Dynamic transitions and bifurcations for a class of axisymmetric geophysical fluid
flow*
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Abstract. In this article, we aim to classify the dynamic transitions and bifurcations for a family of axisym-
metric geophysical fluid problems of a generic fourth-second order structure. A transition theorem is
established by reducing the governing partial differential equations to a complex-valued ordinary dif-
ferential equation, derived by employing approximate invariant manifolds. We develop an algorithm
for the numerical determination of the transition/bifurcation types. Finally we apply the transi-
tion theorem and algorithm to examine the baroclinic instability in a two—layer quasi-geostrophic
system in an annular channel and with different bathymetry profiles. Our numerical results show
that with concave bathymetry the transition (bifurcation) is always continuous (supercritical Hopf
bifurcation), whereas for convex bathymetry a jump transition (subcritical Hopf bifurcation) may
occur in the basic azimuthal currents that rotate in the same direction.

Key words. Dynamic transitions; Baroclinic flows; Quasi-geostrophic models; Topographic effects; Axially sym-
metric problems.
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1. Introduction. Dynamic transitions are the transitions from one state of a system to
another state, which are ubiquitous in geophysical fluid dynamics. The physical state of a
system is described by the qualitative behaviour or topological structure of solutions to the
governing equations. The phenomena of dynamic transitions and bifurcations are usually
studied by the classical bifurcation theory, see for instance [19, 26] and references therein.
In some applications the local bifurcation theory is insufficient to classify the transitions
especially when there is no bifurcation of solutions involved. In recent years, Ma and Wang
[36] develop another paradigm-phase transition dynamics to probe the types of transitions
and the structure of transition states. Under the principle of exchange of stabilities (PES)
they establish that dynamic transitions of all dissipative systems can be classified into three
categories: continuous (attractor bifurcation), jump, and mixed, cf. Section 2 for the precise
definition. Roughly speaking, a continuous transition means that the basic state bifurcates to a
local attractor; a jump transition says that a system will jump to another state discontinuously,
and a random transition indicates that both continuous and jump transitions are possible
depending on the initial perturbation. It should be pointed out that the theory of phase
transition would recover the results from classical bifurcation theory in applications where
the latter is applicable. The theory has been successfully applied in the study of many
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2 D. HAN, M. HERNANDEZ, AND Q. WANG

instability problems in fluid dynamics, for instance, the instabilities and transitions of quasi-
geostrophic channel flows [14, 27, 32|, tropical atmospheric circulations [21, 28], Rayleigh-
Benard convection [33, 47, 46, 17], instabilities associated with magnetic fluid flows [52, 31],
and many transition problems with random effects [10, 11, 12, 30, 20].

Many phase transition phenomena in geophysical fluid dynamics exhibit the formation of
periodic and quasi-periodic patterns of fluid flows. For instance, the transitions associated
with the baroclinic instability and barotropic instability are closely linked to the large-scale
ocean surface circulation [2, 4, 24, 40, 49, 50, 16] and the large-scale blocking pattern formation
[8, 29, 45] in atmospheric dynamics. Dynamic transitions are also observed during the onset
of convection instability in thermal circulation [33, 47, 46, 22, 35, 34, 41]. Although the gov-
erning equations in these transition problems are different, their linear parts have a common
structure of a fourth-second order coupling. For instance, the two-layer QG (geostrophic-
quasi) equations [43, 37] with viscous effects and governing the baroclinic instability in the
two-layer flows over an annular channel with a bathymetry 7, [44], given by

op1 + Re 1Ay = —1/7 (—0gu10y, + 0ru10y) p1,
(1.1) Oipa + Re 1 A2uy = —1/7 (=0gu20, + 0ru204) (p2 — Famp(7)) ,
p1 = [—Auy + Fi(ug —u2)], p2 = —Aug + Fy(ug — uq),

and the equivalent barotropic dimensionless equation [1]
(1.2) O (A — Stp) 4 0pp0y Atp — Oypdp Atp + Re 1 0,9p = Re T A%,

which is used to modeling the evolution of the western boundary currents on a horizontal
periodic channel (z,y) € R/(27Z) x (y1,y2), where Fy, F5, S and Re are dimensionless param-
eters. The main objective of this article is to examine and classify the dynamic transitions
and bifurcations associated with a family of geophysical fluid flows. In particular, we would
like to determine if the transition from one flow regime to another is continuous or jump or
even mixed from the perspective of the dynamic transition, in the sense that the state of the
flow may gradually or suddenly change from one configuration to another.

To capture as many transition problems as possible, including these problems in a hori-
zontal periodic channel or an annular channel, we consider in an abstract setting the following
axisymmetric nonlinear system with an underlying fourth-second order linear structure

(1.3) O Au = Lyu + G(u,u),

where (r,¢) € (Ri1, Ra) x R/(27Z) — u(r,¢) € R? is the state function, Ry > Ry, \ is a
real control parameter, 0; represents differentiation with respect to time, A and L) are linear
differential operators given, respectively, by

d
( Z Z q]a )Dauj(T7 d))?
j=1 |a|<N;—2
(1.4) 4
(Lau)'( Z Z pja 7, \) D% (r, ), 1< <d,
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DYNAMIC TRANSITIONS AND BIFURCATIONS IN AXISYMMETRIC FLOW 3

with |a] = a1 + ag, o = (a1, 2), D* = 0r*19¢*2 and N; € {2,4}, and G is the nonlinear
differential operators given by

d
Gu,v)'(rd) = > D Gipasr)D (r,¢) D (r,¢), 1<i<d.
(1.5) Jk=1 1;;3%—1

|a| 8]
||+ BI<N;

For those coefficient functions q?a(r), p;'»a(r) and g;k (1), we suppose that all of them are
bounded and smooth functions defined on [Ry, Rs], satisfying

(16) p;'a(T? )‘) =0, J 75 i, |Oé| =N;
III%IiHR ‘qfa(r)‘ >0 for |af=N;—2,
(1.7) el ]

re%ifl}b] Dia(r, )| >0 for |a| =N,
and required that they could guarantee the invertibility of A and the highest part of L.

We note that the nonlinear system (1.3) not only contains the Egs. (1.1) and (1.2), but
also covers a broad class of equations arising in geophysical fluid dynamics, such as the I-
layer QG equations governing barotropic and baroclinic instability [7, 15, 3, 23, 51, 5, 28, 18]
and viscosity instability and others [2, 4, 24, 40, 49, 50, 42] where d = [, My, ..., My = 2,
Ni, ..., Ng = 4, the Boussinesq equations for thermal circulation [33, 47, 46, 22, 35, 34, 41]
with temperature and/or salinity in a stream function formulation (M; = 2, My = M3 = 0,
N; =4, Ny = N3 = 2), and other variants of the Boussinesq equations [35, 41, 38] for different
problems in atmospheric and oceanic sciences, fluid systems and magnetic fluid systems.

The system (1.3) is not complete without boundary conditions. For this we consider the
domain D = (Ry, R2) x (R/27Z), and, for each j =1, ...,d, the boundary conditions imposed
on the component «’ are of the form

Z bl[:jvaDauj(Rl) :07 = 17 ,Dj7
|a|<N;—1

Z bl},%j,aDOtuj(R2) = 07 [ = 1, N ’Dj7
|a|<N;—1

(1.8)

where D; = 2 if the j'* equation is of fourth order (N; = 4), and D; = 1 if it is of second
order (N; = 2). Note also that implicit in the above formulation are the periodic boundary
conditions

uw (r,¢ 4 2km) = (r,$), 7€ (R1,R), kel

In a nutshell, the application of the phase transition theory contains three main steps.
First, the principle of exchange of stability (PES) condition must be verified. Next, the
corresponding reduced equations must be obtained. Finally, the transition number must be
computed, and its sign (or that of its real part) determines the type of transition from one
state to another.
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For our problem (1.3), the first step amounts to solve the generalized eigenvalue problem
(1.9) BAN)Au = Lyu.

Except in the case where the coefficients of the differential operators A and £ are constants,
see [33, 47, 46, 22, 35, 34, 41], it is challenging, if not impossible, to solve (1.9) analytically.
Thus, in this article, we shall adapt the spectral method [48] for solving single one dimensional
second /fourth order differential equations to solve the general eigenvalue problem (1.9). For
the second step, the reduced equations corresponding to our problem (1.3) are obtained by
approximating the center manifold, leading to a system of the form

dz 2 4 5
= Bimz + 2|2 + Tiz|z|* + 0(|2]°), z€C,
where the coefficients 7 (1) of the third (fourth)-order term above are determined by an
algebraic expression involving the first eigenvector and the nonlinear part in (1.3). These
coefficients have to be computed numerically except for the case where non-linear interac-
tions between eigenvectors can be expressed as finite combinations of these. Here 31 ,, is the
eigenvalue of (1.9) with the largest real part, satisfying PES condition (3.3) or (3.4).

Throughout this article, we call 7 and 7; as the first transition number and second transi-
tion number for the nonlinear system (1.3), respectively. The main transition theorem can be
summarized as follows: 1) If the real part of 7 is negative (positive), then the transition of the
nonlinear system (1.3) from zero is continuous (jump), which corresponds to a supercritical
(subcritical) Hopf bifurcation; 2) When 7 = 0, if the real part of 71 is negative (positive),
then the transition type of the nonlinear system (1.3) from zero is continuous (jump), which
corresponds to a supercritical (subcritical) Hopf bifurcation.

For these results to be of practical use, in the present work we also provide an algorithm
which is utilized to determine the sign of 7 and 7. We then apply the transition theorem
and the numerical algorithm to study the dynamic transitions associated with the baroclinic
instability in two layer basic flows over an annular channel and with different bathymetry
profiles. Our numerical experiments show that for a concave bathymetry, the transition of the
two-layer system is always continuous, whereas for a convex bathymetry, a jump transition
may occur in the basic azimuthal currents that rotate in the same direction. Related to our
results are those in [3, 39, 51] which study the effect of the ratio of the bathymetry slope
to the mean isopycnal slop on the baroclinic instability based on different non-dissipative
models. A relatively thorough numerical simulation is performed in [25] for characterizing the
topographic regime using the Eady model. To the best of our knowledge, our results here
provide the first complete classification of the transitions and bifurcations associated with
baroclinic instability in the two-layer QG model of different bathymetry profiles.

The rest of the article is organized as follows. In Section 1 we recall the definition of
dynamic transitions and the classification following [36]. In Section 2, we establish the reduced
equations and transition theorem for (1.3), subject to the boundary conditions (1.8), under
the assumption that the required PES condition holds. The supplemented algorithm used to
estimate the type of transition is given in Section 3. In Section 4, as an application of the
algorithm and general transition theorem, we study the effect of the curved bottom slopes on
the dynamic transition associated to baroclinic instability arising in two layer currents.
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2. Preliminary. In this section we recall the mathematical definition of dynamic transi-
tions and the classification from chapter 2 of [36]. To this end, let Y be a Hilbert space, we
consider the following abstract evolution equation defined on Y

(2.1) — =Lyw+Gv), vey,

where { L)} represents a family of linear operators parameterized by a scalar control parameter
A, G(u) accounts for the nonlinear terms. We make the following assumptions.
Assumptions about the operator: L) takes the form of

(2.2) Ly=—A+ By,

where A is a linear homeomorphism from X; to Y, which is also a sectorial operator on X1, i.e.
D(A) = X; C Y and X is compactly and densely embedded in Y, and B, is a parameterized
family of bounded linear compact operators continuously depending on A, defined on the
interpolated space X, = D(A?) for some v € [0,1]. Note that Ly : X; — Y is a closed
operator, and the spectrum of L) consists only of isolated eigenvalues with finite algebraic
multiplicities.

Assumptions about the nonlinear operator G: It is assumed that G : X, — Y is
continuous for some fixed a € [0, 1). Furthermore, we assume that G(0) = 0, and the tangent
map of G at 0 is assumed to be the null map, i.e., DG(0) = 0.

Definition 2.1. We call the system (2.1) undergoes a dynamic transition from (v,\) =
(0, Xo) if the following two conditions hold true
(1) For A < Ao, 0 is locally asymptotically stable for (2.1).
(2) For \ > ), there exists a neighborhood U of v = 0 independent of \g such that for
every w € U\ (I'y), the solution v(t,w) of (2.1) with initial value w satisfies

li > li >
i sup ot w)f} = 6(A) >0, lim 5(A) =0,

where I'y is the stable manifold of v =0 with codim I'y > 1 for A > Xg.

The following lemma established in [36] (Theorem 2.1.3) provides a relatively complete
description of the phase transitions associated to dissipative dynamical systems (2.1).

Lemma 2.2. Let the (generalized) eigenvalues (counting multiplicity) of Ly be given by
{BiN)|i=1,2,--- ,n—1,n,---} ordered by decreasing real part. If the PES condition

<0, A<

RBi(A) <=0, A=A , 1<i<m
(2‘3) 6z() 0
>0, A> X

RBj(Ao) <0, j>m+1

holds, then the system (2.1) always undergoes a dynamic transition from (v, \) = (0, o), and
there is a neighborhood U of v = 0 such that the transition is one of the following three types:
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6 D. HAN, M. HERNANDEZ, AND Q. WANG

(1) Continuous transition: There exists an open and dense set Uy C U such that for
any w € Uy, the solution v(t,w) of (2.1) satisfies

lim i t,w)| = 0.
dm | lim sup lo(t, w)l

(2) Jump transition: For every Ao < A < Ao + € with some € > 0, there exists an open
and dense subset Uy C U such that for any w € Uy, the solution v(t,w) of (2.1)
satisfies

li >
Jim sup lu(t,w)| > >0,
where § > 0 is independent of \.
(3) Mized transition: For every Ao < A < A + ¢ for some € > 0, U can be decomposed

into two open sets UA1 and Uf U= U)l\ U Ui/%, Uii N Uif = () such that

. . . 1
Algr)\lo tggrnoo sup |v(t,w)| =0, VYV w e Uy,

li > 2
t_)lfrnoosup\v(t,w)\ >0>0, VwelUy,

where U)l\ and U)% are called metastable domains.

According to Definition 2.1 and Lemma 2.2, one can see that dynamic transitions in
dissipative system are different than bifurcations. It should be pointed out that in most ap-
plications the theory of phase transition would recover the results from classical bifurcation
theory in applications where the latter is applicable. For many dissipative systems in geo-
physical fluid dynamics, A is invertible . Here, we assume that A has a bounded inverse. Note
if we denote Ly = A71Ly,G = A7'G, then the nonlinear system (1.3) can be rewritten as
the standard form (2.1), which satisfy all assumptions aforementioned. In the following, we
will establish a dynamic transition theorem for the axially symmetric nonlinear system (1.3)
based on the dynamic transition classification scheme in Lemma 2.2.

3. Dynamic transitions in axially symmetric problems. The first step needed to deter-
mine the transition type of (1.3) is to characterize the spectral properties of the linear problem
associated with (1.3). More precisely, we need to study the generalized eigenvalue problem
(1.9) subject to the boundary conditions (1.8).

Our standing assumption is that all the coefficients in these equations are independent of
the periodic variable ¢, which justifies the use of separation of variables so that, in looking for
eigenfunctions for the linearized equations (1.9), one can, without loss of generality, assume
that u/ (r, ¢) = €™PU7(r). Then, for a given m, the eigenvalue problem (1.9) with form of

BN A™PUI (1) = Lye™PU (1)
becomes

(3.1) B N ARU? = Ly NU?, m e Z
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DYNAMIC TRANSITIONS AND BIFURCATIONS IN AXISYMMETRIC FLOW 7

where now
(AnU)(r) = Y (im)*qi(r)on U,
1<j<d
|a|§Ni—2
(LU ()= D (im)*2pl, (r, O U7,
1<j<d
o] <N;
In general, U can be complex valued, and we do not impose any normalization condition at
this point. This particular issue will be taken care of by means of the dual problem introduced

below. The corresponding boundary conditions need to be modified to take into account this
special angular dependence, and it is easy to see that, for a given m, they take the form

Z bfj,a(im)azaglm(rl) =0, l=1,..,Dj,
‘O¢|§Nj—1
Z bﬁjya(im)OCQaglUj(’[“g) =0, l=1,..,D;,.
|a|<N;—1
3.1. PES condition. Note that the real coefficients of the operators A and £, imply that

Bm(A) is also an eigenvalue of the eigenvalue problem (1.9), the corresponding eigenfunction
reads e U (r), and B,,()\) and UJ(r) solve

BN AT = Ly NT?

derived by taking the complex-conjugate of (3.1). Thus, we have S_,,(\) = Bn(N). If
Bm(A) complex, then the eigenfunctions respectively corresponding to f,,(A) and S_,, () are
complex-conjugate each other. Particularly, if §,,(\) is real, then 8_,,(\) = 5, (), and both
the real part and imaginary part of e™?U7(r) are eigenfunctions of the eigenvalue problem
(1.9), i.e., its geometric multiplicity is 2.

We denote the solutions of (3.1) by {(Bm k(A), Unm.kx(N)) bken, where the eigenvalues, count-
ing multiplicity, are ordered by decreasing real part, that is,

§}%Bm,l()\) > §R/Bm,Q()\) > sor — —00.

Here we assume that there exists certain Ag and a neighborhood A of Ag, such that there exists
a unique m € ZT, with the property that for A € A

(3.2)

>0 if A> A,

ROBm1(A) =RB_m1(N) S =0 if A= Ao,

s BN = RE a0V =0 iTA= g
<0 if A< Ao,

§RBm,k(/\) < 07 (mv k) 7é (ma 1)7 (mv k) 7é (—T?L, 1)3

if the leading eigenvalue of the problem (1.9) is complex, or

>0 ifA> A,

1) = BN =0 i A= Ao,

(3.4) Bin1(A) = B-m,1(A) 1 0
<0 if A< Ao,

§):Eﬁm,k(A) < 07 (mv k) 7& (m7 1)7 (mv k) 7& (_ma 1)

This manuscript is for review purposes only.
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8 D. HAN, M. HERNANDEZ, AND Q. WANG

if the leading eigenvalue of the problem (1.9) is real.

If the leading eigenvalue is complex, and the PES condition (3.3) holds, then the center-
unstable space H. is spanned by the real part and imaginary part of the first eigenvectors,
which is of dimension two and can be expressed as

(3.5) H. = {u(r, ¢) = 26™Up, 1 (r) + 267U, 1 (r) : 2 € (C} .

If the leading eigenvalue is real, the PES condition (3.4) infers that its geometric multiplicity
is equal to algebraic multiplicity, which is 2. Because both the real part and imaginary part of
e™m®UI(r) are eigenfunctions of the eigenvalue problem (1.9) in this case. Hence, the center-
unstable space H, is also give by (3.5) for the case of real leading eigenvalue.

Regarding the non-linear interactions in (1.4), we let

(3.6) o (U Z >« i) gl (r) O U7 (r) 07V (r) |
Jk=1 |a|<N;—1
[BISN;—1

|oe] #[B]
laf+IBI<N;

In most applications the non-linear interactions involve exactly one derivative with respect to
the angular variable in each term. In our context, this amounts to require that

(3.7) g;'kaﬁ =0 whenever g+ (2 # 1.
Thus we obtain the algebraic constraint
G(™OU, ™ V) = mtmIeg (U, V).
It is also convenient to introduce the dual generalized eigenvalue problem
(3.8) B (NALU* = L5, (U
where now

(AU ()= Y (F)™ (im)*207 (4o (r)U)
1<j<d
\a|§Nif2

(L, NU (r) = Y (=)™ (im)*2 05 (pja(r, NU™) .

1<j<d
la|<N;

In most applications of interest, the eigenvalues of (3.1) turn out to be semisimple. Because
of this, we can assume that upon appropriately normalizing U*, we have the orthogonality
conditions

<.A Umk, mk’ Z/ .A Umk ()(U;7k/)i(T)dT:5k’k/,
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DYNAMIC TRANSITIONS AND BIFURCATIONS IN AXISYMMETRIC FLOW 9

where Uy, 1, ( U;‘;k) is the eigenvector (adjoint eigenvector) corresponding to S, k.

Thus Uy, ; provides us with a practical way to implement the Riesz projection, I, onto
H, (or, more precisely, onto its image under A,,. Note that, as we shall later see in Sec. 3.5,
the specifics of this dual problem are not relevant from a numerical point of view, since in the
implementation of the spectral Galerkin method the dual problem can be solved by computing

the left eigenvectors of the matrices representing the operators involved in (3.1).

3.2. Center manifold reduction. We next turn to the approximation problem of the
center-unstable invariant manifold function h : H, — Hy := (H.)* such that h(0) = 0 and
Dh(0) = 0, where H, is given in (3.5), Hy is the function spaces generated by the stable
eigenvectors associated with the eigenvalue problem (1.9) in the vicinity of A = \g. Since the
non-linear interactions in the case at hand are quadratic, the leading order approximation of
h is the bilinear form

(3.9) ha(€) = LD*h(O)(E.E), €€ H.

This term is determined by usage of the backward-forward procedure introduced in [12];
see also [10, Sec. 3.2]. This procedure relies on the pullback characterization of approximations
to (local) invariant manifolds as identified in [12, Chap. 4], that we apply in the deterministic
context of this article.

To do so, we first let £ in H, be parametrized by z € C as in (3.5). Then we solve
the linearized equations backwards in time with initial datum & at ¢ = 0, and denote the
corresponding solution by u). Next, we solve the linearized equations forward in time by
using Hsg(u(l),u(l)) as a source term, and impose that the corresponding solution vanishes
as t — —oo, where I, is the projection onto Hj.

More precisely, we solve for all T" > 0, the following backward-forward system associated
with the evolution equation (1.3):

(1)
(3.10a) (1"4(;71; =cu®, wD0)=¢ tel-T,0],
(2)
(3.10b) A 50 4 ILGWO(s),u(s)), w(-T) =0, te[-T0)

where £§ := IL.Ly (resp. A := IL.A), and L5 := IL;Ly (resp. As := I, A), in which II,
is the projection onto H.. Note that Eq. (3.10a) being a finite dimensional linear ordinary
differential equation (ODE), the solution u(!) exists for all negative times. The existence and
uniqueness of u(? solving (3.10b) can be justified by making use of the fact that L5 is a
negative definite operator on the preimage under A of set II,G(H,, H.).

In the system above, the initial value ¢ (in H.) of u(") is prescribed at t = 0, and the
initial value of u® at t = —T. The solution of this system is obtained by using a two-step
backward-forward integration procedure — where Eq. (3.10a) is integrated first backward and
Eq. (3.10b) is then integrated forward — made possible due to the partial coupling present in
(3.10) where u(!) forces (via the nonlinear terms in IT,G) the evolution equation of u(? but not
reciprocally. Due to this forcing introduced by u(!) which emanates (backward) from &, the
solution u(? depends thus naturally on &. For that reason, we will emphasize this dependence
as u?[¢] hereafter.
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10 D. HAN, M. HERNANDEZ, AND Q. WANG

Adopting the language of non-autonomous dynamical systems [6, 13], the proof of [12,
Prop. 4.1] can be adapted to infer that the leading approximation hs (&) (defined in (3.9)) is in
fact obtained as the pullback limit of the u®-component of the solution to the system (3.10),
1.e.,

(3.11) ha(€) = lim u®g)(-T,0).

Note that in (3.11), the dependence on two time arguments for u(?)[¢] is made apparent to em-
phasize the two-time description employed for the proper description of the non-autonomous
dynamics inherent to (3.10b); see e.g. [9].

We turn now to the explicit determination of u(® [€] in the case of H. given by (3.5). First,
let us remark that due to the simple form of H, and (3.1), Eq. (3.10a) can be solved explicitly
and thus

(3.12) uD(t, 7, ¢) = 2ePmtedmOU, | (r) 4+ zef-mite ™0 o1 (r), <0,

Using this expression into the right-hand side of Eq. (3.10b), and the following ansatz for its
solution u®)(t,-,-) (t < 0),

(3.13) (b, 0) = 22l (1) + 22 (1, 7) + 22ulf (1, r)e 2,

we observe that u;%), uﬁ) and u(()22) solve the following auxiliary (uncoupled) system of PDEs

d _
aAWnU%) = £2m(>\)u§%) + 625m’1tgm,m(Um,1, Unp),
d _
(3.14) %Aouﬁ) = Lon(Nuly + emlG Uy, Uom)
+ €2§Rﬁm’1tgfm,m(U—m,1, Un),
d ) (2) | 2Bt
gA_gmUOQ =L om(Nugy +e VG —m(U—m1, U—m1).
The solutions of the diagonal system (3.14) vanishing at ¢ = —oo are given by
uly) (1) = €2Pm1tpn (1),
(3.15) i (¢, 7) = 2ty (),
uly) (t,r) = 21t (r),

where 90, 11 and @2 solve the system of PDEs

2B8m1A2m w20 — Lom(N) w20 = Gmm (U1 U1 )s
2RBm1 Ao — Lo(N) 11 = Gm—m(Um,1, U—m 1)

+ G mm(U—m1,Unn),
26_mi1A—2mpo2 — Loom(N) o2 = G—m,—m(U—m1,U—m.1),

(3.16)
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supplemented with the boundary conditions

D alizm)0R ehy(Re) = 0,

(3.17) jal=N;—1
. bR- (-2—)(128&1 J(R):O
l7j7()£ 1zm T 9020 2 9
|a|§Nj—1
Z bl]?j,aav?é@{l(Rl) =0, I=1,..,Dy,
|a|<N;—1
(3.18) . i i
Z b ja0rer(R2) =0, 1=1,..,Dj,
|a|§Nj71
S bha(i2m)220 gy (1) =0,
(3.19) jal=N;—1
S bl (i2m)2202 gy (Ra) = 0.
la|<N;—1

3.3. Transition theorem. The reduced equation is then obtained by setting u = £+ ho(§)
in Eq. (1.3) with ho as given by (3.11) and with u(® obtained as described above, and by
projecting onto the subspace

(3.20) span{ A, § € H.}.

Thus, using the expression of u(?) given by (3.13)-(3.15) with @99, @11 and g solving (3.16),

and projecting onto ei“md’U,’%J, we get the following reduced equation

dz

(3.21) yr =Bz + 2121 (Gmo(Um,, 011) + Gom (@11, Um1), Uy 1)

+ 2022 (G—m2m(U—m,1, 920) + Gom,—m (920, U=m1), Up 1) + o(|2[%).

We have thus proved the following Lemma.

Lemma 3.1. The stability and transition of zero solution to (1.3) with any sufficiently small
initial condition and in the vicinity of the critical control parameter A = A\g can be reduced to
these of the zero solution to the equation taking the simple form

dz
(3.22) = = Bmaz+ 72z +o(2])
where

7 = (Gm,0(Un,1, ¥11) + Go,m (211, Um,1)

(3.23) + G mom(U—_m,1,92), UZ%,D

+ (Gom,—m (920, U-m,1), Ug 1)
From the above lemma the transition type can be determined by the sign of 7. More precisely,
we have the following dynamic transition theorem:
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12 D. HAN, M. HERNANDEZ, AND Q. WANG

Theorem 3.2. Let 7 be given by (3.23), for (1.3) at A = Ao and subjected to the boundary

conditions (1.8), then the following assertions hold true:
(1) If R < 0 and Bm1 & R, then the system undergoes a continuous transition. As a
result, a stable periodic orbit bifurcates on A > Ao, whose expression is approximately

given by
(3.24) u(t,r, @) =am (1) (cos(SBmat + MmP)RUp, 1 (1) — sin(SBmat + md)SUp, 1 (1))
’ + O(RBim,1),
where
[ RBaa
(3.25) am () = 2( Rr > .

(2) if Rt < 0 and IPm1 = 0, then the system undergoes a continuous transition. As
a result, an S attractor bifurcates, which contains at least two pairs of stationary
solutions approzimately given by

u1(r, @) = £am(7) cos(am@)Um,1(r) + O(|RBm,1|),
uz(r, @) = Lam(7) sin(amd)Unm,1 (1) + O(|RBm,11),

(3) If RT > 0, the transition of the system at X\ = \g is jump.

Proof. In broad terms, the transition type for (1.3) is uniquely determined by the stability
of the zero solution of the reduced system obtained by projecting the equations onto its center
manifold. By the lemma Theorem 3.1, the claim on the transition type then follows directly
by noting that

d
%!ZF = 2[z]2(RBm,1 + R7l2[*) + o(|2[*)

so that, at the critical value %31 = 0, the origin is a stable solution provided 7 < 0, and
it is unstable if 7 > 0. In the former case, there exists an open Uy containing the zero point
in the vicinity of A = A\g such that for any zy € Uy, the solution z(¢, zg) of (3.22) satisfies

li li t =0.

A8, i sep =t o)
By the (2.2), it means that the dynamic transition is continuous type. For the latter case,
due to the instability of zero solution for each A € [\, +00), for every A\g < A < Ag + € for
some € > 0, there exists an open Uy containing the zero point such that for any zg € U), the
solution z(t, zp) of (3.22) satisfies

lim lim suplz(¢,29)| > 0,

A=A t—+00 p‘ ( 0)|
which implies the transition is jump (catastrophic). Thus, when R7 < 0 and RB71 > 0,
it deduces from the lemma Theorem 3.1 that the bifurcated solution is a periodic orbit,
approximately given by

RB;, 1/2
z(t) = ( ’;;ﬂl) exp (1SPm,1t) + O(RBm 1)
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If 3Bm,1 = 0, then the bifurcated solution is a fixed point, which can in fact be considered
as a special case of the above formula. Noting that, by substituting the above in the definition
of H, we get, in terms of the original formulation, a bifurcated solution of the form

u(t, r, @) =2 (RBm1/|RT|)Y? cos(SBum. 1t + M) Rum 1 (r)
— 2 (RBm1 /|R7)) YV sin(S Bt + M) St 1 (1) + O(RBrm ),

which proves the theorem. |

3.4. Higher order approximations at the transition. Although the construction just de-
scribed is usually enough to determine the transition type of a given system, it is sometimes
necessary to use a higher order approximation of the relevant (locally) invariant manifolds.
For instance, this is the case when R7 vanishes identically, so the transition type is undeter-
mined, or when one is interested in further properties of the bifurcated solution very close to
the criticality. In any case, by following the logic of the previous derivation, one can easily
obtain, at least in theory, higher order approximations of all the involved quantities.

Suppose we seek an approximation of the invariant manifold of the form

h(E) = ha(€) + ha(§) +ollE). €)= 2R (2™ U (1))

where |h;(€)| = O(|¢)), j = 2,3. By using the exact same procedure previously described, we
find that hs is given by

ha(€)(r, @) = 22 ™o (1) + |2 2011 (r) + 22 2™ pa ()

with @20, w11 and @2 solving (3.16).
Similarly, using the ansatz

h3(€)(r, ¢) = 223 ™ g0(r) + 2|22 ™P 0o (1)
+ E]z\Ze_imz’cplg (r) + 236_3im¢g003(r)

we get, upon performing calculations similar to those in Section 2.2, that the coefficients ;;,
i+ j = 3, are uniquely determined by the equations

3Bm,1Azme30 — L3m(N) @30 = Gm.2m(Um,1, 20) + Gomm (920, Um,1)

2RBm1 + Bm1)Amnp21 — Lan(N w21 = Gomam(U—m.1, ¥20)

+ Gom,—m (920, U—m1) + Gmo(Um1, 11) + Gom (@11, Um,1)

(2RBrm1 + Bina)A—mprz — Lom(N) @12 = Gm —2m (U1, o2)

+ G omm (@02, Un1) + G—mo(U—ma,e11) + Go,—m (@11, U—m1)
3Bm.1A—3mp03 — L—3m(N)pos = G—m.—2m(U—m.1, P02) + G—2m—m (P02, U—m.1)
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subjected to the boundary conditions

Y bha3m)2 0 Gl (R) = Y b (im)*202 ¢, (Ry) = 0,

la|<N;—1 o] <N, —1
b (im)20 ey (R) = Y b (=3im) 202 gl (Ry) = 0,
fafsN;—1 o <N;—1

D UhaBum) RO ey (Ra) = D bila(im) 207 0, (Fa) =0,
led<N; =1 la|<Nj—1

ST bR (M) 20Ny (Re) = Y B (—3im) 202 ol (Ra) = 0.
o <N;—1 || <Nj—1

The reduced equations then admit the approximation
dz
dt

where, 7 is given by (3.23), and the second transition number 7 is given by

= Bm1z + 7'27|z|2 + 7'1z|z|4 + o(|z|5),

71 =(G—2m,3m (P02, 30) + G3m,—2m(¥30, P02), Ug 1)
(3.26) + (Go.m(p11, p21) + Gom (w11, p21), Ug, 1)
+ (Gom,—m(#20, P12) + Gm2m (P12, ¥20), Ug 1)
We thus obtain the following lemma:
Lemma 3.3. The stability and transition of zero solution to (1.3) in the vicinity of the

critical control parameter A\ = Ao and with any sufficiently small initial condition can be
reduced to these of the zero solution to the equation taking the simple form

dz
dt
Similarly, we have the following transition theorem:
Theorem 3.4. In the case of RT = 0, let 11 be given by (3.26), for (1.3) at X = Ay and
subject to the boundary conditions (3.2), the following assertions hold true:
(1) If R < 0 and Bm,1 € R, then the system undergoes a continuous transition. As a

result, a stable periodic orbit bifurcates on A > Ao, whose expression is approximately
given by

u(t,r, @) =bm (1) (cos(SBm1t + MmP)RUp, 1 (1) — sin(SBmt + me)IUp, 1 (1))

= Bm,12z + 7':/:|z|2 + le]z\4 + 0(|z|5).

3.27 1/4
( ) +OMRBm1), bm(T) = 2(%5%1/!%70 .

(12) If R < 0 and IBm,1 = 0, then the system undergoes a continuous transition. As
a result, an S attractor bifurcates on X > Ao, which contains at least two pairs of
stationary solutions approximately given by

u1(r, @) = £bm(7) cos(amd)Um,1(r) + O(|RBm.1]),
u(r, ¢) = £bm (1) sin(amd) U1 (r) + O(|RBm.11),
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(3) The transition is of jump type if R > 0.

Proof. The proof of the theorem is similar to that of Theorem 3.2 and is thus omitted. B

3.5. Numerical determination of the transition number 7. In view of the method just
described, it is clear that in order to find the value of the transition number 7, it is enough to
solve a series of linear problems, which are in turn determined by the operators A, and L,
In order to achieve this, our approach consists of using a spectral method to encode both the
action of these operators and the boundary conditions (3.2).

More precisely, given a family of orthogonal polynomials { P, }>° , (such as Legendre poly-
nomials or Chebyshev polynomials ) and a sufficiently large positive integer N, our aim is to
approximate the j** component of our target function w by using a basis {qﬁj }N 7 of the
form

N
¢h=d, | Pa+ > cPok |, n=0,..,N—Nj
k=1

where, for each n and j, the coeflicients {CZL k}iv; 1 need to be chosen so that @), satisfies (3.2),

and the positive constants d% are chosen by fixing an appropriate normalization for the j*
component of system. For problems with constant or polynomial coefficients, and with a
reasonably sized N (say, N ~ 100), one can simply take & =1 In general, however, these
constants should be chosen so as to exploit the properties of the particular problem at hand.

If the j'" equation is of fourth order (N; = 4), the coefficients c;k are determined, for
each n =0,..., N — 4, by the equations

4
Z Zbljalm OQPnilk = - Zbljalm O‘QP(O‘I)( 1),
F=t \lal<s jol<3

4
Do D0 bhjalim) =P (- == ) b5 ja(im)*2 P (1),
F=1 \lal<s jal<3

4
Z Z blja lm QQP’rSj_lk)(]_) C’z]qk = Z blja lm 042P(al)( )’
F=1 Aol ol <3

4 .
Z Z b2_]a lm QZPTEilk')( ) C’ZL,]{I = Z blja lm 042P(al)( )

=
Il
A

la|<3 laf<3

Similarly, if the j** equation is of second order (N; = 2), the coefficients CZL  are deter-
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mined, for each n =0, ..., N — 2, by the equations

2

D

k=1

[\

k=1

Sk L (im) )o2 P (—1) == bF, L (im)2 P (- 1),
lo|<1

la<1

ST (im) 2P | el == Y bR, L (im)22 P (1),
|| <1

laf<1

Then, letting {e;}&; be the canonical basis of R¢, we let A,,, M,, and S, be the matrices
encoding the values

(Am) = <Am(¢gej)a¢;€i>a

(Sm)ply = (L (N (Dhes), dpea),

(Mm) ’] = <¢J€J’¢ €i)s

1, = 1 wd, p=0,., N—N;;q=0,..,N —Nj.

Then we decompose

N—N; N—-N;

d d
=2 2 Wt T=20 D fivie

j=1 ¢=0 =1 q=

so that the equation oA u = Ly, (X\)u + f has the solution

o= (aAp — Sp) "M, f.

The form of the matrices A,, and S, depends on the particular equation under study, but
the mass matrix M, can be found using only properties of the chosen orthogonal polynomials:

N

M;Z]q = <¢;7 ¢Z]> = d;?dj P + Z P+TL7 + Z q,m q+m

m=1

Making use of the basis {(b%}sz_on or {P,}N_, f7 can be expressed in form of

N N—Nj
F=) [P o f=7% flo
r=0 q=0

where qu can be determined from fﬂ by using the following forward transforms

(3.28)

Nj
f; = 5”d;) |Pp|2fgj7 + ZC;),n|PP+n‘2fg+n ’ 1 S Z?] S da

n=1
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Algorithm 3.1 Find the transition number 7 in C, given by (3.23).

1. Given N, for each m € N, find the first left eigenvector Uy, ; and the first right eigenvector
U of the matrix A, 1S,,, i.e.,

ﬁm,lUm,l = A'r;lSmUmJ? BmJU:?,,l = U:;?,,]_A;L]-Sm7
2. Normalize the first left eigenvector Uy, ; so that
<AmUm71, U’r>')<1,1> — 1

3. Find the backward transforms w,, 1 and u_,,1 of Uy, 1 and U_,, 1, respectively, and find
the forward transforms Gs,, and Gq of

gm,m (um,h um,l) and gm,—m (um,h u—m,l) + g—m,m (u—m,la Um,l)-

by the formula (3.28) and (3.29).
4. Solve

Bop = (2Bm.142m — Som) 'Gam, P11 = (2RBm.1 Ao — So) T Go
5. Find the backward transforms poq and 11 of ®op and P17, respectively, and compute
€ =Gm,0(um,1,¢11) + Gom(®11, Um,1) + Gom2m(U—m,1,$20) + G2m,—m (P20, U—m,1)
6. Find the forward transform Z of ¢ and compute

T= <Za U;L,1>'

and fﬂ can be determined from fg by the following backward transforms

N;
(3.29) fl =39 <d2!|Pr|2fﬁ' +d Y cin,n|Pr_n!2fﬁn> , 1<ij<d

n=1

The procedure for finding the transition number 7 given by (3.23), as described in the
previous section, can now be summarized below. Note that in Steps 2 and 6 of Algorithm 3.1,
we use the cannonical inner product of (RN )d. This choice corresponds, in physical space, to
the L%-inner product. An implementation of all the routines required to run the Algorithm
3.1 using Matlab can be found in the website https://github.com/marcoher/spectraldptd.

4. Application to a two layer QG model. In this section we apply the transition theorem
(Theorem 3.2) and the numerical algorithm 3.1 to investigate the dynamic transitions associ-
ated with the baroclinic instability in the two-layer basic flows over an annular channel (see
Fig. 1). The governing equations for this problem is the Eq. (1.1), where the viscous effects
are not taken into account in [51].

This manuscript is for review purposes only.
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2
—n=pr’/2, p>0 ——n,=pr’/2, p<0

Rl RQ Rl RQ
L ®Usn Layer-I
®Uy1 Layer-I SS N
S~
> ~ N N S ~
~
~
~
S ®Up2 Layer-II
~ ~
®Uy2 Layer-II \
( a) % (C)

Figure 1. Schematic representation of the domain, bathymetry and mean circulation. Panel (a): Top-
down view of the annular channel, with dashed lines representing isobaths or mean streamlines and shaded
region ezxcluded from the domain. Panel (b)-(c): Cross-sectional view of the mean flow configuration. The
bathymetry, ny(r), is shown here, corresponding to the azimuthal flow with solid body rotation.

The basic currents (Vq(r), Ua(r)) independent of the variable ¢ flowing over the annular
channel is determined by the following equations

(4.1) AW, =0, i=1,2,

which has infinite number of solutions. Here, we are interested in the dynamic transition
arising in four different profiles, given by

(4.2) i) P =00 @), j=1,2, k=1,234,

where (2; are the constant angular velocities of the flow in each layer, and

(4.3a) () = %7«2, Ry <r <Ry,
(4.3b) A () = % {(1 + W) r? — 2R? ln(r)} ,

1 1 R2In(Ry/R1)r*In(r)  R2In(r)
(4.3¢) v =5 < : 5R§21n(R22) - 11%% n(Ry) - ) :
(4.3d) gy = L (BB (PIn(r) = (a4 F)* In(r)/4)

"~ 2R2In(Ry) — R2In(Ry) — (Ry + R1)? /4In(Ry/Ry)’

whose derivatives — the basic azimuthal velocity component Uy = (Ug 1,Us2) — are shown in
Fig. 2. Note that these basic solutions have been chosen so that the basic velocity profile

(k) _ k) pr(R)y _ )Y 1o 1
(4.4) U =0, U = 0,0,90), =12 k=1,234,
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20 35

J— D]
(D

30

Figure 2. Angular component of the basic velocity profiles with rotiational speed Q; = j(j = 1,2) and
internal/external radisc R1 = 3 and Ra = 10, respectively.

540 has, in all cases, the same average along the radial direction as would be given by solid body
541 rotation. That is,

1 / Rz () Ro+ Ry )
542 (4.5 - U: 7 (r)dr =Q;———, j=1,2.
1 ( ) R2 _ Rl Ry J,(j)( ) J 2
514 Please also note that only is the stability of the first profile (1 (r) considered in [51] and
545 references therein in the case of neglecting dissipation term A2u in (1.1). These researches
546 only focus on the effect of the value of p on the baroclinic instability, while the effect of which
547 on the transition type has not been considered.

548 4.1. Eigenvalue Problem and Principle of Exchange of Stability. We let A = Re in
519 the Eq. (1.3), the corresponding operators A, Lr. and G defined in (1.4) are specified as,
550 respectively,

—Auy + Fi(up — ug)

Au = 9
—Aug + FQ(UQ — ul)
551 (4.6 1 1
1 (46) Lreu = ——Nu— —(8,Q0y + 0, V0, A)u,
Re r
1 1
G(u,v) =— —;&w@r + ;&«u% Av,
552 where
AV, — (U] — T
553 (4.7) Q= ' 1T 2
- AWy — (Ve — Uy — 1)
555 and 1y corresponds to a parabolic bathymetry given by
556 (4.8) m(r) = pr? /2.
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Then, the perturbation equations for the basic currents is given by the nonlinear system (1.4),
which are supplemented by the following boundary conditions

1
= <ar'ru1 + arul>
r=Ri,Ry "

= <ar’ru2 + 167‘“2)
T

u1

(4.9) r=Ri, Ry

U2

r=R1,Ra r=Ri1,R2

which fit (1.8) as well.
Correspondingly, the eigenvalue problem (1.9) reads

(4.10) Lreu = BAu,

with the boundary condition (4.9). Thus, for m in Z, denoting an azimuthal wavenumber, we
let uj(r, @) = v;(r) exp(im¢), then the eigenvalue problem (3.1) for the two layer model is

(4.11) Ly, (Re)v = A,

where

—AmU1 + Fl(vl — ’Uz)

(412&) Am'U = )
— A vg + Fo(va — 1)
—L A2 — 9 Qv
L (Re)v = Re=m L " Qrvn
— A A2 vy — 19,Qvy
(4.12b)

im [ 0rV1 [—Apvr + Fi(v1 — v2)]

r 0r WUy [—Amvg + Fg(vg — vl)]

Here A, is the second order elliptic operator given by

1 m?
Am = arr + *87“ - 9
T T

Besides, the bilinear operators G, ,,,» associated with the two layer problem is uniquely deter-
mined by (4.6) and the identities

(4.13) G(e™u, ™ v) = ei(m+m’>'gm,m, (u,v),

for all radial functions u, v.
For any m in Z, the solutions of the generalized eigenvalue problem (4.11) are denoted
hereafter by

(4.14) {(Bm,ka Um,k)}keN )
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and we assume, without loss of generality, that they are arranged such that
ﬁﬁm,l > %/Bmg > %ﬁmﬁ >0 —00.

From a numerical point of view, once ¥y, ¥y and 7, in (4.8) have been specified, one can
directly study (4.11) and determine the values of these parameters F, Fy, Ry, R, Q1,9 and
Re for which the corresponding PES condition for the two layer problems holds based on
the 3.1 provided in the previous section. As a matter of fact, given the number of free
parameters in the system, it is not possible to give a comprehensive description of all the
possible transition types that may occur in this problem. Instead, we follow [51] and fix the
parameter values Ry = 3, Ro = 10, F; = F5, = 0.5, Q1 = 1 and Q9 = 2. We are then left
with two free parameters, the Reynolds number Re and the bathymetry slope p, and then
verify the corresponding PES condition. For this purpose, and using the periodicity in the
angular direction, it suffices to find, for each value of p and wavenumber m, the value of the
Reynolds number that makes the leading eigenfunction unstable. In other words, we look for
the modal critical Reynolds numbers, which is the family of curves Re = Re’, (p) determined
by the equation

RBm.1(p, Re) =0, m=1,2.

The curves Re = Re}, (p) corresponding to the case of solid body rotation, shown in Fig. 3.
It has been observed that, the results are qualitatively similar when any of the other profiles
in (4.3) are used (not shown). The critical Reynolds number is then obtained by finding, for
each p, the first value of Re at which linear instability occurs. That is, we seek for a curve
Re = Re*(p) such that for each given p the PES holds exactly at Re*(p). It is easy to see that
such curve is in fact given by Re*(p) = min,, Re},(p), shown in Fig. 4. It is noteworthy that
Re*(p) is piecewise smooth, with some cusp points at which Rej, (p) = Re}, ;(p). Except
these cusp points, the PES condition

>0 if Re > Re*,
RBm1(Re){ =0 if Re = Re*,
(4.15) <0 if Re < Re*,
RBm ik (Re*) <0 V(m, k) # (m, 1),
Re* := Rey(p) = min Rely p),

holds true. At these cusp points, there are two pair of simple complex conjugate eigenvalues
becoming critical, which is a degenerate case and is not within the scope of the present work.

4.2. Types of dynamic transition and bifurcation. Utilizing the procedure described in
the previous section, the transition number 7 given by (3.23) for the two layer problems can
be found by implementing the 3.1 and setting the values of Re and m to coincide with Re*(p)
and m as discussed above. In this manner, we compute all values of 7(p) except at these cusp
points of p where degeneracies occur. Hence, the transition number 7(p) is a discontinuous
function, whose graph is shown in Fig. 5.
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Figure 3. The modal critical Reynolds numbers, Re = Re;,(p) (solutions of RBm,1(p, Re) = 0), corre-
sponding to the case of solid body rotation, where Rw = 3, R = 10, F1 = F> = 0.5, Q1 =1 and Q2 = 2.
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Tof

Figure 4. The curves of neutral stability, Re = Re*(p) (solutions of max,;, RfBm,1(p, Re) = 0), for all four
different basic rotation profiles, the points with asterisk are the cusp points at which Rej, (p) = Rejy, 11(p), where
Ri1 =3, R, =10, [} = F» = 0.5, Q1 =1 and Q2 = 2.

619 Recalling the basic profiles given in (4.3), the numerical results reported in Fig. 5 show
620 that for the profiles () (r) and ¥ (r), the dynamic transitions that occur are continuous
621 for most values of p except some that, when crossed, lead to jump transitions. On the
622 other hand, such jump transitions never occur for the basic profiles ¥®)(r) and ¥(*)(r), and
623 only continuous transitions take place as p varies over the prescribed range. Therefore, the
624 slope of the bathymetry has an evident effect on the type of transition associated with these
625 basic profiles which have uniform rotation direction. For profiles with non uniform rotation
626 direction, the transition type is same for both concave bathymetry and convex bathymetry,
627 i.e., the transition is continuous type.

628 4.3. New states. From Theorem 3.2, we know that the new states bifurcating from the
629 basic profiles (4.2) can be uniformly given by

b =2 (RBm /| RT)Y? cos(SBm 1t + M) Rum 1 (r)

5¢ 4.16
630 (4.16) — 2(RB1 /IRT) V2 sin(S B 1t + M) St 1 (r) + O(RBr )

631
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Figure 5. The transition number for all four different basic rotation profiles with Ri = 3, Rz = 10,
F1 =F2=O.5, 91:1 and§22:2.
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Figure 6. The evolution of the stable periodic solution ((a) upper layer, (b) lower layer) bifurcating from
the profile with solid body rotation with p = 0.1, m = 2, Re = 0.2182 > Re" = 0.1882, R; = 3, Rz = 10,
Fi =F,=05,Q1 =1and Q2 =2 at time T/4 — (a),T/2— (b),3T /4 — (c) and T — (d), where T is the minimal
period.

For 0 < RBm,1 < 1, the leading order of (4.16) provides a good approximation of the new
states that appear after a dynamic transition takes place. In general, the new observed state
should be given by the original steady-state (4.2) plus the bifurcated solution (4.17), i.e.,

P(r, d) =UF(r) + 2 (RBm.1 /IR % cos(SBm.at + M) Ruum1 (r)
-2 (%Bm,l/lﬁ%ﬂ)l/? sin(SBmat + md)Sum1(r) + O(RBma), k=1,2,3,4.

For illustration, we show the bifurcated solution and the new observed state corresponding to
the case of solid body rotation (k = 1) as follows in Fig. 6 and Fig. 7, respectively.

(4.17)

4.4. Concluding remarks. Our research shows that there exist transitions in these basic
current flows, parallel to the bathymetric isobaths if the turbulent Reynolds number Re =
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t=0.5129 t=1.0258 t=1.5386 t=2.0515
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Figure 7. The evolution of the observed periodic solution (upper layer-a, lower layer-b) corresponding to
the profile with solid body rotation with p = 0.1, m = 2, Re = 0.2182 > Re* = 0.1882, R; = 3, Rz = 10,
Fr=F,=05,Q1 =1 and Q2 =2 at time T/4— (a),T/2— (b),3T/4— (c) and T — (d), where T is the minimal
period.

(b)

LU /v is greater than a critical value Re*. For those profiles corresponding to basic currents
without a uniform rotation direction, the type of the transition is continuous for both concave
bathymetry and convex bathymetry. On the other hand, for those profiles with the same
rotation direction, the type of transition can be catastrophic for relatively convex bathymetry.
Therefore, the bathymetry has an apparent effect on the type of transition in the flow in an
annular channel.

Since the bottom profile is of the form

= p?"2/2, pE [_L 1]7

the absolute value of p determines the slope of the bathymetry. From Fig.4, we see that
the critical Reynolds number Re*(p) with [p| > 0 is clearly larger than that with p = 0.
Physically, this means that the two-layer basic flow in an annular domain with a concave or
convex bathymetry lose their stability more easily than those with a flatter one.

From Fig. 5, we can infer that the configuration of the two-layer flow always changes
continuously from a basic stationary profile to a periodically evolving one when the control
parameter Re crosses the corresponding threshold, provided the basic currents rotate in the
same direction. However, for basic profiles where the upper and lower layer currents rotate
in the opposite direction, the system may jump to another state even if the basic solution is
linearly stable. As a result, the structure of the two-layer flow always changes suddenly, thus
leading to a sudden change in the physical states involved in the two-layer flow.
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