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We propose a protocol for generating generalized Greenberger-Horne-Zeilinger (GHZ) states using
ultracold fermions in 3D optical lattices or optical tweezer arrays. The protocol uses the interplay between
laser driving, on site interactions and external trapping confinement to enforce energetic spin- and position-
dependent constraints on the atomic motion. These constraints allow us to transform a local superposition
into a GHZ state through a stepwise protocol that flips one site at a time. The protocol requires no site-
resolved drives or spin-dependent potentials, exhibits robustness to slow global laser phase drift, and
naturally makes use of the harmonic trap that would normally cause difficulties for entanglement-
generating protocols in optical lattices. We also discuss an improved protocol that can compensate for
holes in the loadout at the cost of increased generation time. The state can immediately be used for
quantum-enhanced metrology in 3D optical lattice clocks, opening a window to push the sensitivity of
state-of-the-art sensors beyond the standard quantum limit.
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Introduction.—Creating useful entanglement is one of
the most important goals in modern quantum research. In
recent years, there has been significant effort towards
generating multibody entangled states, which exhibit mas-
sive utility for quantum computation, simulation and
metrology. For the latter application of metrology, an
N-body fully entangled state can yield sensitivity improve-
ment by a factor of

ffiffiffiffi
N

p
compared to experiments using

unentangled atoms or modes [1]. Such gains in precision
are relevant for real-world applications such as time
keeping, magnetometry and navigation, and for fundamen-
tal science including searches for dark matter and physics
beyond the standard model [2].
While there has been progress on many-body entangle-

ment generation in many fields, one of the most promising
platforms is ultracold atoms. A variety of entangled states
have been proposed and/or experimentally realized with
such systems, including spin-squeezed states [3], W states
[4], and in particular generalized GHZ states using trapped
ions [5–8] or Rydberg atoms in optical tweezers [9].
However, the difficulty of combining single-site resolution
with scalability has limited the fidelity and size of the states
thus far, especially in systems where they can be directly
used for metrological purposes.
In this work, we propose a method for generating

N-particle GHZ states (also called spin cat states) using
ultracold fermionic atoms loaded into a 3D optical lattice.
Our protocol uses on site repulsive interactions, spin-orbit
coupled (SOC) laser driving [10–12], and the harmonic
trapping potential naturally generated by the curvature
of the lattice beams. While we focus on 3D lattices, the
setup may also be realized in optical tweezer arrays with

an ac-Stark shift gradient to emulate the trap. We describe a
step-by-step generation of entanglement by creating an
initially local superposition, and spatially changing one
of its components while leaving the other component
untouched due to energetic constraints.
Despite having site-resolved atomic motion, we do not

require site-resolved focused lasers, instead only needing a
collective driving laser. We also require no spin-dependent
lattice potentials or lattice modulation. The drive, trap, and
interactions lead to energetic constraints that only allow
tunneling between one lattice site pair at a time, while all
other sites are effectively decoupled. Our protocol is also
robust to slow global phase drifts of the drive, because the
system adiabatically follows the drive’s single-particle
eigenstates throughout the evolution. After state generation,
we describe a method to observe the enhanced phase
sensitivity without needing many-body measurements such
as parity, by instead implementing a reversal of the
generation protocol. Finally, we give an augmentation to
the protocol that compensates for holes in the loadout.
These features together with scalability make our proposal
promising for massive entanglement generation and sensi-
tivity improvements in state-of-the-art sensors.
Model.—We consider a laser-driven 3D optical lattice

populated by fermionic atoms in the lowest motional band,
with two internal spin-like states σ ∈ fg; eg. We assume
strong transverse confinement, restricting tunneling to an
array of independent 1D chains each of length L and
containing N atoms. Each chain operates in the Mott
insulating regime with one atom per site (N ¼ L).
Similar configurations can be generated in tweezer arrays.
Figure 1 depicts the setup. The Hamiltonian is
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Ĥ ¼ ĤHubbard þ ĤDrive þ ĤTrap; ð1Þ

where ĤHubbard¼−J
P

hi;ji;σðĉ†i;σ ĉj;σþH:c:ÞþU
P

j n̂j;en̂j;g
is the Fermi-Hubbard Hamiltonian with nearest-neighbor
tunneling rate J, repulsion U, operator ĉj;σ annihilating

an atom of spin σ on site j, and n̂j;σ ¼ ĉ†j;σ ĉj;σ. The laser

ĤDrive ¼ ðΩ=2ÞPjðeijπĉ†j;eĉj;g þ H:c:Þ is a collective driv-
ing field. The phase eijπ is created by a mismatch between
the driving and confining laser wavelengths, corresponding
to an effective flux ϕ ¼ π that induces SOC [13]. We also
include the trapping potential ĤTrap ¼ ηext

P
jðj − j0Þ2

ðn̂j;e þ n̂j;gÞ with trap energy ηext from external harmonic
confinement (centered on site j0), approximated as quad-
ratic near the center of the lattice, yielding linear potential
differences Δηj ¼ −2ηextðj − j0 þ 1=2Þ between neighbor-
ing sites j and jþ 1 (See Supplementary Material [14]).

We assume that the drive frequency is much stronger
than the tunneling rate, Ω ≫ J. Under this condition,
the single-particle eigenstates of the system are set by
the drive. We rotate into the basis of these eigenstates
by defining new fermions âj;↑ ¼ ðĉj;e þ eijπ ĉj;gÞ=

ffiffiffi
2

p
,

âj;↓ ¼ ðĉj;e − eijπ ĉj;gÞ=
ffiffiffi
2

p
. The Hubbard and drive

Hamiltonians become

ĤHubbard ¼ −J
X

hi;ji
ðâ†i;↑âj;↓ þ H:c:Þ þ U

X

j

n̂j;↑n̂j;↓;

ĤDrive ¼
Ω
2

X

j

ðn̂j;↑ − n̂j;↓Þ; ð2Þ

with n̂j;σ̃ ¼ â†j;σ̃âj;σ̃ for drive eigenstates σ̃ ∈ f↑;↓g. The
tunneling is now accompanied by a spin-flip due to the
SOC phase. The trapping potential keeps the same form.

While the tunneling couples the drive eigenstates, actual
transfer of atoms will depend on the energy differences
between states. Some sample tunneling processes are
depicted in Fig. 1. A spin-↑ atom tunneling down the trap
gradient incurs an energy change −Δηj from the trap, −Ω
from flipping spin, and þU for creating a doublon (two
atoms on one site). A spin-↓ atom tunneling instead has a
change þΩ from the drive. If the total change is much
larger than J, tunneling is suppressed. Furthermore, since
the trap energy differences Δηj vary from site to site, by
making the trap strong (ηext ≫ J) we can tune the drive
frequency Ω to resonantly enable a single tunnel coupling
of a chosen spin between two chosen lattice sites while
keeping all other tunneling processes off resonant. This
allows for site-resolved control of lattice dynamics without
needing a focused laser.
Generation protocol.—The control over tunneling allows

us to generate a GHZ state. The scheme is depicted in Fig. 2.
We assume for simplicity that the populated sites do not
include the center of the trap potential (j0 > L, with sites
indexed j ¼ 1; 2;…; L). This can be achieved for example
by applying a superimposed linear potential; a trap centered
at the middle will be discussed afterwards. We start with a
product state jψ0i ¼⊗j j↓ij [Fig. 2(a)], which can be
prepared with a pulse or ramp [14]. The first step is to
generate a local two-atom superposition on two adjacent
sites, by resonantly enabling the tunneling of the ↓ atom at
site j ¼ 1 to j ¼ 2. The drive frequency is set to Ω ¼ Ω1,
which satisfies Ω1 þU − Δη1 ¼ 0. We keep the laser on
with this frequency for a time tJ ¼ π=4, realizing a unitary

operation Ûðπ=2Þ
1 ¼ e−iĤtjΩ¼Ω1

equivalent to a π=2 pulse
creating an equal-weight superposition of the initial state and
a doublon on j ¼ 2 [Figs. 2(b) and 2(c)]. Analogous
tunneling from other sites does not occur because other
trap energies Δηj for j > 1 differ by at least 2ηext ≫ J.
We next force the j ¼ 2 site’s ↓ atom to tunnel to j ¼ 3,

but now, set the drive frequency to Ω2 satisfying
Ω2 − Δη2 ¼ 0. The first component of the superposition
[Fig. 2(b)] will tunnel because it goes from one doublon
configuration to another and suffers no penalty U. The
second component [Fig. 2(c)] will have an additional costU,
its tunneling will be off resonant, and it will remain
unaltered. We wait a time tJ ¼ π=2, realizing a unitary

ÛðπÞ
2 ¼ e−iĤtjΩ¼Ω2

corresponding to a π pulse transferring
the ↓ atom from j ¼ 2 to j ¼ 3, resulting in a new
superposition [Figs. 2(d) and 2(e)]. We then make the site
j ¼ 3 doublon have its ↓ atom tunnel to j ¼ 4 with another

π pulse (unitary ÛðπÞ
3 ), followed by j ¼ 4 to j ¼ 5, repeating

to the end of the chain. The final state will take the form,

jψGHZi ¼ ÛðπÞ
L−2…ÛðπÞ

2 Ûðπ=2Þ
1 jψ0i;

¼ ðj↓;↓;…;↓;↓i þ eiθf j0;↑;…;↑; diÞ=
ffiffiffi
2

p
; ð3Þ

FIG. 1. Schematic of the optical lattice system, confined to 1D.
The red and blue-labeled single-particle eigenstates of the collec-
tive drive field are superpositions of bare atomic states fg; eg,
alternating due to the eijπ ¼ ð−1Þj SOC phase in the drive. Atoms
tunnel at rate J accompanied with a spin-flip due to the alternating
basis. Tunneling incurs energy costs from the trap gradient (�Δηj),
atomic interactions (set by U) and driving (set by Ω).
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as shown in Figs. 2(f) and 2(g), corresponding to a GHZ
state involving L sites, L − 2 of which differ in spin
projection (still assuming unit filling N ¼ L). Here, θf
is a relative phase picked up during the evolution [14],
and d denotes a doublon. The total evolution time is
tJ ¼ π=4þ ðL − 2Þπ=2. While the protocol thus far
assumed that the chain did not contain the center of the
trap, we can also extend it to a symmetric version
(j0 ¼ L=2). In this case, the superposition will have four
components instead of two because each side propagates
independently. Such an outcome may be useful in its own
right, e.g., to create compass-type states. However, we can

also prevent it from happening by disrupting the Ûðπ=2Þ
1 step

on one side. Following steps will then fail on that side,
allowing the protocol to proceed as before [14].
An important advantage lies in the protocol’s piecewise

nature. Some methods such as adiabatic dragging suffer
from reduced fidelity for larger states due to exponentially
shrinking many-body energy gaps with system size. Here,
the reduction of the system to an effective two-level
configuration at every step allows for easier optimization
of the individual steps, and is conceptually straightforward
to scale up. Furthermore, the evolving state exhibits some
robustness to collective phase-drift effects, e.g., unwanted
phases eiλðtÞ in ĤDrive for some function λðtÞ. The system
will follow the drift by adiabatically remaining in the
drive’s eigenbasis [provided Ω ≫ J and λðtÞ varies slowly
on the timescale of Ω], preserving the superposition. The
main source of error would be imperfect resonance match-
ing δΩ between the desired and actual Rabi frequencyΩi at
each step. Figure 3 shows a benchmark of the protocol

fidelity, averaged over trajectories with random disorder
δΩ. We see that GHZ states of 10 sites can be made with
fidelities above 90%. Assuming a quadratic decay, we can
extrapolate these results to larger states of L ¼ 20, finding
expected fidelities of F ≈ 83% with δΩ=J ¼ 0.25 and
F ≈ 56% with δΩ=J ¼ 0.5. This tolerance can be further
improved with a deeper trap, for which the allowed J (and
thus mismatch δΩ) can be larger.
Experimental implementation and measurement.—A

feasible platform for our protocol is a 3D optical lattice
[15] or tweezer array [16] loaded with quantum-degenerate
fermionic alkaline earth or earth-like atoms such as Sr
or Yb. The bare atomic states fg; eg can be represented by

FIG. 2. Schematic of GHZ state generation protocol. The system is initialized in a product state [panel (a)]. The j ¼ 1 lattice site has
tunneling enabled for its ↓ atom, and the system is evolved for tJ ¼ π=4, making an equal-weight superposition [panels (b),(c)]. The
panel (b) component is allowed to tunnel further down the lattice, converting ↓ atoms into ↑ one site at a time with coherent transfers
taking tJ ¼ π=2 each. The other component [panels (c),(e), corresponding to the initial state] does not evolve because of interaction-
induced energy gaps. The end result is a GHZ state [panels (f),(g)]. The insets show the state at each step (with relative phases θi, and d
denoting doublons).

(a) (b)

FIG. 3. (a) Fidelity of the GHZ state with drive frequency noise
δΩ. The deviation is implemented as a random constant shift
Ωi → Ωi þ δΩi to each step of the protocol, uniformly drawn
from δΩi ∈ ½−δΩ; δΩ� (thus different for every step). Each step is
simulated using exact numerical evolution under the full
Hamiltonian. Multiple trajectories of randomly drawn sets
fδΩig are run, and their fidelity averaged. The shaded region
shows one standard deviation. Parameters are L ¼ 8 at unit
filling, U=J ¼ 405, ηext=J ¼ 21. (b) Averaged fidelity as a
function of L, for fixed levels of drive noise.
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electronic clock states with optical frequency separation.
For a lattice, the confinement should be made strong along
transverse directions (x̂, ŷ) and intermediate along the
generation direction (ẑ). A lattice using spin-polarized
fermionic 87Sr at the magic wavelength can realize param-
eters of U=J ≈ 400, ηext=J ≈ 20, J=ð2πÞ ≈ 10 Hz [14];
deeper traps can also be made by reducing beam waist.
Note that a deep enough trap can reduce J for sites far from
the trap center due to wave function deformation, but
this reduction should be negligible provided the nearest-
neighbor energy differences Δηj are much smaller than the
band gap. Even if there is a small change to J, we only
need to run those particular steps for a longer time
interval. Typical generation time for these parameters is
t ∼ L × 25 ms, which is small compared to coherence
times ∼10 s [17] for state size L ∼ 10 sites. The 3D lattice
allows simultaneous creation of many states from which a
constructive measurement signal can be obtained as
described below.
To use the GHZ state for enhanced sensing, we allow it

to pick up a relative phase from laser detuning, which is an
additional Hamiltonian term ðδ=2ÞPj ðn̂j;e − n̂j;gÞ. The
scheme is depicted in Fig. 4(a). After generation, a pulse
P̂ rotates the state into a form where its superposition
components will acquire a relative phase θδ ¼ δðN − 1Þtδ if
they precess for time tδ (N − 1 because of the edge sites,
[14]). Conventionally, this N-proportional enhancement is
observed using a Ramsey sequence followed by a parity
measurement [18–20], requiring measurement of N-body
correlators which can be challenging for clocks, although it
can be done in tweezers [16].
As an alternative approach, we instead undo the gen-

eration sequence, as shown in Fig. 4(a). After precession,
we rotate the state back into the gauged frame with another
pulse P̂† [14]. We then do the π-pulse steps in reverse order,

ÛðπÞ
2 ;…; ÛðπÞ

L−2jψGHZ;δi (with jψGHZ;δi the state after pre-
cession and applying P̂†). These steps reduce the state
to ðj↓;↓i þ eiðθrþθδÞj0; diÞ= ffiffiffi

2
p

⊗ j↓;…;↓i, where the
superposition is back on two sites j ¼ 1, 2 and θr is a
constant phase depending on system size and parameters.

Reapplying unitary Ûðπ=2Þ
1 will rotate this state into a form

where the relative phase may be measured from doublon
number hn̂di ¼

P
jhn̂j;↑n̂j;↓i in the vicinity of j ¼ 1, 2,

without needing N-body correlators. The doublon number
will oscillate as a function of tδ, allowing the detuning to be
obtained from the period.
We have assumed unit filling. While unwanted holes in a

3D lattice will be confined by the energy gaps, they will
interrupt state generation, leading to GHZ states of different
sizes. However, sufficiently high filling will allow the
maximum-length ones to dominate the signal. We bench-
mark the measurement protocol in Figs. 4(b)–4(e) by
randomly sprinkling holes into a 3D lattice, and computing
how many states of each length we get. Figure 4(b) shows

the distribution ml of total number of GHZ states with size
l ∈ ½0; 1;…; L� that can be made by starting from one edge
of the lattice, counting along a given direction and stopping
if we meet a hole. Figs. 4(c)–4(e) give sample oscillation
trajectories of total doublon number hn̂d;toti (hn̂di summed
over the array of states, [14]). For L ¼ 10, fillings above
N=L≳ 0.9 yield a clear oscillatory signal (10 − 1) times
faster than a single unentangled atom, leading to

ffiffiffiffiffiffiffiffiffiffiffiffiffi
10 − 1

p
times faster clock protocols [21]. One may also employ
Fourier analysis to discern the contributions of differ-
ent sizes.
Hole correction protocol.—Our protocol can be modi-

fied to compensate for small numbers of holes at the cost of
longer generation time. We can augment every step of the
original protocol except the first with two auxiliary steps.
We first attempt to move a ↓ atom to make a doublon on the
next lattice site as normal (jd;↓i → j↑; di). If an atom is
missing, jd; 0i, this step will fail. We then apply an
auxiliary step that repeats the same tunneling process,
but now assuming the target site to have no atom, allowing
the transfer jd; 0i → j↑;↑i. A second auxiliary step moves
the remaining atom over, j↑;↑i → j0; di, and the protocol
may continue. If no holes were present, neither auxiliary
step would have an effect because they would be off
resonant [14]. Note that the all-spin-↓ superposition com-
ponent will also suffer local changes, but these will not

(a)

(b)

(c)

(d)

(e)

FIG. 4. (a) Schematic for using the GHZ state in metrology. A
parity measurement can be done after allowing the state to precess
under detuning δ (pulse P̂ puts the state into the appropriate lab
frame [14]). If we reverse the generation after precession, we can
instead measure a local observable (doublon number). (b) Average
histogram of state lengths that can be generated in a 3D lattice for
randomly sprinkled holes given filling fraction N=L. See main
text for definition of ml. The lattice size is L × L × L with
L ¼ 10. (c)–(e) Sample trajectories of total doublon number (n̂d
summed over all states according to the randomly sprinkled
distribution, [14]) after reversal for different filling fractions
N=L ¼ 0.85; 0.90; 0.95, respectively. Detuning is set to
δ=J ¼ 0.3. The bare phases θr are chosen randomly from
½0; 2π� for simplicity, but made equal for all states of a given
length l.
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propagate further, maintaining a significant difference in
spin projection [14]. While this augmentation is not as
useful to 3D lattice setups whose measurement signal
comes from the largest-size state, it can be useful for
tweezer systems.
Conclusions.—We have proposed a method for generat-

ing GHZ states with ultracold fermions that can be directly
implemented with 3D lattice systems or tweezer arrays. The
resulting state can be immediately used in situ for metro-
logical purposes through a Ramsey-like sequence com-
bined with protocol reversal. The fidelity requires good
control over drive frequency, but this requirement can be
made less stringent with a stronger trap, which also allows
for larger tunneling rates and faster generation time. With a
2D tweezer array, one could even generate a GHZ state
along one 1D tube, then repeat the protocol along a
transverse axis, leading to a 2D GHZ state. One may also
use a purification scheme to convert many bad GHZ states
into a smaller number of good ones [22]. Altogether, this
scheme offers a promising way to generate and use strongly
entangled states in metrologically relevant systems.
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