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Abstract—Semantic text matching, which matches target texts
to source texts, is a general problem in many areas, such as
information retrieval, question answering, and recommendation.
The challenges to existing research on this topic include 1)
out-of-vocabulary and low-frequency keywords and 2) direct
utilization of sparse matching matrix of source and target. The
out-of-vocabulary and low-frequency keywords could lead to
the mismatch of similar keywords in source and target texts.
The sparse matching matrix cannot provide enough clues to
match the source with the target. To address these challenges,
we propose a novel deep neural semantic text matching model.
Our model adopts an interactive attention network to achieve
information exchange between the source text and the target
text, and dynamically explores the matching matrix and learns
new representations of source and target texts. Experimental
results on three different text matching datasets demonstrate
that our model can significantly outperform competitive base-
lines. Furthermore, our model demonstrates great advantage in
alleviating the sparse matching problem and learning out-of-
vocabulary words with the local context, which widely exists in
a broad spectrum of NLP applications.

Index Terms—text semantic matching, deep neural networks,
interactive attention, sparse matching, out-of-vocabulary words,
information retrieval, question answering, tweet linking

I. INTRODUCTION

Semantic text matching learns the semantic similarities
between the source and target text pieces. It plays an essential
role in many areas, such as information retrieval, question
answering, and recommendation. The challenges of semantic
text matching mainly arise in three aspects. First, text pieces
with the same meaning usually have different expressions
(such as cancer and tumor). Second, semantically similar texts
might have sparse matching on the exact keywords. For exam-
ple, the text “this academic paper talks about bioinformatics”
and the text “the topic of this research is bioinformatics”
have almost the same meaning but share only one keyword
“bioinformatics.” Third, out-of-vocabulary and low-frequency
keywords in source and target texts usually cause mismatches
[1]1, [2]. For example, it is difficult to match the low-frequency
keyword “pneumothorax” in the source text with its synonym
“collapsed lung” in the target text [3]. All these difficulties
make semantic text matching still a challenging problem.

The rise of deep learning approaches in recent years, such as
recurrent neural networks [4], long short-term memory neural
networks [5], convolutional neural networks [6], and Trans-
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Fig. 1. An example of sparse matching between source and target texts. “Ap-
proach of the treatment for pneumothorax” is the title of a biomedical article.
The source and target only share a common word “treat” (after stemming).
“collapsed lung” in the source text is the synonym of “pneumothorax” in the
target text. The uncommon disease name “pneumothorax” is likely to be an
out-of-vocabulary word or low-frequency word. It is extremely hard to match
these two texts if we cannot learn the similarly between “collapsed lung” and
“pneumothorax”.

former [7], has firmly established the state-of-the-art perfor-
mance for understanding the complex semantic relationships
among texts. These approaches can be generally categorized
into two classes: 1) representation-focused model, and 2)
interaction-focused model. The representation-focused model
learns representations of source and target texts, and measures
relevance between them based on the learned representations
[8]-[12]. The interaction-focused model constructs a matching
matrix between the source and target texts first and estimates
the matching score by analyzing the matching matrix [10],
[13]-[17]. However, both models may fail if 1) keywords in
texts are out-of-vocabulary (OOV) and low-frequency, which
would cause the mismatch of semantically similar keywords;
2) there are few shared words in source and target texts, which
could generate an extremely sparse matching matrix between
source and target texts (see an example in Figure 1). Sparsity
has been a challenge by itself for machine learning models,
let alone the lack of sufficient information for linking source
and target texts.

In view of these challenges, we propose a novel deep
neural semantic text matching model named as interactive
attention network for semantic text matching (IASM) in this
paper. Our model builds an interactive attention network to
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achieve information exchange between source and target texts
and updates the matching matrix during the model learning
process. In this way, on the one hand, the representations
of source and target texts will be enriched after information
exchange, which makes the sparse matching matrix smoother.
On the other hand, the contextual relevance in specific source
and target text pairs will be encoded in the dynamic match-
ing matrix. Consequently, our model could alleviate sparse
matching problem with the enriched representations and the
dynamic matching matrix. Experiments are conducted on three
different semantic text matching datasets to demonstrate the
effectiveness of our proposed model’.

The main contributions of this paper are summarized as
follows:

o This paper explores the matching matrix to enrich repre-
sentations of source and target texts.

o The IASM model achieves information exchange between
the source text and target text through interactive atten-
tion, which could alleviate the sparse matching problem
through smoothing the sparse matching matrix.

o The TASM model takes advantage of interactive attention
between source and target texts, which could alleviate the
mismatch of text pairs, especially for those contain not
well-learned keywords in pre-trained word embeddings,
such as OOV and low-frequency words.

o We collect a new dataset for semantic text matching.

II. INTERACTIVE ATTENTION NETWORK

In this section, we present the interactive attention networks
for text semantic matching. We denote scalars by lowercase
letters, such as x; vectors by boldface lowercase letters, such
as x; and matrices by boldface upper case letters, such as X.
Table I lists the symbols and their descriptions that are used
throughout this paper.

The input of our model is a pair of source and target
texts (q,d). The source text g is composed of a m words
sequence (qi, g2, ..., ¢m) and the target text d is composed
of a n words sequence (d1,ds,...,d,). The pre-trained word
embedding of each word ¢; € ¢ and d; € d can be
obtained via representation learning on external resources such
as knowledge bases and large corpus. Then, we can get the
representation of source text Q(©) = {qgo), q(o), ey q$2 } and
the representation of target text D(0) = {dg"%, d, ... d"y.
Thus, we can get an initial matching matrix A(°) through the
word-level similarity between the source text ¢ and the target
text d based on the pre-trained representations of source and
target texts Q(®) and D(©).

AY = Sim(q!”,d\") ()

J T
where we exploit cosine similarity as the Sim function.
This matching matrix specifies the space of element-wise
interactions between objects ¢ and d. Also, the initial matching
matrix A(©) can be an adjacency matrix for a bipartite graph
extracted from some external knowledge graphs.

'Our code is available on https://github.com/SendongZhao/IASM.git.

TABLE I
SYMBOLS AND DESCRIPTIONS.

Symbol Description

q the source text

d the target text

A the matching matrix between ¢ and d in the n-th layer,
where A keeps the same in TASM-Static and changes
dynamically in JASM-Dynamic

QD | the new representation of source ¢ after n layers of
interactive attention

D@D | the new representation of target d after n layers of inter-
active attention

ng parameters of source-side the n-th layer of interactive
attention network

ng parameters of target-side n-th layer of interactive attention
network

a, B hyper-parameters to balance the local and global matching
clues

v, 0 hyper-parameters to balance two channel matching scores

A a margin separating true pairs and corrupted pairs

MF the set of true source and target text (g, d) pairs

M~ the set of corrupted pairs

The architecture of the interactive attention network consists
of three components, which are illustrated in Figure 2.

« Interactive attention for the source text.

« Interactive attention for the target text.

o Two-channel distance measure.
They are designed to learn new representations of source
and target texts, leverage interactive attention, and exchange
information between these two through the matching matrix.
This interactive process can update the matching matrix in
dynamic mode. On the one hand, the matching matrix will be
smoothed through information exchange. On the other hand,
it is possible to incorporate the local relevance of a specific
pair with the dynamic matching matrix.

A. Definition of static and dynamic matching matrix

Since the matching matrix is updated as the changing
of representations of source and target texts, the dynamic
matching matrix is defined as

AU = asim(g",d!") + sAY )
where o and 3 are hyper-parameters to balance the local and
global matching clues. Sim(qgnﬂ),dgnﬂ)) is to calculate
local matching information, while Ag-?) is to sustain the global
matching information between source and target which derives
from the initial matching matrix A, A(® is obtained from
global pre-trained word embeddings. In this way, the new
matching matrix could incorporate the initial matching matrix,
which is the crucial prior knowledge. We call the proposed
model with the dynamic matching matrix as IASM-Dynamic.

If the matching matrix is defined as follows:

(n+1) _ A (n)
Al 2 Al 3)
We call the model using static matching matrix as TASM-
Static. The matching matrix A1) in the (n + 1)th layer
is the transpose of matching matrix A(™ in the nth layer.
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Fig. 2. The framework of the interactive attention network for semantic text matching. The dimension of Q(O) ism X k, DO is n x k, AO) i m x n,
QW is nx k, D) is m x k. This framework could have multiple layers. In each layer, the representations of source Q and target D are fed into interactive
attention with matching matrix A to get new representations for source and target. At last, distance measures are conducted in two channels to get a matching
score of source and target. This is an interaction-focused method for calculating text similarity. Word embeddings are used to calculate the similarity kernel
(i.e., A). However, it is novel for changing the process in two ways. In each iteration: 1. kernel similarity is converted back to sentence embedding, and vice
versa, resulting in a deep network; 2. kernel and final similarity are continuously updated using a moving average.

A (1) keeps the information that derive from the very initial
matching matrix A (%),

B. Interactive Attention for Source Text

We take the initial matching matrix A (%), which represents
the word-level similarity between d and ¢, as the interactive
matrix between target and source texts. For the initial represen-
tation of source text Q(°), which is composed of pre-trained
word embeddings {q;}, we conduct interactive attention with
the matching matrix to learn a new representation of each word
in source text q. More concretely, the interactive attention on
source text ¢ builds the message-passing from the target text
d. In this way, the IASM model could integrate relevance
information from all words in the target text to enrich the
representation of each word in the source text. This interactive
attention process could be multiple layers. For the Ist layer,
we have

QY = f,(AOTQW) @

where the incoming interactive information is accumulated
and passed through a neural network-like function f,, such
as a linear transformation plus ReLU. Q) is the original
representation of source text, which is composed of pre-trained
word embeddings {q; }. For the (n+ 1)th layer, n =0, 1,2, ...,
we have

QU = f(AMTQMW) 5)

where W((Jn) is a weight matrix for nth layer.

C. Interactive Attention for Target Text

For the initial representation of target text D), which is
composed of pre-trained word embeddings {d;}, we conduct
interactive attention with the initial matching matrix A(©)
to learn new representation of each word in target text d.
Likewise, the interactive attention on target text d builds the
message-passing from the source text ¢. In this way, the IASM

model could integrate relevance information from all words in
the source text to enrich the representation of each word in the
target text. This interactive attention process could be multiple
layers. For the Ist layer, we have

DO — fd(A(O)D(O)W;O)) ©)

where the incoming relevance information is accumulated
and passed through a neural network-like function fy, such
as a linear transformation plus ReLU. D is the original
representation of target text, which is composed of pre-trained
word embeddings {d;}. For the (n + 1)th layer, we have

DD = f,(ADMW) ™

where Wgn) is a weight matrix for nth layer.

D. Two-channel Distance Measure

To measure the matching score between source and tar-
get texts, we conduct relevance measures on two different
channels, i.e., source channel and target channel. We com-
pare the difference between original source text representa-
tion Q(® and the new learned target representation D)
which is obtained after n — 1 layers of interactive attention.
The distance between these two representations is computed
as Dist(Q), D). We compare the difference between
original target text representation D(®) and the new learned
source representation Q™) which is obtained after n — 1
layers of interactive attention. The distance between these
two representations is computed as Dist(D(©), Q™). Each Q
and D should be normalized before conducting Dist(). There
are different choices of the distance metric, e.g., Euclidean
and cosine. In our experiments, the distance measurement we
exploit is Euclidean distance. The scoring function is defined
as follows.

s(q,d) = yDist(Q”, D™) + 6Dist(D, Q™) (8)

863

Authorized licensed use limited to: Cornell University Library. Downloaded on June 02,2021 at 12:24:42 UTC from IEEE Xplore. Restrictions apply.



where v and 0 are hyper-parameters and n is the number of
layers.

E. Learning of IASM

To optimize the parameters of our IASM model, we consider
a ranking criterion [18]. Intuitively, given an exact pair (g, d),
if the target text d is missing, the model should be able to
predict the correct target text. For each exact pair of source
and target texts (g, d), we sample several negative samples.
The objective of the training is to learn the proposed model
so that it can successfully rank the exact pair (¢, d) to precede
all other possible negative samples. Therefore, we define a loss
function to formalize this intuition:

> [A+s(q.d)—s(q.d)s 9

(gd)eM™ (¢ d)em™

L=

where M™ is the set of true source and target text (q,d)
pairs, M~ contains corrupted pairs constructed by negative
sampling which replaces the source text or the target text in
the true (¢,d), A > 0 is a margin separating true pairs and
corrupted pairs, and [z]; = max(0,x) denotes the positive
part of x.

III. EXPERIMENTS
A. Data Sets

We exploit three datasets to evaluate our model for semantic
text matching. Table II shows the statistics of three datasets.
PubMed dataset is a biomedical article retrieval dataset. TNL
is a tweet and news linking dataset. YodaQA is an answer
sentence selection dataset. Each data set is tokenized, POS-
tagged by Stanford POS tagger [19].

We collect the PubMed dataset through sampling PMID 2
on PubMed engine. Each biomedical article includes a title
with brief-expression and abstract, which is the summary of
this biomedical article. We exploit the title of each biomedical
article as the source text and take the corresponding abstract to
be the unique target text. With the ratio 8:1:1, we partition the
biomedical articles into training, validation, and testing sets.
In this data set, each query has only one relevant document,
and the other documents are irrelevant, making it difficult
to retrieve the correct document. Besides, too many low-
frequency/OOV biomedical terms in query and document may
cause the sparse matching problem.

PubMed dataset presents a specific application of text
matching in biomedical literature retrieval. We take as input
a source text and output the most relevant biomedical articles
to the query. This specific application is widely needed in
many real biomedical scenarios. For example, when a user
types in some disease-related information in the text [20], [21]
(e.g., symptoms, disease name, genetic information, personal
characteristics, history, etc.) [22], the system can provide the
most relevant articles with treatment, prevention, or prognosis
of the corresponding disease [23]-[25].

2A PMID is the unique identifier number used in PubMed for each article.

TNL dataset is a publicly available tweet to news linking
dataset, which is provided by Guo et al. [26]. This dataset
contains explicit URL links from each tweet to a related news
article. They crawled 6,312 CNN and NYTIMES news (title
+ snippets) from RSS feeds from Jan 11 to Jan 27, 2013. 34,
888 tweets that contain a single link to a CNN or NYTIMES
news were collected during the same period.

TNL dataset introduces a specific task of linking a tweet to
a news article that is relevant to the tweet. The task is to input
the text in a tweet and find the most relevant news article.
Therefore, it is natural to take a tweet as the source text and
the most relevant news article as the target text. Linking news
to tweets can enrich the context of tweets that are usually
short and informal. It can benefit the analysis of tweets and
topics. Moreover, it helps event discovery from the tweet.
There are many real-world similar scenarios because people
tend to discuss the same event and topic in different web
spaces. For example, the reporting of the same event differs
across different news media. Individuals tend to have different
comments for the same event in different expressions, even in
different languages.

YodaQA dataset is also a publicly available answer sentence
selection dataset’, which is generated from databases and
text corpora using information extraction. In this dataset, the
questions come from the YodaQA dataset and the YodaQA
system generated the candidate sentences based on enwiki,
using YodaQA sentence-selection branch. Sentences were gen-
erated by running fulltext solr search on enwiki for keywords
extracted from the question, then considering all sentences
from top N results containing at least a single keyword.
Sentences that match the gold standard answer regex are
labeled as 1, and the rest is O.

YodaQA dataset is applied for the task of answer sentence
selection. The task is to select the sentence that contains
the correct answer with a question. The performance of the
answer sentence task is not only crucial to non-factoid QA
systems, where a question is expected to be answered with a
sequence of descriptive text, but also very important to factoid
QA systems, where the answer sentence selection step is also
known as sentence scoring. As the definition of semantic text
matching, we take the question as the source and the sentence
carrying the corresponding answer as the target.

TABLE II
THE STATISTICS OF THREE DATASETS.

Data Set | #Source Text | #Target Text

PubMed 40,000 40,000
TNL 34,888 6,312

YodaQA 1,113 136,963

B. Experimental Settings

For these three different datasets of text semantic matching,
we conduct ranking experiments, which are evaluated with

3https://github.com/brmson/dataset-sts/tree/master/data/anssel/yodaqa

864

Authorized licensed use limited to: Cornell University Library. Downloaded on June 02,2021 at 12:24:42 UTC from IEEE Xplore. Restrictions apply.



three standard information retrieval metrics, including preci-
sion at N (such as P@1), mean reciprocal rank (MRR), and
mean average precision (MAP). The precision at N is the
retrieval precision at top N. The MRR is the mean of the
multiplicative inverse of the rank of the first correct answer.
The MAP is the mean of the average precision across samples
in our testing sets.

We train the model using Adam with the initial learning
rate of le — 4 for 50 epochs. The best setting for « is 0.75, 5
is 0.25, v is 0.5, and ¢ is 0.5. The best setting for the number
of layers is 3 for datasets PubMed and TNL, 5 for the dataset
YodaQA. For deep neural model baselines, we use the same
setting reported in their original papers.

C. Pre-trained Word Embeddings

We initialize the word embedding matrix with three types
of pre-trained word embeddings, respectively. The first is
trained by Word2Vec [27]. For PubMed, we choose the pre-
trained 100-dimensional Word2Vec embeddings trained on all
27.5 million MEDLINE biomedical articles. For TNL and
YodaQA, we choose Google’s 300-dimensional Word2Vec
embeddings trained on roughly 100 billion words from a
Google News dataset. The second is trained by GloVe [28].
For PubMed, we choose 100-dimensional GloVe embeddings
trained on 27.5 million MEDLINE biomedical articles. For
TNL, we choose Stanford pre-trained 100-dimensional GloVe
embeddings trained on 2 billion tweets. For YodaQA, we
use Stanford pre-trained 100-dimensional GloVe embeddings
trained on Wikipedia 2014 + Gigaword 5. The third is the
randomly initialized 100-dimensional embeddings which are
uniformly sampled from range [— d,in , +4/ dffm
is the dimension of embeddings [29].

|, where dim

D. Compared Methods

For all three datasets, we compare with the following
baselines to evaluate our TASM models.

o CNN-based approach (CNN) exploits textCNN [6] to
learn representations of source and target texts. Cosine
similarity is applied to measure the relevance between
source and target texts.

o« RNN-based approach (RNN) [11] exploits an RNN to
learn representations of source and target texts. The
siamese structure is applied to measure the relations
between documents.

« SMASH RNN [12] exploits the text structure to improve
the representation of long-form texts. Representations of
source and target texts are concatenated and fed into an
MLP to get the matching score.

o Simple BERT exploits pre-trained BERT [30] to model
each document as a word sequence and output its vector
representation. An MLP is utilized on the concatenation
of source and target representations to get the matching
score.

o ARC-I [10] finds the representation of the source and
target texts and compares the representation of the two
with an MLP. ARC-I is a CNN-based model. It takes

advantage of the flexibility brought by the convolutional
sentence model.

o ARC-II [10] utilizes CNN to learns hierarchical matching
patterns from local interactions. There are related studies
that share similar structures with this model, such as MV-
LSTM [31].

« DRMM [13] builds a matching matrix between query
and document through word-level similarity from word
embeddings. Histogram pooling is used to summarize
word-word interactions upon matching matrix to get a
matching score.

o Delta [16] constructs a “modified” document matrix by
replacing the words in the documents with the closest
words in the query. Convolutions will be performed on
this matrix to obtain a final relevance score.

o Conv-KNRM [15] is the n-gram version of kernel-based
interaction-based neural ranker. It models the interactions
between query and document with unigram and bigram
matching matrices. In particular, it convolves on the
interaction matrices and predicts whether two objects are
related.

o Extended BERT [17] extends BERT by adding a neural
ranking network upon BERT. It first constructs the match-
ing matrix between query and document, using the cosine
similarities between the projections of their embeddings
from BERT.

Our model is different from cross attention models [32]. Our
study is novel for calculating text similarity in two ways. In
each iteration: 1. kernel similarity (i.e., matching matrix) is
converted back to sentence embedding, and vice versa; 2.
kernel and final similarity are continuously updated using a
moving average. While cross attention models directly operate
column-wise and row-wise summation/average upon matching
matrix, which is very different from our model.

The existing attention-based reading comprehension
model is not applicable for semantic text matching. The
query2document attention and document2query attention are
either dot-product to get the probability of the answer word
in the document (like in attention-over-attention [32]) or
combined to fed to the sequence of the document (like in
BIDAF [33]). It is fine to select words or text pieces in the
document as the answer. However, it is not applicable for
matching query and document which needs to compute a
matching score between a query and a document. Therefore,
we propose the dynamic interactive attention mechanism to
learn new representations and measure relevance between
query and document in two channels.

E. Experimental Results

This section presents the performance results of different
semantic text matching models over the three datasets. A
summary of the results is displayed in Table III.

As we can see, the poor performances of representation-
focused models demonstrate the unsuitability of these models
for semantic text matching. Even with SOTA word embedding
system BERT, the representation-focused model (i.e., Simple
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TABLE III
THE OVERALL PERFORMANCE OF SEMANTIC TEXT MATCHING OVER THREE DATASETS. (P-VALUE < 0.05)

Model Type  Model PubMed TNL YodaQA
P@1 MRR MAP P@1 MRR MAP P@1 MRR MAP
CNN 0.0005  0.0013  0.0013  0.0017 0.0041 0.0041  0.0004  0.0035 0.0052
Representation RNN 0.0005 0.0021  0.0021  0.0011 0.0052 0.0052 0.0004 0.0018  0.0074
P ARC-I 0.0008 0.0015 0.0015 0.0021 0.0047 0.0047 0.0004 0.0034 0.0053
SMASH RNN 0.0014  0.0027  0.0027  0.0036  0.0079 0.0079  0.0011 0.0046  0.00103
Simple BERT 0.0050 0.0175  0.0175  0.0231  0.0340  0.0340 0.2279 0.1334  0.4310
ARC-II 0.1066  0.1934  0.1934 0.1385 0.2132 0.2132 0.2046  0.1230  0.3951
DRMM 0.1246  0.2245 0.2245 0.1317 0.2366  0.2366  0.2247  0.1728 0.4935
Interaction Conv-KNRM 0.1356  0.2389  0.2389  0.1435 0.2487 0.2487 0.2562 0.1934 0.5023
Delta 0.1527  0.2724  0.2724  0.1503  0.2643  0.2643  0.2423  0.1665 0.4738
Extended BERT  0.1133  0.2067 0.2067 0.1908  0.3332 0.3332 0.2446 0.1979 0.5321
Our Models TASM-Static 0.2189  0.3439  0.3439  0.2534 0.3494  0.3494  0.2924  0.2345 0.5778
IASM-Dynamic ~ 0.2474  0.3749  0.3749 0.2734 0.3678 0.3678 0.3233  0.2454  0.5936
BERT) is not promising as well. These representation-focused 0.4 ;
models learn representations of the source text and target o et
1 - [Z=223 IASM-CNN
text separately with neural networks such as' RNN, CNN, 035 TASM.Dynamic
and BERT. RNN, CNN, and ARC-I have similar perfor- N
mance, and Simple BERT consistently outperforms the other 031 ]
representation-focused models over all datasets, which shows ]
the superiority of BERT for text modeling over CNN and & %®[ : i
RNN. :
02} < ,
When we look at the interaction-focused models, we find ‘
that the interaction-focused models, i.e., ARC-II, Extended 0.15 - > R
BERT, DRMM, Delta, and Conv-KNRM, perform better than
representation-focused models. This is consistent with previ- 0.1 : ‘ :
. PubMed TN YodaQA
ous studies [13], [34], [35]. Among these models, DRMM
outperforms ARC-II due to the direct use of the matching Fig. 3. The comparison results of different variants of IASM after removing

matrix. Note that the matching matrix in ARC-II is obtained
through the weighted sum of query and document term vectors
rather than cosine similarity or dot product. Conv-KNRM
outperforms ARC-II because of utilizing both unigram and
bigram matching matrices. Extended BERT performs better
than DRMM, Conv-KNRM, and Delta over datasets TNL and
YodaQA, which presents its power of modeling dependency
between the source text and target text. However, Extended
BERT performs worse than DRMM, Conv-KNRM, and Delta
on PubMed data. This worse performance happens due to 1)
the target text in PubMed dataset is too long, which causes
bad representations of target texts, 2) too many low-frequency
biomedical terms in both source and target texts make it hard
to learn good representations. Moreover, Delta achieves the
best performance on PubMed dataset. This model operates
on matching matrix and gets matching score as well, but the
difference is that it highlights keywords in source texts by
replacing the words in the target texts with the closest words
in source texts.

As for our proposed IASM models, we have the fol-
lowing observations: (1) IASM-Static is comparable to the
best baselines on PubMed, TNL and YodaQA; (2) IASM-
Dynamic performs significantly better than all existing deep
learning models; (3) the dynamic matching matrix is better
than static matching matrix on semantic text matching. Note
that TASM-Static and IASM-Dynamic are both interaction-

some “feature”.

focused models. Our IASM models exploit matching matrix
to conduct interactive attention across the source and target
texts to exchange information rather than the static input
features (i.e., DRMM, ARC-II, and Conv-KNRM take the
matching matrix as the static input features), which is different
from the other interaction-focused models. Therefore, IASM
models could empower the ability to smooth sparse matching
matrix. JASM-Dynamic is better than IASM-Static because
the dynamic matching matrix could learn the local relevance
in the specific context of source and target texts.

F. Analysis of IASM model

1) Ablation Study: To further verify the effectiveness of our
model, we alternately remove some “feature” of the model and
see how that affects performance in three different data sets.
In particular, we compare the original IASM-Dynamic model
with several simpler versions of the model. TASM-Target
removes the source-channel pairwise distance measure. IASM-
Source removes the target-channel pairwise distance measure.
IASM-CNN replaces the two-channel pairwise distance in our
model with a CNN operation on the dynamic matching matrix.
The comparison results of these variants over three datasets are
depicted in Figure 3.
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TABLE IV
COMPARISONS OVER THREE DATASETS WITH DIFFERENT PRE-TRAINED WORD EMBEDDINGS

Word Embedding  Model PubMed TNL YodaQA
P@l MAP P@l  MAP P@l  MAP
ARCAT 0.0005 0.0000  0.0004 0.0007 0.0003 0.0012
Random DRMM 00073 001249 0.00512 0.00830 0.0323  0.0879
Conv-KNRM 00076 0.01325 00060  0.0094 00344 00879
Delta 00145 00187 00177 00260 00513 0.1129
TASM-Static 0027 0039 00194 00331 00742 01324
IASM-Dynamic ~ 0.0981  0.1164 00747 00974 01060 02154
ARCATT 00823 0.1743 0.1184 0.1847 0.1763 03517
WordaVec DRMM 0.1127  0.1924  0.1103 02043 02123 04738
Conv-KNRM  0.1145 01991  0.1245 02326 02485 04917
Delta 0.1465 02631 01433 02579  0.1932 04156
IASM-Static ~ 0.1832 03166 02521 03432 02876 05721
IASM-Dynamic 02059 03478 02643 03490 03078 05834
ARCATI 01066 0.1933  0.1385 02132 02046 03951
Glove DRMM 0.1246 02245 01317 02366 02247 04935
Conv-KNRM  0.1356 02389 01435 02487 02562  0.5023
Delta 01527 02724 01503 02643 02423 04738
TASM-Static 02189 03439 02534 03494 02924 05778
IASM-Dynamic ~ 0.2474 03749 02734 03678 03233 05936

2) Impact of Different Word Embedding Systems: We also
measure the effects of initialization with different strategies for
pre-training the word embeddings described in Section “Pre-
trained word embeddings”. The results are shown in Table V.
From this table, we can observe that

e Models using pre-trained word embeddings achieve a
significant improvement as opposed to the ones using
random embeddings.

e Models using GloVe embeddings outperforms using
Word2Vec consistently for different interaction-focused
models.

o ARC-II, DRMM, Conv-KNRM, and Delta rely more on
pre-trained word embeddings compared to our proposed
TASM models.

e IASM models outperform ARC-II, DRMM, Conv-
KNRM, and Delta even with randomly initialized word
embeddings, which indicates its ability to learn relevance
through the local context of source and target pair.

The reason why pre-trained word embeddings affect less on
our IASM-Dynamic is that our model learns new representa-
tions of source and target texts through interactive attention
with the matching matrix and updates the matching matrix to
model local context. These two aspects provide training of the
relevance between words through the local context of source
and target texts.

3) OOV Analysis: To better understand the effective-
ness of our model in dealing with OOV keywords, we
perform analysis on the samples which contain Out-of-
Vocabulary words (OOV). Specifically, we partition samples
in the test set into four subsets: in-vocabulary words (IV),
out-of-training-vocabulary words (OOTV), out-of-embedding-
vocabulary words (OOEV) and out-of-both-vocabulary words
(OOBYV). A sample in the test set belongs to IV if all words
in this sample (both source and target texts) appear in both the
training and embedding vocabulary. A sample in the test set
belongs to OOBYV if there is at least one word in this sample

(both source and target texts) neither appear in training or
in the embedding vocabulary. OOTV samples are the ones
which have words excluded in the training set but included in
embedding vocabulary, while OOEV samples are the ones that
have words included in embedding vocabulary but excluded
in the training set. Note that we only count nouns and verbs
in each sample for partition. Table V presents the statistics
of the partition on each corpus. The embedding we used is
pre-trained word embeddings described in Section “Pre-trained
Word Embeddings”.

TABLE V
STATISTICS OF THE PARTITION ON EACH TEST SET.
PubMed | TNL | YodaQA
v 1321 454 83
OO0TV 1747 153 26
OOEV 1463 27 11
OOBV 531 3 9

Table VI illustrates the performance of our models on each
subset of different corpora. The best performance appears
on IV of both three corpora for IASM-Static and IASM-
Dynamic. IV is the subset with samples that have all words
appear in both the training and embedding vocabulary. This
demonstrates that pre-trained word embedding and training
are both critical for semantic text matching. The comparison
of the performances on OOTV and OOEV shows that out-of-
embedding-vocabulary words are more challenging for text
semantic matching. By comparing performances of IASM-
Static and IASM-Dynamic on different OOV subsets, it is
apparent that JASM-Dynamic is more powerful to improve
performance for samples with OOV words. It is reasonable
that dynamic interactive attention in TASM-Dynamic can fully
make use of very limited local information of OOV words to
learn their semantics.

4) Alleviating Sparse Matching Matrix Problem: One ad-
vantage of our IASM-Dynamic comparing with interaction-
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TABLE VI
COMPARISON OF PERFORMANCE OF OUR MODEL ON DIFFERENT SUBSETS OF OOV.

PubMed TNL YodaQA
P@l [ MAP P@l [ MAP P@I [ MAP
TASM-Static
TIVC T 7| 703739 | 04961 T 0.2885 7] 0.38437] 03976 [ 0.5336
OOTV | 0.1723 | 0.1947 | 0.1895 | 0.2634 | 0.1923 | 0.3232
OOEV 0.052 0.074 0.037 0.076 0 0.011
OOBV | 0.009 0.012 0.001 0 0.01
TASM-Dynamic
“IVC T 7| 704005 05396 T 0.3061 ] 0.5005 | 0:4096 [ 0.5772 ~

OOTV | 0.1866 | 0.2134 | 0.2091 | 0.3724 | 0.2308 | 0.4127

OOEV 0.084 0.096 0.074 | 0.1141 0.091 0.127

OOBV | 0.022 | 0.0311 0.001 0.1111 | 0.1132

TABLE VII 0.7 T T T
WHAT PERCENTAGE OF SAMPLES GET SMOOTHER MATCHING MATRIX T E:'!(te?]ded BERT
AFTER ROUNDS OF INTERACTIVE ATTENTION. 06 H _«  [ASM-Static -
—— IASM-Dynamic
Training Samples | Testing Samples 05 4
PubMed 91.36% 82.43%
TNL 85.17% 75.62% 0.4 | R
YodaQA 88.34% 84.67% ®

= o3t B
0.2 B

focused model baselines is that our IASM-Dynamic could
alleviate the sparse matching problem. To verify the real effect
of our model in smoothing the sparse matching matrix, we
need to check the sparsity of the matching matrix before and
after interactive attention. To this end, we separately compute
the variance value of all entries in the initial matching matrix
and the last updated matching matrix for each sample in
training and testing sets. We compare the two variance values
of these two matrices for each dataset and present the results
in Table VII. From this table, we can see 91.36% of training
samples and 82.43% of testing samples in PubMed, 85.17%
of training samples and 75.62% of testing samples in TNL,
88.34% of training samples and 84.67% of testing samples in
YodaQA have much smaller variances of the updated matching
matrices than the initial matching matrices.

Besides, we divide PubMed testing samples into eleven
groups according to the number of shared nonstop words in
real source and target pairs. As shown in Figure 4, we check
the performance of models on semantic text matching in these
eleven groups to verify the power of our IASM-Dynamic in
sparse matching cases. The results clearly indicate that our
IASM-Dynamic has promising performance in those samples
in which source and target texts share very few nonstop words.

G. Case Study

Last but not least, we conduct three case studies to better
understand the power of the IASM-Dynamic. As a result
of information exchange between source and target texts,
the IASM-Dynamic could find those target texts which are
semantically and implicitly related to the corresponding source
text. Here are three examples in which the target text is placed
at the top one by IASM-Dynamic but are placed at rank
n (n > 1) by baselines. The bold words are keywords in
texts, which are either low-frequency/OOV words or implicitly

0.1

#Shared Nonstop Words

Fig. 4. Compassion of different models for different numbers of shared
nonstop words between source and target texts.

related to corresponding objects in their specific pairwise
contexts.

o PubMed. Query: “Neonatal chest drain insertion—an an-
imal model.” Document: “Trainees rarely see a pneu-
mothorax in the newborn because of the combination
of decreased doctors’ hours, the use of surfactant, and
modern ventilator techniques ....”

o TNL. Tweet: “A modicum of progress: RT @cnnbrk:
Saudi King Abdullah decrees currently male-dominated
Council be at least 20% women.” News: “Saudi Arabia’s
King Abdullah has appointed 30 women to the previously
all-male consultative Shura Council.”

o YodaQA. Question: “What does the bugler play at the
end of the day on a US military base?’ Answer: “The
most widely circulated one states that a Union Army
infantry officer, whose name often is given as Captain
Robert Ellicombe, first ordered *“Taps” performed at the
funeral of his son, a Confederate soldier killed during
the Peninsula Campaign.”

From these examples, it is clear to see that IASM-Dynamic
is very good at solving those sparse matching and implicit
relevance between source and target texts.
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IV. RELATED WORK

Semantic text matching models the relevance/similarity of
a pair of texts. It is intuitive for traditional approaches to
measure the similarity by comparing words in texts. For
example, Mihalcea et al. [36] computed the word similarity,
while Wu et al. [37] exploited the vector space model with
the term frequency-inverse document frequency (TF-IDF).
However, the bag-of-words representation is usually sparse.
Besides, the semantics between individual words are also hard
to capture, so these approaches usually obtain unsatisfactory
results. Although some studies attempted to leverage the
semantics in external resources such as knowledge bases [38]
and alleviate data sparseness by Latent Semantic Analysis
[39], discrete words still limit traditional approaches.

The recent development of deep learning provides a
new opportunity for semantic text matching [40], [41]. The
deep learning-based semantic text matching models, such as
siamese RNN [11], ARC-I [10], ARC-II [10], MV-LSTM
[31], DRMM [13], PACRR [42], Delta [16], Conv-KNRM
[15], SMASH RNN [12], BERT-based models [17], have
dominated this field. In particular, these models have been
focusing on 1) flexible representation learning of source and
target texts and 2) measuring the similarity between the source
and target texts at different levels. Correspondingly, there are
two main categories of deep neural semantic text matching
models. One is the representation-focused model, which tries
to learn good representations for both source and target with
deep neural networks, and then conducts matching between
the learned representations. Examples include DSSM [8], C-
DSSM [9], ARC-I [10], siamese RNN [11], MASH RNN [12],
GRAPHENE [43]. The other is the interaction-focused model,
which first builds interactions (i.e., matching matrix) between
the source and target texts, and then uses deep neural networks
to learn the overall matching score with the interactions.
Examples include DeepMatch [44], ARC-II [10], DRMM [13],
ESR [14], PACRR [42], Conv-KNRM [15] and Delta [16].

Interaction-focused models can alleviate the semantic gaps
between words in source and target texts through encoding
word-level similarities. Nevertheless, representation-focused
models could not directly use the word-level similarities
between source and target texts. Therefore, interaction-focused
models usually perform better [13], [34], [35]. However,
existing interaction-focused models are not aware of the sparse
matching problem, which is very common in domain-sensitive
text matching, such as biomedical literature retrieval. Besides,
existing interaction-focused models neglect the local context
of each specific source and target pair. The local context
usually encodes the particular relevance between words in
source and target texts, which is useful for OOV and low-
frequency keywords. This paper proposes the IASM model
and tries to explore these two problems.

Another type of method related to our proposed model
is attention-based machine comprehension models [32], [33],
[45]-[48]. However, our model has different operations on
matching matrix compared to existing attention-based ma-

chine comprehension models. Attention mechanisms in ex-
isting machine comprehension model models (e.g., BIDAF
[33], attention-over-attention [32], DrQA [48]) arrange weight
distribution on query words and document words by operating
column-wise and row-wise summation/average upon matching
matrix. We apply interactive attention upon matching matrix to
take as input original representations of source and target and
output new representations. On the one hand, the interactive
attention enables our model to encode fine-granularity inter-
active information between each word in the source text and
each word in the target text. The fine-granularity interactive
information is necessary to enrich representations of low-
frequent and professional terms like biomedical concepts in
biomedical literature [49]. On the other hand, the contribution
of each word in the document for updating representations of
source and target texts is unlearnable with the pre-trained word
embeddings in existing attention-based reading comprehension
models [32], [33], [45]-[48]. However, this is learnable in our
model via weight matrices W, in f,(ATQW,) and Wy in
Ja(ADW,) (see Figure 2). It is beneficial to enrich represen-
tations of those low-frequency and professional terms in source
and target texts (e.g., biomedical concepts in biomedical
articles and queries). Furthermore, the matching matrix in
our model could be built from external knowledge, such as
WordNet. Our model for semantic matching is designed to
encode local and global information simultaneously. However,
the attention-based machine comprehension model is designed
only for modeling the local context.

V. CONCLUSION

In this paper, we proposed novel interactive attention net-
work models, i.e., [ASM-Static and IASM-Dynamic, for se-
mantic text matching. Our models learn new representations
of source and target texts through interactive attention with
matching matrix between the two texts. [ASM-Static utilized
a static matching matrix and [ASM-Dynamic updates the
matching matrix accordingly. Therefore, IASM-Dynamic not
only enriches the representation of source and target texts
on top of their original representations, but also encodes the
local word-level relevance in the dynamic matching matrix.
All aspects benefit alleviating the sparse matching problem in
semantic text matching. We conducted empirical evaluations
of our models over three different data sets to analyze 1) the
impact of different components; 2) the impact of different
pre-trained word embedding systems; 3) the superiority of
our IASM-Dynamic for OOV words; 4) the power of the
TASM-Dynamic to alleviate the sparse matching problem. The
experimental results indicated that our model: (i) dramatically
improves on the previous state-of-the-art models by large
margins on three data sets; (ii) is much more stable for
the different pre-trained word embedding models; (iii) can
better make use of very limited local information to learn
semantics for OOV words; (iv) considerably alleviates the
sparse matching problem, leading to better performance. The
capability of our model in alleviating the sparse matching
problem and learning OOV words through dynamic interac-
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tive attention has considerable practical benefits for various
interesting NLP applications, such as reading comprehension,
machine translation and dialog, which can lead to a broad
spectrum of future research.

ACKNOWLEDGEMENT

The work is partially supported by National Science Foun-
dation under grant number 1750326 and 2027970, and Office
of Naval Research under grant number NOOO14-18-1-2585.

(1]
(2]

[11]
[12]
[13]

[14]

[15]

[20]

(21]

REFERENCES

S. Zhao, C. Su, Z. Lu, and F. Wang, “Recent advances in biomedical
literature mining,” Briefings in Bioinformatics, 2020.

S. Zhao, M. Jiang, Q. Yuan, B. Qin, T. Liu, and C. Zhai, “Contextcare:
Incorporating contextual information networks to representation learning
on medical forum data.” in IJCAI 2017, pp. 3497-3503.

S. Zhao and F. Wang, “Biomedical evidence generation engine,” arXiv
preprint arXiv:1911.06146, 2019.

T. Mikolov, M. Karafidt, L. Burget, J. Cernocky, and S. Khudanpur,
“Recurrent neural network based language model,” in Eleventh annual
conference of the international speech communication association, 2010.
S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735-1780, 1997.

Y. Kim, “Convolutional neural networks for sentence classification,” in
EMNLP, Oct. 2014, pp. 1746-1751.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and I. Polosukhin, “Attention is all you need,” in Advances
in neural information processing systems, 2017, pp. 5998-6008.

P.-S. Huang, X. He, J. Gao, L. Deng, A. Acero, and L. Heck, “Learning
deep structured semantic models for web search using clickthrough
data,” in CIKM. ACM, 2013, pp. 2333-2338.

J. Gao, P. Pantel, M. Gamon, X. He, and L. Deng, “Modeling interest-
ingness with deep neural networks,” in EMNLP, 2014, pp. 2-13.

B. Hu, Z. Lu, H. Li, and Q. Chen, “Convolutional neural network
architectures for matching natural language sentences,” in Advances in
neural information processing systems, 2014, pp. 2042-2050.

J. Mueller and A. Thyagarajan, “Siamese recurrent architectures for
learning sentence similarity,” in AAAI, 2016.

J.-Y. Jiang, M. Zhang, C. Li, M. Bendersky, N. Golbandi, and M. Najork,
“Semantic text matching for long-form documents,” 2019.

J. Guo, Y. Fan, Q. Ai, and W. B. Croft, “A deep relevance matching
model for ad-hoc retrieval,” in CIKM. ACM, 2016, pp. 55-64.

C. Xiong, R. Power, and J. Callan, “Explicit semantic ranking for
academic search via knowledge graph embedding,” in WWW, 2017, pp.
1271-1279.

Z. Dai, C. Xiong, J. Callan, and Z. Liu, “Convolutional neural networks
for soft-matching n-grams in ad-hoc search,” in WSDM, 2018, pp. 126—
134.

S. Mohan, N. Fiorini, S. Kim, and Z. Lu, “A fast deep learning model for
textual relevance in biomedical information retrieval,” in WWW, 2018,
pp. 77-86.

Y. Qiao, C. Xiong, Z. Liu, and Z. Liu, “Understanding the behaviors of
bert in ranking,” arXiv preprint arXiv:1904.07531, 2019.

S. Zhao, Q. Wang, S. Massung, B. Qin, T. Liu, B. Wang, and C. Zhai,
“Constructing and embedding abstract event causality networks from
text snippets,” in WSDM, 2017, pp. 335-344.

K. Toutanova, D. Klein, C. D. Manning, and Y. Singer, “Feature-rich
part-of-speech tagging with a cyclic dependency network,” in NAACL,
2003, pp. 173-180.

S. Zhao, T. Liu, S. Zhao, and F. Wang, “A neural multi-task learning
framework to jointly model medical named entity recognition and
normalization,” in AAAIL vol. 33, 2019, pp. 817-824.

J. Xu, C. Deng, X. Gao, D. Shen, and H. Huang, “Predicting alzheimer’s
disease cognitive assessment via robust low-rank structured sparse
model,” in IJCAI: proceedings of the conference, vol. 2017. NIH Public
Access, 2017, p. 3880.

J. Xu and F. Wang, “Federated learning for healthcare informatics,”
arXiv preprint arXiv:1911.06270, 2019.

K. Roberts, D. Demner-Fushman, E. M. Voorhees, W. R. Hersh,
S. Bedrick, A. J. Lazar, and S. Pant, “Overview of the trec 2017 precision
medicine track,” NIST Special Publication, pp. 500-324, 2017.

[24]

[25]

[26]

(27]

[28

[29]

[30

[32]

(33]

[34]

[36]

(37]

(38]

[39]

[41]

[42]

[43

[44]

870

M. Sun, S. Zhao, C. Gilvary, O. Elemento, J. Zhou, and F. Wang,
“Graph convolutional networks for computational drug development and
discovery,” Briefings in bioinformatics, vol. 21, no. 3, pp. 919-935, 2020.
J. Xu, Z. Xu, P. Walker, and F. Wang, “Federated patient hashing.” in
AAAI 2020, pp. 6486-6493.

W. Guo, H. Li, H. Ji, and M. Diab, “Linking tweets to news: A
framework to enrich short text data in social media,” in ACL, 2013,
pp. 239-249.

T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean,
“Distributed representations of words and phrases and their composi-
tionality,” in Advances in neural information processing systems, 2013,
pp. 3111-3119.

J. Pennington, R. Socher, and C. Manning, “Glove: Global vectors for
word representation,” in EMNLP, 2014, pp. 1532-1543.

K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers:
Surpassing human-level performance on imagenet classification,” in
ICCV, 2015, pp. 1026-1034.

J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training
of deep bidirectional transformers for language understanding,” arXiv
preprint arXiv:1810.04805, 2018.

S. Wan, Y. Lan, J. Guo, J. Xu, L. Pang, and X. Cheng, “A deep
architecture for semantic matching with multiple positional sentence
representations,” in AAAZ 2016.

Y. Cui, Z. Chen, S. Wei, S. Wang, T. Liu, and G. Hu, “Attention-over-
attention neural networks for reading comprehension,” in ACL, 2017,
pp. 593-602.

M. Seo, A. Kembhavi, A. Farhadi, and H. Hajishirzi, “Bidirec-
tional attention flow for machine comprehension,” arXiv preprint
arXiv:1611.01603, 2016.

Y. Zhang, M. M. Rahman, A. Braylan, B. Dang, H.-L. Chang, H. Kim,
Q. McNamara, A. Angert, E. Banner, V. Khetan et al., “Neural infor-
mation retrieval: A literature review,” arXiv preprint arXiv:1611.06792,
2016.

B. Liu, T. Zhang, D. Niu, J. Lin, K. Lai, and Y. Xu, “Matching
long text documents via graph convolutional networks,” arXiv preprint
arXiv:1802.07459, 2018.

R. Mihalcea, C. Corley, C. Strapparava et al., “Corpus-based and
knowledge-based measures of text semantic similarity,” in AAAZ vol. 6,
no. 2006, 2006, pp. 775-780.

H. C. Wu, R. W. P. Luk, K. FE. Wong, and K. L. Kwok, “Interpreting
tf-idf term weights as making relevance decisions,” ACM Transactions
on Information Systems, vol. 26, no. 3, p. 13, 2008.

G. Tsatsaronis, I. Varlamis, and M. Vazirgiannis, “Text relatedness based
on a word thesaurus,” Journal of Artificial Intelligence Research, vol. 37,
pp- 1-39, 2010.

W.-t. Yih, K. Toutanova, J. C. Platt, and C. Meek, “Learning discrimi-
native projections for text similarity measures,” in CoNLL. Association
for Computational Linguistics, 2011, pp. 247-256.

S. Wan, Y. Lan, J. Xu, J. Guo, L. Pang, and X. Cheng, “Match-
srnn: Modeling the recursive matching structure with spatial rnn,” arXiv
preprint arXiv:1604.04378, 2016.

L. Pang, Y. Lan, J. Guo, J. Xu, S. Wan, and X. Cheng, “Text matching
as image recognition,” in AAAL 2016.

K. Hui, A. Yates, K. Berberich, and G. de Melo, “PACRR: A position-
aware neural IR model for relevance matching,” in EMNLP, Sep. 2017,
pp. 1049-1058.

S. Zhao, C. Su, A. Sboner, and F. Wang, “Graphene: A precise biomed-
ical literature retrieval engine with graph augmented deep learning and
external knowledge empowerment,” in CIKM, 2019, pp. 149-158.

Z. Lu and H. Li, “A deep architecture for matching short texts,” in
Advances in neural information processing systems, 2013, pp. 1367—
1375.

A. W. Yu, D. Dohan, M.-T. Luong, R. Zhao, K. Chen, M. Norouzi, and
Q. V. Le, “Qanet: Combining local convolution with global self-attention
for reading comprehension,” arXiv preprint arXiv:1804.09541, 2018.
C. Xiong, V. Zhong, and R. Socher, “Dynamic coattention networks for
question answering,” arXiv preprint arXiv:1611.01604, 2016.

Y. Shen, P.-S. Huang, J. Gao, and W. Chen, “Reasonet: Learning to stop
reading in machine comprehension,” in KDD, 2017, pp. 1047-1055.
D. Chen, A. Fisch, J. Weston, and A. Bordes, “Reading Wikipedia to
answer open-domain questions,” in ACL, 2017, pp. 1870-1879.

S. Zhao, “Mining medical causality for diagnosis assistance,” in WSDM,
2017, pp. 841-847.

Authorized licensed use limited to: Cornell University Library. Downloaded on June 02,2021 at 12:24:42 UTC from IEEE Xplore. Restrictions apply.



