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Abstract

We study the stability and dynamic transitions of thermal convection in a fluid layer

overlying a saturated porous media based on the Navier-Stokes-Darcy-Boussinesq model.

By reducing the infinite dynamical system to a finite dimensional one via center manifold

reduction, we derive a non-dimensional transition number that determines the types of dy-

namical transitions. We show by careful numerical evaluation of the transition number that

the system favours a continuous transition in which the steady state solution bifurcates to

a local attractor at the critical Rayleigh number. Jump transitions can occur at certain pa-

rameter regime. In particular the jump transition corresponds to the change of flow regime

from full convection to free-flow dominated convection at discontinuities of the transition

number as a function of the ratio of free-flow to porous media depth, the Darcy number or

the thermal di↵usivity ratio.

Keywords— Navier-Stokes–Darcy system, thermal convection, porous media, Lions inter-

face boundary conditions, dynamic transition, bifurcation

1 Introduction

The problem of a fluid layer overlying a porous medium has many applications in industrial

processes and in geophysical science, including the mixing of surface water and groundwater

[4–6], contaminant transport and bioremediation [13, 19], blood flow [20], oil recovery [1, 17, 45]

and so on. Of particular interest in this context is the phenomena of thermal convection that has

been intensively studied by a number of authors in recent years, cf. [7–9,14,23,24,26,31,42,43].

In [23] Hill and Straughan compare the linear instability and nonlinear stability thresholds

and find excellent agreement between the two based on the Stokes-Darcy-Brinkman model for

thermal convection in a fluid overlying a highly porous material. By numerical simulations
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Carr in [7] studies the onset of convection and the ensuing convection cells in the Navier-

Stokes-Darcy model for a layer of fluid superposing a saturated porous medium with internal

heating. It is observed that a heat source/sink in the free flow has a destabilizing e↵ect on the

porous layer while one in the porous media has a stabilizing e↵ect on the fluid. Very recently

Mccurdy et al in [36] perform linear and nonlinear stability analysis on the Navier-Stokes-

Darcy model equipped with the nonlinear Lions type interface boundary condition for thermal

convection in a coupled free flow-porous media system. In particular they discover through

numerical simulation the transition from full convection to free-flow dominated convection at

certain parameter regime.

In this article, we aim to study the precise bifurcation and dynamic transitions associated

with thermal convection in a fluid layer coupled with a saturated porous medium based on the

same Navier-Stokes-Darcy model as the one in [36]. In particular are interested in determining

if the transition from one flow regime to another is continuous or jump, in the sense that the

state of the flow may gradually or suddenly change from one configuration to another such as

the flow regime transition observed in [36]. The approach that we take is the dynamic transition

theory developed by Ma and Wang in [35]. According to this theory, dynamic transitions of

any dissipative dynamical system can be classified into three categories: continuous, jump, and

random. A su�cient condition leading to the existence of a transition in a dissipative system

is that the principle of exchange of stabilities (PES) holds true. Roughly speaking, a continu-

ous transition means that the basic state bifurcates to a local attractor; a jump transition says

that a system will jump to another state, and a random transition indicates that both contin-

uous and jump transitions are possible depending on the initial perturbation. The theory has

been successfully applied in the study of a number of transition problems, including transitions

of quasi-geostrophic channel flows [16], instability and transitions of Rayleigh-Benard convec-

tion [22, 32, 40, 41], tropical atmospheric circulations [27], dynamic transitions of Cahn-Hilliard

equation [29, 30], boundary layer separation [34], and many transition problems with random

e↵ects [10–12].

The procedure of the dynamic transition theory is the same as the classical bifurcation the-

ory, and consists of three steps. One first verifies that the PES condition holds true. In general

it is di�cult to analytically verify the PES condition except in some special cases, see for in-

stance [32, 33]. In the special case of equal thermal di↵usivity we rigorously establish the PES

condition. In general cases we infer the PES condition by numerically solving the eigenvalue

problem. One then reduces the infinite dynamical system to a complex-valued ordinary di↵er-

ential equations via the center manifold reduction. Based on the reduced equation we deduce a

transition theorem with a transition number P suitable for numerical computation. Finally one

numerically calculates the transition number whose sign determines the type of transition from

one state to another. Our numerical evaluation shows that the system prefers a continuous tran-

sition in which the steady state solution bifurcates to a local attractor at the critical Rayleigh

number. However jump transitions of P > 0 nature can indeed occur in certain parameter

regime, unlike the transitions associated with classical Rayleigh-Bénard problem in a single do-

main, cf. [22,32,40,41]. In light of the transition theorem and the numerical evaluation of P we

conclude that the jump transition corresponds to the change of flow regime from full convection

to free-flow dominated convection at discontinuities of the transition number as a function of
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the ratio of free-flow to porous media depth, the Darcy number or the thermal di↵usivity ratio.

The article is organized as follows. We provide the mathematical formulation of the prob-

lem in Sec. 2. In Sec. 3 we investigate the linear stability, and establish the PES condition

analytically and numerically. We perform the center manifold reduction and derive the main

transition theorem in Sec. 4. Then we numerically compute the transition number and discuss

its physical implications in Sec. 5. Finally we end the article with a summary of the results and

open problems in Sec. 6

2 Mathematical formulation

2.1 The model

The physical set-up of the problem is that a layer of fluid overlies a saturated porous medium

in which the fluid is heated up at the bottom of the porous medium and cooled o↵ at the top

of the free flow region. A schematic description of the problem is shown in Fig. 1. We consider

a two dimensional periodic channel with ⌦f = {x 2 R, 0  z  df} for the free flow region and

⌦m = {x 2 R,�dm  z  0} for the porous medium region.

Figure 1: Schematic description of the physical problem. ⌦f : the free flow region; ⌦m: the

porous medium; �i: the permeable domain interface. The upper and lower wall are impermeable

and maintained at constant temperature with TL > Tu.

The free flow in ⌦f is governed by the Navier-Stokes equation coupled with heat convection–

the Boussinesq system:
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8
>>>>><

>>>>>:

⇢0

⇣
@uf

@t + (uf ·r)uf

⌘
= r · T(uf , pf )� g⇢0[1� �(Tf � T0)]k

r · uf = 0,
@Tf

@t + uf ·rTf =
f
⇢0cp

�Tf ,

Tf = TU , uf = 0, at z = df ,

(2.1)

where uf = (uf , wf ), pf and Tf are the velocity, pressure and temperature of the free flow,

respectively; T(uf , pf ) := 2µ0D(uf )� pf I is the stress tensor with D(uf ) =
1
2(ruf +ru

T
f ) the

rate of strain tensor, and µ0 the dynamic viscosity; ⇢0, �, g and k are the density, the coe�cient

of thermal expansion, the gravity constant and the upward unit normal, respectively; f , cp
and �f =

f
⇢0cp

are the thermal conductivity, specific heat capacity and thermal di↵usivity of the

fluid, respectively.

The flow in porous media ⌦m is governed by the evolutionary Darcy equation [2, 37]:

8
>>>>><

>>>>>:

⇢0
�
@um
@t + µ0

 um = �rpm � g⇢0[1� �(Tm � TL)]k,

r · um = 0,
(⇢0cp)m
⇢0cp

@Tm
@t + um ·rTm = m

⇢0cp
�Tm,

Tm = TL, wm = 0, at z = �dm,

(2.2)

where um, pm, and Tm are the velocity, pressure and temperature of the fluid in the porous

medium; � and  are the porosity and permeability of the porous medium, respectively; �m =
m
⇢0cp

is the thermal conductivity of fluids in porous media. The heat capacity and thermal

conductivity is defined in the sense of harmonic average of that of fluids and solids in the porous

medium.

The coupling of the two systems (2.1) and (2.2) is classical, cf. [3, 28, 38]: on the interface

z = 0,

Tf = Tm, f
@Tf

@z
= m

@Tm

@z
, wf = wm, (2.3a)

µ0(
@uf

@z
+
@wf

@x
) =

µ0↵p
tr( )

uf , (2.3b)

pf � 2µ0
@wf

@z
+
⇢0

2
|uf |

2 = pm. (2.3c)

Here the condition (2.3b) are the celebrated Beavers-Joseph-Sa↵man-Jones (BJSJ) condition

with ↵ an empirically determined coe�cient and tr( ) being the trace of  , and the condition

(2.3c) is the Lions interface boundary condition.
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2.2 The perturbed system

The steady state solution of the system (2.1)–(2.3), denoted with a bar overhead, is given as

follows

uf = um = 0,

T f = T0 + z
TU � T0

df
,

Tm = T0 + z
T0 � TL

dm
,

(2.4)

with T0 =
mdfTL+fdmTU

mdf+fdm
being the temperature of the conductive state at z = 0. In addition,

pf and pm are defined as the hydrostatic pressures such that

rpf = �g⇢0
�
1� �(T f � T0)

�
k,

rpm = �g⇢0
�
1� �(Tm � TL)

�
k.

Introducing the perturbations

vf = uf � uf , vm = um � um,

✓f = Tf � T f , ✓m = Tm � Tm,

⇡f = pf � p� f, ⇡m = pm � pm.

one finds that the perturbations satisfy the following systems:

8
>>>>><

>>>>>:

⇢0

⇣
@vf

@t + (vf ·r)vf

⌘
= r · T(vf ,⇡f ) + g⇢0�✓fk, in ⌦f ,

r · vf = 0, in ⌦f ,

@✓f
@t + vf ·r✓f = �f�✓f � wf

⇣
TU�T0

df

⌘
, in ⌦f ,

✓f = 0, vf = 0, at z = df ,

(2.5)

8
>>>>><

>>>>>:

⇢0
�
@vm
@t + µ0

 vm = �r⇡m + g⇢0�✓mk, in ⌦m,

r · um = 0, in ⌦m,

(⇢0cp)m
⇢0cp

@✓m
@t + vm ·r✓m = �m�✓m � wm

⇣
T0�TL
dm

⌘
, in ⌦m,

Tm = 0, wm = 0, at z = �dm,

(2.6)

subject to the interface boundary conditions

8
>>><

>>>:

✓f = ✓m, f
@✓f
@z = m

@✓m
@z , wf = wm, on z = 0,

µ0(
@uf

@z +
@wf

@x ) = µ0↵p
tr( )

uf , on z = 0,

⇡f � 2µ0
@wf

@z + ⇢0
2 |vf |

2 = ⇡m, on z = 0.

(2.7)
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2.3 Nondimensionalization

Throughout, denote by ⌫ = µ0
⇢0

the kinematic viscosity. Following [25, 42], we introduce

nondimensional variables denoted by tildes

x̃f =
xf

df
, t̃ =

t�f

d
2
f

, ṽf =
vfdf

⌫
, ✓̃f =

✓f�f

(T0 � TU )⌫
, ⇡̃f =

⇡fd
2
f

⇢0⌫
2
,

x̃m =
xm

dm
, ṽm =

vmdm

⌫
, ✓̃m =

✓m�m

(TL � T0)⌫
, ⇡̃m =

⇡md
2
m

⇢0⌫
2
.

We also introduce the dimensionless numbers

d̂ =
df

dm
, ✏T =

�f

�m
, % =

(⇢0cp)m
⇢0cp

. (2.8)

The periodic cells will still be denoted by ⌦f = {x 2 [0, a], z 2 [0, 1]} and ⌦m = {x 2 [0, b], z 2

[�1, 0]} with b = d̂a. Then the systems (2.5)–(2.7) take the following dimensionless form (ne-

glecting tildes):

8
>>>>><

>>>>>:

1
Prf

@vf

@t + (vf ·r)vf = 2r · D(vf )�r⇡f +Raf✓fk, in ⌦f ,

r · vf = 0, in ⌦f ,

@✓f
@t + Prfvf ·r✓f = �✓f + wf , in ⌦f ,

✓f = 0, vf = 0, at z = 1,

(2.9)

8
>>>>><

>>>>>:

✏TDa
d̂2�Prm

@vm
@t + vm = �Dar⇡m +Ram✓mk, in ⌦m,

r · um = 0, in ⌦m,

✏T %
d̂2

@✓m
@t + Prmvm ·r✓m = �✓m + wm, in ⌦m,

Tm = 0, wm = 0, at z = �1,

(2.10)

subject to interface boundary conditions

8
>><

>>:

d̂✓f = ✏
2
T ✓m,

@✓f
@z = ✏T

@✓m
@z , wf = d̂wm, on z = 0,

@uf

@z +
@wf

@x = d̂↵p
Da

uf , on z = 0,

⇡f � 2
@wf

@z + 1
2 |vf |

2 = d̂
2
⇡m, on z = 0.

(2.11)

The dimensionless numbers are defined as follows

Prf =
⌫

�f
, P rm =

⌫

�m
, Da =

 

d2m
, (2.12a)

Raf =
g�(T0 � TU )d3f

⌫�f
, Ram =

g�(TL � T0)Dad
3
m

⌫�m
, (2.12b)

with the relation Ram =
Da✏2T
d̂4

Raf .
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3 Linear stability and principle of exchange of stability

In this article we focus on the transition of the convection dynamics as the control parameter

Raf (equivalently Ram) varies, as well as the influence of other parameters on the dynamic

transition. The first step in determining the transition type is to characterize the spectral

properties of the linear problem.

The dimensionless linear system associated with the perturbed equations (2.5)–(2.7) take

the following form (neglecting tildes):

8
>>>>><

>>>>>:

1
Prf

@vf

@t = 2r · D(vf )�r⇡f +Raf✓fk, in ⌦f ,

r · vf = 0, in ⌦f ,

@✓f
@t = �✓f + wf , in ⌦f ,

✓f = 0, vf = 0, at z = 1,

(3.13)

and
8
>>>>><

>>>>>:

✏TDa
d̂2�Prm

@vm
@t + vm = �Dar⇡m +Ram✓mk, in ⌦m,

r · um = 0, in ⌦m,

✏%
d̂2
@✓m
@t = �✓m + wm, in ⌦m,

Tm = 0, wm = 0, at z = �1,

(3.14)

subject to the interface boundary conditions

d̂✓f = ✏
2
T ✓m,

@✓f

@z
= ✏T

@✓m

@z
, wf = d̂wm, on z = 0,

@uf

@z
+
@wf

@x
=

d̂↵
p
Da

uf , on z = 0,
(3.15)

⇡f � 2
@wf

@z
= d̂

2
⇡m, on z = 0. (3.16)

The eigenvalue problem associated with the linear problem (3.13)-(3.16) reads

8
>>>>><

>>>>>:

�
Prf

vf = 2r · D(vf )�r⇡f +Raf✓fk, in ⌦f ,

�✓f = �✓f + wf , in ⌦f ,

r · vf = 0, in ⌦f ,

✓f = 0, vf = 0, at z = 1,

(3.17)

and
8
>>>>><

>>>>>:

�✏TDa
d̂2�Prm

vm + vm = �Dar⇡m +Ram✓mk, in ⌦m,

�
✏T %
d̂2
✓m = �✓m + wm, in ⌦m,

r · um = 0, in ⌦m,

Tm = 0, wm = 0, at z = �1,

(3.18)
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which are subject to the same interface boundary conditions (3.15)- (3.16). Following the nondi-

mensionalization in Section 2.3, we note the following relations among the parameters

Raf =
d̂
4

Da✏
2
T

Ram, P rf =
1

✏T
Prm. (3.19)

It is already shown in [36] that there exists a critical Raf below which the steady state

solution is linearly stable, see also [25]. It is clear that there are countably infinitely many

discrete eigenvalues to the problem (3.17)–(3.18), cf. Eqs. (3.34). Let us order the eigenvalues

by their decreasing real parts, that is,

Re�1(Raf ) � Re�2(Raf ) � · · · ! �1.

We make the standing assumption that the principle of exchange of stability (PES) holds for

the eigenvalue problem (3.17)–(3.18). That is, for other parameters fixed there exists a critical

Ra
0
f and a neighborhood ⇤0 of Ra

0
f such that there exists a unique m

? with the property that

for Raf 2 ⇤0

�i(Raf )

8
>><

>>:

> 0, Raf > Ra
0
f ,

= 0, Raf = Ra
0
f ,

< 0, Raf < Ra
0
f ,

1  i  m
?
,

�j(Ra
0
f ) < 0, j � m

? + 1.

(3.20)

In general, it is di�cult to verify analytically the PES condition, due to the lack of explicit

form of the eigenvalues and eigenfunctions. We shall demonstrate the validity of the PES

condition by numerically solving the eigenvalue problem at the end of this section. Nonetheless,

for the special case ✏T = 1, i.e. identical thermal conductivity between the free flow and porous

media, we can rigorously establish the PES condition.

3.1 PES condition when ✏T = 1

Let us define some function spaces as follows

Xf =
�
v 2 H

1 (⌦f )
��r · v = 0, v|z=1 = 0, periodic in x

 
,

Xm =
�
v 2 H

1 (⌦m)
��r · v = 0, v · n|z=�1 = 0, periodic in x

 
,

Yf =
�
✓ 2 H

1 (⌦f )
��✓|z=1 = 0, periodic in x

 
,

Ym =
�
✓ 2 H

1 (⌦m)
��✓|z=�1 = 0, periodic in x

 
,

Xf =
�
v 2 L

2 (⌦f )
��periodic in x

 
, Xm =

�
v 2 L

2 (⌦m)
��periodic in x

 
,

Y f =
�
✓ 2 L

2 (⌦f )
��periodic in x

 
, Y m =

�
✓ 2 L

2 (⌦m)
��periodic in x

 
,

(3.21)

X =
�
U = (vf , ✓f ,vm, ✓m) 2 Xf ⇥ Yf ⇥Xm ⇥ Ym

��U satisfying (3.15)
 
, (3.22)

Y =
�
(vf , ✓f ,vm, ✓m) 2 Xf ⇥ Y f ⇥Xm ⇥ Y m

 
. (3.23)

In case of ✏T = 1, the following theorem holds.

Theorem 3.1. If ✏T = 1, then all eigenvalues of the eigenvalue problem (3.17)-(3.18) are real,

and the principle of exchange of stability (3.20) holds.
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Proof. First we show that the eigenvalues are real. It follows from the equations (3.17)-(3.18)

that

d̂

✓
�

Prf
vf ,vf

◆
+Raf d̂�

�
✓f , ✓f

�

+
�d̂

2
✏T

�Prm
(vm,vm) + �Raf

✏
4
T%

d̂2

�
✓m, ✓m

�

= 2d̂ (r · D(vf )�r⇡f +Raf✓fk,vf ) +Raf d̂
�
�✓f + wf , ✓f

�

+
d̂
4

Da
(�Dar⇡m � vm +Ram✓mk,vm) +Raf ✏

3
T

�
�✓m + wm, ✓m

�
,

(3.24)

where the variables with overlines are their complex conjugate.

Utilizing the interface boundary conditions (3.15)- (3.16), one calculates

2d̂ (r · D(vf )�r⇡f +Raf✓fk,vf ) +Raf d̂
�
�✓f + wf , ✓f

�

+
d̂
4

Da
(�Dar⇡m � vm +Ram✓mk,vm) +Raf ✏

3
T

�
�✓m + wm, ✓m

�

= �2d̂(D(vf ),D(vf )) + d̂(Raf✓f , wf )�
d̂
4

Da
(vm,vm) +

d̂
4
Ram

Da
(✓m, wm)

�Raf d̂(r✓f ,r✓f ) + d̂Raf (✓f , wf )�Raf ✏
3
T (r✓m,r✓m) +Raf ✏

3
T (✓m, wm)

� 2
d̂
2
↵

p
Da

2X

s=1

Z

�i

(vf · ⌧s)(vf · ⌧s) d�i � d̂

Z

�i

✓
2
@wf

@z
� ⇡f + d̂

2
⇡m

◆
(vf · n) d�i

�Raf d̂

Z

�i

✓f (r✓f · n) d�i +Raf ✏
3
T

Z

�i

✓m(r✓m · n) d�i

= �2d̂(D(vf ),D(vf ))�Raf d̂(r✓f ,r✓f )�
d̂
4

Da
(vm,vm)�Raf ✏

3
T (r✓m,r✓m)

+
d̂
4
Ram

Da
(✓m, wm) + d̂Raf (✓f , wf ) + d̂Raf (✓f , wf ) +Raf ✏

3
T (✓m, wm)

� 2
d̂
2
↵

p
Da

2X

s=1

Z

�i

(vf · ⌧s)(vf · ⌧s) d�i

= �2d̂(D(vf ),D(vf ))�Raf d̂(r✓f ,r✓f )�
d̂
4

Da
(vm,vm)�Raf ✏

3
T (r✓m,r✓m)

+ d̂Raf (✓f , wf ) + d̂Raf (wf , ✓f ) +Raf ✏
2
T (✓m, wm) +Raf ✏

3
T (wm, ✓m)

� 2
d̂
2
↵

p
Da

2X

s=1

Z

�i

(vf · ⌧s)(vf · ⌧s) d�i, (3.25)

where the relation Ram =
Da✏2T
d̂4

Raf has been applied in the derivation of last equation. Thus,

if ✏T = 1, then Eqs. (3.24) and (3.25) imply that the eigenvalues � are real.

We now establish the PES condition (3.20) under the assumption ✏T = 1. By direct energy

estimates (cf. [36]), one can show that the system (2.9)-(2.10) subject to the interface boundary

conditions (3.15)-(3.16) is energy stable for Raf < R0. Hence the steady-state (2.4) is linearly

stable if the Rayleigh number Raf < R0. For the study of bifurcation/transition, one assumes

that Raf � R0 > 0.
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First let us re-scale ✓f and ✓m by
p
Raf . Then (3.17)-(3.18) becomes

8
>>>>><

>>>>>:

�
Prf

vf = 2r · D(vf )�r⇡f +
p

Raf✓fk, in ⌦f ,

�✓f = �✓f +
p

Rafwf , in ⌦f ,

r · vf = 0, in ⌦f ,

✓f = 0, vf = 0, at z = 1,

(3.26)

and

8
>>>>><

>>>>>:

�✏TDa
d̂2�Prm

vm + vm = �Dar⇡m + Ramp
Raf

✓mk, in ⌦m,

�
✏T %
d̂2
✓m = �✓m +

p
Rafwm, in ⌦m,

r · um = 0, in ⌦m,

Tm = 0, wm = 0, at z = �1,

(3.27)

subject to the same interface conditions. We proceed to show that the principle of exchange of

stability (3.20) holds for the eigenvalue problem (3.26)-(3.27) in two steps.

Step 1: Existence of a critical Ra
0
f . Under the assumption that ✏T = 1, the weak form of

the eigenvalue problem (3.26)-(3.27) can be written as

d̂�

Prf

�
vf ,v

0
f

�
+ d̂�

�
✓f , ✓

0
f

�
+
�✏T d̂

2

�Prm

�
vm,v

0
m

�
+ �

✏T%

d̂2

�
✓m, ✓

0
m

�

= �2d̂
�
D(vf ),D(v0

f )
�
,�d̂(r✓f ,r✓

0
f )�

d̂
4

Da
(vm,v

0
m)� (r✓m,r✓

0
m)

+ d̂
p
Raf (✓f , w

0
f ) + d̂

p
Raf (wf , ✓

0
f ) +

p
Raf (✓m, w

0
m) +

p
Raf (wm, ✓

0
m)

� 2
d̂
2
↵

p
Da

2X

s=1

Z

�i

(vf · ⌧s)(v
0
f · ⌧s) d�i, 8U

0
2 X. (3.28)

We show that there exists a critical Raf = Ra
0
f > 0 such that the eigenvalue problem (3.28) has

zero eigenvalues, i.e. � = 0.

For convenience, let LRaf = A+
p

RafB be the operator from X to its dual space X
⇤, with

A and B induced respectively by the right-hand side of Eq. (3.28)

hAU,U
0
i =� 2d̂

⇣
D(vf ),D(v0

f )
⌘
� d̂(r✓f ,r✓

0
f )�

d̂
4

Da
(vm,v

0
m)� (r✓m,r✓

0
m)

� 2
d̂
2
↵

p
Da

2X

s=1

Z

�i

(vf · ⌧s)(v
0
f · ⌧s) d�i,

hBU,U
0
i = d̂(✓f , w

0
f ) + d̂(wf , ✓

0
f ) + (✓m, w

0
m) + (wm, ✓

0
m).

In light of the relation (3.19), the weak form of the eigenvalue problem (3.28) is equivalent to

LRafU = �MU, in X, (3.29)

10



with

M =

0

BBBBBBBBB@

d̂
P rf

0 0 0 0 0

0 d̂
P rf

0 0 0 0

0 0 d̂ 0 0 0

0 0 0 d̂2

�Prm
0 0

0 0 0 0 d̂2

�Prm
0

0 0 0 0 0 %
d̂2

1

CCCCCCCCCA

.

By the symmetry of the operator LRaf , the first eigenvalue �f,1 is characterized by

�f,1 = max
kUkX=1

hM
�1(LRafU),Ui

= max
kUkX=1

⇣
hM

�1(AU),Ui+
p
Raf h(M

�1(BU),U)i
⌘
. (3.30)

Note that

hAU,Ui < 0, 8U 2 X. (3.31)

Also

hBU,Ui > 0, (3.32)

for U = (vf , ✓f ,vm, ✓m) such that

wf = ✓f , wm = ✓m, with wf 6= 0 or wm 6= 0.

Hence, one can deduce from (3.30)-(3.32) that there exists Raf = Ra
0
f > 0 such that the first

eigenvalue associated with the eigenvalue problem (3.29) vanishes, i.e.,

�1 = 0.

Step 2: The transversal condition. We show that the first eigenvalue �i(Raf ), i = 1, · · ·m

counting multiplicity satisfies

(�i(Raf ))
0 ��

Raf=Ra0f
> 0. (3.33)

To this end, let

LRa0f+�
U1 = �i(Ra

0
f + �)MU1, U1 = URa0f

+U�, lim
�!0

U� = 0,

where LRa0f
URa0f

= 0. One calculates

D
LRa0f+�

U1,URa0f

E
=
D
LRa0f

URa0f
,URa0f

E
+
D
LRa0f

U�,URa0f

E

+
D⇣

LRa0f+�
� LRa0f

⌘
U1,URa0f

E

=
⇣q

Ra
0
f + � �

q
Ra

0
f

⌘D
BU1,URa0f

E
,

11



where the identity D
LRa0f

U�,U

E
=
D
U�, LRa0f

U

E
= 0,

has been used. On the other hand,
D
LRa0f+�

U1,URa0f

E
= �i(Ra

0
f + �)

D
MU1,URa0f

E
.

Hence ⇣q
Ra

0
f + � �

q
Ra

0
f

⌘D
BU1,URa0f

E
= �i(Ra

0
f + �)

D
MU1,URa0f

E
.

And therefore
⇣q

Ra
0
f + � �

q
Ra

0
f

⌘

�

D
BU1,URa0f

E
=
�i(Ra

0
f + �)

�

D
MU1,URa0f

E

=
�i(Ra

0
f + �)� �i(Ra

0
f )

�

D
MU1,URa0f

E
,

which yields

(�i(Raf ))
0 ��

Raf=Ra0f
=

D
BURa0f

,URa0f

E

2
q

Ra
0
f

D
MURa0f

,URa0f

E > 0.

This establishes (3.33).

The proof of (3.20) is now complete.

3.2 Numerical solution of the eigenvalue problem

In this subsection we numerically solve the eigenvalue problem (3.17)–(3.18). The numerical

results would allow us to demonstrate the validity of the PES condition. Furthermore, the

eigenfunctions are needed in the numerical evaluation of the transition number.

Owing to the periodic boundary conditions in the horizontal direction and the separable

form of the equations, the following normal mode solutions can be assumed for fluid in ⌦f

vf = vf (z) exp
�
�t+ i2n⇡/ax

�
, ⇡f = ⇡f (z) exp

�
�t+ i2n⇡/ax

�

✓f = ✓f (z) exp
�
�t+ i2n⇡/ax

�
, n 2 Z.

The normal mode solutions for fluid in ⌦m is similarly defined. One then eliminates the pressure

term by taking curl of the fluid equation, and derives the equation for the component wi, i 2

{f,m} after taking another curl of the resulting equation, cf. ( [18] p. 96) for details. The

interface boundary conditions are written in terms of wi, i 2 {f,m} as well with the aid of the

fluid equations.

Introducing the notations

D :=
d

dz
, a

2
n =

�
2n⇡/a

�2
, b

2
n =

�
2n⇡/b

�2
,

the eigenvalue problem becomes (see also [23]):
8
>>>>><

>>>>>:

�nA
f
n f = L

f
n f ,  f = (wf , ✓f ), z 2 (0, 1),

�nA
m
n  m = L

m
n  m,  m = (wm, ✓m), z 2 (�1, 0),

wf = Dwf = ✓f = 0, z = 1,

wm = ✓m = 0, z = �1,

(3.34)

12



where

A
f
n f =

 
1

Prf
(D2

� a
2
n)wf

✓f

!
, L

f
n f =

 
(D2

� a
2
n)

2
wf � a

2
nRaf✓f

(D2
� a

2
n)✓f + wf

!
, (3.35)

A
m
n  m =

 
✏TDa

d̂2�Prm
(D2

� b
2
n)wm

✏T %
d̂2
✓m

!
, L

m
n  m =

 
�(D2

� b
2
n)wm � b

2
nRam✓m

(D2
� b

2
n)✓m + wm

!
, (3.36)

The interface boundary conditions for ✓f and ✓m at z = 0 are

8
>><

>>:

d̂✓f = ✏
2
T ✓m, D✓f = ✏TD✓m, wf = d̂wm,

(D2 + a
2
n)wf = d̂↵p

Da
Dwf ,

�n
Prf

Dwf � (D2
� a

2
n)Dwf + 2a2nDwf = �n✏T d̂2

�Prm
Dwm + d̂4

DaDwm.

(3.37)

Throughout, the width of the free flow region is fixed at b = 2⇡. We also recall the following

relations

b = d̂a, Raf =
d̂
4

Da✏
2
T

Ram, P rf =
1

✏T
Prm. (3.38)

Since the eigenvalue appears in the interface boundary condition (4.54), we adopt the Chebyshev-

tau method [21] for solving the generalized eigenvalue problem (3.34)–(4.54). For the parameters

that we have tested, we find that the eigenvalues are always real, which are in agreement with

the results in [23].

First we examine the validity of principle of exchange of stability for generic ✏T , cf. Theorem

3.1 for the case of ✏T = 1. Noting the relation (3.38), the PES condition (3.20) can be expressed

in modal form

�nc,1(Ram)

8
>><

>>:

> 0, Ram > Ra
0
m,

= 0, Ram = Ra
0
m,

< 0, Ram < Ra
0
m,

�n,k(Ra
0
m) < 0, 8(n, k) 6= (nc, 1),

(3.39)

where Ra
0
m := minn{roots of �n,1(Ram) = 0} is the critical porous Rayleigh number. In Fig.

2 we plot the modal critical Rayleigh number as a function of the height ratio d̂ (free flow vs

porous media), and the aspect ratio b, respectively while keeping other parameters fixed. It is

observed that there are a finite number of d̂ and b at which the modal neutral stability curves may

intersect, indicating that two or more eigenvalues (corresponding to di↵erent n) simultaneously

cross the imaginary axis as Ram becomes critical. Reflected on the global neutral stability curves

(Fig. 3) are the discontinuities where the critical mode nc changes value. At these discontinuities

there are two (real) eigenvalues becoming critical, which are isolated degenerate cases beyond

the scope of this work. Except these degenerate cases, the modal PES condition (3.39) holds

true. One also observes as the height ratio of fluid over porous layer increases, transition from

stability to instability happens at smaller Rayleigh number, which is consistent with the fact

that fluid layer governed by the Navier-Stokes equations plays more dominating role at higher

height ratio.

13



Figure 2: Plot of modal critical Rayleigh number as a function of height ratio (left) and aspect

ratio (right), respectively. The parameters are: Prf = 6 ; ↵ = 1; ⇢ = 10, ✏T = 0.7, � = 0.3,

Da = 25⇥ 10�6, b = 1.5, d̂ = 0.2.

4 Center manifold reduction and the transition theorem

In this section we examine the stability and transition/bifurcation of the zero solution to the

nonlinear system (2.9)–(2.11) by reducing the dissipative infinite-dimensional dynamical system

to a finite-dimensional one (ODEs) via the center manifold reduction, cf. [15, 35, 39, 44]. Under

the assumption of the PES condition (3.20), the underlying phase space can be decomposed as

Hc
L

Hs with Hc being the center-unstable space and Hs being the space generated by the

stable eigenfunctions associated with the eigenvalue problem (3.17)–(3.18) in the vicinity of the

critical porous Rayleigh number Ra
0
f (equivalently, Ra

0
m). The theory of dynamic system (cf.

references cited earlier) implies the existence of the center-unstable invariant manifold function

h : Hc ! Hs such that h(0) = Dh(0) = 0, and the equivalence of dynamics (stability and

transition) between the infinite-dimension dynamical system and its projection onto the center

unstable space.

Because the nonlinear terms in the system are quadratic, the leading order approximation

of h is the bilinear form

h2(�) =
1

2
D

2
h(0)(�,�), � 2 Hc. (4.40)

This term is determined by the so-called backward-forward procedure introduced in [12]; see

also [10, Sec. 3.2]. This procedure relies on the pullback characterization of approximations to

(local) invariant manifolds [12, Chap. 4]. Specifically, let � be any element in Hc with proper

parametrization. Then we solve the linearized equations backwards in time with initial datum �

at t = 0, and denote the corresponding solution by U
(1). Then, we solve the linearized equations

forward in time by using PsG
�
U

(1)
,U

(1)
�
as a source term, imposing that the corresponding

solution U
(2)[�] vanishes as t ! �1. Here Ps is the projection operator onto Hs and G

represents the nonlinear terms of the system. Note also the dependence of U(2) on � through

the source term. The bilinear form h2(�) is identified as U(2)[�]|t=0.
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Figure 3: Neutral stability curves: critical porous Rayleigh number vs height ratio (left) and

critical porous Rayleigh number vs aspect ratio (right), respectively. The parameters are: Prf =

6 ; ↵ = 1; ⇢ = 10, ✏T = 0.7, � = 0.3, Da = 25⇥ 10�6, b = 1.5, d̂ = 0.2.

We assume that the modal PES condition (3.39) holds. Denote the eigenfunctions corre-

sponding to the first eigenvalue �1 = �nc,1 of the eigenvalue problem (3.17)-(3.18) in the vicinity

of the critical Rayleigh number Ra
0
m by

 
p =

⇣
v
p
f , ✓

p
f ,v

p
m, ✓

p
m

⌘T
, p = nc, (4.41)

where

v
p
s := V

p
s(z)e

p
s =

�
U

p
s (z),W

p
s (z)

�
e
p
s, ✓

p
s := ⇥p

s(z)e
p
s, s = f,m,

e
p
f = exp (iapx) = cos apx+ i sin apx, 0  x  a,

e
p
m = exp (ibpx) = cos bpx+ i sin bpx, 0  x  b.

We recall that W
p
s (z),⇥

p
s(z) (s = f,m) are the real eigenfunctions of the eigenvalue problem

(3.34)-(4.54), and U
p
f (z), U

p
m(z) are purely imaginary functions determined by integrating the

divergence-free condition

U
p
f (z) = i

DW
p
f (z)

ap
, U

p
m(z) = i

DW
p
m(z)

bp
.

Since the coe�cients of the eigenvalue problem (3.17)-(3.18) are real, one thus can see that

the real part and imaginary part of  p are two real eigenfunctions corresponding to the first

eigenvalue �1. Throughout we assume that the algebraic multiplicity of �1 equals its geometric

multiplicity equal to 2, which is the general case from our numerical results in subsection 3.2. We

note that the non-general case when the algebraic multiplicity of �1 may be 4 or greater than 4

can be treated similarly albeit more involved. For the purpose of projection, we shall also make

use of the dual eigenfunction  p⇤ =
⇣
v
p⇤
f , ✓

p⇤
f ,v

p⇤
m , ✓

p⇤
m

⌘T
associated with the first eigenvalue �1

of the adjoint eigenvalue problem. We now parameterize the center unstable space by

Hc =
�
y 

p + y p
��y 2 C

 
,  

p =  
p
r + i 

p
i , y = y1 + iy2. (4.42)
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For convenience, let �i and hi(�) be the ith component of � and h(�), respectively, , 1  i  6,

and denote

�f = (�1,�2), hf (�) = (h1(�), h2(�)), �m = (�4,�5), hm(�) = (h4(�), h5(�)).

We introduce some useful identities for the center manifold reduction. Hereafter (·, ·) repre-

sents the Hermitian L
2 inner product.

Lemma 4.1. Suppose that the PES condition (3.20) holds, and that the first eigenvalue is real

of algebraic multiplicity 2 (i.e., m⇤ = 2in (3.20)). Then the following identities hold
Z

⌦f

✓
p
f · ✓

p⇤
f dxdz =

Z

⌦m

✓
p
m · ✓

p⇤
m dxdz = 0,

Z

⌦f

v
p
f · v

p⇤
f dxdz =

Z

⌦m

v
p
m · v

p⇤
m dxdz = 0,

d̂

P rf

Z

⌦f

hf (�) · v
p⇤
f dxdz +

✏T d̂
2

�Prm

Z

⌦m

hm(�) · vp⇤
m dxdz

+Raf d̂

Z

⌦f

h3(�) · ✓
p⇤
f dxdz +

✏
4
T%

d̂2

Z

⌦m

h6(�) · ✓
p⇤
m dxdz = 0, 8� 2 Hc.

(4.43)

Proof. The first two identities are due to
R a
0 e

�2p
f dx =

R b
0 e

�2p
m dx = 0.

To establish the third identity, we denote the stable eigenfunctions corresponding to �j , j =

3, 4, 5 · · · (counting multiplicity) of the eigenvalue problem (3.17)-(3.18) as

 j = (vf,j , ✓f,j ,vm,j , ✓m,j).

Since h : Hc ! Hs = (Hc)?, h admits the following spectral expansion

h(�) =
+1X

j=3

aj j , 8� 2 Hc.

Following the derivation of Eqs. (3.24) and (3.25) (see also Eq. (3.28)), one obtains by the

adjoint eigenvalue problem

�j d̂

✓
1

Prf
vf,j ,v

p⇤
f

◆
+Raf d̂�j

⇣
✓f,j , ✓

p⇤
f

⌘
+
�j d̂

2
✏T

�Prm
(vm,j ,v

p⇤
m ) + �jRaf

✏
4
T%

d̂2
(✓m,j , ✓

p⇤
m )

= �2d̂(D(vf,j),D(vp⇤
f ))�Raf d̂(r✓f,j ,r✓

p⇤
f )�

d̂
4

Da
(vm,j ,v

p⇤
m )�Raf ✏

3
T (r✓m,j ,r✓

p
m)

+ d̂Raf (✓f,j , w
p⇤
f ) + d̂Raf (wf,j , ✓

p⇤
f ) +Raf ✏

2
T (✓m,j , w

p⇤
m ) +Raf ✏

3
T (wm,j , ✓

p⇤
m )

� 2
d̂
2
↵

p
Da

2X

s=1

Z

�i

(vf,j · ⌧s)(v
p⇤
f · ⌧s) d�i

= �1d̂

✓
1

Prf
vf,j ,v

p⇤
f

◆
+Raf d̂�1

⇣
✓f,j , ✓

p⇤
f

⌘
+
�1d̂

2
✏T

�Prm
(vm,j ,v

p⇤
m ) + �1Raf

✏
4
T%

d̂2
(✓m,j , ✓

p⇤
m ) .

Hence

d̂

✓
1

Prf
vf,j ,v

p⇤
f

◆
+Raf d̂

⇣
✓f,j , ✓

p⇤
f

⌘
+

d̂
2
✏T

�Prm
(vm,j ,v

p⇤
m ) +Raf

✏
4
T%

d̂2
(✓m,j , ✓

p⇤
m ) = 0, j = 3, 4, · · ·

This establishes the third identity.
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Likewise, the following identities can be readily verified.

Lemma 4.2. Under the same condition as Lemma 4.1 the following identities hold:

Z

⌦f

⇣
(vp

f ·r)vp
f

⌘
· v

p⇤
f dxdz =

Z

⌦f

⇣
(vp

f ·r)vp
f

⌘
· v

p⇤
f dxdz = 0,

Z

⌦f

⇣
(vp

f ·r)vp
f

⌘
· v

p⇤
f dxdz =

Z

⌦f

⇣
(vp

f ·r)vp
f

⌘
· v

p⇤
f dxdz = 0,

(4.44)

Z

⌦s

⇣
(v(p)

s ·r)✓ps

⌘
· ✓

p⇤
s dxdz =

Z

⌦s

⇣
(v(p)

f ·r)✓ps
⌘
· ✓

p⇤
s dxdz = 0,

Z

⌦s

✓
(v(p)

s ·r)✓ps

◆
· ✓

p⇤
s dxdz =

Z

⌦s

✓
(v(p)

s ·r)✓ps

◆
· ✓

p⇤
s dxdz = 0,

(4.45)

where s = f,m.

According to theory of dissipative dynamical system [?, 15,35,44], one obtains the following

equivalent (in terms of stability and transition) reduced equation.

Lemma 4.3. Assume that the PES condition (3.20) holds, and that the first eigenvalue is real

of algebraic multiplicity 2 (i.e., m⇤ = 2 in (3.20)). Then, the transition and stability of the zero

steady state solution to the equations (2.9)–(2.11) in the vicinity of the critical Rayleigh number

Ra
0
f and for any su�ciently small initial condition are equivalent to those of the zero solution

of the equation

d⌘

dt
= �1⌘ + P⌘|⌘|

2 + o(|⌘|3), (4.46)

where ⌘ is a complex-valued function and P 2 R is the transition number defined in (4.65) and

(4.67).

Proof. Following the procedure outlined above, we first derive the leading-order approximation

of the center manifold function, then we project the infinite-dimensional dynamical system onto

the center unstable space. We divide the derivation into three steps.

Step 1: The second-order approximation of the center manifold function.

We follow the backward-forward procedure [12] to derive the second-order approximation of the

center manifold function h2, cf. (4.40).

In the neighborhood of the critical Rayleigh numberRa
0
f , for any � 2 Hc =

�
y 

p + y p
��y 2 C

 
,

we first solve backwards in time the linear problem (3.13)-(3.16) projected onto Hc with the

initial condition �, i.e.,

v
(1)
s |t=0 = yV

p
s(z)e

p
s + yV

p
s(z)e

p
s, ✓

(2)
s |t=0 = y⇥p

s(z)e
p
s + y⇥p

s(z)e
p
s, s = f,m.

The linear system of ODEs admits a unique solution for all time. In light of the eigenvalue

problem (3.17)-(3.18), the solution takes the form of

v
(1)
s = yv

p
s(z)e

�1te
p
s + yv

p
s(z)e�1te

p
s,

✓
(1)
s = y✓

p
s(z)e

�1te
p
s + y✓

p
s(z)e�1te

p
s, s = f,m.

(4.47)
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Next we consider the linear problem forced by (v(1)
s , ✓

(1)
s ), s = f,m, via the nonlinear terms

8
>>>>><

>>>>>:

1
Prf

@vf

@t = 2r · D(vf )�r⇡f +Raf✓fk� (v(1)
f ·r)v(1)

f , in ⌦f ,

r · vf = 0, in ⌦f ,

@✓f
@t = �✓f + wf � Prfv

(1)
f ·r✓

(1)
f , in ⌦f ,

✓f = 0, vf = 0, at z = 1,

(4.48)

coupled with

8
>>>>><

>>>>>:

✏TDa
d̂2�Prm

@vm
@t + vm = �Dar⇡m +Ram✓mk, in ⌦m,

r · um = 0, in ⌦m,

✏T %
d̂2

@✓m
@t = �✓m + wm � Prmv

(1)
m ·r✓

(1)
m , in ⌦m,

✓m = 0, wm = 0, at z = �1,

(4.49)

subject to the interface conditions

8
>>><

>>>:

d̂✓f = ✏
2
T ✓m,

@✓f
@z = ✏T

@✓m
@z , wf = d̂wm, on z = 0,

@uf

@z +
@wf

@x = d̂↵p
Da

uf , on z = 0,

⇡f � 2
@wf

@z + 1
2

✓⇣
u
(1)
f

⌘2
+
⇣
w

(1)
f

⌘2◆
= d̂

2
⇡m, on z = 0.

(4.50)

We integrate the linear system projected onto the stable space Hs forward in-time with the

condition

lim
t!�1

v
(2)
s = lim

t!�1
✓
(2)
s = 0, s = f,m.

The solution form (4.47) suggests the following ansatz, for t < 0

v
(2)
s = |y|

2
ṽ
(p,0)
s (z)e2Re�1t + y

2
ṽ
(p,1)
s (z)e2�1te2ps + y

2
ṽ
(p,2)
s (z)e2�1te�2p

s ,

✓
(2)
s = |y|

2
✓̃
(p,0)
s (z)e2Re�1t + y

2
✓̃
(p,1)
s (z)e2�1te2ps + y

2
✓̃
(p,2)
s (z)e2�1te�2p

s , s = f,m.

(4.51)

One can derive the equations satisfied by (ṽ(p,i)
s , ✓̃

(p,i)
s ), i = 0, 1, 2, s = f,m by substituting the

preceding expressions into the coupled system (4.48)-(4.50), comparing the modes, and also

eliminating the pressure. In particular, it follows from the divergence-free condition and the

boundary condition that

w̃
(p,0)
s (z) = 0, s = f,m,

which combining with the governing equation implies

ũ
(p,0)
s (z) = 0, s = f,m.

In addition, ✓̃(p,0)s (z) (s = f,m) solve the steady equations

8
>><

>>:

2Re�1✓̃
(p,0)
f (z) = D

2
✓̃
(p,0)
f (z)�2Prf

�
w

p
f (z)D✓

p
f (z) +Dw

p
f (z)✓

p
f (z)

�
, z 2 (0, 1),

2 ✏T %
d̂2

Re�1✓̃
(p,0)
m (z) = D

2
✓̃
(p,0)
m (z)�2Prm

�
w

p
m(z)D✓pm(z) +Dw

p
m(z)✓pm(z)

�
, z 2 (�1, 0),

✓̃
(p,0)
f (1) = 0, ✓̃

(p,0)
m (�1) = 0,
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subject to the interface boundary conditions
8
<

:
d̂✓̃

(p,0)
f (0) = ✏

2
T ✓̃

(p,0)
m (0),

d✓̃
(p,0)
f

dz (0) = ✏T
d✓̃

(p,0)
m
dz (0).

(4.52)

Likewise, one can verify that (w̃(p,1)
s (z), ✓̃(p,1)s (z)), s = f,m, satisfy

8
>>>>><

>>>>>:

2�1A
f
2p 

(p,1)
f = L

f
2p 

(p,1)
f + F

f
p  

p
f , z 2 (0, 1),

2�1Am
2p 

(p,1)
m = L

m
2p 

(p,1)
m + F

m
p  

p
m, z 2 (�1, 0),

w
(p,1)
f = Dw

(p,1)
f = ✓

(p,1)
f = 0, z = 1,

w
(p,1)
m = ✓

(p,1)
m = 0, z = �1,

(4.53)

where

 
(p,1)
s = (w(p,1)

s (z), ✓(p,1)s (z)), s = f,m,

F
f
p  

p
f =

 
a2piDG

f
pu

p
f + 4a2pG

f
pw

p
f

�PrfG
f
p ✓

p
f

!
, F

m
p  

p
m =

 
0

�PrmG
m
p ✓

p
m

!
,

with

G
f
p g(z) =api

⇣
u
p
f (z)g(z)

⌘
+
⇣
w

p
f (z)Dg(z)

⌘
,

G
m
p g(z) =bpi (u

p
m(z)g(z)) + (wp

m(z)Dg(z)) .

The interface conditions at z = 0 are
8
>>>>>>>>>>>>>><

>>>>>>>>>>>>>>:

d̂✓
(p,1)
f = ✏

2
T ✓

(p,1)
m ,

D✓
(p,1)
f = ✏TD✓

(p,1)
m ,

w
(p,1)
f = d̂w

(p,1)
m ,

(D2 + a
2
2p)w

(p,1)
f =

d̂↵
p
Da

Dw
(p,1)
f ,

2�1
Prf

Dw
(p,1)
f � (D2

� a
2
2p)Dw

(p,1)
f + 2a22pDw

(p,1)
f

�
2✏T�1d̂2

�Prm
Dw

(p,1)
m �

d̂
4

Da
Dw

(p,1)
m = �

a
2
2p

2

✓⇣
u
p
f

⌘2
+
⇣
w

p
f

⌘2◆
.

(4.54)

The horizontal component of the velocity can be recovered from the divergence-free condition,

for instance

ia2pũ
(p,1)
m +Dw̃

(p,1)
m = 0.

One also observes that

ṽ
(p,2)
s (z) = ṽ

(p,1)
s (z), ✓̃

(p,2)
s (z) = ✓̃

(p,1)
s (z), s = f,m.

Then, the second-order approximation of the center manifold function is given by

h2(�) =
⇣
v
(2)
f , ✓

(2)
f ,v

(2)
m , ✓

(2)
m

⌘T
|t=0, (4.55)
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where (v(2)
s , ✓

(2)
s ), s = f,m are defined in (4.51).

Step 2: Projection onto the center space.

We make use of the dual eigenfunction  ? and the approximation of the center manifold function

to reduce the infinite-dimensional dynamical system to a finite-dimensional one. By integration

by parts, one deduces from the equations (2.9)-(2.10) that

1

Prf

✓
@vf

@t
,v

p⇤
f

◆
= �2

�
D(vf ),D(vp⇤

f )
�
+ (Raf✓f ,v

p⇤
f )

� 2
2X

s=1

Z

�i

⌧s · D(vf )n(v
p⇤
f · ⌧s) d�i

�

Z

�i

✓
2
@wf

@z
� ⇡f

◆
(vp⇤

f · n) d�i �

⇣
(vf ·r)vf ,v

p⇤
f

⌘
,

(4.56)

✏T

d̂2�Prm

✓
@vm

@t
,v

p⇤
m

◆
= �

1

Da
(vm,v

p⇤
m )� (r⇡m,v

p⇤
m ) +

Ram

Da
(✓m, w

p⇤
m )

= �
1

Da
(vm,v

p⇤
m )�

Z

�i

⇡m(vp⇤
m · n) d�i +

Ram

Da
(✓m, w

p⇤
m ),

(4.57)

✓
@✓f

@t
, ✓

p⇤
f

◆
=� (r✓f ,r✓

p⇤
f )�

Z

�i

✓f (r✓
p⇤
f · n) d�i + (wf , ✓

p⇤
f )

�

⇣
(vf ·r)✓f , ✓

p⇤
f

⌘
,

(4.58)

✏T%

d̂2

✓
@✓m

@t
, ✓

p⇤
m

◆
=� (r✓m,r✓

p⇤
m )�

Z

�i

✓m(r✓p⇤m · n) d�i + (wm, ✓
p⇤
m )

� ((vm ·r)✓m, ✓
p⇤
m ) .

(4.59)

Furthermore, d̂⇥ (4.56) + d̂
4
⇥ (4.57) +Raf d̂⇥ (4.58) +Raf ✏

3
⇥ (4.59) gives

d̂

P rf

✓
@vf

@t
,v

p⇤
f

◆
+

✏T d̂
2

�Prm

✓
@vm

@t
,v

p⇤
m

◆
+Raf d̂

✓
@✓f

@t
, ✓

p⇤
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◆
+Raf

✏
4
T%

d̂2

✓
@✓m

@t
, ✓

p⇤
m

◆

= �2d̂
�
D(vf ),D(vp⇤
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�
+ d̂(Raf✓f , w

p⇤)�
d̂
4

Da
(vm,v

p⇤
m ) +Raf ✏

2
T (✓m, w

p⇤
m )

�Raf d̂(r✓f ,r✓
p⇤
f ) + d̂Raf (wf , ✓

p⇤
f )�Raf ✏

3
T (r✓m,r✓

p⇤
m ) +Raf ✏

3
T (wm, ✓

p⇤
m )

� 2
d̂
2
↵

p
Da

2X

s=1

Z

�i

(vf · ⌧s)(v
p⇤
f · ⌧s) d�i � d̂

⇣
(vf ·r)vf ,v

p⇤
f

⌘

� PrfRaf d̂

⇣
(vf ·r)✓f , ✓

p⇤
f

⌘
� PrmRaf ✏

3
T ((vm ·r)✓m, ✓

p⇤
m )

�
d̂

2

Z

�i

|vf |
2(vp⇤

f · n) d�i.

(4.60)

In the vicinity of the critical Rayleigh number Ra
0
f , we write

(vf , ✓f ,vm, ✓m)T = �+ h(�),

where � 2 Hc has the representation

� = ⌘(t) p + ⌘(t) p,  
p = ( p

f , 
p
m) =

⇣
v
p
f , ✓

p
f ,v

p
m, ✓

p
m

⌘T
.
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We recall that  p is the eigenfunction corresponding to the first critical eigenvalue �1 = �2, and

that the center manifold function h admits the expansion

h(�) = h2(�) + o(|⌘|2), (4.61)

with the second-order approximation given by Eq. (4.55). With the help of the identities in

Lemma 4.1 and 4.2 the equation (4.60) becomes

d⌘

dt
Q =� 2d̂⌘

�
D(vp

f ),D(v
p⇤
f )
�
+ d̂⌘(Raf✓

p
f , w
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4
⌘
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m,v
p⇤
m )

+Raf ✏
2
T ⌘(✓

p
m, w

p⇤
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p
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p⇤
f ) + d̂Raf⌘(w

p
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p⇤
f )

�Raf⌘✏
3
T (r✓

p
m,r✓

p⇤
m ) +Raf ✏

3
T ⌘(w

p
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p⇤
m )

� 2⌘
d̂
2
↵

p
Da

2X
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Z

�i

(vp
f · ⌧s)(v

p⇤
f · ⌧s) d�i � d̂

⇣
(vf ·r)vf ,v

p⇤
f

⌘

� PrfRaf d̂

⇣
(vf ·r)✓f , ✓

p⇤
f

⌘
� PrmRaf ✏

3
T ((vm ·r)✓m, ✓

p⇤
m )
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d̂

2
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�i

|vf |
2(vp⇤

f · n) d�i.

(4.62)

where

Q =
d̂

P rf

⇣
v
p
f ,v

p⇤
f

⌘
+

✏T d̂
2

�Prm
(vp

m,v
p⇤
m ) +Raf d̂

⇣
✓
p
f , ✓

p⇤
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⌘
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✏
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p⇤
m ) . (4.63)

For the linear terms in (4.62), replacing
�
vf , ✓f ,vm, ✓m

�
by
⇣
v
p⇤
f , ✓

p⇤
f ,v

p⇤
m , ✓

p⇤
m

⌘
in (3.25), in

light of the identity (3.24), one derives
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�
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For the nonlinear interactions, we derive by the identities in Lemma 4.2 and the definition of

the second-order approximation of the center manifold function (??),
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where R3(⌘) comprise the cubic terms of ⌘ that will be explicitly calculated in step 3. Note that

Q 6= 0. Hence, Eq. (4.60) is reduced to the low-dimensional system

d⌘

dt
= �1⌘ +

R3(⌘)

Q
+ o(|⌘|3). (4.65)

Step 3: Calculations of the coe�cients in the reduced equation.

For the convenience of computing R3(⌘) we introduce some new notations

⌘1 = ⌘, ⌘2 = ⌘,  1 =  
p
,  2 =  p,

 1,1 = v
p
f ,  1,2 = ✓

p
f ,  1,3 = v

p
m,  1,4 = ✓

p
m,

 2,1 = v
p
f ,  2,2 = ✓

p
f ,  2,3 = v

p
m,  2,4 = ✓

p
m,

v
(2,12)
s = v
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(p,0)
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✓
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✓
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(4.66)

Then the second order term of the center manifold function h2(�) can be written as
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Noting that v(2,12)
s = v

(2,21)
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which has the integral factor
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2pl � 2p)⇡/ax
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�
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Since

p1 = p, p2 = �p,

one obtains

g122 = g212 = 0.

Likewise,

g111 = g222 = g221 = 0.

Denoting

G = g121 + g211 + g112, (4.67)

then the reduced equation (4.65) becomes

d⌘

dt
= �1⌘ + P⌘|⌘|

2 + o(|⌘|3), P =
G

Q
2 R. (4.68)

The proof is complete.

As is expected, the reduced equation (4.68) takes the same form as the reduced one for

the classical Rayleigh-Bénard problem, cf. equation (5.17) in [22]. As a result of Lemma 4.3,

following the same argument as in [22] (Theorem 5.1) one can deduce the following transition

theorem, see also [35] (Theorem 2.1.3 and 2.2.2).

Theorem 4.1. Assume that the PES condition (3.20) holds, and that the first eigenvalue is real

of algebraic multiplicity 2 (i.e., m⇤ = 2 in (3.20)). The following assertions hold:

(1) For Raf < Ra
0
f , the zero steady state solution of the perturbed system (2.9)-(2.11) is locally

asymptotically stable.

(2) If the transition number P < 0, the system (2.9)-(2.11) undergoes a continuous type tran-

sition at Raf = Ra
0
f in which the zero steady state solution bifurcates to a local attractor

⌃Raf for Raf > Ra
0
f , homeomorphic to the unit circle S1, with the following approximation

⌃Raf =
n
xRe( p) + y Im( p) | x2 + y

2 = �
�1

P

o
+ o

⇣r
�1

|P |

⌘
. (4.69)

The attractor ⌃R attracts H \ �, where � is the stable manifold of 0 with codimension 2,

and H ⇢ Y is a open set containing 0;

(3) If the transition number P > 0, the system (2.9)-(2.11) undergoes a jump transition at

Raf = Ra
0
f . More precisely, there exists an open U of 0 in Y such that for any ini-

tial condition  0 = (v(x, z, 0), ✓(x, z, 0),vm(x, z, 0), ✓m(x, z, 0)) 2 U and for every Ra
0
f <

Raf < Ra
0
f + ✏ with some ✏ > 0, the solution to the equations (2.5)–(2.7), given by

 = (vf (x, z, t), ✓f (x, z, t),vm(x, z, t), ✓m(x, z, t))

satisfies

lim sup
t!+1

|| ||Y � � > 0.

for some � independent of Raf .

Remark 4.1. In the case P = 0 or very small, one needs to calculate higher-order approxima-

tions of the center manifold function. A transition theorem can be established in principle.
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5 Numerical evaluation of the transition number and discussion

In this section we numerically compute the transition number P whose sign determines the

transition (bifurcation) type according to Theorem 4.1 pertaining to the dynamic transition

of thermal convection in superposed fluid and porous layers as the Rayleigh number in porous

media Ram varies. These numerical results have been validated through tests of grid refinement.

In Fig. 4, we plot the transition number as a function of the height ratio (left panel) and

aspect ratio (right panel), respectively. One observes that the transition number P remains

negative for most values of d̂ and b. According to Theorem 4.1 this suggests that the perturbed

system (2.9)-(2.11) prefers a continuous transition (attractor bifurcation) at the critical Rayleigh

number. Note for b = 1.5 there are certain positive P when the height ratio d̂ is close to 0.13,

indicating that a jump transition occurs at those particular height ratio. We point out that jump

transitions of P > 0 are not observed in the classical Rayleigh-Bé problem in a single domain,

cf. [22,32,40,41]. The interplay between convection in free flow and convection in porous media

can indeed incur jump transitions in certain parameter regimes. One also observes that the

transition number jumps when it crosses the value zero. As we noted in Remark 4.1 at P = 0

one needs to compute the coe�cients of the fourth order terms in the reduced equation (4.46)

in order to determine the type of transitions.

Figure 4: Plot of transition number as a function of height ratio (left) and aspect ratio (right),

respectively. The parameters are: Prf = 6 ; ↵ = 1; ⇢ = 10, ✏T = 0.7, � = 0.3, Da = 25⇥ 10�6,

b = 1.5, d̂ = 0.2.

We further observe from Fig. 4 that the transition number has jump discontinuities at those

values of d̂ and b-hereafter denoted by d̂j and bj-where the critical mode nc changes value.

Recall from the discussion in subsection 3.2 that at these d̂j and bj two or more eigenvalues of

the eigenvalue problem (3.34) simultaneously cross the imaginary axis. Hence the transition type

can not be determined by the transition number P because the reduced equation (4.68) is not

applicable at these discontinuities. By Theorem 4.1 a bifurcated solution has the approximate

expression

(vf , ✓f ,vm, ✓m) ⇡ xRe( p) + y Im( p), x
2 + y

2 = �
�1

P
,
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away from the d̂js and bjs. Owing to the jump discontinuities of P at these points, one infers

that the bifurcated solutions undergo a jump transition at these d̂js and bjs if one views d̂ and

b as the control parameters, respectively. Since nc changes values at these location, the number

of rolls changes in the physical space. This phenomena of jump transition is illustrated in Fig. 5

where the flow changes from two rolls for d̂ = 0.15 to eight rolls for d̂ = 0.18, which is consistent

with the change of nc in the left panel shown in Fig. 4.

Figure 5: The approximate bifurcated solutions–temperature (left), streamline of flow field

(right)–at height ratio d̂ = 0.15 (first row) and d̂ = 0.18 (second row), respectively. The

parameters are: Prf = 6 ; ↵ = 1; ⇢ = 10, ✏T = 0.7, � = 0.3, Da = 25⇥ 10�6, b = 1.5.

Note that for fixed dm and b as in Fig. 5, nc (proportional to the wave number) provides the

length scale of the convection rolls, that is the larger nc corresponds to smaller convection rolls.

In contrast to d̂j , j = 2, 3, the critical mode nc jumps from 1 to 4 across d̂1, which signals a

dramatic flow regime change from full convection where the convection rolls extend throughout

the entire domain to free-flow dominated convection in which the convection cells are mainly

confined in the free flow region. This phenomena is first observed numerically in [36] for b = 3.

Fig. 6 demonstrates this case where one observes the flow regime changes from full convection (2

rolls) to free-flow dominated convection (14 rolls). Note that the transitions are all of continuous

type except at the jump discontinuities d̂j .
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neutral stability curve transition number plot

temperature d̂ = 0.15 temperature d̂ = 0.18

Figure 6: Transition from full convection to free-flow dominated convection. The parameters

are: Prf = 6 ; ↵ = 1; ⇢ = 10, ✏T = 0.7, � = 0.3, Da = 25⇥ 10�6, b = 3.

We also investigate the e↵ect of the Darcy number Da and the thermal di↵usivity ✏T on

the onset of thermal convection and the structure of the convection cells. Fig. 7 shows the

plots of neutral stability curve and the transition number, respectively, as a function of Da.

One observes that both the critical Rayleigh number and the transition number monotonically

increase as the Darcy number does, until it levels o↵. Recall that the Darcy model employed

here is suitable for the regime of small Darcy number. In terms of transition, one notices a sharp

jump transition at Da2 (second jump discontinuity) where the flow configuration changes from

free-flow dominated convection to full convection. Furthermore, the transitions after Da2 are of

jump type (P > 0). Similar e↵ects are also observed for the thermal di↵usivity ratio ✏T in Fig.

8, though transitions are continuous except at the jump discontinuities.
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Figure 7: Neutral stability curve (left) and plot of transition number as a function of Darcy

number (right). The parameters are: Prf = 6 ; ↵ = 1; ⇢ = 10, ✏T = 0.7, � = 0.3, , b = 3,

d̂ = 0.2.

6 Conclusion

In this article we perform a thorough analysis in terms of bifurcation and dynamic transi-

tions for thermal convection in a fluid layer overlying a saturated porous medium based on a

two-dimensional Navier-Stokes-Darcy-Boussinesq model. A transition theorem with an explicit

transition number is deduced by reducing the infinite dynamical system onto the center man-

ifold. We show by careful numerical evaluation of the transition number that the system is in

favour of a continuous transition in which the steady state solution bifurcates to a local attractor

at the critical Rayleigh number. Jump transitions can occur at certain parameter regime. In

particular the jump transition corresponds to the change of flow regime from full convection to

free-flow dominated convection at discontinuities of the transition number as a function of the

ratio of free-flow to porous media depth, the Darcy number or the thermal di↵usivity ratio.

The results in this article can be extended in several directions which we will pursue in future

works. Note that the time derivative of the Darcy velocity is present in our model. Since the

Darcy number is small in the regime that we are interested in, we would like to consider the

classical Darcy equation neglecting this term. Secondly, we would like to establish the PES

condition for generic ✏T . Finally it would be interesting to consider the convection problem in

three-dimension and with other physical boundary conditions.
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Figure 8: Neutral stability curve (left) and plot of transition number as a function of thermal

di↵usivity ratio (right). The parameters are: Prf = 6 ; ↵ = 1; ⇢ = 10, Da = 25⇥10�6, � = 0.3,

, b = 3, d̂ = 0.2.
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