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Abstract

We study the stability and dynamic transitions of thermal convection in a fluid layer
overlying a saturated porous media based on the Navier-Stokes-Darcy-Boussinesq model.
By reducing the infinite dynamical system to a finite dimensional one via center manifold
reduction, we derive a non-dimensional transition number that determines the types of dy-
namical transitions. We show by careful numerical evaluation of the transition number that
the system favours a continuous transition in which the steady state solution bifurcates to
a local attractor at the critical Rayleigh number. Jump transitions can occur at certain pa-
rameter regime. In particular the jump transition corresponds to the change of flow regime
from full convection to free-flow dominated convection at discontinuities of the transition
number as a function of the ratio of free-flow to porous media depth, the Darcy number or
the thermal diffusivity ratio.

Keywords— Navier-Stokes—Darcy system, thermal convection, porous media, Lions inter-

face boundary conditions, dynamic transition, bifurcation

1 Introduction

The problem of a fluid layer overlying a porous medium has many applications in industrial
processes and in geophysical science, including the mixing of surface water and groundwater
[4-6], contaminant transport and bioremediation [13,19], blood flow [20], oil recovery [1,17,45]
and so on. Of particular interest in this context is the phenomena of thermal convection that has
been intensively studied by a number of authors in recent years, cf. [7-9,14,23,24,26,31,42,43|.
In [23] Hill and Straughan compare the linear instability and nonlinear stability thresholds
and find excellent agreement between the two based on the Stokes-Darcy-Brinkman model for
thermal convection in a fluid overlying a highly porous material. By numerical simulations
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Carr in [7] studies the onset of convection and the ensuing convection cells in the Navier-
Stokes-Darcy model for a layer of fluid superposing a saturated porous medium with internal
heating. It is observed that a heat source/sink in the free flow has a destabilizing effect on the
porous layer while one in the porous media has a stabilizing effect on the fluid. Very recently
Mccurdy et al in [36] perform linear and nonlinear stability analysis on the Navier-Stokes-
Darcy model equipped with the nonlinear Lions type interface boundary condition for thermal
convection in a coupled free flow-porous media system. In particular they discover through
numerical simulation the transition from full convection to free-flow dominated convection at
certain parameter regime.

In this article, we aim to study the precise bifurcation and dynamic transitions associated
with thermal convection in a fluid layer coupled with a saturated porous medium based on the
same Navier-Stokes-Darcy model as the one in [36]. In particular are interested in determining
if the transition from one flow regime to another is continuous or jump, in the sense that the
state of the flow may gradually or suddenly change from one configuration to another such as
the flow regime transition observed in [36]. The approach that we take is the dynamic transition
theory developed by Ma and Wang in [35]. According to this theory, dynamic transitions of
any dissipative dynamical system can be classified into three categories: continuous, jump, and
random. A sufficient condition leading to the existence of a transition in a dissipative system
is that the principle of exchange of stabilities (PES) holds true. Roughly speaking, a continu-
ous transition means that the basic state bifurcates to a local attractor; a jump transition says
that a system will jump to another state, and a random transition indicates that both contin-
uous and jump transitions are possible depending on the initial perturbation. The theory has
been successfully applied in the study of a number of transition problems, including transitions
of quasi-geostrophic channel flows [16], instability and transitions of Rayleigh-Benard convec-
tion [22,32,40,41], tropical atmospheric circulations [27], dynamic transitions of Cahn-Hilliard
equation [29,30], boundary layer separation [34], and many transition problems with random
effects [10-12].

The procedure of the dynamic transition theory is the same as the classical bifurcation the-
ory, and consists of three steps. One first verifies that the PES condition holds true. In general
it is difficult to analytically verify the PES condition except in some special cases, see for in-
stance [32,33]. In the special case of equal thermal diffusivity we rigorously establish the PES
condition. In general cases we infer the PES condition by numerically solving the eigenvalue
problem. One then reduces the infinite dynamical system to a complex-valued ordinary differ-
ential equations via the center manifold reduction. Based on the reduced equation we deduce a
transition theorem with a transition number P suitable for numerical computation. Finally one
numerically calculates the transition number whose sign determines the type of transition from
one state to another. Our numerical evaluation shows that the system prefers a continuous tran-
sition in which the steady state solution bifurcates to a local attractor at the critical Rayleigh
number. However jump transitions of P > 0 nature can indeed occur in certain parameter
regime, unlike the transitions associated with classical Rayleigh-Bénard problem in a single do-
main, cf. [22,32,40,41]. In light of the transition theorem and the numerical evaluation of P we
conclude that the jump transition corresponds to the change of flow regime from full convection
to free-flow dominated convection at discontinuities of the transition number as a function of



the ratio of free-flow to porous media depth, the Darcy number or the thermal diffusivity ratio.

The article is organized as follows. We provide the mathematical formulation of the prob-
lem in Sec. 2. In Sec. 3 we investigate the linear stability, and establish the PES condition
analytically and numerically. We perform the center manifold reduction and derive the main
transition theorem in Sec. 4. Then we numerically compute the transition number and discuss
its physical implications in Sec. 5. Finally we end the article with a summary of the results and
open problems in Sec. 6

2 Mathematical formulation

2.1 The model

The physical set-up of the problem is that a layer of fluid overlies a saturated porous medium
in which the fluid is heated up at the bottom of the porous medium and cooled off at the top
of the free flow region. A schematic description of the problem is shown in Fig. 1. We consider
a two dimensional periodic channel with Q; = {x € R,0 < z < d¢} for the free flow region and
Q= {x € R,—d,, <z <0} for the porous medium region.
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Figure 1: Schematic description of the physical problem. Q: the free flow region; ,,: the
porous medium; I';: the permeable domain interface. The upper and lower wall are impermeable
and maintained at constant temperature with 17, > T;,.

The free flow in €1 is governed by the Navier-Stokes equation coupled with heat convection—
the Boussinesq system:



0
PO(% + (uy - V)uf) =V - T(uy,ps) — gpo[l = B(Ty — To) Ik
V-uy =0,
cehs VT = ZLAT
or tup- Vip=oaly,

Ty =Ty, uy=0, at Z:df,

(2.1)

where uy = (ug,wy), ps and Ty are the velocity, pressure and temperature of the free flow,
respectively; T(uy, ps) := 2uoD(us) — pyl is the stress tensor with D(uy) = 3(Vuy + Vu;f) the
rate of strain tensor, and pg the dynamic viscosity; po, 8, g and k are the density, the coefficient

of thermal expansion, the gravity constant and the upward unit normal, respectively; ¢, ¢,
kg
POCp
fluid, respectively.

and Ay = are the thermal conductivity, specific heat capacity and thermal diffusivity of the

The flow in porous media €2, is governed by the evolutionary Darcy equation [2,37]:

'1;70857;” + %um = —va - ng[l - B(Tm - TL)]ka

V-u, =0, (2.9)
(p C )m 8Tm — m ’
Sy ot T W VI = S ATy,

Twm=1r, wpy,=0, atz=—d,,

where u,,, pn, and T, are the velocity, pressure and temperature of the fluid in the porous

medium; y and 1) are the porosity and permeability of the porous medium, respectively; A, =

p’z’:p is the thermal conductivity of fluids in porous media. The heat capacity and thermal
conductivity is defined in the sense of harmonic average of that of fluids and solids in the porous

medium.

The coupling of the two systems (2.1) and (2.2) is classical, cf. [3,28,38]: on the interface
z=0,

Ty T,
Ty =Tn, FKfor =Em—mr, = W, 2.
' Rf g, = fm—p wy=w (2.3a)
Ouy  Owy LoQ
po(—=+ —5-7) (o) (2.3b)
owy  po, o
pf‘%%g*'? uyl” = pp. (2.3¢)

Here the condition (2.3b) are the celebrated Beavers-Joseph-Saffman-Jones (BJSJ) condition
with « an empirically determined coefficient and ¢r (1) being the trace of ¢, and the condition
(2.3c) is the Lions interface boundary condition.



2.2 The perturbed system

The steady state solution of the system (2.1)—(2.3), denoted with a bar overhead, is given as
follows

Uy =, =0,
Ty —To
. (2.4)
To— 1T},
i

Tf:TO—I—Z

Thm=1T+z

with Ty = % being the temperature of the conductive state at z = 0. In addition,

py and p,, are defined as the hydrostatic pressures such that

Vps = —gpo(1 — B(Ts — To))k,
VPm = —9p0(1 — BT — T1) k.

Introducing the perturbations

Vi=Uuf —Uf, Vp=Up— Upy,

0 =Tf — T Opm=Tpn—Tm,
Wf:pf_ﬁ_fv Tm = Pm — Pm-

one finds that the perturbations satisfy the following systems:

ov .
PO(th + (vy V)Vf) =V T(vy7mp) +gpobbsk, inQy,
V- vVf = 0, in Qf,

(2.5)
G+ vy VO = ApAG; — Wf(T”d;TO), in Q,
=0, vyp=0, atz=dy,
%8:9,7;” + %Vm = -V, + ngﬂemka in Q,,
V- u, =0, inQy, (2.6)
(pgt():g;),m % + V- vH’m - )\mAem — Wm (Tod:nTL), in Qﬂ’w .
Tn =0 w,=0, atz=—d,,
subject to the interface boundary conditions
Or = O, ﬁf% = /imag—;”, Wy = Wy, onz=0,
0 0
oG + %) = My, onz =0, @)
T — 2%850; + p70|Vf]2 = T, onz=0.



2.3 Nondimensionalization

Throughout, denote by v = % the kinematic viscosity. Following [25,42], we introduce
nondimensional variables denoted by tildes

2
- G 2. ¥ vidy OrAy - mydy
v ds’ d?c ) v (To — Ty)v’ mf pov?’
~ ITm ~ Vindm 5 OmAm ~ 7de72n
:L’m = -, Vm = y m = 0, 7Tm et .
dm v (T, — To)v pov?

We also introduce the dimensionless numbers

s dg Af (Pocp)m
d g -, € = ~ = . 2'8
dm g Am ¢ PoCp ( )
The periodic cells will still be denoted by Q¢ = {z € [0,a],z € [0,1]} and Q,, = {z € [0,0],2 €
[—1,0]} with b = da. Then the systems (2.5)-(2.7) take the following dimensionless form (ne-
glecting tildes):

ov .
pr; ot + (Vi V)vy =2V D(vy) =V + Rasfsk, in Qy,
V-vy=0, in{y,

a0 ) (2.9)
TngPT‘fo'VGf:AquLU}f, n Qf,
Gf:07 vy=0, atz=1,
cz;;?fm Bm + v, = —DaVy, + Rambmk, in Q,
V-u, =0, inQ,,, (2.10)
Lo+ PronVin - Vi = Ay + W, 10 Oy,
Tyn=0 w,=0 atz=-1,
subject to interface boundary conditions
j0. — 2 9 _  30m _ 3 _
d0y = €50n, i =er%g®, wy=dwp, onz=0,
0 1o} I
L+ 5L :%uf, on z =0, (2.11)
T — 28;; +ivs? =, onz=0.
The dimensionless numbers are defined as follows
v v P
Prf = Tf7 Prm = E, Da = @, (212&)
B(To — Tyr)d} Ty, — Ty)Dad?
Ray = u, Ra,, = 98 = To)Dady, (2.12D)
2% VAm
. . Dae%
with the relation Ra,, = 1 Ray.




3 Linear stability and principle of exchange of stability

In this article we focus on the transition of the convection dynamics as the control parameter
Ray (equivalently Ray,) varies, as well as the influence of other parameters on the dynamic
transition. The first step in determining the transition type is to characterize the spectral
properties of the linear problem.

The dimensionless linear system associated with the perturbed equations (2.5)—(2.7) take
the following form (neglecting tildes):

a .
Pif S =2V -D(vy) — Vrp + Ragbsk, in Qy,
V‘Vf:07 iIl Qf,

% = Aaf +wyg, in Qf,

(3.13)

0 =0, vy=0, atz=1,
and
%%’7{” + vy, = —DaVry, + Rapbnk, in Q.
V-u, =0, inQ,,
L% = Ay + W, 0 D,
Tm:07 wmzo, ath:—17

(3.14)

subject to the interface boundary conditions

. 90 o .
d9f:e%0m, af:eTag, wy = dwpy, onz=70,
z z
Ouy N owy dov (3.15)
= U
0z Ox VDa

0
T — 2({% = d’ny,, onz=0. (3.16)

on z =0,

The eigenvalue problem associated with the linear problem (3.13)-(3.16) reads

Pifo =2V -D(vy) — Vry + Raslsk, in Qy,
oy = A0y +wy, in Qy,

V-vy=0, in {y,

=0, vy=0, atz=1,

(3.17)

and

j'szivm + v, = —DaVm, + Ray,0,k, in Q.
d?xPrm

aﬁd%@ﬁm = Aem + W, in Qm’

V- Uy = 0, in va

Tn=0 w,=0 atz=-1,

(3.18)



which are subject to the same interface boundary conditions (3.15)- (3.16). Following the nondi-

mensionalization in Section 2.3, we note the following relations among the parameters

~

4

1
Rap,, Pry= —Pry,. (3.19)

R p—
“f DaeQT €T

It is already shown in [36] that there exists a critical Ras below which the steady state
solution is linearly stable, see also [25]. It is clear that there are countably infinitely many
discrete eigenvalues to the problem (3.17)—(3.18), cf. Eqgs. (3.34). Let us order the eigenvalues
by their decreasing real parts, that is,

Reoi(Ras) > Reoa(Rayf) > - -+ — —oo0.

We make the standing assumption that the principle of exchange of stability (PES) holds for
the eigenvalue problem (3.17)—(3.18). That is, for other parameters fixed there exists a critical
Ra(} and a neighborhood Ag of Ra(} such that there exists a unique m* with the property that
for Ray € Ag

>0, Ray> Ra?c,

O’i(Raf) =0, Ray= Ra(}, 1 <i<m", (3.20)
<0, Raj < Rdf,

0j(Ra%) <0, j>m"+1.

In general, it is difficult to verify analytically the PES condition, due to the lack of explicit
form of the eigenvalues and eigenfunctions. We shall demonstrate the validity of the PES
condition by numerically solving the eigenvalue problem at the end of this section. Nonetheless,
for the special case ep = 1, i.e. identical thermal conductivity between the free flow and porous
media, we can rigorously establish the PES condition.

3.1 PES condition when ez =1

Let us define some function spaces as follows

Xf:{veH1 (Qf)|V'v:O, v|,—1 =0, periodic in x},
X = {v cH' (Q,) ‘V -v=0, v-n|,—_; =0, periodicin :n} )
Yy ={6¢€ H" (Q)|0].—1 =0, periodic in z}

3.21
Yo, ={0€ H' (Q,) 0].—=—1 =0, periodic in z}, (3.21)
X;={ve L2 () Iperiodic in z}, X, ={ve L% (Q,) |periodic in z},
Yi={6¢ L () ’periodic inz}, Yn={0¢ L* (Qn) }periodic inz},
X ={U=(vy,0f,Vvm,0m) € Xy x Y X Xy, x Yp,|U satisfying (3.15)}, (3.22)
Y = {(vy, 07, Vi, 0m) € Xy x Y x X x Y } (3.23)

In case of ey = 1, the following theorem holds.

Theorem 3.1. If ep = 1, then all eigenvalues of the eigenvalue problem (3.17)-(3.18) are real,
and the principle of exchange of stability (3.20) holds.



Proof. First we show that the eigenvalues are real. It follows from the equations (3.17)-(3.18)
that

CZ <PO-Tfo,Vf> + Rafcia (Qf,gf)
UCZQET _ 6%“9
(Vin, Vim) + JRaf?

em’gm
xXPrm ( )
= QCZ(V . D(Vf) - Vmp + RCLfok,Vf) + Rafa? (Aef + U)f,gf)

4

+ % (_DCLVT"m —Vm + Ramemk7vm) + Rafﬁ% (Aem + wm’gm) ’
a

(3.24)

where the variables with overlines are their complex conjugate.

Utilizing the interface boundary conditions (3.15)- (3.16), one calculates

QOZ(V . D(Vf) — Vs + Rasfrk,vy) + Rafc? (A@f + wf,gf)

~

4

p _
+ 557 (- DaV —Vin + Rambuk, Vin) + Rageh (A + wpn, Orm)

d d Ra,,

= —2d(D(v;),D(¥)) + d(Rasly, @) — B (Vi V) + (O, W)

— Rayd(V0;,V8;) + dRa (87, wp) — Raser(VOm, V) + Raseh (O, wm)
Pa ¢ 5 dwy )

-2 Vi Ts)(VyeTs)dly —d — — 7w+ dmy | (V§-n)dl;
Te 2 [ ey mar—d [ (25 ) 7w

Rafci/ Hf(VGf'n)dFmLRafe%/ Gm(vgm-n)dfi

. . _ d4 _

= —2d(D(v),D(¥)) = Rasd(Vby, VOs) = 5 (Vm, V) = Raen(V0m, Vo)

. cZ4Ram
Da

Ra &
9= = v 1) (¥ - 75 dT;
m;ﬂ/m(f )V Ts)

(O, Wiy) + CZRaf(Qf,@f) + dARaf(?f, wy) + Rafe%(ém, W)

~

R R _ d4 _
= —2d(D(v),D(¥)) = Ra;d(Vby, VO5) = 5 (Vm, V) — Raén(V0m, Vo)

+ CZRaf(Hf,@f) + dRaf(wf,gf) + Rafe%(gm,wm) + RafegT(wm,gm)

Pa & _
—2@;/Fi(vf-rs)(vf.fs)dri, (3.25)

2
Dng Ray has been applied in the derivation of last equation. Thus,

if e = 1, then Eqgs. (3.24) and (3.25) imply that the eigenvalues o are real.

We now establish the PES condition (3.20) under the assumption ep = 1. By direct energy
estimates (cf. [36]), one can show that the system (2.9)-(2.10) subject to the interface boundary
conditions (3.15)-(3.16) is energy stable for Ray < Ry. Hence the steady-state (2.4) is linearly
stable if the Rayleigh number Ra; < Ry. For the study of bifurcation/transition, one assumes
that Ray > R > 0.

where the relation Ra,, =



First let us re-scale 6 and 6,, by \/Ray. Then (3.17)-(3.18) becomes

Prf =2V ]D)(Vf —Vrmp+ /Raslsk, in (Qy,
ol = AHf + /Rajywy, in Qy,

(3.26)
V- Vf - 07 in Qf’
0 =0, v;=0, atz=1,
and
Jg;TPDa Vi + Vin = —DaV, + \ﬁ%@mk, in O,
0L 0m = Db, + \/Ragwn, in Qp, (3.27)

V-ouy =0, in Qpy,
Tn=0 w,=0 atz=-1,

subject to the same interface conditions. We proceed to show that the principle of exchange of
stability (3.20) holds for the eigenvalue problem (3.26)-(3.27) in two steps.

Step 1: Existence of a critical Rag)c. Under the assumption that e = 1, the weak form of
the eigenvalue problem (3.26)-(3.27) can be written as

oepd?

e T (Vi) + 02 (0,00,

Pry (V7 ¥) o (07.07) +

= —2d(D(vy),D(v})), —d(Voy, V) — Da(vm, ') = (Vb,,VE.)
+(f\/Raf(9f,w})—i—cZ\/Raf(wf,G})—l—\/Ra (O, wiy,) + /Rag(wp, 0,)
5 2

(vy-Ts)(Vf-T)dly, YU e X. (3.28)

We show that there exists a critical Ray = Ra?c > 0 such that the eigenvalue problem (3.28) has
zero eigenvalues, i.e. o = 0.

For convenience, let Lr,, = A+ /Ra;B be the operator from X to its dual space X*, with
A and B induced respectively by the right-hand side of Eq. (3.28)

~

A X 4
(AU, U") = — 2d<D(Vf)7D(V,f)> —d(V0y, VoY) —

o &

2 v -7s) (V- Ts) dly,
ﬁDa;/m( fr) W)

(BU,U') = d(0f,w)) + d(wy, 07) + (O, w)y) + (win, O),).

d
Da —(Vin, Vi) — (VOp, VO.)

In light of the relation (3.19), the weak form of the eigenvalue problem (3.28) is equivalent to

Lpe,U=0cMU, inX, (3.29)

10



with

Feo0 0 0 0 0
0 - 0 0 0 0
Mo | 0 0 d dOQ 0 0
0 0 0 e 0 0
0 0 0 0 +f=— 0
0 0 0 0 0 £

By the symmetry of the operator Lpq,, the first eigenvalue oy is characterized by

of1 = max <M_1(LRan),U>

10]lx=1
= max, ((M—l(AU),U> + Raf<(M_1(BU),U))). (3.30)
Note that
(AU,U) <0, YUEeX. (3.31)
Also
(BU,U) >0, (3.32)

for U = (v¢,0¢, Vi, 0,,) such that
wy=10p, wpy="~0p, with wr#0 or wy,#0.

Hence, one can deduce from (3.30)-(3.32) that there exists Ray = Ra(} > 0 such that the first
eigenvalue associated with the eigenvalue problem (3.29) vanishes, i.e.,

o1 = 0.

Step 2: The transversal condition. We show that the first eigenvalue o;(Ray),i =1,---m
counting multiplicity satisfies

(0i(Ray o > 0. (3.33)

!
)) |Raf:Raf

To this end, let
Lpay 15Ut = oi(Ra} +6)MUy, U = Upag +Us,  limUs =0,
where L Ral U Ra) = 0. One calculates

<LRag+5UL URa‘}> = <LRa?URa?’ URaS{> + <LRa(}U5? URag>

+ <<LRa(f)+6 - LRa?c) U17URa(}>

= <\/Ra5’e +6— \/Raw <BU1,URa‘}> 5

11




where the identity
<LRa(f>U5,U> _ <U5,LRQ?U> —0,
has been used. On the other hand,
<LRa(}+5U1, URa<}> — o;(Ra$ + 6) <MU1, URG(}> .

Hence

(\/Rag 6 \/Rag) <BU1, URQ?> — 5i(Ra? + 6) <MU1,URG(}> .
And therefore
s - V) (501, Ugg) = D (010, 0
UZ‘(RCL(} -+ (5) — UZ(RCL(})

DD (v, ).

which yields
(BUnsg Unsy)

2 af< Ra?ca Rag)c>

> 0.

))/ }Raf:Ra(} =

This establishes (3.33).
The proof of (3.20) is now complete. O

3.2 Numerical solution of the eigenvalue problem

In this subsection we numerically solve the eigenvalue problem (3.17)—(3.18). The numerical
results would allow us to demonstrate the validity of the PES condition. Furthermore, the
eigenfunctions are needed in the numerical evaluation of the transition number.

Owing to the periodic boundary conditions in the horizontal direction and the separable
form of the equations, the following normal mode solutions can be assumed for fluid in €y

vy =vy(z)exp (ot +i2nm/ax), w5 =ms(2)exp (ot + i2n7/az)
07 = 0(2) exp (ot + i2nm/ax), n € Z.

The normal mode solutions for fluid in €2,, is similarly defined. One then eliminates the pressure
term by taking curl of the fluid equation, and derives the equation for the component w;,7 €
{f,m} after taking another curl of the resulting equation, cf. ( [18] p. 96) for details. The
interface boundary conditions are written in terms of w;,i € {f, m} as well with the aid of the
fluid equations.
Introducing the notations

_d

= e
the eigenvalue problem becomes (see also [23]):

onAbs = Lhs, 5= (wp,0f), 2z € (0,1),

UNA?wm - E?Tﬁm, ¢m - (wm70m>7 z G <_170)7
wp=Dwr=0;=0, z=1,

n

2 = (2n7r/a)2, b2 = (2n7r/b)2,

(3.34)
Wy =0, =0, z=-—1,

12



where

1 (D2 _ 42 2 2\2, 2
_Agiwf _ (Prf( an)wf> 7 ngf _ ((D ( CLn) wy anRaf0f> ’ (3'35)

0 D? —a3)0y + wy
—rDa_(p2 _ p2),, —(D? = b2 )wp — b2 Ramb
A pm = d"’XPTmE 2 e ) ")f’” B (3.36)

The interface boundary conditions for §y and 0, at z =0 are

dif = &0y, DO;=erDy,  ws = dwpy,

(D? + a2)wy = o Duy, A A (3.37)
g;}f Dwy — (D? — a2)Dwy + 2a2 Dwy = U;;fff Dw,, + g—ZDwm.
Throughout, the width of the free flow region is fixed at b = 2w. We also recall the following
relations
. 74 1
b=da, Ray= Dae%Ram’ Pry= aPrm. (3.38)

Since the eigenvalue appears in the interface boundary condition (4.54), we adopt the Chebyshev-
tau method [21] for solving the generalized eigenvalue problem (3.34)—(4.54). For the parameters
that we have tested, we find that the eigenvalues are always real, which are in agreement with
the results in [23].

First we examine the validity of principle of exchange of stability for generic e, cf. Theorem
3.1 for the case of e = 1. Noting the relation (3.38), the PES condition (3.20) can be expressed

in modal form
>0, Ran, > Rd,,
Unc,l(Ram) = 0, Ram = Ra%,
<0, Ran, < Rad,,
0n7k(Ra9n) <0, VY(n,k)# (nel),

(3.39)

where Ral, := min,{roots of ¢, 1(Ra,,) = 0} is the critical porous Rayleigh number. In Fig.
2 we plot the modal critical Rayleigh number as a function of the height ratio d (free flow vs
porous media), and the aspect ratio b, respectively while keeping other parameters fixed. It is
observed that there are a finite number of d and b at which the modal neutral stability curves may
intersect, indicating that two or more eigenvalues (corresponding to different n) simultaneously
cross the imaginary axis as Ra,, becomes critical. Reflected on the global neutral stability curves
(Fig. 3) are the discontinuities where the critical mode n. changes value. At these discontinuities
there are two (real) eigenvalues becoming critical, which are isolated degenerate cases beyond
the scope of this work. Except these degenerate cases, the modal PES condition (3.39) holds
true. One also observes as the height ratio of fluid over porous layer increases, transition from
stability to instability happens at smaller Rayleigh number, which is consistent with the fact
that fluid layer governed by the Navier-Stokes equations plays more dominating role at higher
height ratio.
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Figure 2: Plot of modal critical Rayleigh number as a function of height ratio (left) and aspect
ratio (right), respectively. The parameters are: Pry =6 ; a = 1; p = 10, ep = 0.7, x = 0.3,
Da=25%1075 b=15,d=0.2.

4 Center manifold reduction and the transition theorem

In this section we examine the stability and transition/bifurcation of the zero solution to the
nonlinear system (2.9)—(2.11) by reducing the dissipative infinite-dimensional dynamical system
to a finite-dimensional one (ODEs) via the center manifold reduction, cf. [15,35,39,44]. Under
the assumption of the PES condition (3.20), the underlying phase space can be decomposed as
H. P H, with H. being the center-unstable space and H, being the space generated by the
stable eigenfunctions associated with the eigenvalue problem (3.17)—(3.18) in the vicinity of the
critical porous Rayleigh number Ra(} (equivalently, Ral,). The theory of dynamic system (cf.
references cited earlier) implies the existence of the center-unstable invariant manifold function
h : H. — Hs such that h(0) = Dh(0) = 0, and the equivalence of dynamics (stability and
transition) between the infinite-dimension dynamical system and its projection onto the center
unstable space.

Because the nonlinear terms in the system are quadratic, the leading order approximation
of h is the bilinear form

ha(6) = S D*h(0)(6.6), 6 € H.. (1.0

This term is determined by the so-called backward-forward procedure introduced in [12]; see
also [10, Sec. 3.2]. This procedure relies on the pullback characterization of approximations to
(local) invariant manifolds [12, Chap. 4]. Specifically, let ¢ be any element in H, with proper
parametrization. Then we solve the linearized equations backwards in time with initial datum ¢
at t = 0, and denote the corresponding solution by UW. Then, we solve the linearized equations
forward in time by using PG (U(l), U(l)) as a source term, imposing that the corresponding
solution U [#] vanishes as t — —oo. Here P is the projection operator onto H, and G
represents the nonlinear terms of the system. Note also the dependence of U® on ¢ through
the source term. The bilinear form hy(¢) is identified as U@ []];—o.
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Figure 3: Neutral stability curves: critical porous Rayleigh number vs height ratio (left) and
critical porous Rayleigh number vs aspect ratio (right), respectively. The parameters are: Pry =
6;:a=1p=10,er=0.7, x=0.3, Da=25x 1076, b = 1.5, d = 0.2.

We assume that the modal PES condition (3.39) holds. Denote the eigenfunctions corre-
sponding to the first eigenvalue o1 = oy, 1 of the eigenvalue problem (3.17)-(3.18) in the vicinity
of the critical Rayleigh number Ra?, by

T
T aan
where

v = VE(2)el = (UP(2), WE(2))eb, 6% :=O%(2)el, s = f.m,
ez} = exp (lapx) = cosapr +isinapz, 0<z <a,

el = exp (ibpz) = cosbpx +isinbyr, 0<x <b.

We recall that W¥(z),©%(z) (s = f,m) are the real eigenfunctions of the eigenvalue problem
(3.34)-(4.54), and U }’3 (2),UPB,(2) are purely imaginary functions determined by integrating the
divergence-free condition

P

UB(2) = z'DVZf Bz = i 2WVAG) ”f%(z).

P i
Since the coefficients of the eigenvalue problem (3.17)-(3.18) are real, one thus can see that
the real part and imaginary part of y? are two real eigenfunctions corresponding to the first
eigenvalue o1. Throughout we assume that the algebraic multiplicity of o1 equals its geometric
multiplicity equal to 2, which is the general case from our numerical results in subsection 3.2. We
note that the non-general case when the algebraic multiplicity of o1 may be 4 or greater than 4
can be treated similarly albeit more involved. For the purpose of projection, we shall also make

T
use of the dual eigenfunction ¥P* = (V?*, 08 Vb, 0h ) associated with the first eigenvalue o
of the adjoint eigenvalue problem. We now parameterize the center unstable space by

H, = {y¢” + yyPly € C}, P =L +ifl, y=uyi +iy. (4.42)

15



For convenience, let ¢; and h;(¢) be the ith component of ¢ and h(¢), respectively, , 1 < i < 6,
and denote

¢ = (01,02), hy(¢) = (h1(¢), h2(9)), ém = (¢4,¢5), hm(9) = (ha(9), hs(d))-

We introduce some useful identities for the center manifold reduction. Hereafter (-,-) repre-
sents the Hermitian L? inner product.

Lemma 4.1. Suppose that the PES condition (3.20) holds, and that the first eigenvalue is real
of algebraic multiplicity 2 (i.e., m* = 2in (3.20)). Then the following identities hold

/eg.eg;*dxdz:/ OF, - 05% dwdz = 0,
Qf 979

/ V?-viﬁ*d:ndz:/ @-Viﬁda?dz:o,
Q m

d s erd’ —r 49
—_— h:(¢) - vh dxdz + / h,,(¢) - vby dxdz

€ro
d2

+Rafc2/ hs(¢) - 07 dadz + / he(o) - OB dedz =0, Vo € He.
op Qm

Proof. The first two identities are due to foa e;2p dx = f(f em? dz = 0.
To establish the third identity, we denote the stable eigenfunctions corresponding to o;,j =
3,4,5- - (counting multiplicity) of the eigenvalue problem (3.17)-(3.18) as

Vi = (V5,055 Vinjs Om )

Since h : H. — H, = (H.)*, h admits the following spectral expansion

+00
h(¢) =) a;¢;, V¢ € He.
j=3
Following the derivation of Eqgs. (3.24) and (3.25) (see also Eq. (3.28)), one obtains by the
adjoint eigenvalue problem

72 4
ojd°er

3 1 * 7 * * € Q *

Ujd <P,erf,j,V§ ) + Rafdaj <6f7j,91; ) + XPTm (VmJ‘,an) + UjRaf% (de,@%)
7 * 7 * Cz4 *

= —2d(D(vy;), D(v) = Ragd(VOyj, VOT) = 5o (Vi Vi) = Rae;(Vm,j, Voh,)

+ dARaf(Qf,j, wfc*) + cZRaf(wf,j, 97;*) + Rayeq(0m j, W) + Ragep(wp,;, 00F)

. 9
- Qj%g/n(vﬁj 7o) (VB 7 dT
=o1d <levf,j, v§*> + Raydot (9f,j, 9;*) - O;Cljfj: (Vin,j, VEF) + mRafin (B, 027 .
Hence
d <1vf,j,vf;*> + Rayd (9f,j, ag*) g Ler (Vi,j, VE) + Rafig (O, 05) =0, j =34,
Pry XPrm d2
This establishes the third identity. O

16



Likewise, the following identities can be readily verified.

Lemma 4.2. Under the same condition as Lemma 4.1 the following identities hold:

/Q ((v’} : V)V?) -VT;*dxdz = /ﬂ ((vfc : V)v?ﬂ) -vT}*dwdz =0,
o . e (4.44)
/Qf ((V? : V)V?) : v?* dxdz = /Qf ((v? : V)v?) -V?* dxdz =0,

/ ((ng> -V)eg’) 07 dadz = / ((v;p) -V)@) 07 dzdz = 0,
Q Qg

/ <(Vl(ep) V)«9§> O dzdz = / ((Vgp) . V)%) 0% dzdz = 0,
Q, Q,

where s = f,m.

(4.45)

According to theory of dissipative dynamical system [?,15,35,44], one obtains the following

equivalent (in terms of stability and transition) reduced equation.

Lemma 4.3. Assume that the PES condition (3.20) holds, and that the first eigenvalue is real
of algebraic multiplicity 2 (i.e., m* = 2 in (3.20)). Then, the transition and stability of the zero
steady state solution to the equations (2.9)—(2.11) in the vicinity of the critical Rayleigh number
Ra(} and for any sufficiently small initial condition are equivalent to those of the zero solution

of the equation

d
=L = om+ Pylnl + olnP*). (4.46)

where n is a complez-valued function and P € R is the transition number defined in (4.65) and
(4.67).

Proof. Following the procedure outlined above, we first derive the leading-order approximation
of the center manifold function, then we project the infinite-dimensional dynamical system onto
the center unstable space. We divide the derivation into three steps.
Step 1: The second-order approximation of the center manifold function.
We follow the backward-forward procedure [12] to derive the second-order approximation of the
center manifold function hg, cf. (4.40).

In the neighborhood of the critical Rayleigh number Ra(}, forany ¢ € H. = {yi/ﬂ’ + W‘y € (C},
we first solve backwards in time the linear problem (3.13)-(3.16) projected onto H, with the

initial condition ¢, i.e.,
viVli=o = yVE(2)el + yVE(2)ek, 67]i=g = yOh(2)ek + yOL(2)ek, s = f,m.

The linear system of ODEs admits a unique solution for all time. In light of the eigenvalue
problem (3.17)-(3.18), the solution takes the form of

vl = yvE(2)emtel + yvE(z)e el

(1) oit D D (4.47)
0y = ybP(z)e’ el + ybs(2)ettes, s = f,m.
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Next we consider the linear problem forced by (vgl), 99)), s = f, m, via the nonlinear terms

d 1 1 .
P%f% =2V -D(vy) = Vry + Raslrk — (v;) . V)v; ), in Qf,
V-vy=0, in Qy,
o Py (4.48)
th:Aeijwf*PTfo -V9f , in Qf,
Qf:(), vp=0, atz=1,
coupled with
ﬁigfm B 4 vy, = —DaVy, + Ramfpk,  in Qp,
A =0, in Q,
- o O (449)
dT—ZQa—;” = Ab,, +wy, — Pro,ven’ - Vo', in Q,y,
0 =0, w,=0, atz=-1,
subject to the interface conditions
70, _ 2 0 _  90m _ ] _
by = €70, 55 =er%™, wy=dwpy, onz=0,
ou ow d
o5+ o = ypsu omz=0, (4.50)

T — 28ng + % <(u§c1))2 + (w}1)>2) = d?m,,, onz=0.

We integrate the linear system projected onto the stable space Hy forward in-time with the
condition

lim v§2> = lim 9g2) =0, s=fm.
t——o0 t——o0

The solution form (4.47) suggests the following ansatz, for ¢ < 0

V) = [y ()T g 2 () e+ P (2] e 2,

ng) _ ‘y’29~£p,0)(z)62R601t I yZégp,l)(z>€20'1tegp +529~£p,2)(z)62ate;2p7 s— fm. (4.51)

One can derive the equations satisfied by ({fgp’i), éﬁp”')),z’ =0,1,2,s = f,m by substituting the

preceding expressions into the coupled system (4.48)-(4.50), comparing the modes, and also
eliminating the pressure. In particular, it follows from the divergence-free condition and the
boundary condition that

w@’(’)(z) =0, s=f,m,

S

which combining with the governing equation implies
aP0(z) =0, s=fm.
In addition, égp’o)(z) (s = f,m) solve the steady equations

2R6016~?§cp’0)(z) = Dzé;p’o)(z)—2Prf (w?(z)Dch(z) + Dw?(z)@?(z)), z€(0,1),
265—291%6015%’0)(2) = D2§§£’0)(z)—2Prm (wh(2)DO5,(2) + Dwhy(2)6h.(2)), = € (—=1,0),
00y =0, 4291 =0,



subject to the interface boundary conditions

6% (0) = 26%(0),

¢ 5(p,0)
4o
—1—(0) = er=2—(0).

Likewise, one can verify that (wgp’”(z), égp’l)(z)), s = f,m, satisfy

201 ALY = £l Y + Bt 2 (0,1),

201 AR S = Lpp®Y + Fryk, 2 e (-1,0),
(pal) — Dw(p’l) — 9(p71) — 0

wy Fo= #=1
WD 0% 0, 2=,
where
P = (wPD(2),0PV(2)), s=fm,
Flyb = azyi DGy oy + daGy ] Fybh, = y
; ~prygley ) T \pragpan )
with

Glg(2) =ayi (W(2)g(2)) + (w}(2)Dg(2))
Gp'9(2) =bpi (u, (2)9(2)) + (wi,(2)Dg(2)) -
The interface conditions at z = 0 are
ot = e,

DoY) = ez DBV,

2, o (p1) _ _d (p,1)
(2D + ag,)w; \/mef :
o1 ,1 1 1
B Dw;p ) _ (D? — agp)Dw;p )+ Qa%prgfp )
2erod” (p.1) d! (p1) — a3 ) p)?
L XPrm D, _FaDwm T2 (uf> + (wf) '

(4.52)

(4.53)

(4.54)

The horizontal component of the velocity can be recovered from the divergence-free condition,

for instance
iagya®V + DOPY = 0.

One also observes that

W) =0V, 0AE) =000 (2), = fom.

Then, the second-order approximation of the center manifold function is given by

T
hQ((ZS) - <v§“2)7 6;2)7 V1(7%)7 9%?) ’t:[)a

19
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where (vg)7 9§2)), s = f,m are defined in (4.51).
Step 2: Projection onto the center space.

We make use of the dual eigenfunction ¥* and the approximation of the center manifold function

to reduce the infinite-dimensional dynamical system to a finite-dimensional one. By integration

by parts, one deduces from the equations (2.9)-(2.10) that

1 8Vf P D p*
o (B ) = 2Bl 5 + Ry )
2
-2 Zl /r 7 - D(vp)n(vy" - 7) dL

8'wf px *
—/Fi ( 5, —7Tf> (V" -m)dl; — ((Vf'V)Vf,vfc ),

er Ovin ) 1 - pey . Ram -
e (T VB ) = = (e V) = (T VB + 5 O )
1 —5 Ra
= — 77 (Vm P — m gj sz . emv p*’
i (Vi) = [ O )t T )
97 go\ = — (vo,,ver) — [ 0,(VO - m)dT; + (wy, 07
ot ' f f f . f f 7 Y
— ((vs - 9)05.07).
cre (8(”“,95;> = (V0 V) — [ 0,0 (VOE - 1) dD; + (wpm, O7F)
daz \ ot r;

— (Vi - V)b, 087) .

Furthermore, d x (4.56) 4 d* x (4.57) + Rafcz x (4.58) 4+ Raye3 x (4.59) gives

d [Ov F o erd? [ Ov,, » (00 eto (06,
— =L,V v ) + Ragd | 1,08 ) + Ray L= | —=, 0P
Prf(at’vf>+ Vi ) Hhagd{ Gy ) e n T Om

. . . d*
= —2d(D(vy),D(V}")) + d(Rasb,wP*) — Fa(Vm’ VvP*) + Ra €3 (O, whF)

— Rayd(V0y, VOY) + dRas(wy, 07°) — Rapeh(Vom, VOIT) + Raget(wm, 67)

da & oD 7 p*
—QM;/E(Vf-TS)(Vf -Ts)dri—d(<Vf-V)Vf,Vf>

- PrfRafci ((Vf -V)0y, 9?‘) — PrpyRages (Vin - V)0, 087)

d 5
-2 /F V2 ) dI.
In the vicinity of the critical Rayleigh number Rag]c, we write

(Vf,(gf,Vm, em)T = ¢ + h((b),

where ¢ € H, has the representation

6 =m0+ TP, 6 = W) = (Vh0n 00
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We recall that ¢ is the eigenfunction corresponding to the first critical eigenvalue o1 = g9, and
that the center manifold function h admits the expansion

h(¢) = ha(8) + o(|n|*), (4.61)

with the second-order approximation given by Eq. (4.55). With the help of the identities in
Lemma 4.1 and 4.2 the equation (4.60) becomes

A~

dn - _ QJn(ID)(vp) ]D)(Vp*)) + cZn(Rafep wPl*) — @(Vp vP)
dt FoR ’ Da ™ "™
+ Raseqn(0P,, wb*) — Raydn(VoP, VG?*) + dRafn(w?, 0?*)
— Ragnep (V.. VOIT) + Rayeqn(w,, 077)
LSS | )T ey dr = d (v - Vovg ) (462)
Da s=1 I
- PrfRafci ((Vf -V)0y, 9?) — PrpyRages (Vin - V)0, 087)
d v/ [2(vE" - n) dT;
2 Jp, IS -
where
Q= d (vp vp*) 4 e (V2. vP*) + Ra d(ep ep*) © Ra, T2 (2, 67" (4.63)
Pry NS0T xPry, "™ ™ NG A I Vmo Um

=

For the linear terms in (4.62), replacing (Vﬁ:, OF, Vin, ﬂ) by (VT}*, @, vin, @) in (3.25), in
light of the identity (3.24), one derives

~

dy

— 2dn(BVE). D) + dn(Rag880m) — LU (v, V) + Ragehn(0n, 0E)
— Rachy(VG? Vo) + dRa,fn(wg, %) — Raynes(VOP,, VOL*) + Rayern(wh,, 00F)
o § Y
-2 vh o) (VR 1) dly = o . 4.64
Ve 2 65 T s dr = o (4.6

For the nonlinear interactions, we derive by the identities in Lemma 4.2 and the definition of
the second-order approximation of the center manifold function (?7),

d ((Vf : V)VfaV?*) — PryRayd <(Vf VIbr: 0?*)

2
— ((¢f : V)hQ,viﬁ*) —d ((hff : V)qﬁf,vf;*) — PryRayd ((qﬁf V)R, 01;*)

— PryRayd <(hfc V)3, 9;*) — PrpRaged ((¢m - V)2, 077)

d —=
_prmRafé*T((vm-V)em,eg);)—/ V2 ) dI
T

= ProBaseh (02, V)on,077) ~dinfn [ (VF0)-50(0)) WP (0)dr+ oflnf*)
= Ra(n) + o([nl"),
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where R3(n) comprise the cubic terms of 7 that will be explicitly calculated in step 3. Note that
Q@ # 0. Hence, Eq. (4.60) is reduced to the low-dimensional system

2—2 =0+ R‘gn) + o(|n?). (4.65)

Step 3: Calculations of the coefficients in the reduced equation.

For the convenience of computing R3(n) we introduce some new notations
m=n, m=T1, P1=19F thy=qP,
Y1 =V Y =0 Pig=vh, Y =0n,
Yo1 =V, oo =04 Yoz =vin, Uoa=0n,

v§2’12) _ V§2,21) _ {/gp,())(z)/2 — 0, (4.66)
9g2,12) _ 9§2,21) _ ggp,o)(z)/Q’

v = gD ()e2 y(222) = GP2) ()2,

99,11) _ ésp,l)(z)ezp’ 9§2,22) — 9~Sp,2)(z)es—2p7 s=f,m.

Then the second order term of the center manifold function hs(¢) can be written as

(2,sk)
Vi
2 9(2,sk)
h2(¢) = Z Z NsTk {275k)
s=1 k=1 Vim
Qq(q%’Sk)
Hence
2 2 2
Rs(y) = Z Z Z GskiMsMk»
s=1 k=1 I=1
with
gsk=—d ((%1 Vv, v’}*) —d ((vjzc’Sk V)1, v?*)
— PryRagd ((1#1,1 : V)Q;’Sk, 0?*) — PriRagd ((v?’Sk - V) 2, 9?)
— PrpRasés ((qpl,g L V)g2ek, 95;) — Pry,Raés ((v,%fk V), 95’;)
~d [ (VT )
r;
Noting that v§2’12) = v§2’21) = 0, we infer that

G121 = gou = — PryRayd ((Tl}u V)07, 9?*) — PryRager (13- V)05'%, 057) |

which has the integral factor
exp (2pl - 2p)7r/aa:) or exp (2pl — 2p)7r/b:L‘),
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Since
P1 =D, P2 = —Dp,
one obtains

9122 = g212 = 0.

Likewise,
gin = g222 = g221 = 0.
Denoting
G = g121 + g211 + G112, (4.67)
then the reduced equation (4.65) becomes
d G
=L =om+ Polnf? +o(lnf), P=7 €R (4.68)
dt Q
The proof is complete. ]

As is expected, the reduced equation (4.68) takes the same form as the reduced one for
the classical Rayleigh-Bénard problem, cf. equation (5.17) in [22]. As a result of Lemma 4.3,
following the same argument as in [22] (Theorem 5.1) one can deduce the following transition
theorem, see also [35] (Theorem 2.1.3 and 2.2.2).

Theorem 4.1. Assume that the PES condition (3.20) holds, and that the first eigenvalue is real
of algebraic multiplicity 2 (i.e., m* =2 in (3.20)). The following assertions hold:

(1) For Ray < Rag)c, the zero steady state solution of the perturbed system (2.9)-(2.11) is locally
asymptotically stable.

(2) If the transition number P < 0, the system (2.9)-(2.11) undergoes a continuous type tran-
sition at Ray = Ra?c in which the zero steady state solution bifurcates to a local attractor

YRa; for Ray > Ra(}, homeomorphic to the unit circle S, with the following approzimation

YRay = {a: Re(¢?) + yIm(yP) | 2 + y* = _%} + 0( %) (4.69)

The attractor g attracts H\ T', where I is the stable manifold of 0 with codimension 2,
and H CY s a open set containing 0;

(3) If the transition number P > 0, the system (2.9)-(2.11) undergoes a jump transition at
Ray = Rag)c. More precisely, there exists an open U of 0 in Y such that for any ini-
tial condition 1o = (v(r,2,0),0(x,2,0), vin (2, 2,0),0m(z, 2,0)) € U and for every Rag)c <
Ray < Ra(} + € with some € > 0, the solution to the equations (2.5)~(2.7), given by

Y= (vy(x,2,t),0p(x, 2,1), vin (2, 2, 1), O (2, 2, 1))
satisfies
limsup |[¢||y > d > 0.
t—+o00
for some ¢ independent of Ray.

Remark 4.1. In the case P =0 or very small, one needs to calculate higher-order approxima-

tions of the center manifold function. A transition theorem can be established in principle.
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5 Numerical evaluation of the transition number and discussion

In this section we numerically compute the transition number P whose sign determines the
transition (bifurcation) type according to Theorem 4.1 pertaining to the dynamic transition
of thermal convection in superposed fluid and porous layers as the Rayleigh number in porous
media Ra,, varies. These numerical results have been validated through tests of grid refinement.

In Fig. 4, we plot the transition number as a function of the height ratio (left panel) and
aspect ratio (right panel), respectively. One observes that the transition number P remains
negative for most values of d and b. According to Theorem 4.1 this suggests that the perturbed
system (2.9)-(2.11) prefers a continuous transition (attractor bifurcation) at the critical Rayleigh
number. Note for b = 1.5 there are certain positive P when the height ratio d is close to 0.13,
indicating that a jump transition occurs at those particular height ratio. We point out that jump
transitions of P > 0 are not observed in the classical Rayleigh-Bé problem in a single domain,
cf. [22,32,40,41]. The interplay between convection in free flow and convection in porous media
can indeed incur jump transitions in certain parameter regimes. One also observes that the
transition number jumps when it crosses the value zero. As we noted in Remark 4.1 at P =0
one needs to compute the coefficients of the fourth order terms in the reduced equation (4.46)
in order to determine the type of transitions.

1 : : :
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Figure 4: Plot of transition number as a function of height ratio (left) and aspect ratio (right),
respectively. The parameters are: Pry =6 ; a=1; p =10, e = 0.7, x = 0.3, Da = 25 x 1079,
b=1.5d=0.2.

We further observe from Fig. 4 that the transition number has jump discontinuities at those
values of d and b-hereafter denoted by dj and bj-where the critical mode n. changes value.
Recall from the discussion in subsection 3.2 that at these ch and b; two or more eigenvalues of
the eigenvalue problem (3.34) simultaneously cross the imaginary axis. Hence the transition type
can not be determined by the transition number P because the reduced equation (4.68) is not
applicable at these discontinuities. By Theorem 4.1 a bifurcated solution has the approximate

expression

(V, 05, Vi, 0m) = 2 Re(yP) + yIm(yP), 2% +y = 7%7
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away from the czjs and b;js. Owing to the jump discontinuities of P at these points, one infers
that the bifurcated solutions undergo a jump transition at these chs and b;s if one views d and
b as the control parameters, respectively. Since n. changes values at these location, the number
of rolls changes in the physical space. This phenomena of jump transition is illustrated in Fig. 5
where the flow changes from two rolls for d =0.15 to eight rolls for d= 0.18, which is consistent
with the change of n. in the left panel shown in Fig. 4.
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Figure 5: The approximate bifurcated solutions-temperature (left), streamline of flow field
(right)-at height ratio d = 0.15 (first row) and d = 0.18 (second row), respectively. The
parameters are: Pry =6 ; a=1; p=10, e = 0.7, x = 0.3, Da = 25 x 1075, b= 1.5.

Note that for fixed d,, and b as in Fig. 5, n. (proportional to the wave number) provides the
length scale of the convection rolls, that is the larger n. corresponds to smaller convection rolls.
In contrast to czj,j = 2,3, the critical mode n, jumps from 1 to 4 across cfl, which signals a
dramatic flow regime change from full convection where the convection rolls extend throughout
the entire domain to free-flow dominated convection in which the convection cells are mainly
confined in the free flow region. This phenomena is first observed numerically in [36] for b = 3.
Fig. 6 demonstrates this case where one observes the flow regime changes from full convection (2
rolls) to free-flow dominated convection (14 rolls). Note that the transitions are all of continuous
type except at the jump discontinuities ch.
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Figure 6: Transition from full convection to free-flow dominated convection. The parameters
are: Pry=6;a=1; p=10, e7 = 0.7, x = 0.3, Da =25 x 107%, b = 3.

We also investigate the effect of the Darcy number Da and the thermal diffusivity er on
the onset of thermal convection and the structure of the convection cells. Fig. 7 shows the
plots of neutral stability curve and the transition number, respectively, as a function of Da.
One observes that both the critical Rayleigh number and the transition number monotonically
increase as the Darcy number does, until it levels off. Recall that the Darcy model employed
here is suitable for the regime of small Darcy number. In terms of transition, one notices a sharp
jump transition at Dag (second jump discontinuity) where the flow configuration changes from
free-flow dominated convection to full convection. Furthermore, the transitions after Das are of
jump type (P > 0). Similar effects are also observed for the thermal diffusivity ratio ep in Fig.
8, though transitions are continuous except at the jump discontinuities.
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Figure 7: Neutral stability curve (left) and plot of transition number as a function of Darcy
number (right). The parameters are: Pry =6 ; a = 1; p =10, e = 0.7, x = 0.3, , b = 3,

A~

d=0.2.

6 Conclusion

In this article we perform a thorough analysis in terms of bifurcation and dynamic transi-
tions for thermal convection in a fluid layer overlying a saturated porous medium based on a
two-dimensional Navier-Stokes-Darcy-Boussinesq model. A transition theorem with an explicit
transition number is deduced by reducing the infinite dynamical system onto the center man-
ifold. We show by careful numerical evaluation of the transition number that the system is in
favour of a continuous transition in which the steady state solution bifurcates to a local attractor
at the critical Rayleigh number. Jump transitions can occur at certain parameter regime. In
particular the jump transition corresponds to the change of flow regime from full convection to
free-flow dominated convection at discontinuities of the transition number as a function of the

ratio of free-flow to porous media depth, the Darcy number or the thermal diffusivity ratio.

The results in this article can be extended in several directions which we will pursue in future
works. Note that the time derivative of the Darcy velocity is present in our model. Since the
Darcy number is small in the regime that we are interested in, we would like to consider the
classical Darcy equation neglecting this term. Secondly, we would like to establish the PES
condition for generic er. Finally it would be interesting to consider the convection problem in
three-dimension and with other physical boundary conditions.
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