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Abstract—Semantic text matching, which matches target texts
to source texts, is a general problem in many areas, such as
information retrieval, question answering, and recommendation.
The challenges to existing research on this topic include 1)
out-of-vocabulary and low-frequency keywords and 2) direct
utilization of sparse matching matrix of source and target. The
out-of-vocabulary and low-frequency keywords could lead to
the mismatch of similar keywords in source and target texts.
The sparse matching matrix cannot provide enough clues to
match the source with the target. To address these challenges,
we propose a novel deep neural semantic text matching model.
Our model adopts an interactive attention network to achieve
information exchange between the source text and the target
text, and dynamically explores the matching matrix and learns
new representations of source and target texts. Experimental
results on three different text matching datasets demonstrate
that our model can significantly outperform competitive base-
lines. Furthermore, our model demonstrates great advantage in
alleviating the sparse matching problem and learning out-of-
vocabulary words with the local context, which widely exists in
a broad spectrum of NLP applications.

Index Terms—text semantic matching, deep neural networks,
interactive attention, sparse matching, out-of-vocabulary words,
information retrieval, question answering, tweet linking

I. INTRODUCTION

Semantic text matching learns the semantic similarities

between the source and target text pieces. It plays an essential

role in many areas, such as information retrieval, question

answering, and recommendation. The challenges of semantic

text matching mainly arise in three aspects. First, text pieces

with the same meaning usually have different expressions

(such as cancer and tumor). Second, semantically similar texts

might have sparse matching on the exact keywords. For exam-

ple, the text “this academic paper talks about bioinformatics”

and the text “the topic of this research is bioinformatics”

have almost the same meaning but share only one keyword

“bioinformatics.” Third, out-of-vocabulary and low-frequency

keywords in source and target texts usually cause mismatches

[1], [2]. For example, it is difficult to match the low-frequency

keyword “pneumothorax” in the source text with its synonym

“collapsed lung” in the target text [3]. All these difficulties

make semantic text matching still a challenging problem.

The rise of deep learning approaches in recent years, such as

recurrent neural networks [4], long short-term memory neural

networks [5], convolutional neural networks [6], and Trans-
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Fig. 1. An example of sparse matching between source and target texts. “Ap-
proach of the treatment for pneumothorax” is the title of a biomedical article.
The source and target only share a common word “treat” (after stemming).
“collapsed lung” in the source text is the synonym of “pneumothorax” in the
target text. The uncommon disease name “pneumothorax” is likely to be an
out-of-vocabulary word or low-frequency word. It is extremely hard to match
these two texts if we cannot learn the similarly between “collapsed lung” and
“pneumothorax”.

former [7], has firmly established the state-of-the-art perfor-

mance for understanding the complex semantic relationships

among texts. These approaches can be generally categorized

into two classes: 1) representation-focused model, and 2)

interaction-focused model. The representation-focused model

learns representations of source and target texts, and measures

relevance between them based on the learned representations

[8]–[12]. The interaction-focused model constructs a matching

matrix between the source and target texts first and estimates

the matching score by analyzing the matching matrix [10],

[13]–[17]. However, both models may fail if 1) keywords in

texts are out-of-vocabulary (OOV) and low-frequency, which

would cause the mismatch of semantically similar keywords;

2) there are few shared words in source and target texts, which

could generate an extremely sparse matching matrix between

source and target texts (see an example in Figure 1). Sparsity

has been a challenge by itself for machine learning models,

let alone the lack of sufficient information for linking source

and target texts.

In view of these challenges, we propose a novel deep

neural semantic text matching model named as interactive

attention network for semantic text matching (IASM) in this

paper. Our model builds an interactive attention network to
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achieve information exchange between source and target texts

and updates the matching matrix during the model learning

process. In this way, on the one hand, the representations

of source and target texts will be enriched after information

exchange, which makes the sparse matching matrix smoother.

On the other hand, the contextual relevance in specific source

and target text pairs will be encoded in the dynamic match-

ing matrix. Consequently, our model could alleviate sparse

matching problem with the enriched representations and the

dynamic matching matrix. Experiments are conducted on three

different semantic text matching datasets to demonstrate the

effectiveness of our proposed model1.

The main contributions of this paper are summarized as

follows:

• This paper explores the matching matrix to enrich repre-

sentations of source and target texts.

• The IASM model achieves information exchange between

the source text and target text through interactive atten-

tion, which could alleviate the sparse matching problem

through smoothing the sparse matching matrix.

• The IASM model takes advantage of interactive attention

between source and target texts, which could alleviate the

mismatch of text pairs, especially for those contain not

well-learned keywords in pre-trained word embeddings,

such as OOV and low-frequency words.

• We collect a new dataset for semantic text matching.

II. INTERACTIVE ATTENTION NETWORK

In this section, we present the interactive attention networks

for text semantic matching. We denote scalars by lowercase

letters, such as x; vectors by boldface lowercase letters, such

as x; and matrices by boldface upper case letters, such as X.

Table I lists the symbols and their descriptions that are used

throughout this paper.

The input of our model is a pair of source and target

texts (q, d). The source text q is composed of a m words

sequence (q1, q2, ..., qm) and the target text d is composed

of a n words sequence (d1, d2, ..., dn). The pre-trained word

embedding of each word qi ∈ q and dj ∈ d can be

obtained via representation learning on external resources such

as knowledge bases and large corpus. Then, we can get the

representation of source text Q(0) = {q(0)
1 ,q

(0)
2 , ...,q

(0)
m } and

the representation of target text D(0) = {d(0)
1 ,d

(0)
2 , ...,d

(0)
n }.

Thus, we can get an initial matching matrix A(0) through the

word-level similarity between the source text q and the target

text d based on the pre-trained representations of source and

target texts Q(0) and D(0).

A
(0)
ij = Sim(q

(0)
i ,d

(0)
j ) (1)

where we exploit cosine similarity as the Sim function.

This matching matrix specifies the space of element-wise

interactions between objects q and d. Also, the initial matching

matrix A(0) can be an adjacency matrix for a bipartite graph

extracted from some external knowledge graphs.

1Our code is available on https://github.com/SendongZhao/IASM.git.

TABLE I
SYMBOLS AND DESCRIPTIONS.

Symbol Description
q the source text
d the target text

A(n) the matching matrix between q and d in the n-th layer,
where A keeps the same in IASM-Static and changes
dynamically in IASM-Dynamic

Q(n+1) the new representation of source q after n layers of
interactive attention

D(n+1) the new representation of target d after n layers of inter-
active attention

W
(n)
q parameters of source-side the n-th layer of interactive

attention network

W
(n)
d parameters of target-side n-th layer of interactive attention

network
α, β hyper-parameters to balance the local and global matching

clues
γ, δ hyper-parameters to balance two channel matching scores
Δ a margin separating true pairs and corrupted pairs

M+ the set of true source and target text (q, d) pairs

M− the set of corrupted pairs

The architecture of the interactive attention network consists

of three components, which are illustrated in Figure 2.

• Interactive attention for the source text.

• Interactive attention for the target text.

• Two-channel distance measure.

They are designed to learn new representations of source

and target texts, leverage interactive attention, and exchange

information between these two through the matching matrix.

This interactive process can update the matching matrix in

dynamic mode. On the one hand, the matching matrix will be

smoothed through information exchange. On the other hand,

it is possible to incorporate the local relevance of a specific

pair with the dynamic matching matrix.

A. Definition of static and dynamic matching matrix

Since the matching matrix is updated as the changing

of representations of source and target texts, the dynamic

matching matrix is defined as

A
(n+1)
ij = αSim(q

(n+1)
i ,d

(n+1)
j ) + βA

(n)
ji (2)

where α and β are hyper-parameters to balance the local and

global matching clues. Sim(q
(n+1)
i ,d

(n+1)
j ) is to calculate

local matching information, while A
(n)
ji is to sustain the global

matching information between source and target which derives

from the initial matching matrix A(0). A(0) is obtained from

global pre-trained word embeddings. In this way, the new

matching matrix could incorporate the initial matching matrix,

which is the crucial prior knowledge. We call the proposed

model with the dynamic matching matrix as IASM-Dynamic.

If the matching matrix is defined as follows:

A
(n+1)
ij = A

(n)
ji (3)

We call the model using static matching matrix as IASM-
Static. The matching matrix A(n+1) in the (n + 1)th layer

is the transpose of matching matrix A(n) in the nth layer.
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Fig. 2. The framework of the interactive attention network for semantic text matching. The dimension of Q(0) is m× k, D(0) is n× k, A(0) is m× n,
Q(1) is n×k, D(1) is m×k. This framework could have multiple layers. In each layer, the representations of source Q and target D are fed into interactive
attention with matching matrix A to get new representations for source and target. At last, distance measures are conducted in two channels to get a matching
score of source and target. This is an interaction-focused method for calculating text similarity. Word embeddings are used to calculate the similarity kernel
(i.e., A). However, it is novel for changing the process in two ways. In each iteration: 1. kernel similarity is converted back to sentence embedding, and vice
versa, resulting in a deep network; 2. kernel and final similarity are continuously updated using a moving average.

A(n+1) keeps the information that derive from the very initial

matching matrix A(0).

B. Interactive Attention for Source Text

We take the initial matching matrix A(0), which represents

the word-level similarity between d and q, as the interactive

matrix between target and source texts. For the initial represen-

tation of source text Q(0), which is composed of pre-trained

word embeddings {qi}, we conduct interactive attention with

the matching matrix to learn a new representation of each word

in source text q. More concretely, the interactive attention on

source text q builds the message-passing from the target text

d. In this way, the IASM model could integrate relevance

information from all words in the target text to enrich the

representation of each word in the source text. This interactive

attention process could be multiple layers. For the 1st layer,

we have

Q(1) = fq(A
(0)TQ(0)W(0)

q ) (4)

where the incoming interactive information is accumulated

and passed through a neural network-like function fq , such

as a linear transformation plus ReLU. Q(0) is the original

representation of source text, which is composed of pre-trained

word embeddings {qi}. For the (n+1)th layer, n = 0, 1, 2, ...,
we have

Q(n+1) = fq(A
(n)TQ(n)W(n)

q ) (5)

where W
(n)
q is a weight matrix for nth layer.

C. Interactive Attention for Target Text

For the initial representation of target text D(0), which is

composed of pre-trained word embeddings {dj}, we conduct

interactive attention with the initial matching matrix A(0)

to learn new representation of each word in target text d.

Likewise, the interactive attention on target text d builds the

message-passing from the source text q. In this way, the IASM

model could integrate relevance information from all words in

the source text to enrich the representation of each word in the

target text. This interactive attention process could be multiple

layers. For the 1st layer, we have

D(1) = fd(A
(0)D(0)W

(0)
d ) (6)

where the incoming relevance information is accumulated

and passed through a neural network-like function fd, such

as a linear transformation plus ReLU. D(0) is the original

representation of target text, which is composed of pre-trained

word embeddings {dj}. For the (n+ 1)th layer, we have

D(n+1) = fd(A
(n)D(n)W

(n)
d ) (7)

where W
(n)
d is a weight matrix for nth layer.

D. Two-channel Distance Measure

To measure the matching score between source and tar-

get texts, we conduct relevance measures on two different

channels, i.e., source channel and target channel. We com-

pare the difference between original source text representa-

tion Q(0) and the new learned target representation D(n)

which is obtained after n − 1 layers of interactive attention.

The distance between these two representations is computed

as Dist(Q(0),D(n)). We compare the difference between

original target text representation D(0) and the new learned

source representation Q(n) which is obtained after n − 1
layers of interactive attention. The distance between these

two representations is computed as Dist(D(0),Q(n)). Each Q
and D should be normalized before conducting Dist(). There

are different choices of the distance metric, e.g., Euclidean

and cosine. In our experiments, the distance measurement we

exploit is Euclidean distance. The scoring function is defined

as follows.

s(q, d) = γDist(Q(0),D(n)) + δDist(D(0),Q(n)) (8)
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where γ and δ are hyper-parameters and n is the number of

layers.

E. Learning of IASM

To optimize the parameters of our IASM model, we consider

a ranking criterion [18]. Intuitively, given an exact pair (q, d),
if the target text d is missing, the model should be able to

predict the correct target text. For each exact pair of source

and target texts (q, d), we sample several negative samples.

The objective of the training is to learn the proposed model

so that it can successfully rank the exact pair (q, d) to precede

all other possible negative samples. Therefore, we define a loss

function to formalize this intuition:

L =
∑

(q,d)∈M+ (q
′
,d

′
)∈M−

[Δ + s(q, d)− s(q
′
, d

′
)]+ (9)

where M+ is the set of true source and target text (q, d)
pairs, M− contains corrupted pairs constructed by negative

sampling which replaces the source text or the target text in

the true (q, d), Δ > 0 is a margin separating true pairs and

corrupted pairs, and [x]+ = max(0, x) denotes the positive

part of x.

III. EXPERIMENTS

A. Data Sets

We exploit three datasets to evaluate our model for semantic

text matching. Table II shows the statistics of three datasets.

PubMed dataset is a biomedical article retrieval dataset. TNL

is a tweet and news linking dataset. YodaQA is an answer

sentence selection dataset. Each data set is tokenized, POS-

tagged by Stanford POS tagger [19].

We collect the PubMed dataset through sampling PMID 2

on PubMed engine. Each biomedical article includes a title

with brief-expression and abstract, which is the summary of

this biomedical article. We exploit the title of each biomedical

article as the source text and take the corresponding abstract to

be the unique target text. With the ratio 8:1:1, we partition the

biomedical articles into training, validation, and testing sets.

In this data set, each query has only one relevant document,

and the other documents are irrelevant, making it difficult

to retrieve the correct document. Besides, too many low-

frequency/OOV biomedical terms in query and document may

cause the sparse matching problem.

PubMed dataset presents a specific application of text

matching in biomedical literature retrieval. We take as input

a source text and output the most relevant biomedical articles

to the query. This specific application is widely needed in

many real biomedical scenarios. For example, when a user

types in some disease-related information in the text [20], [21]

(e.g., symptoms, disease name, genetic information, personal

characteristics, history, etc.) [22], the system can provide the

most relevant articles with treatment, prevention, or prognosis

of the corresponding disease [23]–[25].

2A PMID is the unique identifier number used in PubMed for each article.

TNL dataset is a publicly available tweet to news linking

dataset, which is provided by Guo et al. [26]. This dataset

contains explicit URL links from each tweet to a related news

article. They crawled 6,312 CNN and NYTIMES news (title

+ snippets) from RSS feeds from Jan 11 to Jan 27, 2013. 34,

888 tweets that contain a single link to a CNN or NYTIMES

news were collected during the same period.

TNL dataset introduces a specific task of linking a tweet to

a news article that is relevant to the tweet. The task is to input

the text in a tweet and find the most relevant news article.

Therefore, it is natural to take a tweet as the source text and

the most relevant news article as the target text. Linking news

to tweets can enrich the context of tweets that are usually

short and informal. It can benefit the analysis of tweets and

topics. Moreover, it helps event discovery from the tweet.

There are many real-world similar scenarios because people

tend to discuss the same event and topic in different web

spaces. For example, the reporting of the same event differs

across different news media. Individuals tend to have different

comments for the same event in different expressions, even in

different languages.

YodaQA dataset is also a publicly available answer sentence

selection dataset3, which is generated from databases and

text corpora using information extraction. In this dataset, the

questions come from the YodaQA dataset and the YodaQA

system generated the candidate sentences based on enwiki,

using YodaQA sentence-selection branch. Sentences were gen-

erated by running fulltext solr search on enwiki for keywords

extracted from the question, then considering all sentences

from top N results containing at least a single keyword.

Sentences that match the gold standard answer regex are

labeled as 1, and the rest is 0.

YodaQA dataset is applied for the task of answer sentence

selection. The task is to select the sentence that contains

the correct answer with a question. The performance of the

answer sentence task is not only crucial to non-factoid QA

systems, where a question is expected to be answered with a

sequence of descriptive text, but also very important to factoid

QA systems, where the answer sentence selection step is also

known as sentence scoring. As the definition of semantic text

matching, we take the question as the source and the sentence

carrying the corresponding answer as the target.

TABLE II
THE STATISTICS OF THREE DATASETS.

Data Set #Source Text #Target Text
PubMed 40,000 40,000

TNL 34,888 6,312
YodaQA 1,113 136,963

B. Experimental Settings

For these three different datasets of text semantic matching,

we conduct ranking experiments, which are evaluated with

3https://github.com/brmson/dataset-sts/tree/master/data/anssel/yodaqa
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three standard information retrieval metrics, including preci-

sion at N (such as P@1), mean reciprocal rank (MRR), and

mean average precision (MAP). The precision at N is the

retrieval precision at top N. The MRR is the mean of the

multiplicative inverse of the rank of the first correct answer.

The MAP is the mean of the average precision across samples

in our testing sets.

We train the model using Adam with the initial learning

rate of 1e− 4 for 50 epochs. The best setting for α is 0.75, β
is 0.25, γ is 0.5, and δ is 0.5. The best setting for the number

of layers is 3 for datasets PubMed and TNL, 5 for the dataset

YodaQA. For deep neural model baselines, we use the same

setting reported in their original papers.

C. Pre-trained Word Embeddings

We initialize the word embedding matrix with three types

of pre-trained word embeddings, respectively. The first is

trained by Word2Vec [27]. For PubMed, we choose the pre-

trained 100-dimensional Word2Vec embeddings trained on all

27.5 million MEDLINE biomedical articles. For TNL and

YodaQA, we choose Google’s 300-dimensional Word2Vec

embeddings trained on roughly 100 billion words from a

Google News dataset. The second is trained by GloVe [28].

For PubMed, we choose 100-dimensional GloVe embeddings

trained on 27.5 million MEDLINE biomedical articles. For

TNL, we choose Stanford pre-trained 100-dimensional GloVe

embeddings trained on 2 billion tweets. For YodaQA, we

use Stanford pre-trained 100-dimensional GloVe embeddings

trained on Wikipedia 2014 + Gigaword 5. The third is the

randomly initialized 100-dimensional embeddings which are

uniformly sampled from range [−
√

3
dim ,+

√
3

dim ], where dim

is the dimension of embeddings [29].

D. Compared Methods

For all three datasets, we compare with the following

baselines to evaluate our IASM models.

• CNN-based approach (CNN) exploits textCNN [6] to

learn representations of source and target texts. Cosine

similarity is applied to measure the relevance between

source and target texts.

• RNN-based approach (RNN) [11] exploits an RNN to

learn representations of source and target texts. The

siamese structure is applied to measure the relations

between documents.

• SMASH RNN [12] exploits the text structure to improve

the representation of long-form texts. Representations of

source and target texts are concatenated and fed into an

MLP to get the matching score.

• Simple BERT exploits pre-trained BERT [30] to model

each document as a word sequence and output its vector

representation. An MLP is utilized on the concatenation

of source and target representations to get the matching

score.

• ARC-I [10] finds the representation of the source and

target texts and compares the representation of the two

with an MLP. ARC-I is a CNN-based model. It takes

advantage of the flexibility brought by the convolutional

sentence model.

• ARC-II [10] utilizes CNN to learns hierarchical matching

patterns from local interactions. There are related studies

that share similar structures with this model, such as MV-

LSTM [31].

• DRMM [13] builds a matching matrix between query

and document through word-level similarity from word

embeddings. Histogram pooling is used to summarize

word-word interactions upon matching matrix to get a

matching score.

• Delta [16] constructs a “modified” document matrix by

replacing the words in the documents with the closest

words in the query. Convolutions will be performed on

this matrix to obtain a final relevance score.

• Conv-KNRM [15] is the n-gram version of kernel-based

interaction-based neural ranker. It models the interactions

between query and document with unigram and bigram

matching matrices. In particular, it convolves on the

interaction matrices and predicts whether two objects are

related.

• Extended BERT [17] extends BERT by adding a neural

ranking network upon BERT. It first constructs the match-

ing matrix between query and document, using the cosine

similarities between the projections of their embeddings

from BERT.

Our model is different from cross attention models [32]. Our

study is novel for calculating text similarity in two ways. In

each iteration: 1. kernel similarity (i.e., matching matrix) is

converted back to sentence embedding, and vice versa; 2.

kernel and final similarity are continuously updated using a

moving average. While cross attention models directly operate

column-wise and row-wise summation/average upon matching

matrix, which is very different from our model.

The existing attention-based reading comprehension

model is not applicable for semantic text matching. The

query2document attention and document2query attention are

either dot-product to get the probability of the answer word

in the document (like in attention-over-attention [32]) or

combined to fed to the sequence of the document (like in

BIDAF [33]). It is fine to select words or text pieces in the

document as the answer. However, it is not applicable for

matching query and document which needs to compute a

matching score between a query and a document. Therefore,

we propose the dynamic interactive attention mechanism to

learn new representations and measure relevance between

query and document in two channels.

E. Experimental Results

This section presents the performance results of different

semantic text matching models over the three datasets. A

summary of the results is displayed in Table III.

As we can see, the poor performances of representation-

focused models demonstrate the unsuitability of these models

for semantic text matching. Even with SOTA word embedding

system BERT, the representation-focused model (i.e., Simple
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TABLE III
THE OVERALL PERFORMANCE OF SEMANTIC TEXT MATCHING OVER THREE DATASETS. (P-VALUE ≤ 0.05)

Model Type Model PubMed TNL YodaQA

P@1 MRR MAP P@1 MRR MAP P@1 MRR MAP

Representation

CNN 0.0005 0.0013 0.0013 0.0017 0.0041 0.0041 0.0004 0.0035 0.0052
RNN 0.0005 0.0021 0.0021 0.0011 0.0052 0.0052 0.0004 0.0018 0.0074
ARC-I 0.0008 0.0015 0.0015 0.0021 0.0047 0.0047 0.0004 0.0034 0.0053
SMASH RNN 0.0014 0.0027 0.0027 0.0036 0.0079 0.0079 0.0011 0.0046 0.00103
Simple BERT 0.0050 0.0175 0.0175 0.0231 0.0340 0.0340 0.2279 0.1334 0.4310

Interaction

ARC-II 0.1066 0.1934 0.1934 0.1385 0.2132 0.2132 0.2046 0.1230 0.3951
DRMM 0.1246 0.2245 0.2245 0.1317 0.2366 0.2366 0.2247 0.1728 0.4935
Conv-KNRM 0.1356 0.2389 0.2389 0.1435 0.2487 0.2487 0.2562 0.1934 0.5023
Delta 0.1527 0.2724 0.2724 0.1503 0.2643 0.2643 0.2423 0.1665 0.4738
Extended BERT 0.1133 0.2067 0.2067 0.1908 0.3332 0.3332 0.2446 0.1979 0.5321

Our Models
IASM-Static 0.2189 0.3439 0.3439 0.2534 0.3494 0.3494 0.2924 0.2345 0.5778
IASM-Dynamic 0.2474 0.3749 0.3749 0.2734 0.3678 0.3678 0.3233 0.2454 0.5936

BERT) is not promising as well. These representation-focused

models learn representations of the source text and target

text separately with neural networks such as RNN, CNN,

and BERT. RNN, CNN, and ARC-I have similar perfor-

mance, and Simple BERT consistently outperforms the other

representation-focused models over all datasets, which shows

the superiority of BERT for text modeling over CNN and

RNN.

When we look at the interaction-focused models, we find

that the interaction-focused models, i.e., ARC-II, Extended

BERT, DRMM, Delta, and Conv-KNRM, perform better than

representation-focused models. This is consistent with previ-

ous studies [13], [34], [35]. Among these models, DRMM

outperforms ARC-II due to the direct use of the matching

matrix. Note that the matching matrix in ARC-II is obtained

through the weighted sum of query and document term vectors

rather than cosine similarity or dot product. Conv-KNRM

outperforms ARC-II because of utilizing both unigram and

bigram matching matrices. Extended BERT performs better

than DRMM, Conv-KNRM, and Delta over datasets TNL and

YodaQA, which presents its power of modeling dependency

between the source text and target text. However, Extended

BERT performs worse than DRMM, Conv-KNRM, and Delta

on PubMed data. This worse performance happens due to 1)

the target text in PubMed dataset is too long, which causes

bad representations of target texts, 2) too many low-frequency

biomedical terms in both source and target texts make it hard

to learn good representations. Moreover, Delta achieves the

best performance on PubMed dataset. This model operates

on matching matrix and gets matching score as well, but the

difference is that it highlights keywords in source texts by

replacing the words in the target texts with the closest words

in source texts.

As for our proposed IASM models, we have the fol-

lowing observations: (1) IASM-Static is comparable to the

best baselines on PubMed, TNL and YodaQA; (2) IASM-

Dynamic performs significantly better than all existing deep

learning models; (3) the dynamic matching matrix is better

than static matching matrix on semantic text matching. Note

that IASM-Static and IASM-Dynamic are both interaction-
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Fig. 3. The comparison results of different variants of IASM after removing
some “feature”.

focused models. Our IASM models exploit matching matrix

to conduct interactive attention across the source and target

texts to exchange information rather than the static input

features (i.e., DRMM, ARC-II, and Conv-KNRM take the

matching matrix as the static input features), which is different

from the other interaction-focused models. Therefore, IASM

models could empower the ability to smooth sparse matching

matrix. IASM-Dynamic is better than IASM-Static because

the dynamic matching matrix could learn the local relevance

in the specific context of source and target texts.

F. Analysis of IASM model

1) Ablation Study: To further verify the effectiveness of our

model, we alternately remove some “feature” of the model and

see how that affects performance in three different data sets.

In particular, we compare the original IASM-Dynamic model

with several simpler versions of the model. IASM-Target

removes the source-channel pairwise distance measure. IASM-

Source removes the target-channel pairwise distance measure.

IASM-CNN replaces the two-channel pairwise distance in our

model with a CNN operation on the dynamic matching matrix.

The comparison results of these variants over three datasets are

depicted in Figure 3.
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TABLE IV
COMPARISONS OVER THREE DATASETS WITH DIFFERENT PRE-TRAINED WORD EMBEDDINGS

Word Embedding Model PubMed TNL YodaQA

P@1 MAP P@1 MAP P@1 MAP

Random

ARC-II 0.0005 0.0009 0.0004 0.0007 0.0003 0.0012
DRMM 0.0073 0.01249 0.00512 0.00830 0.0323 0.0879
Conv-KNRM 0.0076 0.01325 0.0060 0.0094 0.0344 0.0879
Delta 0.0145 0.0187 0.0177 0.0260 0.0513 0.1129
IASM-Static 0.027 0.039 0.0194 0.0331 0.0742 0.1324
IASM-Dynamic 0.0981 0.1164 0.0747 0.0974 0.1060 0.2154

Word2Vec

ARC-II 0.0823 0.1743 0.1184 0.1847 0.1763 0.3517
DRMM 0.1127 0.1924 0.1103 0.2043 0.2123 0.4738
Conv-KNRM 0.1145 0.1991 0.1245 0.2326 0.2485 0.4917
Delta 0.1465 0.2631 0.1433 0.2579 0.1932 0.4156
IASM-Static 0.1832 0.3166 0.2521 0.3432 0.2876 0.5721
IASM-Dynamic 0.2059 0.3478 0.2643 0.3490 0.3078 0.5834

Glove

ARC-II 0.1066 0.1934 0.1385 0.2132 0.2046 0.3951
DRMM 0.1246 0.2245 0.1317 0.2366 0.2247 0.4935
Conv-KNRM 0.1356 0.2389 0.1435 0.2487 0.2562 0.5023
Delta 0.1527 0.2724 0.1503 0.2643 0.2423 0.4738
IASM-Static 0.2189 0.3439 0.2534 0.3494 0.2924 0.5778
IASM-Dynamic 0.2474 0.3749 0.2734 0.3678 0.3233 0.5936

2) Impact of Different Word Embedding Systems: We also

measure the effects of initialization with different strategies for

pre-training the word embeddings described in Section “Pre-

trained word embeddings”. The results are shown in Table IV.

From this table, we can observe that

• Models using pre-trained word embeddings achieve a

significant improvement as opposed to the ones using

random embeddings.

• Models using GloVe embeddings outperforms using

Word2Vec consistently for different interaction-focused

models.

• ARC-II, DRMM, Conv-KNRM, and Delta rely more on

pre-trained word embeddings compared to our proposed

IASM models.

• IASM models outperform ARC-II, DRMM, Conv-

KNRM, and Delta even with randomly initialized word

embeddings, which indicates its ability to learn relevance

through the local context of source and target pair.

The reason why pre-trained word embeddings affect less on

our IASM-Dynamic is that our model learns new representa-

tions of source and target texts through interactive attention

with the matching matrix and updates the matching matrix to

model local context. These two aspects provide training of the

relevance between words through the local context of source

and target texts.
3) OOV Analysis: To better understand the effective-

ness of our model in dealing with OOV keywords, we

perform analysis on the samples which contain Out-of-

Vocabulary words (OOV). Specifically, we partition samples

in the test set into four subsets: in-vocabulary words (IV),

out-of-training-vocabulary words (OOTV), out-of-embedding-

vocabulary words (OOEV) and out-of-both-vocabulary words

(OOBV). A sample in the test set belongs to IV if all words

in this sample (both source and target texts) appear in both the

training and embedding vocabulary. A sample in the test set

belongs to OOBV if there is at least one word in this sample

(both source and target texts) neither appear in training or

in the embedding vocabulary. OOTV samples are the ones

which have words excluded in the training set but included in

embedding vocabulary, while OOEV samples are the ones that

have words included in embedding vocabulary but excluded

in the training set. Note that we only count nouns and verbs

in each sample for partition. Table V presents the statistics

of the partition on each corpus. The embedding we used is

pre-trained word embeddings described in Section “Pre-trained

Word Embeddings”.

TABLE V
STATISTICS OF THE PARTITION ON EACH TEST SET.

PubMed TNL YodaQA
IV 1321 454 83
OOTV 1747 153 26
OOEV 1463 27 11
OOBV 531 3 9

Table VI illustrates the performance of our models on each

subset of different corpora. The best performance appears

on IV of both three corpora for IASM-Static and IASM-

Dynamic. IV is the subset with samples that have all words

appear in both the training and embedding vocabulary. This

demonstrates that pre-trained word embedding and training

are both critical for semantic text matching. The comparison

of the performances on OOTV and OOEV shows that out-of-

embedding-vocabulary words are more challenging for text

semantic matching. By comparing performances of IASM-

Static and IASM-Dynamic on different OOV subsets, it is

apparent that IASM-Dynamic is more powerful to improve

performance for samples with OOV words. It is reasonable

that dynamic interactive attention in IASM-Dynamic can fully

make use of very limited local information of OOV words to

learn their semantics.

4) Alleviating Sparse Matching Matrix Problem: One ad-

vantage of our IASM-Dynamic comparing with interaction-
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TABLE VI
COMPARISON OF PERFORMANCE OF OUR MODEL ON DIFFERENT SUBSETS OF OOV.

PubMed TNL YodaQA
P@1 MAP P@1 MAP P@1 MAP

IASM-Static
IV 0.3739 0.4961 0.2885 0.3843 0.3976 0.5336
OOTV 0.1723 0.1947 0.1895 0.2634 0.1923 0.3232
OOEV 0.052 0.074 0.037 0.076 0 0.011
OOBV 0.009 0.012 0 0.001 0 0.01

IASM-Dynamic
IV 0.4005 0.5396 0.3061 0.5005 0.4096 0.5772
OOTV 0.1866 0.2134 0.2091 0.3724 0.2308 0.4127
OOEV 0.084 0.096 0.074 0.1141 0.091 0.127
OOBV 0.022 0.0311 0 0.001 0.1111 0.1132

TABLE VII
WHAT PERCENTAGE OF SAMPLES GET SMOOTHER MATCHING MATRIX

AFTER ROUNDS OF INTERACTIVE ATTENTION.

Training Samples Testing Samples
PubMed 91.36% 82.43%

TNL 85.17% 75.62%
YodaQA 88.34% 84.67%

focused model baselines is that our IASM-Dynamic could

alleviate the sparse matching problem. To verify the real effect

of our model in smoothing the sparse matching matrix, we

need to check the sparsity of the matching matrix before and

after interactive attention. To this end, we separately compute

the variance value of all entries in the initial matching matrix

and the last updated matching matrix for each sample in

training and testing sets. We compare the two variance values

of these two matrices for each dataset and present the results

in Table VII. From this table, we can see 91.36% of training

samples and 82.43% of testing samples in PubMed, 85.17%
of training samples and 75.62% of testing samples in TNL,

88.34% of training samples and 84.67% of testing samples in

YodaQA have much smaller variances of the updated matching

matrices than the initial matching matrices.

Besides, we divide PubMed testing samples into eleven

groups according to the number of shared nonstop words in

real source and target pairs. As shown in Figure 4, we check

the performance of models on semantic text matching in these

eleven groups to verify the power of our IASM-Dynamic in

sparse matching cases. The results clearly indicate that our

IASM-Dynamic has promising performance in those samples

in which source and target texts share very few nonstop words.

G. Case Study

Last but not least, we conduct three case studies to better

understand the power of the IASM-Dynamic. As a result

of information exchange between source and target texts,

the IASM-Dynamic could find those target texts which are

semantically and implicitly related to the corresponding source

text. Here are three examples in which the target text is placed

at the top one by IASM-Dynamic but are placed at rank

n (n � 1) by baselines. The bold words are keywords in

texts, which are either low-frequency/OOV words or implicitly
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Fig. 4. Compassion of different models for different numbers of shared
nonstop words between source and target texts.

related to corresponding objects in their specific pairwise

contexts.

• PubMed. Query: “Neonatal chest drain insertion–an an-

imal model.” Document: “Trainees rarely see a pneu-
mothorax in the newborn because of the combination

of decreased doctors’ hours, the use of surfactant, and

modern ventilator techniques ....”

• TNL. Tweet: “A modicum of progress: RT @cnnbrk:

Saudi King Abdullah decrees currently male-dominated
Council be at least 20% women.” News: “Saudi Arabia’s

King Abdullah has appointed 30 women to the previously

all-male consultative Shura Council.”

• YodaQA. Question: “What does the bugler play at the

end of the day on a US military base?” Answer: “The

most widely circulated one states that a Union Army
infantry officer, whose name often is given as Captain

Robert Ellicombe, first ordered “Taps” performed at the

funeral of his son, a Confederate soldier killed during

the Peninsula Campaign.”

From these examples, it is clear to see that IASM-Dynamic

is very good at solving those sparse matching and implicit

relevance between source and target texts.
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IV. RELATED WORK

Semantic text matching models the relevance/similarity of

a pair of texts. It is intuitive for traditional approaches to

measure the similarity by comparing words in texts. For

example, Mihalcea et al. [36] computed the word similarity,

while Wu et al. [37] exploited the vector space model with

the term frequency-inverse document frequency (TF-IDF).

However, the bag-of-words representation is usually sparse.

Besides, the semantics between individual words are also hard

to capture, so these approaches usually obtain unsatisfactory

results. Although some studies attempted to leverage the

semantics in external resources such as knowledge bases [38]

and alleviate data sparseness by Latent Semantic Analysis

[39], discrete words still limit traditional approaches.

The recent development of deep learning provides a

new opportunity for semantic text matching [40], [41]. The

deep learning-based semantic text matching models, such as

siamese RNN [11], ARC-I [10], ARC-II [10], MV-LSTM

[31], DRMM [13], PACRR [42], Delta [16], Conv-KNRM

[15], SMASH RNN [12], BERT-based models [17], have

dominated this field. In particular, these models have been

focusing on 1) flexible representation learning of source and

target texts and 2) measuring the similarity between the source

and target texts at different levels. Correspondingly, there are

two main categories of deep neural semantic text matching

models. One is the representation-focused model, which tries

to learn good representations for both source and target with

deep neural networks, and then conducts matching between

the learned representations. Examples include DSSM [8], C-

DSSM [9], ARC-I [10], siamese RNN [11], MASH RNN [12],

GRAPHENE [43]. The other is the interaction-focused model,

which first builds interactions (i.e., matching matrix) between

the source and target texts, and then uses deep neural networks

to learn the overall matching score with the interactions.

Examples include DeepMatch [44], ARC-II [10], DRMM [13],

ESR [14], PACRR [42], Conv-KNRM [15] and Delta [16].

Interaction-focused models can alleviate the semantic gaps

between words in source and target texts through encoding

word-level similarities. Nevertheless, representation-focused

models could not directly use the word-level similarities

between source and target texts. Therefore, interaction-focused

models usually perform better [13], [34], [35]. However,

existing interaction-focused models are not aware of the sparse

matching problem, which is very common in domain-sensitive

text matching, such as biomedical literature retrieval. Besides,

existing interaction-focused models neglect the local context

of each specific source and target pair. The local context

usually encodes the particular relevance between words in

source and target texts, which is useful for OOV and low-

frequency keywords. This paper proposes the IASM model

and tries to explore these two problems.

Another type of method related to our proposed model

is attention-based machine comprehension models [32], [33],

[45]–[48]. However, our model has different operations on

matching matrix compared to existing attention-based ma-

chine comprehension models. Attention mechanisms in ex-

isting machine comprehension model models (e.g., BIDAF

[33], attention-over-attention [32], DrQA [48]) arrange weight

distribution on query words and document words by operating

column-wise and row-wise summation/average upon matching

matrix. We apply interactive attention upon matching matrix to

take as input original representations of source and target and

output new representations. On the one hand, the interactive

attention enables our model to encode fine-granularity inter-

active information between each word in the source text and

each word in the target text. The fine-granularity interactive

information is necessary to enrich representations of low-

frequent and professional terms like biomedical concepts in

biomedical literature [49]. On the other hand, the contribution

of each word in the document for updating representations of

source and target texts is unlearnable with the pre-trained word

embeddings in existing attention-based reading comprehension

models [32], [33], [45]–[48]. However, this is learnable in our

model via weight matrices Wq in fq(A
TQWq) and Wd in

fd(ADWd) (see Figure 2). It is beneficial to enrich represen-

tations of those low-frequency and professional terms in source

and target texts (e.g., biomedical concepts in biomedical

articles and queries). Furthermore, the matching matrix in

our model could be built from external knowledge, such as

WordNet. Our model for semantic matching is designed to

encode local and global information simultaneously. However,

the attention-based machine comprehension model is designed

only for modeling the local context.

V. CONCLUSION

In this paper, we proposed novel interactive attention net-

work models, i.e., IASM-Static and IASM-Dynamic, for se-

mantic text matching. Our models learn new representations

of source and target texts through interactive attention with

matching matrix between the two texts. IASM-Static utilized

a static matching matrix and IASM-Dynamic updates the

matching matrix accordingly. Therefore, IASM-Dynamic not

only enriches the representation of source and target texts

on top of their original representations, but also encodes the

local word-level relevance in the dynamic matching matrix.

All aspects benefit alleviating the sparse matching problem in

semantic text matching. We conducted empirical evaluations

of our models over three different data sets to analyze 1) the

impact of different components; 2) the impact of different

pre-trained word embedding systems; 3) the superiority of

our IASM-Dynamic for OOV words; 4) the power of the

IASM-Dynamic to alleviate the sparse matching problem. The

experimental results indicated that our model: (i) dramatically

improves on the previous state-of-the-art models by large

margins on three data sets; (ii) is much more stable for

the different pre-trained word embedding models; (iii) can

better make use of very limited local information to learn

semantics for OOV words; (iv) considerably alleviates the

sparse matching problem, leading to better performance. The

capability of our model in alleviating the sparse matching

problem and learning OOV words through dynamic interac-
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tive attention has considerable practical benefits for various

interesting NLP applications, such as reading comprehension,

machine translation and dialog, which can lead to a broad

spectrum of future research.
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