinic instability and barotropic instability are closely linked to the large-scale41

ocean surface circulation [2, 4, 24, 40, 49, 50, 16] and the large-scale blocking pattern formation42

[8, 29, 45] in atmospheric dynamics. Dynamic transitions are also observed during the onset43

of convection instability in thermal circulation [33, 47, 46, 22, 35, 34, 41]. Although the gov-44

erning equations in these transition problems are di↵erent, their linear parts have a common45

structure of a fourth-second order coupling. For instance, the two-layer QG (geostrophic-46

quasi) equations [43, 37] with viscous e↵ects and governing the baroclinic instability in the47

two-layer flows over an annular channel with a bathymetry ⌘b [44], given by48

@tp1 +Re�1�2u1 = �1/r (�@�u1@r + @ru1@�) p1,

@tp2 +Re�1�2u2 = �1/r (�@�u2@r + @ru2@�) (p2 � F2⌘b(r)) ,

p1 = [��u1 + F1(u1 � u2)] , p2 = ��u2 + F2(u2 � u1),

(1.1)49

50

and the equivalent barotropic dimensionless equation [1]51

@t (� � S ) + @x @y� � @y @x� +Re�1@x = Re�1�2 ,(1.2)52

which is used to modeling the evolution of the western boundary currents on a horizontal53

periodic channel (x, y) 2 R/(2⇡Z)⇥ (y1, y2), where F1, F2, S and Re are dimensionless param-54

eters. The main objective of this article is to examine and classify the dynamic transitions55

and bifurcations associated with a family of geophysical fluid flows. In particular, we would56

like to determine if the transition from one flow regime to another is continuous or jump or57

even mixed from the perspective of the dynamic transition, in the sense that the state of the58

flow may gradually or suddenly change from one configuration to another.59

To capture as many transition problems as possible, including these problems in a hori-60

zontal periodic channel or an annular channel, we consider in an abstract setting the following61

axisymmetric nonlinear system with an underlying fourth-second order linear structure62

@tAu = L�u+ G(u, u),(1.3)6364

where (r,�) 2 (R1, R2) ⇥ R/(2⇡Z) ! u(r,�) 2 Rd is the state function, R2 > R1, � is a65

real control parameter, @t represents di↵erentiation with respect to time, A and L� are linear66

di↵erential operators given, respectively, by67

(Au)i(r,�) :=
dX

j=1

X

|↵|Ni�2

qij↵(r)D
↵uj(r,�),

(L�u)
i(r,�) :=

dX

j=1

X

|↵|Ni

pij↵(r,�)D
↵uj(r,�), 1  i  d,

(1.4)68

69
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with |↵| = ↵1 + ↵2, ↵ = (↵1,↵2), D↵ = @r↵1@�↵2 and Ni 2 {2, 4}, and G is the nonlinear70

di↵erential operators given by71

G(u, v)i(r,�) :=
dX

j,k=1

X

|↵|Ni�1
|�|Ni�1
|↵| 6=|�|

|↵|+|�|Ni

gijk,↵�(r)D
↵uj(r,�)D�vk(r,�), 1  i  d.

(1.5)72

73

For those coe�cient functions qij↵(r), p
i
j↵(r) and gijk,↵�(r), we suppose that all of them are74

bounded and smooth functions defined on [R1, R2], satisfying75

pij↵(r,�) = 0, j 6= i, |↵| = Ni,(1.6)76

min
r2[R1,R2]

��qii↵(r)
�� > 0 for |↵| = Ni � 2,

min
r2[R1,R2]

��pii↵(r,�)
�� > 0 for |↵| = Ni,

(1.7)77

78

and required that they could guarantee the invertibility of A and the highest part of L�.79

We note that the nonlinear system (1.3) not only contains the Eqs. (1.1) and (1.2), but80

also covers a broad class of equations arising in geophysical fluid dynamics, such as the l-81

layer QG equations governing barotropic and baroclinic instability [7, 15, 3, 23, 51, 5, 28, 18]82

and viscosity instability and others [2, 4, 24, 40, 49, 50, 42] where d = l, M1, ...,Md = 2,83

N1, ..., Nd = 4, the Boussinesq equations for thermal circulation [33, 47, 46, 22, 35, 34, 41]84

with temperature and/or salinity in a stream function formulation (M1 = 2, M2 = M3 = 0,85

N1 = 4, N2 = N3 = 2), and other variants of the Boussinesq equations [35, 41, 38] for di↵erent86

problems in atmospheric and oceanic sciences, fluid systems and magnetic fluid systems.87

The system (1.3) is not complete without boundary conditions. For this we consider the88

domain D = (R1, R2)⇥ (R/2⇡Z), and, for each j = 1, ..., d, the boundary conditions imposed89

on the component uj are of the form90

X

|↵|Nj�1

bLl,j,↵D
↵uj(R1) = 0, l = 1, · · · , Dj ,

X

|↵|Nj�1

bRl,j,↵D
↵uj(R2) = 0, l = 1, · · · , Dj ,

(1.8)91

92

where Dj = 2 if the jth equation is of fourth order (Nj = 4), and Dj = 1 if it is of second93

order (Nj = 2). Note also that implicit in the above formulation are the periodic boundary94

conditions95

uj(r,�+ 2k⇡) = uj(r,�), r 2 (R1, R2), k 2 Z.9697

In a nutshell, the application of the phase transition theory contains three main steps.98

First, the principle of exchange of stability (PES) condition must be verified. Next, the99

corresponding reduced equations must be obtained. Finally, the transition number must be100

computed, and its sign (or that of its real part) determines the type of transition from one101

state to another.102
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4 D. HAN, M. HERNANDEZ, AND Q. WANG

For our problem (1.3), the first step amounts to solve the generalized eigenvalue problem103

�(�)Au = L�u.(1.9)104105

Except in the case where the coe�cients of the di↵erential operators A and L are constants,106

see [33, 47, 46, 22, 35, 34, 41], it is challenging, if not impossible, to solve (1.9) analytically.107

Thus, in this article, we shall adapt the spectral method [48] for solving single one dimensional108

second/fourth order di↵erential equations to solve the general eigenvalue problem (1.9). For109

the second step, the reduced equations corresponding to our problem (1.3) are obtained by110

approximating the center manifold, leading to a system of the form111

dz

dt
= �1,mz + ⌧z|z|2 + ⌧1z|z|4 + o(|z|5), z 2 C,112

113

where the coe�cients ⌧ (⌧1) of the third (fourth)-order term above are determined by an114

algebraic expression involving the first eigenvector and the nonlinear part in (1.3). These115

coe�cients have to be computed numerically except for the case where non-linear interac-116

tions between eigenvectors can be expressed as finite combinations of these. Here �1,m is the117

eigenvalue of (1.9) with the largest real part, satisfying PES condition (3.3) or (3.4).118

Throughout this article, we call ⌧ and ⌧1 as the first transition number and second transi-119

tion number for the nonlinear system (1.3), respectively. The main transition theorem can be120

summarized as follows: 1) If the real part of ⌧ is negative (positive), then the transition of the121

nonlinear system (1.3) from zero is continuous (jump), which corresponds to a supercritical122

(subcritical) Hopf bifurcation; 2) When ⌧ = 0, if the real part of ⌧1 is negative (positive),123

then the transition type of the nonlinear system (1.3) from zero is continuous (jump), which124

corresponds to a supercritical (subcritical) Hopf bifurcation.125

For these results to be of practical use, in the present work we also provide an algorithm126

which is utilized to determine the sign of ⌧ and ⌧1. We then apply the transition theorem127

and the numerical algorithm to study the dynamic transitions associated with the baroclinic128

instability in two layer basic flows over an annular channel and with di↵erent bathymetry129

profiles. Our numerical experiments show that for a concave bathymetry, the transition of the130

two-layer system is always continuous, whereas for a convex bathymetry, a jump transition131

may occur in the basic azimuthal currents that rotate in the same direction. Related to our132

results are those in [3, 39, 51] which study the e↵ect of the ratio of the bathymetry slope133

to the mean isopycnal slop on the baroclinic instability based on di↵erent non-dissipative134

models. A relatively thorough numerical simulation is performed in [25] for characterizing the135

topographic regime using the Eady model. To the best of our knowledge, our results here136

provide the first complete classification of the transitions and bifurcations associated with137

baroclinic instability in the two-layer QG model of di↵erent bathymetry profiles.138

The rest of the article is organized as follows. In Section 1 we recall the definition of139

dynamic transitions and the classification following [36]. In Section 2, we establish the reduced140

equations and transition theorem for (1.3), subject to the boundary conditions (1.8), under141

the assumption that the required PES condition holds. The supplemented algorithm used to142

estimate the type of transition is given in Section 3. In Section 4, as an application of the143

algorithm and general transition theorem, we study the e↵ect of the curved bottom slopes on144

the dynamic transition associated to baroclinic instability arising in two layer currents.145
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2. Preliminary. In this section we recall the mathematical definition of dynamic transi-146

tions and the classification from chapter 2 of [36]. To this end, let Y be a Hilbert space, we147

consider the following abstract evolution equation defined on Y148

dv

dt
= L�v +G(v), v 2 Y,(2.1)149

150

where {L�} represents a family of linear operators parameterized by a scalar control parameter151

�, G(u) accounts for the nonlinear terms. We make the following assumptions.152

Assumptions about the operator: L� takes the form of153

L� = �A+B�,(2.2)154155

where A is a linear homeomorphism from X1 to Y , which is also a sectorial operator on X1, i.e.156

D(A) = X1 ⇢ Y and X1 is compactly and densely embedded in Y , and B� is a parameterized157

family of bounded linear compact operators continuously depending on �, defined on the158

interpolated space X� = D(A�) for some � 2 [0, 1]. Note that L� : X1 ! Y is a closed159

operator, and the spectrum of L� consists only of isolated eigenvalues with finite algebraic160

multiplicities.161

Assumptions about the nonlinear operator G: It is assumed that G : X↵ ! Y is162

continuous for some fixed ↵ 2 [0, 1). Furthermore, we assume that G(0) = 0, and the tangent163

map of G at 0 is assumed to be the null map, i.e., DG(0) = 0.164

Definition 2.1. We call the system (2.1) undergoes a dynamic transition from (v,�) =165

(0,�0) if the following two conditions hold true166

(1) For � < �0, 0 is locally asymptotically stable for (2.1).167

(2) For � > �0, there exists a neighborhood U of v = 0 independent of �0 such that for168

every w 2 U \ (��), the solution v(t, w) of (2.1) with initial value w satisfies169

lim
t!+1

sup kv(t, w)k � �(�) > 0, lim
�!�0

�(�) � 0,170

where �� is the stable manifold of v = 0 with codim �� � 1 for � > �0.171

The following lemma established in [36] (Theorem 2.1.3) provides a relatively complete172

description of the phase transitions associated to dissipative dynamical systems (2.1).173

Lemma 2.2. Let the (generalized) eigenvalues (counting multiplicity) of L� be given by174

{�i(�)|i = 1, 2, · · · , n� 1, n, · · · } ordered by decreasing real part. If the PES condition175

<�i(�)

8
><

>:

< 0, � < �0

= 0, � = �0

> 0, � > �0

, 1  i  m

<�j(�0) < 0, j � m+ 1

(2.3)176

177

holds, then the system (2.1) always undergoes a dynamic transition from (v,�) = (0,�0), and178

there is a neighborhood U of v = 0 such that the transition is one of the following three types:179
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6 D. HAN, M. HERNANDEZ, AND Q. WANG

(1) Continuous transition: There exists an open and dense set U� ⇢ U such that for180

any w 2 U�, the solution v(t, w) of (2.1) satisfies181

lim
�!�0

lim
t!+1

sup |v(t, w)| = 0.182

(2) Jump transition: For every �0 < � < �0 + ✏ with some ✏ > 0, there exists an open183

and dense subset U� ⇢ U such that for any w 2 U�, the solution v(t, w) of (2.1)184

satisfies185

lim
t!+1

sup |v(t, w)| � � > 0,186

where � > 0 is independent of �.187

(3) Mixed transition: For every �0 < � < �0 + ✏ for some ✏ > 0, U can be decomposed188

into two open sets U1
� and U2

�: U = U1
� [ U2

�, U1
� \ U2

� = ; such that189

lim
�!�0

lim
t!+1

sup |v(t, w)| = 0, 8 w 2 U1
� ,190

lim
t!+1

sup |v(t, w)| � � > 0, 8 w 2 U2
� ,191

192

where U1
� and U2

� are called metastable domains.193

According to Definition 2.1 and Lemma 2.2, one can see that dynamic transitions in194

dissipative system are di↵erent than bifurcations. It should be pointed out that in most ap-195

plications the theory of phase transition would recover the results from classical bifurcation196

theory in applications where the latter is applicable. For many dissipative systems in geo-197

physical fluid dynamics, A is invertible . Here, we assume that A has a bounded inverse. Note198

if we denote L� = A�1L�, G = A�1G, then the nonlinear system (1.3) can be rewritten as199

the standard form (2.1), which satisfy all assumptions aforementioned. In the following, we200

will establish a dynamic transition theorem for the axially symmetric nonlinear system (1.3)201

based on the dynamic transition classification scheme in Lemma 2.2.202

3. Dynamic transitions in axially symmetric problems. The first step needed to deter-203

mine the transition type of (1.3) is to characterize the spectral properties of the linear problem204

associated with (1.3). More precisely, we need to study the generalized eigenvalue problem205

(1.9) subject to the boundary conditions (1.8).206

Our standing assumption is that all the coe�cients in these equations are independent of207

the periodic variable �, which justifies the use of separation of variables so that, in looking for208

eigenfunctions for the linearized equations (1.9), one can, without loss of generality, assume209

that uj(r,�) = eim�U j(r). Then, for a given m, the eigenvalue problem (1.9) with form of210

�(�)Aeim�U j(r) = L�e
im�U j(r)211

becomes212

�m(�)AmU j = Lm(�)U j , m 2 Z(3.1)213214
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where now215

(AmU)i(r) =
X

1jd
|↵|Ni�2

(im)↵2qij↵(r)@
↵1
r U j ,216

(Lm(�)U)i(r) =
X

1jd
|↵|Ni

(im)↵2pij↵(r,�)@
↵1
r U j .217

218

In general, U can be complex valued, and we do not impose any normalization condition at219

this point. This particular issue will be taken care of by means of the dual problem introduced220

below. The corresponding boundary conditions need to be modified to take into account this221

special angular dependence, and it is easy to see that, for a given m, they take the form222

(3.2)

X

|↵|Nj�1

bLl,j,↵(im)↵2@↵1
r U j(r1) = 0, l = 1, ..., Dj ,

X

|↵|Nj�1

bRl,j,↵(im)↵2@↵1
r U j(r2) = 0, l = 1, ..., Dj .

223

3.1. PES condition. Note that the real coe�cients of the operators A and L� imply that224

�m(�) is also an eigenvalue of the eigenvalue problem (1.9), the corresponding eigenfunction225

reads e�im�U j(r), and �m(�) and U j(r) solve226

�m(�)A�mU
j
= L�m(�)U

j
227

derived by taking the complex-conjugate of (3.1). Thus, we have ��m(�) = �m(�). If228

�m(�) complex, then the eigenfunctions respectively corresponding to �m(�) and ��m(�) are229

complex-conjugate each other. Particularly, if �m(�) is real, then ��m(�) = �m(�), and both230

the real part and imaginary part of eim�U j(r) are eigenfunctions of the eigenvalue problem231

(1.9), i.e., its geometric multiplicity is 2.232

We denote the solutions of (3.1) by {(�m,k(�), Um,k(�))}k2N, where the eigenvalues, count-233

ing multiplicity, are ordered by decreasing real part, that is,234

<�m,1(�) � <�m,2(�) � · · · ! �1.235236

Here we assume that there exists certain �0 and a neighborhood ⇤ of �0, such that there exists237

a unique m̄ 2 Z+, with the property that for � 2 ⇤238

(3.3)

8
>>>><

>>>>:

<�m̄,1(�) = <��m̄,1(�)

8
><

>:

> 0 if � > �0,

= 0 if � = �0,

< 0 if � < �0,

<�m,k(�) < 0, (m, k) 6= (m̄, 1), (m, k) 6= (�m̄, 1),

239

if the leading eigenvalue of the problem (1.9) is complex, or240

(3.4)

8
>>>><

>>>>:

�m̄,1(�) = ��m̄,1(�)

8
><

>:

> 0 if � > �0,

= 0 if � = �0,

< 0 if � < �0,

<�m,k(�) < 0, (m, k) 6= (m̄, 1), (m, k) 6= (�m̄, 1)

241
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8 D. HAN, M. HERNANDEZ, AND Q. WANG

if the leading eigenvalue of the problem (1.9) is real.242

If the leading eigenvalue is complex, and the PES condition (3.3) holds, then the center-243

unstable space Hc is spanned by the real part and imaginary part of the first eigenvectors,244

which is of dimension two and can be expressed as245

(3.5) Hc =
n
u(r,�) = zeim̄�Um̄,1(r) + z̄e�im̄�Um̄,1(r) : z 2 C

o
.246

If the leading eigenvalue is real, the PES condition (3.4) infers that its geometric multiplicity247

is equal to algebraic multiplicity, which is 2. Because both the real part and imaginary part of248

eim�U j(r) are eigenfunctions of the eigenvalue problem (1.9) in this case. Hence, the center-249

unstable space Hc is also give by (3.5) for the case of real leading eigenvalue.250

Regarding the non-linear interactions in (1.4), we let251

Gi
m,m0(U, V ) =

dX

j,k=1

X

|↵|Ni�1
|�|Ni�1
|↵| 6=|�|

|↵|+|�|Ni

(im)↵2(im0)�2gijk,↵�(r)@
↵1
r U j(r)@�1

r V k(r) .(3.6)252

253

In most applications the non-linear interactions involve exactly one derivative with respect to254

the angular variable in each term. In our context, this amounts to require that255

gijk↵� ⌘ 0 whenever ↵2 + �2 6= 1.(3.7)256257

Thus we obtain the algebraic constraint258

G(eim�U, eim
0�V ) = ei(m+m0)�Gm,m0(U, V ).259260

It is also convenient to introduce the dual generalized eigenvalue problem261

�m(�)A⇤
mU⇤ = L⇤

m(�)U⇤(3.8)262263

where now264

(A⇤
mU⇤)i(r) =

X

1jd
|↵|Ni�2

(�1)↵1(im)↵2@↵1
r

�
qij↵(r)U

⇤j� ,265

(L⇤
m(�)U⇤)i(r) =

X

1jd
|↵|Ni

(�1)↵1(im)↵2@↵1
r

�
pij↵(r,�)U

⇤j� .266

267

In most applications of interest, the eigenvalues of (3.1) turn out to be semisimple. Because268

of this, we can assume that upon appropriately normalizing U⇤, we have the orthogonality269

conditions270

hAmUm,k, U
⇤
m,k0i =

dX

i=1

Z R2

R1

(AmUm,k)
i(r)(U⇤

m,k0)
i(r)dr = �k,k0 ,271

272
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where Um,k ( U⇤
m,k) is the eigenvector (adjoint eigenvector) corresponding to �m,k.273

Thus U⇤
m̄,1 provides us with a practical way to implement the Riesz projection, ⇧c, onto274

Hc (or, more precisely, onto its image under Am. Note that, as we shall later see in Sec. 3.5,275

the specifics of this dual problem are not relevant from a numerical point of view, since in the276

implementation of the spectral Galerkin method the dual problem can be solved by computing277

the left eigenvectors of the matrices representing the operators involved in (3.1).278

3.2. Center manifold reduction. We next turn to the approximation problem of the279

center-unstable invariant manifold function h : Hc ! Hs := (Hc)? such that h(0) = 0 and280

Dh(0) = 0, where Hc is given in (3.5), Hs is the function spaces generated by the stable281

eigenvectors associated with the eigenvalue problem (1.9) in the vicinity of � = �0. Since the282

non-linear interactions in the case at hand are quadratic, the leading order approximation of283

h is the bilinear form284

h2(⇠) =
1

2
D2h(0)(⇠, ⇠), ⇠ 2 Hc.(3.9)285

286

This term is determined by usage of the backward-forward procedure introduced in [12];287

see also [10, Sec. 3.2]. This procedure relies on the pullback characterization of approximations288

to (local) invariant manifolds as identified in [12, Chap. 4], that we apply in the deterministic289

context of this article.290

To do so, we first let ⇠ in Hc be parametrized by z 2 C as in (3.5). Then we solve291

the linearized equations backwards in time with initial datum ⇠ at t = 0, and denote the292

corresponding solution by u(1). Next, we solve the linearized equations forward in time by293

using ⇧sG(u(1), u(1)) as a source term, and impose that the corresponding solution vanishes294

as t ! �1, where ⇧s is the projection onto Hs.295

More precisely, we solve for all T > 0, the following backward-forward system associated296

with the evolution equation (1.3):297

dAcu(1)

dt
= Lc

�u
(1), u(1)(0) = ⇠, t 2 [�T, 0],(3.10a)298

dAsu(2)

dt
= Ls

�u
(2) +⇧sG(u(1)(s), u(1)(s)), u(2)(�T ) = 0, t 2 [�T, 0],(3.10b)299

300

where Lc
� := ⇧cL� (resp. Ac := ⇧cA), and Ls

� := ⇧sL� (resp. As := ⇧sA), in which ⇧c301

is the projection onto Hc. Note that Eq. (3.10a) being a finite dimensional linear ordinary302

di↵erential equation (ODE), the solution u(1) exists for all negative times. The existence and303

uniqueness of u(2) solving (3.10b) can be justified by making use of the fact that Ls
� is a304

negative definite operator on the preimage under As of set ⇧sG(Hc, Hc).305

In the system above, the initial value ⇠ (in Hc) of u(1) is prescribed at t = 0, and the306

initial value of u(2) at t = �T . The solution of this system is obtained by using a two-step307

backward-forward integration procedure — where Eq. (3.10a) is integrated first backward and308

Eq. (3.10b) is then integrated forward — made possible due to the partial coupling present in309

(3.10) where u(1) forces (via the nonlinear terms in ⇧sG) the evolution equation of u(2) but not310

reciprocally. Due to this forcing introduced by u(1) which emanates (backward) from ⇠, the311

solution u(2) depends thus naturally on ⇠. For that reason, we will emphasize this dependence312

as u(2)[⇠] hereafter.313
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Adopting the language of non-autonomous dynamical systems [6, 13], the proof of [12,314

Prop. 4.1] can be adapted to infer that the leading approximation h2(⇠) (defined in (3.9)) is in315

fact obtained as the pullback limit of the u(2)-component of the solution to the system (3.10),316

i.e.,317

(3.11) h2(⇠) = lim
T!+1

u(2)[⇠](�T, 0).318

Note that in (3.11), the dependence on two time arguments for u(2)[⇠] is made apparent to em-319

phasize the two-time description employed for the proper description of the non-autonomous320

dynamics inherent to (3.10b); see e.g. [9].321

We turn now to the explicit determination of u(2)[⇠] in the case of Hc given by (3.5). First,322

let us remark that due to the simple form of Hc and (3.1), Eq. (3.10a) can be solved explicitly323

and thus324

u(1)(t, r,�) = ze�m̄,1teim̄�Um̄,1(r) + z̄e��m̄,1te�im̄�U�m̄,1(r), t  0.(3.12)325326

Using this expression into the right-hand side of Eq. (3.10b), and the following ansatz for its327

solution u(2)(t, ·, ·) (t  0),328

(3.13) u(2)(t, r,�) = z2u(2)20 (t, r)e
2im̄� + |z|2u(2)11 (t, r) + z̄2u(2)02 (t, r)e

�2im̄�,329

we observe that u(2)20 , u
(2)
11 and u(2)02 solve the following auxiliary (uncoupled) system of PDEs330

(3.14)

d

dt
A2m̄u(2)20 = L2m̄(�)u(2)20 + e2�m̄,1tGm̄,m̄(Um̄,1, Um̄,1),

d

dt
A0u

(2)
11 = L2m̄(�)u(2)11 + e2<�m̄,1tGm̄,�m̄(Um̄,1, U�m̄,1)

+ e2<�m̄,1tG�m̄,m̄(U�m̄,1, Um̄,1),

d

dt
A�2m̄u(2)02 = L�2m̄(�)u(2)02 + e2��m̄,1tG�m̄,�m̄(U�m̄,1, U�m̄,1).

331

The solutions of the diagonal system (3.14) vanishing at t = �1 are given by332

(3.15)

u(2)20 (t, r) = e2�m̄,1t'20(r),

u(2)11 (t, r) = e2<�m̄,1t'11(r),

u(2)02 (t, r) = e2��m̄,1t'02(r),

333

where '20, '11 and '02 solve the system of PDEs334

2�m̄,1A2m̄'20 � L2m̄(�)'20 = Gm̄,m̄(Um̄,1, Um̄,1),335

2<�m̄,1A0'11 � L0(�)'11 = Gm̄,�m̄(Um̄,1, U�m̄,1)

+ G�m̄,m̄(U�m̄,1, Um̄,1),
(3.16)336

2��m̄,1A�2m̄'02 � L�2m̄(�)'02 = G�m̄,�m̄(U�m̄,1, U�m̄,1),337338
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supplemented with the boundary conditions339

X

|↵|Nj�1

bLl,j,↵(i2m̄)↵2@↵1
r 'j

20(R1) = 0,

X

|↵|Nj�1

bRl,j,↵(i2m̄)↵2@↵1
r 'j

20(R2) = 0,
(3.17)340

X

|↵|Nj�1

bLl,j,↵@
↵
r '

j
11(R1) = 0, l = 1, ..., Dj ,

X

|↵|Nj�1

bRl,j,↵@
↵
r '

j
11(R2) = 0, l = 1, ..., Dj ,

(3.18)341

X

|↵|Nj�1

bLl,j,↵(�i2m̄)↵2@↵1
r 'j

02(R1) = 0,

X

|↵|Nj�1

bRl,j,↵(�i2m̄)↵2@↵1
r 'j

02(R2) = 0.
(3.19)342

343

3.3. Transition theorem. The reduced equation is then obtained by setting u = ⇠+h2(⇠)344

in Eq. (1.3) with h2 as given by (3.11) and with u(2) obtained as described above, and by345

projecting onto the subspace346

(3.20) span{A⇠, ⇠ 2 Hc}.347

Thus, using the expression of u(2) given by (3.13)-(3.15) with '20, '11 and '02 solving (3.16),348

and projecting onto eiam̄�U⇤
m̄,1, we get the following reduced equation349

(3.21)

dz

dt
=�m̄,1z + z|z|2hGm̄,0(Um̄,1,'11) + G0,m̄('11, Um̄,1), U

⇤
m̄,1i

+ z|z|2hG�m̄,2m̄(U�m̄,1,'20) + G2m̄,�m̄('20, U�m̄,1), U
⇤
m̄,1i+ o(|z|3).

350

We have thus proved the following Lemma.351

Lemma 3.1. The stability and transition of zero solution to (1.3) with any su�ciently small352

initial condition and in the vicinity of the critical control parameter � = �0 can be reduced to353

these of the zero solution to the equation taking the simple form354

dz

dt
= �m̄,1z + ⌧z|z|2 + o(|z|3)(3.22)355

356

where357

⌧ = hGm̄,0(Um̄,1,'11) + G0,m̄('11, Um̄,1)

+ G�m̄,2m̄(U�m̄,1,'20), U
⇤
m̄,1i

+ hG2m̄,�m̄('20, U�m̄,1), U
⇤
m̄,1i.

(3.23)358

359

From the above lemma the transition type can be determined by the sign of <⌧ . More precisely,360

we have the following dynamic transition theorem:361
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12 D. HAN, M. HERNANDEZ, AND Q. WANG

Theorem 3.2. Let ⌧ be given by (3.23), for (1.3) at � = �0 and subjected to the boundary362

conditions (1.8), then the following assertions hold true:363

(1) If <⌧ < 0 and �m̄,1 62 R, then the system undergoes a continuous transition. As a364

result, a stable periodic orbit bifurcates on � > �0, whose expression is approximately365

given by366

(3.24)
u(t, r,�) =am̄(⌧) (cos(=�m̄,1t+ m̄�)<Um̄,1(r)� sin(=�m̄,1t+ m̄�)=Um̄,1(r))

+O(<�m̄,1),
367

where368

(3.25) am̄(⌧) = 2

✓
<�m̄,1

|<⌧ |

◆1/2

.369

(2) if <⌧ < 0 and =�m̄,1 = 0, then the system undergoes a continuous transition. As370

a result, an S1 attractor bifurcates, which contains at least two pairs of stationary371

solutions approximately given by372

u1(r,�) = ±am̄(⌧) cos(am̄�)Um̄,1(r) +O(|<�m̄,1|),373

u2(r,�) = ±am̄(⌧) sin(am̄�)Um̄,1(r) +O(|<�m̄,1|),374375

(3) If <⌧ > 0, the transition of the system at � = �0 is jump.376

Proof. In broad terms, the transition type for (1.3) is uniquely determined by the stability377

of the zero solution of the reduced system obtained by projecting the equations onto its center378

manifold. By the lemma Theorem 3.1, the claim on the transition type then follows directly379

by noting that380

d

dt
|z|2 = 2|z|2(<�m̄,1 + <⌧ |z|2) + o(|z|4)381

382

so that, at the critical value <�m̄,1 = 0, the origin is a stable solution provided <⌧ < 0, and383

it is unstable if <⌧ > 0. In the former case, there exists an open U� containing the zero point384

in the vicinity of � = �0 such that for any z0 2 U�, the solution z(t, z0) of (3.22) satisfies385

lim
�!�0

lim
t!+1

sup |z(t, z0)| = 0.386

By the (2.2), it means that the dynamic transition is continuous type. For the latter case,387

due to the instability of zero solution for each � 2 [�0,+1), for every �0 < � < �0 + ✏ for388

some ✏ > 0, there exists an open U� containing the zero point such that for any z0 2 U�, the389

solution z(t, z0) of (3.22) satisfies390

lim
�!�0

lim
t!+1

sup |z(t, z0)| > 0,391

which implies the transition is jump (catastrophic). Thus, when <⌧ < 0 and <�m̄,1 > 0,392

it deduces from the lemma Theorem 3.1 that the bifurcated solution is a periodic orbit,393

approximately given by394

z(t) =

✓
<�m̄,1

|<⌧ |

◆1/2

exp (i=�m̄,1t) +O(<�m̄,1).395
396
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If =�m̄,1 = 0, then the bifurcated solution is a fixed point, which can in fact be considered397

as a special case of the above formula. Noting that, by substituting the above in the definition398

of Hc we get, in terms of the original formulation, a bifurcated solution of the form399

u(t, r,�) =2 (<�m̄,1/|<⌧ |)1/2 cos(=�m̄,1t+ m̄�)<um̄,1(r)400

� 2 (<�m̄,1/|<⌧ |)1/2 sin(=�m̄,1t+ m̄�)=um̄,1(r) +O(<�m̄,1),401402

which proves the theorem.403

3.4. Higher order approximations at the transition. Although the construction just de-404

scribed is usually enough to determine the transition type of a given system, it is sometimes405

necessary to use a higher order approximation of the relevant (locally) invariant manifolds.406

For instance, this is the case when <⌧ vanishes identically, so the transition type is undeter-407

mined, or when one is interested in further properties of the bifurcated solution very close to408

the criticality. In any case, by following the logic of the previous derivation, one can easily409

obtain, at least in theory, higher order approximations of all the involved quantities.410

Suppose we seek an approximation of the invariant manifold of the form411

h(⇠) = h2(⇠) + h3(⇠) + o(|⇠|3), ⇠(r,�) = 2<
⇣
zeim̄�Um̄,1(r)

⌘
,412

413

where |hj(⇠)| = O(|⇠|j), j = 2, 3. By using the exact same procedure previously described, we414

find that h2 is given by415

h2(⇠)(r,�) = z2e2im̄�'20(r) + |z|2'11(r) + z2e�2im̄�'02(r)416417

with '20, '11 and '02 solving (3.16).418

Similarly, using the ansatz419

h3(⇠)(r,�) = z3e3im̄�'30(r) + z|z|2eim̄�'21(r)

+ z|z|2e�im̄�'12(r) + z3e�3im̄�'03(r)
420

421

we get, upon performing calculations similar to those in Section 2.2, that the coe�cients 'ij ,422

i+ j = 3, are uniquely determined by the equations423

3�m̄,1A3m̄'30 � L3m̄(�)'30 = Gm̄,2m̄(Um̄,1,'20) + G2m̄,m̄('20, Um̄,1)424

(2<�m̄,1 + �m̄,1)Am̄'21 � Lm̄(�)'21 = G�m̄,2m̄(U�m̄,1,'20)

+ G2m̄,�m̄('20, U�m̄,1) + Gm̄,0(Um̄,1,'11) + G0,m̄('11, Um̄,1)
425

(2<�m̄,1 + �m̄,1)A�m̄'12 � L�m̄(�)'12 = Gm̄,�2m̄(Um̄,1,'02)

+ G�2m̄,m̄('02, Um̄,1) + G�m̄,0(U�m̄,1,'11) + G0,�m̄('11, U�m̄,1)
426

3�m̄,1A�3m̄'03 � L�3m(�)'03 = G�m̄,�2m̄(U�m̄,1,'02) + G�2m̄,�m̄('02, U�m̄,1)427428
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subjected to the boundary conditions429
X

|↵|Nj�1

bLl,j,↵(i3m̄)↵2@↵1
r 'j

30(R1) =
X

|↵|Nj�1

bLl,j,↵(im̄)↵2@↵1
r 'j

21(R1) = 0,

X

|↵|Nj�1

bLl,j,↵(�im̄)↵2@↵1
r 'j

12(R1) =
X

|↵|Nj�1

bLl,j,↵(�3im̄)↵2@↵1
r 'j

03(R1) = 0,

X

|↵|Nj�1

bRl,j,↵(3im̄)↵2@↵1
r 'j

30(R2) =
X

|↵|Nj�1

bRl,j,↵(im̄)↵2@↵1
r 'j

21(R2) = 0,

X

|↵|Nj�1

bRl,j,↵(�im̄)↵2@↵1
r 'j

12(R2) =
X

|↵|Nj�1

bRl,j,↵(�3im̄)↵2@↵1
r 'j

03(R2) = 0.

430

431

The reduced equations then admit the approximation432

dz

dt
= �m̄,1z + ⌧z|z|2 + ⌧1z|z|4 + o(|z|5),433

434

where, ⌧ is given by (3.23), and the second transition number ⌧1 is given by435

⌧1 =hG�2m̄,3m̄('02,'30) + G3m̄,�2m̄('30,'02), U
⇤
m̄,1i

+ hG0,m̄('11,'21) + G0,m̄('11,'21), U
⇤
m̄,1i

+ hG2m̄,�m̄('20,'12) + G�m̄,2m̄('12,'20), U
⇤
m̄,1i.

(3.26)436

437

We thus obtain the following lemma:438

Lemma 3.3. The stability and transition of zero solution to (1.3) in the vicinity of the439

critical control parameter � = �0 and with any su�ciently small initial condition can be440

reduced to these of the zero solution to the equation taking the simple form441

dz

dt
= �m̄,1z + ⌧z|z|2 + ⌧1z|z|4 + o(|z|5).442

443

Similarly, we have the following transition theorem:444

Theorem 3.4. In the case of <⌧ = 0, let ⌧1 be given by (3.26), for (1.3) at � = �0 and445

subject to the boundary conditions (3.2), the following assertions hold true:446

(1) If <⌧1 < 0 and �m̄,1 62 R, then the system undergoes a continuous transition. As a447

result, a stable periodic orbit bifurcates on � > �0, whose expression is approximately448

given by449

(3.27)

u(t, r,�) =bm̄(⌧) (cos(=�m̄,1t+ m̄�)<Um̄,1(r)� sin(=�m̄,1t+ m̄�)=Um̄,1(r))

+O(<�m̄,1), bm̄(⌧) = 2

✓
<�m̄,1/|<⌧ |

◆1/4

.
450

(12) If <⌧1 < 0 and =�m̄,1 = 0, then the system undergoes a continuous transition. As451

a result, an S1 attractor bifurcates on � > �0, which contains at least two pairs of452

stationary solutions approximately given by453

u1(r,�) = ±bm̄(⌧) cos(am̄�)Um̄,1(r) +O(|<�m̄,1|),454

u2(r,�) = ±bm̄(⌧) sin(am̄�)Um̄,1(r) +O(|<�m̄,1|),455456
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(3) The transition is of jump type if <⌧1 > 0.457

Proof. The proof of the theorem is similar to that of Theorem 3.2 and is thus omitted.458

3.5. Numerical determination of the transition number ⌧ . In view of the method just459

described, it is clear that in order to find the value of the transition number ⌧ , it is enough to460

solve a series of linear problems, which are in turn determined by the operators Am and Lm.461

In order to achieve this, our approach consists of using a spectral method to encode both the462

action of these operators and the boundary conditions (3.2).463

More precisely, given a family of orthogonal polynomials {Pn}1n=0 (such as Legendre poly-464

nomials or Chebyshev polynomials ) and a su�ciently large positive integer N , our aim is to465

approximate the jth component of our target function u by using a basis {�jn}
N�Nj

n=0 of the466

form467

�jn = djn

0

@Pn +

NjX

k=1

cjn,kPn+k

1

A , n = 0, ..., N �Nj ,468

469

where, for each n and j, the coe�cients {cjn,k}
Nj

k=1 need to be chosen so that �jn satisfies (3.2),470

and the positive constants djn are chosen by fixing an appropriate normalization for the jth471

component of system. For problems with constant or polynomial coe�cients, and with a472

reasonably sized N (say, N ⇠ 100), one can simply take djn ⌘ 1. In general, however, these473

constants should be chosen so as to exploit the properties of the particular problem at hand.474

If the jth equation is of fourth order (Nj = 4), the coe�cients cjn,k are determined, for475

each n = 0, ..., N � 4, by the equations476

4X

k=1

0

@
X

|↵|3

bL1,j,↵(im)↵2P (↵1)
n+k (�1)

1

A cjn,k = �
X

|↵|3

bL1,j,↵(im)↵2P (↵1)
n (�1),477

4X

k=1

0

@
X

|↵|3

bL2,j,↵(im)↵2P (↵1)
n+k (�1)

1

A cjn,k = �
X

|↵|3

bL2,j,↵(im)↵2P (↵1)
n (�1),478

4X

k=1

0

@
X

|↵|3

bR1,j,↵(im)↵2P (↵1)
n+k (1)

1

A cjn,k = �
X

|↵|3

bR1,j,↵(im)↵2P (↵1)
n (1),479

4X

k=1

0

@
X

|↵|3

bR2,j,↵(im)↵2P (↵1)
n+k (1)

1

A cjn,k = �
X

|↵|3

bR1,j,↵(im)↵2P (↵1)
n (1).480

481

Similarly, if the jth equation is of second order (Nj = 2), the coe�cients cjn,k are deter-482
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mined, for each n = 0, ..., N � 2, by the equations483

2X

k=1

0

@
X

|↵|1

bL1,j,↵(im)↵2P (↵1)
n+k (�1)

1

A cjn,k = �
X

|↵|1

bL1,j,↵(im)↵2P (↵1)
n (�1),484

2X

k=1

0

@
X

|↵|1

bR1,j,↵(im)↵2P (↵1)
n+k (1)

1

A cjn,k = �
X

|↵|1

bR1,j,↵(im)↵2P (↵1)
n (1).485

486

Then, letting {ei}di=1 be the canonical basis of Rd, we let Am, Mm and Sm be the matrices487

encoding the values488

(Am)i,jp,q = hAm(�jqej),�
i
peii,489

(Sm)i,jp,q = hLm(�)(�jqej),�
i
peii,490

(Mm)i,jp,q = h�jqej ,�ipeii,491

i, j = 1, ..., d, p = 0, ..., N �Ni, q = 0, ..., N �Nj .492493

Then we decompose494

u =
dX

j=1

N�NjX

q=0

ûjq�
j
qej , f =

dX

j=1

N�NjX

q=0

f̂ j
q�

j
qej495

496

so that the equation ↵Amu = Lm(�)u+ f has the solution497

û = (↵Am � Sm)�1Mmf̂ .498499

The form of the matrices Am and Sm depends on the particular equation under study, but500

the mass matrix Mm can be found using only properties of the chosen orthogonal polynomials:501

M i,j
p,q = h�ip,�jqi = dipd

j
qhPp +

NiX

n=1

cip,nPp+n, Lq +

NjX

m=1

cjq,mLq+mi502

503

Making use of the basis {�jn}
N�Nj

n=0 or {Pn}Nn=0, f
j can be expressed in form of504

f j =
NX

r=0

f̄ j
rPr or f j =

N�NjX

q=0

f̂ j
q�

j
q,505

506

where f̂ j
q can be determined from f̄ j

r by using the following forward transforms507

f̂ i
p = �ijdip

0

@|Pp|2f̄ j
p +

NjX

n=1

cip,n|Pp+n|2f̄ j
p+n

1

A , 1  i, j  d,(3.28)508

509
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Algorithm 3.1 Find the transition number ⌧ in C, given by (3.23).

1. Given N , for each m 2 N, find the first left eigenvector U⇤
m,1 and the first right eigenvector

Um,1 of the matrix A�1
m Sm, i.e.,

�m,1Um,1 = A�1
m SmUm,1, �m,1U

⇤
m,1 = U⇤

m,1A
�1
m Sm,

2. Normalize the first left eigenvector U⇤
m,1 so that

hAmUm,1, U
⇤
m,1i = 1.

3. Find the backward transforms um,1 and u�m,1 of Um,1 and U�m,1, respectively, and find
the forward transforms G2m and G0 of

Gm,m(um,1, um,1) and Gm,�m(um,1, u�m,1) + G�m,m(u�m,1, um,1).

by the formula (3.28) and (3.29).
4. Solve

�20 = (2�m,1A2m � S2m)�1G2m, �11 = (2<�m,1A0 � S0)
�1G0

5. Find the backward transforms '20 and '11 of �20 and �11, respectively, and compute

⇣ =Gm,0(um,1,'11) + G0,m('11, um,1) + G�m,2m(u�m,1,'20) + G2m,�m('20, u�m,1)

6. Find the forward transform Z of ⇣ and compute

⌧ = hZ,U⇤
m,1i.

and f̄ j
r can be determined from f̂ j

q by the following backward transforms510

f̄ j
r = �ij

 
dir|Pr|2f̂ i

r + dir�n

NiX

n=1

cir�n,n|Pr�n|2f̂ i
r�n

!
, 1  i, j  d.(3.29)511

512

The procedure for finding the transition number ⌧ given by (3.23), as described in the513

previous section, can now be summarized below. Note that in Steps 2 and 6 of Algorithm 3.1,514

we use the cannonical inner product of (RN )d. This choice corresponds, in physical space, to515

the L2-inner product. An implementation of all the routines required to run the Algorithm516

3.1 using Matlab can be found in the website https://github.com/marcoher/spectral4ptd.517

4. Application to a two layer QG model. In this section we apply the transition theorem518

(Theorem 3.2) and the numerical algorithm 3.1 to investigate the dynamic transitions associ-519

ated with the baroclinic instability in the two-layer basic flows over an annular channel (see520

Fig. 1). The governing equations for this problem is the Eq. (1.1), where the viscous e↵ects521

are not taken into account in [51].522
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b
=pr

2
/2,   p>0 b

=pr
2
/2,   p<0

Figure 1. Schematic representation of the domain, bathymetry and mean circulation. Panel (a): Top-
down view of the annular channel, with dashed lines representing isobaths or mean streamlines and shaded
region excluded from the domain. Panel (b)-(c): Cross-sectional view of the mean flow configuration. The
bathymetry, ⌘b(r), is shown here, corresponding to the azimuthal flow with solid body rotation.

The basic currents ( 1(r), 2(r)) independent of the variable � flowing over the annular523

channel is determined by the following equations524

�2 i = 0, i = 1, 2,(4.1)525526

which has infinite number of solutions. Here, we are interested in the dynamic transition527

arising in four di↵erent profiles, given by528

 j(r)
(k) = ⌦j�

(k)(r), j = 1, 2, k = 1, 2, 3, 4,(4.2)529530

where ⌦j are the constant angular velocities of the flow in each layer, and531

 (1)(r) =
1

2
r2, R1  r  R2,(4.3a)532

 (2)(r) =
1

2

✓
1 +

2 ln(R2/R1)

R2
2/R

2
1 � 1

◆
r2 � 2R2

1 ln(r)

�
,(4.3b)533

 (3)(r) =
1

2

✓
r2 +

1

2

R2
2 ln(R2/R1)r2 ln(r)

R2
2 ln(R2)�R2

1 ln(R1)
� R2

2 ln(r)

2

◆
,(4.3c)534

 (4)(r) =
1

2

�
R2

2 �R2
1

� �
r2 ln(r)� (R2 +R1)2 ln(r)/4

�

R2
2 ln(R2)�R2

1 ln(R1)� (R2 +R1)
2 /4 ln(R2/R1)

,(4.3d)535

536

whose derivatives – the basic azimuthal velocity component U� = (U�,1, U�,2) – are shown in537

Fig. 2. Note that these basic solutions have been chosen so that the basic velocity profile538

(4.4) U (k)
j = (U (k)

j,r , U
(k)
j,� ) = (0, @r 

(k)
j ), j = 1, 2; k = 1, 2, 3, 4,539
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Figure 2. Angular component of the basic velocity profiles with rotiational speed ⌦j = j(j = 1, 2) and
internal/external radii R1 = 3 and R2 = 10, respectively.

has, in all cases, the same average along the radial direction as would be given by solid body540

rotation. That is,541

1

R2 �R1

Z R2

R1

U (k)
j,� (r)dr = ⌦j

R2 +R1

2
, j = 1, 2.(4.5)542

543

Please also note that only is the stability of the first profile  (1)(r) considered in [51] and544

references therein in the case of neglecting dissipation term �2u in (1.1). These researches545

only focus on the e↵ect of the value of p on the baroclinic instability, while the e↵ect of which546

on the transition type has not been considered.547

4.1. Eigenvalue Problem and Principle of Exchange of Stability. We let � = Re in548

the Eq. (1.3), the corresponding operators A, LRe and G defined in (1.4) are specified as,549

respectively,550

(4.6)

Au =

0

@��u1 + F1(u1 � u2)

��u2 + F2(u2 � u1)

1

A ,

LReu = � 1

Re
�2u� 1

r
(@rQ@� + @r @�A)u,

G(u, v) = �

�1

r
@�u@r +

1

r
@ru@�

�
Av,

551

where552

Q =

0

@ � 1 � F1( 1 � 2)

� 2 � F2( 2 � 1 � ⌘b)

1

A(4.7)553

554

and ⌘b corresponds to a parabolic bathymetry given by555

⌘b(r) = pr2/2.(4.8)556557
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Then, the perturbation equations for the basic currents is given by the nonlinear system (1.4),558

which are supplemented by the following boundary conditions559

u1

����
r=R1,R2

=

✓
@rru1 +

1

r
@ru1

◆ ����
r=R1,R2

= 0,

u2

����
r=R1,R2

=

✓
@rru2 +

1

r
@ru2

◆ ����
r=R1,R2

= 0,

(4.9)560

561

which fit (1.8) as well.562

Correspondingly, the eigenvalue problem (1.9) reads563

LReu = �Au,(4.10)564565

with the boundary condition (4.9). Thus, for m in Z, denoting an azimuthal wavenumber, we566

let uj(r,�) = vj(r) exp(im�), then the eigenvalue problem (3.1) for the two layer model is567

(4.11) Lm(Re)v = �Amv,568

where569

Amv =

0

@��mv1 + F1(v1 � v2)

��mv2 + F2(v2 � v1)

1

A ,(4.12a)570

Lm(Re)v =

0

@� 1
Re�

2
mv1 � im

r @rQ1v1

� 1
Re�

2
mv2 � im

r @rQ2v2

1

A

� im

r

0

@@r 1 [��mv1 + F1(v1 � v2)]

@r 2 [��mv2 + F2(v2 � v1)]

1

A .

(4.12b)571

572

Here �m is the second order elliptic operator given by573

�m = @rr +
1

r
@r �

m2

r2
.574

575

Besides, the bilinear operators Gm,m0 associated with the two layer problem is uniquely deter-576

mined by (4.6) and the identities577

(4.13) G(eim·u, eim
0·v) = ei(m+m0)·Gm,m0(u, v),578

for all radial functions u, v.579

For any m in Z, the solutions of the generalized eigenvalue problem (4.11) are denoted580

hereafter by581

(4.14) {(�m,k, vm,k)}k2N ,582

This manuscript is for review purposes only.



DYNAMIC TRANSITIONS AND BIFURCATIONS IN AXISYMMETRIC FLOW 21

and we assume, without loss of generality, that they are arranged such that583

<�m,1 � <�m,2 � <�m,3 � · · · ! �1.584585

From a numerical point of view, once  1,  2 and ⌘b in (4.8) have been specified, one can586

directly study (4.11) and determine the values of these parameters F1, F2, R1, R2,⌦1,⌦2 and587

Re for which the corresponding PES condition for the two layer problems holds based on588

the 3.1 provided in the previous section. As a matter of fact, given the number of free589

parameters in the system, it is not possible to give a comprehensive description of all the590

possible transition types that may occur in this problem. Instead, we follow [51] and fix the591

parameter values R1 = 3, R2 = 10, F1 = F2 = 0.5, ⌦1 = 1 and ⌦2 = 2. We are then left592

with two free parameters, the Reynolds number Re and the bathymetry slope p, and then593

verify the corresponding PES condition. For this purpose, and using the periodicity in the594

angular direction, it su�ces to find, for each value of p and wavenumber m, the value of the595

Reynolds number that makes the leading eigenfunction unstable. In other words, we look for596

the modal critical Reynolds numbers, which is the family of curves Re = Re⇤m(p) determined597

by the equation598

<�m,1(p,Re) = 0, m = 1, 2.599600

The curves Re = Re⇤m(p) corresponding to the case of solid body rotation, shown in Fig. 3.601

It has been observed that, the results are qualitatively similar when any of the other profiles602

in (4.3) are used (not shown). The critical Reynolds number is then obtained by finding, for603

each p, the first value of Re at which linear instability occurs. That is, we seek for a curve604

Re = Re⇤(p) such that for each given p the PES holds exactly at Re⇤(p). It is easy to see that605

such curve is in fact given by Re⇤(p) = minmRe⇤m(p), shown in Fig. 4. It is noteworthy that606

Re⇤(p) is piecewise smooth, with some cusp points at which Re⇤m(p) = Re⇤m+1(p). Except607

these cusp points, the PES condition608

(4.15)

8
>>>><

>>>>:

<�m̄,1(Re)

8
><

>:

> 0 if Re > Re⇤,

= 0 if Re = Re⇤,

< 0 if Re < Re⇤,

<�m,k(Re⇤) < 0 8(m, k) 6= (m̄, 1),

Re⇤ := Re⇤m̄(p) = min
m

Re⇤m(p),

609

holds true. At these cusp points, there are two pair of simple complex conjugate eigenvalues610

becoming critical, which is a degenerate case and is not within the scope of the present work.611

612

4.2. Types of dynamic transition and bifurcation. Utilizing the procedure described in613

the previous section, the transition number ⌧ given by (3.23) for the two layer problems can614

be found by implementing the 3.1 and setting the values of Re and m to coincide with Re⇤(p)615

and m̄ as discussed above. In this manner, we compute all values of ⌧(p) except at these cusp616

points of p where degeneracies occur. Hence, the transition number ⌧(p) is a discontinuous617

function, whose graph is shown in Fig. 5.618
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Figure 3. The modal critical Reynolds numbers, Re = Re⇤m(p) (solutions of <�m,1(p,Re) = 0), corre-
sponding to the case of solid body rotation, where R1 = 3, R2 = 10, F1 = F2 = 0.5, ⌦1 = 1 and ⌦2 = 2.
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Figure 4. The curves of neutral stability, Re = Re⇤(p) (solutions of maxm <�m,1(p,Re) = 0), for all four
di↵erent basic rotation profiles, the points with asterisk are the cusp points at which Re⇤m(p) = Re⇤m+1(p), where
R1 = 3, R2 = 10, F1 = F2 = 0.5, ⌦1 = 1 and ⌦2 = 2.

Recalling the basic profiles given in (4.3), the numerical results reported in Fig. 5 show619

that for the profiles  (1)(r) and  (2)(r), the dynamic transitions that occur are continuous620

for most values of p except some that, when crossed, lead to jump transitions. On the621

other hand, such jump transitions never occur for the basic profiles  (3)(r) and  (4)(r), and622

only continuous transitions take place as p varies over the prescribed range. Therefore, the623

slope of the bathymetry has an evident e↵ect on the type of transition associated with these624

basic profiles which have uniform rotation direction. For profiles with non uniform rotation625

direction, the transition type is same for both concave bathymetry and convex bathymetry,626

i.e., the transition is continuous type.627

4.3. New states. From Theorem 3.2, we know that the new states bifurcating from the628

basic profiles (4.2) can be uniformly given by629

 =2 (<�m̄,1/|<⌧ |)1/2 cos(=�m̄,1t+ m̄�)<um̄,1(r)

� 2 (<�m̄,1/|<⌧ |)1/2 sin(=�m̄,1t+ m̄�)=um̄,1(r) +O(<�m̄,1).
(4.16)630

631
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Figure 5. The transition number for all four di↵erent basic rotation profiles with R1 = 3, R2 = 10,
F1 = F2 = 0.5, ⌦1 = 1 and ⌦2 = 2.

Figure 6. The evolution of the stable periodic solution ((a) upper layer, (b) lower layer) bifurcating from
the profile with solid body rotation with p = 0.1, m = 2, Re = 0.2182 > Re⇤ = 0.1882, R1 = 3, R2 = 10,
F1 = F2 = 0.5, ⌦1 = 1 and ⌦2 = 2 at time T/4� (a), T/2� (b), 3T/4� (c) and T � (d), where T is the minimal
period.

For 0 < <�m̄,1 ⌧ 1, the leading order of (4.16) provides a good approximation of the new632

states that appear after a dynamic transition takes place. In general, the new observed state633

should be given by the original steady-state (4.2) plus the bifurcated solution (4.17), i.e.,634

 (r,�) = k(r) + 2 (<�m̄,1/|<⌧ |)1/2 cos(=�m̄,1t+ m̄�)<um̄,1(r)

� 2 (<�m̄,1/|<⌧ |)1/2 sin(=�m̄,1t+ m̄�)=um̄,1(r) +O(<�m̄,1), k = 1, 2, 3, 4.
(4.17)635

636

For illustration, we show the bifurcated solution and the new observed state corresponding to637

the case of solid body rotation (k = 1) as follows in Fig. 6 and Fig. 7, respectively.638

4.4. Concluding remarks. Our research shows that there exist transitions in these basic639

current flows, parallel to the bathymetric isobaths if the turbulent Reynolds number Re =640
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Figure 7. The evolution of the observed periodic solution (upper layer-a, lower layer-b) corresponding to
the profile with solid body rotation with p = 0.1, m = 2, Re = 0.2182 > Re⇤ = 0.1882, R1 = 3, R2 = 10,
F1 = F2 = 0.5, ⌦1 = 1 and ⌦2 = 2 at time T/4� (a), T/2� (b), 3T/4� (c) and T � (d), where T is the minimal
period.

LU/⌫ is greater than a critical value Re⇤. For those profiles corresponding to basic currents641

without a uniform rotation direction, the type of the transition is continuous for both concave642

bathymetry and convex bathymetry. On the other hand, for those profiles with the same643

rotation direction, the type of transition can be catastrophic for relatively convex bathymetry.644

Therefore, the bathymetry has an apparent e↵ect on the type of transition in the flow in an645

annular channel.646

Since the bottom profile is of the form647

⌘b = pr2/2, p 2 [�1, 1],648649

the absolute value of p determines the slope of the bathymetry. From Fig.4, we see that650

the critical Reynolds number Re⇤(p) with |p| > 0 is clearly larger than that with p = 0.651

Physically, this means that the two-layer basic flow in an annular domain with a concave or652

convex bathymetry lose their stability more easily than those with a flatter one.653

From Fig. 5, we can infer that the configuration of the two-layer flow always changes654

continuously from a basic stationary profile to a periodically evolving one when the control655

parameter Re crosses the corresponding threshold, provided the basic currents rotate in the656

same direction. However, for basic profiles where the upper and lower layer currents rotate657

in the opposite direction, the system may jump to another state even if the basic solution is658

linearly stable. As a result, the structure of the two-layer flow always changes suddenly, thus659

leading to a sudden change in the physical states involved in the two-layer flow.660
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[26] H. Kielhöfer, Bifurcation Theory: An Introduction with Applications to Partial Di↵erential Equations,728
Springer-Verlag New York, 2012, https://doi.org/10.1007/978-1-4614-0502-3.729

[27] C. Kieu, T. Sengul, Q. Wang, and D. Yan, On the Hopf (double Hopf) bifurcations and transitions of730
two-layer western boundary currents, Commun. Nonlinear Sci. Numer. Simul., 65 (2018), pp. 196–215,731
https://doi.org/10.1016/j.cnsns.2018.05.010.732

[28] C. Kieu and Q. Wang, On the large-scale dynamics of f-plane zonally symmetric circulations, AIP733
Advances, 9 (2019), p. 015001, https://doi.org/10.1063/1.5051737.734

[29] B. Legras and M. Ghil, Persistent anomalies, blocking and variations in atmospheric predictability, J.735
Atmos. Sci., 42 (1985), pp. 433–471, https://doi.org/10.1175/1520-0469(1985)042h0433:PABAVIi2.0.736
CO;2.737

[30] L. Li, M. Hernandez, and K. W. Ong, Stochastic attractor bifurcation for the two-dimensional swift-738
hohenberg equation, Math. Methods Appl. Sci.739

[31] R. Liu and Q. Wang, S1 attractor bifurcation analysis for an electrically conducting fluid flow between740
two rotating cylinders, Phys. D, 392 (2019), pp. 17–33, https://doi.org/10.1016/j.physd.2019.03.001.741

[32] C. H. Lu, Y. Mao, Q. Wang, and D. Yan, Hopf bifurcation and transition of three-dimensional742
wind-driven ocean circulation problem, J. Di↵erential Equations, 267 (2019), pp. 2560–2593, https:743
//doi.org/10.1016/j.jde.2019.03.021.744

[33] T. Ma and S. Wang, Rayleigh-Bénard convection: dynamics and structure in the physical space, Com-745
mun. Math. Sci., 5 (2007), pp. 553–574, http://projecteuclid.org/euclid.cms/1188405668.746

[34] T. Ma and S. Wang, Dynamic transition theory for thermohaline circulation, Phys. D, 239 (2010),747
pp. 167–189, https://doi.org/10.1016/j.physd.2009.10.014.748

[35] T. Ma and S. Wang, Tropical atmospheric circulations: dynamic stability and transitions, Discrete749
Contin. Dyn. Syst., 26 (2010), pp. 1399–1417, https://doi.org/10.3934/dcds.2010.26.1399.750

[36] T. Ma and S. Wang, Phase transition dynamics, Springer, New York, 2014, https://doi.org/10.1007/751
978-1-4614-8963-4.752

[37] A. Majda and X. Wang, Nonlinear dynamics and statistical theories for basic geophysical flows, Cam-753
bridge University Press, 2006, https://doi.org/10.1017/CBO9780511616778.754

[38] Y. Mao, Z. Chen, C. Kieu, and Q. Wang, On the stability and bifurcation of the non-rotating Boussi-755
nesq equation with the Kolmogorov forcing at a low Péclet number, Commun. Nonlinear Sci. Numer.756
Simul., 89 (2020), pp. 105322, 17, https://doi.org/10.1016/j.cnsns.2020.105322.757

[39] C. R. Mechoso, Baroclinic instability of flows along sloping boundaries, J. Atmos. Sci., 37 (1980),758
p. 1393–1399, https://doi.org/10.1175/1520-0469(1980)037h1393:BIOFASi2.0.CO;2.759

[40] W. H. Munk, On the wind-driven ocean circulation, J. Meteor., 7 (1950), pp. 79–93, https://doi.org/10.760
1175/1520-0469(1950)007h0080:OTWDOCi2.0.CO;2.761

[41] S. Ozer and T. Sengul, Transitions of spherical thermohaline circulation to multiple equilibria, J. Math.762
Fluid Mech., 20 (2018), pp. 499–515, https://doi.org/10.1007/s00021-017-0331-8.763

[42] Z. Pan, T. Sengul, and Q. Wang, On the viscous instabilities and transitions of two-layer model764
with a layered topography, Commun. Nonlinear Sci. Numer. Simul., 80 (2020), pp. 104978, 19, https:765
//doi.org/10.1016/j.cnsns.2019.104978.766

[43] J. Pedlosky, The stability of currents in the atmosphere and the ocean: Part ii, J. Atmo. Sci., 21 (1964),767
pp. 342–353, https://doi.org/10.1175/1520-0469(1964)021h0342:TSOCITi2.0.CO;2.768

[44] J. Pedlosky, Geophysical fluid dynamics, Springer, 1987, https://doi.org/10.1007/978-1-4612-4650-3.769
[45] S. Rambaldi and K. C. Mo, Forced stationary solutions in a barotropic channel: Multiple equilibria770

This manuscript is for review purposes only.

https://doi.org/10.1098/rspa.2014.0353
https://doi.org/10.3934/dcds.2010.28.99
https://doi.org/10.1016/j.ocemod.2010.09.007
https://doi.org/10.1007/978-1-4614-0502-3
https://doi.org/10.1016/j.cnsns.2018.05.010
https://doi.org/10.1063/1.5051737
https://doi.org/10.1016/j.physd.2019.03.001
https://doi.org/10.1016/j.jde.2019.03.021
https://doi.org/10.1016/j.jde.2019.03.021
https://doi.org/10.1016/j.jde.2019.03.021
http://projecteuclid.org/euclid.cms/1188405668
https://doi.org/10.1016/j.physd.2009.10.014
https://doi.org/10.3934/dcds.2010.26.1399
https://doi.org/10.1007/978-1-4614-8963-4
https://doi.org/10.1007/978-1-4614-8963-4
https://doi.org/10.1007/978-1-4614-8963-4
https://doi.org/10.1017/CBO9780511616778
https://doi.org/10.1016/j.cnsns.2020.105322
https://doi.org/10.1007/s00021-017-0331-8
https://doi.org/10.1016/j.cnsns.2019.104978
https://doi.org/10.1016/j.cnsns.2019.104978
https://doi.org/10.1016/j.cnsns.2019.104978
https://doi.org/10.1007/978-1-4612-4650-3


DYNAMIC TRANSITIONS AND BIFURCATIONS IN AXISYMMETRIC FLOW 27

and theory of nonlinear resonance, J. Atmos. Sci., 41 (1984), pp. 3135–3146, https://doi.org/10.1175/771
1520-0469(1984)041h3135:FSSIABi2.0.CO;2.772

[46] T. Sengul, S. J., and S. Wang, Pattern formations of 2D Rayleigh-Bénard convection with no-slip773
boundary conditions for the velocity at the critical length scales, Math. Methods Appl. Sci., 38 (2015),774
pp. 3792–3806, https://doi.org/10.1002/mma.3317.775

[47] T. Sengul and S. Wang, Pattern formation in Rayleigh-Bénard convection, Commun. Math. Sci., 11776
(2013), pp. 315–343, https://doi.org/10.4310/CMS.2013.v11.n1.a10.777

[48] J. Shen, T. Tang, and L. L. Wang, Spectral methods, vol. 41 of Springer Series in Computational778
Mathematics, Springer, Heidelberg, 2011, https://doi.org/10.1007/978-3-540-71041-7. Algorithms,779
analysis and applications.780

[49] E. Simonnet, M. Ghil, K. Ide, R. Temam, and S. Wang, Low-frequency variability in shallow-water781
models of the wind-driven ocean circulation. part i: Steady-state solution, J. Phys. Oceanogr., 33782
(2003), pp. 712–728, https://doi.org/10.1175/1520-0485(2003)33h712:LVISMOi2.0.CO;2.783

[50] E. Simonnet, M. Ghil, K. Ide, R. Temam, and S. Wang, Low-frequency variability in shallow-water784
models of the wind-driven ocean circulation. part ii: Time-dependent solutions, J. Phys. Oceanogr.,785
33 (2003), pp. 729–752, https://doi.org/10.1175/1520-0485(2003)33h729:LVISMOi2.0.CO;2.786

[51] A. Solodoch, A. L. Stewart, and J. C. McWilliams, Baroclinic instability of axially symmetric flow787
over sloping bathymetry, J. Fluid Mech., 799 (2016), pp. 265–296, https://doi.org/10.1017/jfm.2016.788
376.789

[52] Q. Wang, Stability and bifurcation of a viscous incompressible plasma fluid contained between two790
concentric rotating cylinders, Discrete Contin. Dyn. Syst. Ser. B, 19 (2014), pp. 543–563, https:791
//doi.org/10.3934/dcdsb.2014.19.543.792

This manuscript is for review purposes only.

https://doi.org/10.1002/mma.3317
https://doi.org/10.4310/CMS.2013.v11.n1.a10
https://doi.org/10.1007/978-3-540-71041-7
https://doi.org/10.1017/jfm.2016.376
https://doi.org/10.1017/jfm.2016.376
https://doi.org/10.1017/jfm.2016.376
https://doi.org/10.3934/dcdsb.2014.19.543
https://doi.org/10.3934/dcdsb.2014.19.543
https://doi.org/10.3934/dcdsb.2014.19.543

	Introduction
	Preliminary
	Dynamic transitions in axially symmetric problems
	PES condition
	Center manifold reduction
	Transition theorem
	Higher order approximations at the transition
	Numerical determination of the transition number 

	Application to a two layer QG model
	 Eigenvalue Problem and Principle of Exchange of Stability
	Types of dynamic transition and bifurcation
	New states
	Concluding remarks


