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We investigate the subradiance properties of n � 2 multilevel fermionic atoms loaded into the lowest motional
level of a single trap (e.g., a single optical lattice site or an optical tweezer). As pointed out in our previous
work [A. Piñeiro Orioli and A. M. Rey, Phys. Rev. Lett. 123, 223601 (2019)], perfectly dark subradiant states
emerge from the interplay between fermionic statistics and dipolar interactions. While previously we focused
on the n = 2 case, here we provide an in-depth analysis of the single-site dark states for generic filling n,
and show a tight connection between generic dark states and total angular momentum eigenstates. We show
how the latter can also be used to understand the full eigenstate structure of the single-site problem, which
we analyze numerically. Apart from this, we discuss two possible schemes to coherently prepare dark states
using either a Raman transition or an external magnetic field to lift the Zeeman degeneracy. Although the
analysis focuses on the single-site problem, we show that multisite dark states can be trivially constructed in any
geometry out of product states of single-site dark states. Finally, we discuss some possible implementations with
alkaline-earth(-like) atoms such as 171Yb or 87Sr loaded into optical lattices, where they could be used for
potential applications in quantum metrology and quantum information.
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I. INTRODUCTION

The coupling of a single emitter, e.g., an excited atom,
to the vacuum electromagnetic field leads to single-particle
spontaneous decay. When more atoms are placed close by,
the same coupling to the vacuum makes the atoms exchange
photons, leading to coherent dipolar interactions and incoher-
ent cooperative decay processes. These processes give rise
to a broad range of collective phenomena such as subradi-
ance, where destructive interference between different single-
particle and cooperative decay processes leads to suppressed
decay rates, compared to independent emitters. Due to their
long coherence times, subradiant states can be of potential use
for quantum metrology, quantum information, and integrated
photonics.

The first studies of subradiance (and super-radiance) date
back to Dicke [1], who studied the radiation properties of
closely packed ensembles of two-level atoms. In the limit
where the distances are much smaller than the transition
wavelength, r � λ0, Dicke linked the emission properties of
the system with the total angular momentum eigenstates of
the collective spin of the atoms. For example, for two atoms
the symmetric triplet state (|ge〉 + |eg〉)/

√
2 is super-radiant,

whereas the antisymmetric singlet state (|ge〉 − |eg〉)/
√

2 is
subradiant. When the atoms are close enough to each other,
however, quantum statistics becomes important and can give
rise to new subradiant (and super-radiant) states, as we will
see in this paper.

In recent years, subradiance has been the focus of much
theoretical research. So far, most works have studied either
two-level systems [2–19] or systems with a J = 0 ↔ 1 tran-
sition [20–25]. Note that in both cases the systems possess

a unique ground state. Moreover, due to the difficulty of
the many-body problem, most studies investigate subradiant
states where a single or few excitations are shared among all
atoms. This type of subradiant states has been shown to have
interesting applications for quantum memories [7], atomic
clocks [9], mirrors [17], excitation transport [10,22], and the
creation of topological states [15,16,24–26] and entangled
photons [14].

On the experimental front, however, the observation of
subradiance has been challenging. This is evidenced by the
relatively few experiments reporting subradiance [27–37], as
compared to its super-radiant counterpart. One of the main
difficulties lies in the fact that subradiant states are generally
hard to prepare and rather sensitive to imperfections. More-
over, typical proposals for subradiance require the atoms to be
very close to each other compared to the wavelength of the
transition.

In this paper, we consider multilevel fermionic atoms in an
array with generic n � 2 atoms per site, and thus extend our
previous results [38]. The multilevel structure, especially the
ground-state degeneracy, makes this problem hard to address.
Because of this, few works have looked into subradiance
for multilevel systems with degenerate ground states [39,40].
However, these additional degrees of freedom also provide
new possibilities for the creation of interesting quantum states
of matter.

The key element in our paper is the assumption that
the n atoms within a single site are prepared in the lowest
motional state and that motional excitations are energetically
suppressed. This can be achieved in an optical lattice or in
tweezer arrays by increasing the onsite trapping potential.
In this regime, fermion statistics restricts the allowed states
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of the internal levels of the atoms, and this in turn blocks
certain decay channels that would not be blocked for single
atoms. As shown in Ref. [38] for filling n = 2, the com-
bination of fermion statistics with the multilevel structure
gives rise to a large set of dark states with remarkable fea-
tures. They are independent of lattice geometry (in particular,
they do not require subwavelength arrays), they can support
up to one excitation per site, and they can be coherently
prepared.

Here, we extend the study to include higher fillings n � 2
and provide an in-depth analysis of the single-site problem
for n dipolar-interacting multilevel fermions in the same
motional state. In particular, we show how the basis of total
angular momentum states naturally emerges as a suitable
description for the eigenstates of this multilevel problem.
Using this, we discuss how dark states can be found in a
straightforward manner by looking at the decay channels
and multiplicities of the states allowed by fermion statistics.
In addition, we discuss two different schemes to coherently
prepare the dark states, using either a Raman-like transition
or an external magnetic field, respectively. The dark states
proposed here can be readily implemented, e.g., with alkaline-
earth(-like) atoms such as 171Yb and 87Sr in optical lattices,
and can have potential applications in metrology and quantum
information.

This paper is structured as follows. In Sec. II we introduce
the multilevel dipolar master equation used throughout. In
Sec. III we define and discuss the properties of total angular
momentum eigenstates. An in-depth analysis of the dark
states is presented in Sec. IV, whereas Sec. V numerically
analyzes the properties of the remaining eigenstates. The two
different excitation schemes are detailed in Sec. VI, possible
implementations are discussed in Sec. VII, and concluding
remarks are given in Sec. IX. The Appendices contain ad-
ditional information on the derivation of the master equation
and onsite interaction (Appendices A and B), the properties
of the dipole operator (Appendix C), and the dark states
(Appendices D–F).

II. DIPOLAR MASTER EQUATION

We consider arrays of multilevel fermionic atoms with n
atoms per site (see Fig. 1), which can be realized by loading
the atoms into, e.g., an optical lattice [41] or tweezers [42–44].
We assume that the atoms are pinned at their corresponding
site and that they are in the motional ground state of the
trapping potential. This can be achieved in the limit of a deep
trapping potential, such that tunneling between different sites
is suppressed, and the energy to the next motional band (which
is of the order of the onsite trapping frequency) is much
larger than typical atom-atom interactions and the lattice
photon recoil energy. The latter is characterized by the Lamb-
Dicke parameter η � 1 with η = 2π�/λL [45], where � =√
h̄/(2mω) is the width of the ground-state wave function, λL

is the wavelength of the trapping laser, and ω is the trapping
frequency.

Each atom is a multilevel fermion with an internal level
structure consisting of a ground-state manifold with total
angular momentum fg and an excited-state manifold with fe,
separated by an energy ω0 = ck0. We consider three different

...

(b) Multiple internal levels

Inter-site

Onsite

(a) Motional ground state

(f) Coherent/Incoherent dipolar exchanges

(e) Pauli blocking

(c) Array in arbitrary geometry

|gmg

|eme

n

−fg +fg

−fe +fe

...

(b) Multiple internal levels

Inter-site

Onsite

(a) Motional ground state

(f) Coherent/Incoherent dipolar exchangges

(e) Pauli blocking

(c) Array in arbitrary geometry

|gmg

|eme

n

−fgff +fgff

−feff +feff

(d) Spontaneous emission

site i site j

photon

Other
optionss

FIG. 1. Summary of proposed platform. We consider (a) n
fermionic atoms loaded into the motional ground state of a single
trap. Each atom has a (b) multilevel internal structure with angular
momentum fg in the ground state (blue colors) and fe in the excited
state (red colors). (c) We consider an arbitrary array of such traps
with n atoms per site, which could be realized with an optical
lattice or optical tweezers. (d) The atoms can spontaneously decay
to different ground states. (e) An atom in a ground state can block
the decay of an excited atom due to fermionic statistics. (f) Atoms at
different sites, as well as on site, interact with each other via coherent
and incoherent dipolar exchanges mediated by light. Note that the
polarizations of the transitions involved need not be the same.

types of level structures relevant for one-photon transitions:

multi-� : fe = fg − 1,

multi-� : fe = fg,

multi-V : fe = fg + 1.

(1)

We label the set of 2 fg + 1 degenerate ground states
by |gmg〉 ≡ |g, fg,mg〉 with mg ∈ [− fg, fg], and the set of
2 fe + 1 degenerate excited states by |eme〉 ≡ |e, fe,me〉 with
me ∈ [− fe, fe]. Unless stated otherwise, the ground (excited)
states will be assumed to be degenerate.
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A. Light-matter Hamiltonian

We consider the coupling of the atoms to the electromag-
netic field in dipole approximation. The total light-matter
Hamiltonian for this system is given by

Ĥtot = Ĥatom + Ĥfield + ĤAF. (2)

Since the atoms are assumed to occupy the motional ground
state only, we do not include here the motional energies. The
second-quantization Hamiltonian for the atomic energies is
given by

Ĥatom = h̄ω0

∑
m

∫
dr σ̂emem (r). (3)

Here, σ̂ambn (r) ≡ ψ̂†
am (r)ψ̂bn (r) and ψ̂ (†)

am (r) are annihilation
(creation) operators of fermions in the internal level |am〉,
with a, b ∈ {g, e}. They fulfill the anticommutation relations
{ψ̂am (r), ψ̂†

bn
(r′)} = δab δmn δ(r − r′).

For the light field we consider a discrete set of vacuum
modes in a finite volume V 1 given by

Ĥfield =
∑
k,λ

h̄ωk

(
â†k,λâk,λ + 1

2

)
, (4)

where ωk = ck and the electromagnetic vacuum modes fulfill
[âk,λ, â

†
k′,λ′] = δkk′δλλ′ , with λ labeling the two polarization

modes.
The atom-field coupling in the dipole approximation is

given by ĤAF = −d̂ · Ê2 with dipole operator d̂ = er̂ and
electric-field operator Ê. This can be expanded as

ĤAF = −
∑
m,n

∑
k,λ

∫
dr gk

(
demgn σ̂emgn (r) + H.c.

)

· (εk,λâk,λe
ikr + H.c.), (5)

where demgn ≡ 〈em|d̂|gn〉 is the dipole matrix element between
the atomic states em and gn, and gk ≡ √

h̄ωk/(2ε0V ) with
dielectric constant ε0.

The matrix elements of the dipole operator can be ex-
panded using the Wigner-Eckart theorem [46] as demgn ≡
dsph
mn d rad

ge /
√

2 fe + 1, where dsph
mn is the spherical and d rad

ge the
radial part. The radial part can be related to the total decay
rate � ≡ ∑

n �em→gn by

� = ω3
0

3πε0 h̄c3

∣∣d rad
ge

∣∣2

2 fe + 1
. (6)

The spherical part can be expanded in Clebsch-Gordan coef-
ficients as (q = 0,±1) (see Appendix C)

dsph
m+q,m = Cq

m e∗
q, (7)

where Cq
m ≡ 〈 fg,m; 1, q| fe,m + q〉. The polarization vectors

are defined as e0 ≡ ez and e± ≡ ∓(ex ± iey), where ez defines
the quantization axis. Note that the coefficients Cq

m depend on
fg and fe, but we suppress it in the notation for simplicity.

1The limit V → ∞ is taken at the end.
2This is valid in the limit k · r � 1, where k is the wave vector of

the electromagnetic mode and r gives the typical spatial extension of
the atom.

B. Master equation

Expanding the atomic field operators in the Wannier basis
of the lattice, and using a standard Born-Markov approxi-
mation to trace out the photon degrees of freedom [47–49]
(see Appendix A), we derive a master equation dρ̂/dt =
−i/h̄[Ĥ , ρ̂] + L(ρ̂ ) for the density matrix ρ̂ of the atomic
excitations with

Ĥ = − h̄
∑
i, j

∑
q,q′

Ri, j
q,q′ D̂+

i,q D̂−
j,q′ ,

L(ρ̂ ) = −
∑
i, j

∑
q,q′

I i, j
q,q′ ({D̂+

i,q D̂−
j,q′ , ρ̂} − 2D̂−

j,q′ ρ̂ D̂+
i,q ). (8)

The Hamiltonian part accounts for coherent dipolar exchange
interactions between the atoms (collective Lamb shifts),
whereas the Lindbladian part accounts for incoherent ex-
change and contains both single-particle spontaneous decay
as well as cooperative decay.

The D̂±
i,q operators can be seen as multilevel raising and

lowering operators. These operators essentially correspond
to the spherical part of the dipole operator, and the three
components (q = 0,±1) form a vector (see Appendix C).
They are defined as D̂+

i,q ≡ (D̂−
i,q )† and

D̂−
i,q =

∑
m

Cq
m σ̂ (i)

gmem+q
. (9)

Here, σ̂ (i)
gmen ≡ ĉ†i,gm ĉi,en , where ĉ(†)

i,am
annihilates (creates) a

fermion at the lowest band of lattice site i with internal level
|am〉 (a = g, e), and {ĉi,am , ĉ†j,bn} = δi j δab δmn. In essence, the

operator D̂−
i,q is a sum over all possible decay processes of

any of the atoms at site i from an excited level |em+q〉 to |gm〉
for fixed polarization q and weighted by the Clebsch-Gordan
coefficientCq

m. Thus, the master equation describes all photon-
mediated exchange processes between two atoms where an
excited atom at site j decays to a ground state via polarization
q, and a ground atom at site i is excited to an excited state via
polarization q′.

The strength and viability of the exchange process depend
on the polarizations q and q′ of the involved transitions
and on the relative distance between the atoms through the
coefficients

Ri, j
q,q′ ≡ (

e∗T
q · ReGi j · eq′

)
, (10)

I i, j
q,q′ ≡ (

e∗T
q · Im Gi j · eq′

)
. (11)

For atoms at different sites (i �= j), these coefficients can be
written as Gi j = G(ri − r j ), where G is (proportional to) the
electromagnetic dyadic Green’s tensor in vacuum [50]:

G(r) = 3�

4

{
[1 − r̂ ⊗ r̂]

eik0r

k0r

+[1 − 3 r̂ ⊗ r̂]

(
ieik0r

(k0r)2
− eik0r

(k0r)3

)}
, (12)

where r̂ ≡ r/|r|.
The onsite (i = j) interaction coefficients are given by

an integral of the dyadic Green’s tensor over the Wannier
functions (see Appendix B) and generally depend on the
geometry of the onsite trapping potential. While our main
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results are independent of the specific shape of the trap, we
will discuss some qualitative consequences of the onsite terms
on the eigenstates of the system. For that we will consider
the limit of a deep axially symmetric onsite trapping potential
(k0r � 1), and define the axial symmetry axis as eLz . Notice
that eLz need not be parallel to the quantization axis ez. The
onsite coefficients can then be written as

ReGii ≈ 3�

4
U (k0, �)

(
1 − 3 eLz ⊗ eLz

)
, (13)

Im Gii ≈ �

2
1, (14)

where the function U (k0, �) controls the strength of the co-
herent interactions and depends on the wave-function widths
� = (�x, �y, �z ) with �x = �y ≡ �⊥. Specifically, it is paramet-
rically given byU (k0, �) ∝ (λ0/λL )3 (νzν⊥)3/8, where νz is the
depth of the lattice potential along the eLz direction in units of
the recoil energy, and ν⊥ is the depth of the potential in the
perpendicular directions. In the limit of a radially symmetric
trap one finds U (k0, �) = 0. A more detailed analysis of this
function is provided in Appendix B.

III. TOTAL ANGULAR MOMENTUM BASIS
AND DIPOLE OPERATOR

Throughout this paper it will prove useful to use the basis
of the total angular momentum eigenstates to describe the
internal state of the atoms. This is naturally expected given
that D̂±

i,q are spherical operators. For this purpose, we start by
defining for a given site a single-particle Fock basis. For filling
n = 2 we have (dropping the index i)

|ambn〉 ≡ ĉ†am ĉ
†
bn

|vacuum〉, (15)

where a, b ∈ {g, e} and the two atoms are assumed to occupy
the same motional ground state of the lattice site. Notice that
|ambn〉 = −|bnam〉 due to fermion statistics. Fock states for
higher fillings, n � 3, are similarly defined as |ambncp . . .〉 ≡
ĉ†am ĉ

†
bn
ĉ†cp . . . |vacuum〉.

The total angular momentum of n atoms is defined as F =
f1 + f2 + . . . + fn, where fk is the total angular momentum of
atom k, which can be either fg or fe. For two atoms per site,
n = 2, we define the total angular momentum basis as3

|F,M〉ab ≡
∑

m1+m2=M

〈 fa,m1; fb,m2|F,M〉∣∣am1bm2

〉
, (16)

where again a, b ∈ {g, e} and the sum runs over all allowed
values of m1 and m2. Here, 〈 fa,m1; fb,m2|F,M〉 is a Clebsch-
Gordan coefficient. Due to the properties of addition of angu-
lar momenta, the allowed values of F go from fa + fb down to
| fa − fb| in integer steps. However, since we are assuming the
atoms to occupy the same motional state (i.e., the spatial part
is symmetric under exchange), fermion exchange symmetry
implies that only some of these values are permitted when the
two atoms are identical (a = b), i.e., for |F,M〉gg and |F,M〉ee.
In this case, only even values of the total angular momentum

3For a = b these states have to be normalized by 1/
√

2.

are allowed (F = 0, 2, 4, . . .) [51]. When the atoms are dis-
tinguishable (a �= b), all values of F are permitted.

For n � 3 the total angular momentum basis is defined
in a similar way, except that the expansion of total angular
momentum eigenstates into single-particle Fock states be-
comes more intricate. Fortunately, for our analysis it will be
sufficient to simply know which states are allowed by ex-
change symmetry. For n identical particles this can be straight-
forwardly found using the method of Ref. [51] of counting
states and their total magnetic number (see Appendix E).
When not all atoms are identical, e.g., when some atoms
are in g and others in e, we can find the allowed states by
first finding the symmetry-allowed states of all the atoms in
g (e) and then combining the two results using the rules of
angular momentum addition (see examples further below and
in Appendices E and F).

For the analysis of dark states and the structure of eigen-
states, it is important to understand the action of D̂−

i,q (D̂+
i,q)

on the atomic states. In general, the action of D̂−
i,q re-

duces the total number of excitations by one, ne → ne − 1,
and the total magnetic number by q as M → M − q. Here,
we defined ne and M as the eigenvalues with respect to
the operators n̂e ≡ ∑

i,m ĉ†i,em ĉi,em and M̂ ≡ ∑
i,m m ĉ†i,em ĉi,em +∑

i,n n ĉ
†
i,gn

ĉi,gn . Similarly, D̂+
i,q increases ne by one and M

increases by q.
On top of this, because D̂±

i,q are spherical operators, their
action on a total angular momentum state can only change
the total F by 0 or ±1. An exception is F = 0 → 0, which
is knowingly forbidden. In general, applying D̂±

i,q on a state
|(ξ )F,M〉 yields a superposition of states |(ξ ′)F ′,M ± q〉
with F ′ ∈ {F,F ± 1}, where ξ and ξ ′ stand for the remaining
quantum numbers. The prefactor in front of each state can in
principle be computed using the Wigner-Eckart theorem and
Clebsch-Gordan coefficients (see Appendix C). This can be
written as

〈
(ξ ′)F ′,M ′∣∣D̂±

i,q|(ξ )F,M〉
= R(F,F ′, ξ , ξ ′)�(F,F ′,M,M ′, q). (17)

The important thing to remember is that it is given by a radial
part R which depends only on F , F ′, ξ , and ξ ′ and a spherical
part � independent of ξ and ξ ′.

IV. DARK STATES

In this section, we explore the existence of dark states for
the system described above. We present a sufficient condition
for the atoms to be in a dark state which essentially reduces the
problem to a single site, along with an analysis of the n = 2
dark states of multilevel fermions presented in Ref. [38]. We
then generalize the search for dark states to fillings n � 3,
providing some examples of dark states for various level struc-
tures, and shortly commenting on the bosonic case. While we
generally work in the basis of total angular momentum states,
Appendix D provides a complementary analysis of n = 2 dark
states using the single-particle Fock basis.
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A. Dark state condition

A dark state |D〉 is defined as an eigenstate of the Hamil-
tonian Ĥ with zero decay rate, i.e., L(|D〉〈D|) = 0. Because
of this, its time evolution simply results in an overall phase
factor. For the setup introduced above, Eq. (8), it is straightfor-
ward to show that a sufficient condition to fulfill this is given
by

D̂−
i,q|D〉 = 0 ∀i, q. (18)

Since Eq. (18) provides a condition for each site i indepen-
dently from the others, one can construct a family of dark
states from product states of single-site dark and ground
states. More specifically, let |Dαi〉i, i ∈ SD, be arbitrary i-site
dark states fulfilling D̂−

i,q|Dαi〉i = 0 ∀q. And let |Gβ j 〉 j , j ∈
SG, be arbitrary j-site states with all atoms in the ground-state
manifold, which are also trivially dark, D̂−

j,q|Gβ j 〉 j = 0 ∀q.
Then, any arbitrary product state given by

∣∣D{αi},{β j}
〉 ≡

⊗
i∈SD

∣∣Dαi

〉
i

⊗
j∈SG

∣∣Gβ j

〉
j

(19)

fulfills Eq. (18) and is hence a dark state of the multisite
system. Notice that these states are robust against imperfect
filling, as long as each site fulfills Eq. (18) separately.

Dark states of the form (19) have interesting properties, as
noted in Ref. [38]. First, they are independent of the array
geometry; in particular, they do not require subwavelength
distances between different sites of the array. Second, they can
support many excitations, because each array site can be in a
dark state harboring (at least) one excitation. These properties
essentially follow from the fact that sites which are in either a
single-site dark or ground state do not interact with each other.
For the same reason, all dark states of the form of Eq. (19)
are eigenstates of the Hamiltonian in Eq. (8) with zero energy
shift, Ĥ |D〉 = 0. This can be very useful for atomic clocks,
because it prevents the appearance of undesirable frequency
shifts due to dipole interactions, as well as for the creation of
entangled states using superpositions of dark states.

For one atom per site there exist no nontrivial solutions to
Eq. (18). However, as we will see in the upcoming sections,
having two (or more) atoms per lattice site opens the possi-
bility for such dark states to exist. Because the dark states
of Eq. (19) are product states of single-site dark states, we
focus in the following on the case of a single site and drop the
index i.

B. Interference and fermion statistics

Physically, the condition (18) means that all possible ways
of the state |D〉 to decay to a ground level, i.e., emit a photon,
need to be killed. As we will see, this can be achieved either
through destructive interference or using Fermi statistics.

The decay of an excitation can happen by emitting a photon
in either of the three polarizations, q = 0,±1. According
to Eq. (18), all the decays with a fixed polarization q need
to be killed independently from the other polarizations; in
other words, emissions with orthogonal polarizations cannot
interfere with each other. Moreover, in our multilevel system,
an excited atom can in principle decay to different ground
levels (via different polarizations). Interference of different

decay processes, however, can only happen if the final state
|φ f 〉 is the same. To see this, note that the action of D̂−

q
on a given state creates a superposition of final states (with
one excitation less) each of whose prefactors needs to vanish
identically. This implies that each possible decay channel of
the state |D〉 with polarization q and final state |φ f 〉 has to
be killed independently from the other polarizations and final
states. Thus, condition (18) can also be written as (dropping
the index i) 〈

φ f

∣∣D̂−
q |D〉 = 0, ∀q, |φ f 〉. (20)

Each possible pair (q, |φ f 〉) gives rise to a separate condition
to be fulfilled. Notice that all channels are nevertheless inter-
twined in a complex fashion since each state has, in general,
multiple decay channels, and each decay is weighted by a
different Clebsch-Gordan coefficient.

A direct consequence of this insight is that only states with
the same number of excitations ne and magnetic number M
can interfere with each other. This is because only such states
can decay to the same final state |φ f 〉 via the same polarization
q. Therefore, dark states can only be superpositions of states
with the same ne and M, which can in turn be used to label the
dark states.4 Notice, however, that dark states can in principle
be a superposition of states with different total F .

C. Dark states for n = 2 fermions per site

We present now all the dark states fulfilling (18) for filling
n = 2 and arbitrary multilevel structure (| fe − fg| � 1) (see
Ref. [38]). We start by illustrating the main concepts in
the simplest nontrivial example of a dark state, which can
be found for the multi-� structure fg = fe = 1/2. In this
case, there exists one dark state given by the total angular
momentum basis state |D0〉{ 1

2 , 1
2 } = |F = 0,M = 0〉ge. To see

why, notice that for two atoms in the ground manifold there
exists in this case only one state allowed by fermion statistics,
namely, |F = 0,M = 0〉gg. Since the dipole transition 0 → 0
is forbidden due to selection rules, this implies that the |D0〉
state cannot decay to the ground state and is hence dark.

An alternative explanation can be given as well in terms of
the single-particle Fock basis. In this basis, the dark state reads
|D0〉{ 1

2 , 1
2 } = 1√

2
(|g1/2 e−1/2〉 − |g−1/2 e1/2〉). Applying D̂−

q to
this state for q = ±1, i.e., emission of a circularly polarized
photon, we see that the decay of each of the Fock states
in the superposition is Pauli blocked by the other atom.
For q = 0, i.e., emission of a linearly polarized photon, we
get D̂−

1 |D0〉{ 1
2 , 1

2 } ∝ (C0
1/2 +C0

−1/2)|g−1/2 g1/2〉, which vanishes

because for this level structure one hasC0
1/2 = −C0

−1/2. Hence,
the decay from the two states interferes destructively and the
state |D0〉{ 1

2 , 1
2 } is dark.

The dark states can be generalized to generic multi-� level
structures, fe = fg ≡ f . As we will show in the following
sections, for any (half integer) f there exists exactly one dark
state given by (see Fig. 2)

|D0〉{ f , f } ≡ |F = 0,M = 0〉ge. (21)

4Of course, given any two dark states fulfilling (18), any superpo-
sition of them is also dark.

043816-5



A. PIÑEIRO ORIOLI AND A. M. REY PHYSICAL REVIEW A 101, 043816 (2020)

ge

gg

F = 0

F = 0

dark

F = 2f − 1

F = 2f − 1 2f 2f + 1

1 2

2

dark

(a)

(b)

f
f + 1

f
f

multi- :

multi-V :

ge

F = 2f − 1
gg

FIG. 2. Dark states for n = 2: Dark states for two fermions on
a single site for (a) the multi-� level structure ( f ↔ f ) and (b) the
multi-V level structure ( f ↔ f + 1). The plot shows a subset of the
gg states (no excitations) and the ge states (one excitation) in terms
of their total angular momentum. All decay channels of the states
F = 0 and 2 f + 1 in the multi-� and multi-V configuration are,
respectively, forbidden.

To understand the possible decay channels of this state, re-
call first that due to fermion statistics (see Sec. III) only
even-numbered total angular momenta (F = 0, 2, 4, . . .) are
allowed when both atoms are in the ground manifold. Since F
can only change at most by 1, this means that the above state
can only decay to the state |F = 0,M = 0〉gg, which again is
forbidden due to 0 → 0. Thus, fermion statistics and dipole
selection rules make |F = 0,M = 0〉ge a dark state for the
multi-� level structure.

For generic multi-V level structures, fe = fg + 1 ≡ f + 1,
it can be shown that for each M ∈ {−2 f − 1, . . . , 2 f + 1}
there exists exactly one dark state given by (see Fig. 2)

|DM〉{ f , f+1} ≡ |F = 2 f + 1,M〉ge. (22)

As opposed to the case before, here the dark states are states of
maximal total angular momentum. To see why these states are
dark, notice first that for both atoms in the ground manifold
the maximal total angular momentum allowed by fermion
statistics is F = 2 f − 1. Hence, due to selection rules (�F =
0,±1) the above state cannot decay to any allowed state in the
ground state. Thus, |F = 2 f + 1,M〉ge is a dark state for the
multi-V level structure.

For completeness, we note that for the multi-� structure
with n = 2 atoms per site there exist no dark states, because
the number of decay channels is too large. However, for this
level structure dark states do exist at larger filling, as we will
show below.

As a side remark, we note that these dark states do not
generally have any obvious orbital symmetry properties. An
exception to this are the dark states |D0〉{ f , f } and |D0〉{ f , f+1},
which are symmetric and antisymmetric for g ↔ e exchanges,
respectively.5 The corresponding symmetry follows from

5For comparison, recall that for a two-level system in the Dicke
limit the dark state (|eg〉 − |ge〉)/

√
2 is antisymmetric. In this case,

both atoms are assumed to have the same dipole matrix element
connecting their respective g and e states.

the symmetries of the respective Clebsch-Gordan coeffi-
cients in Eq. (16) and from |ambn〉 = −|bnam〉. Specifically,
〈 f1,m; f2,−m|F, 0〉 = (−1) f1+ f2−F 〈 f1,−m; f2,m|F, 0〉. Al-
ternatively, this can also be understood in the single-particle
Fock basis from the symmetries of the Cq

m coefficients.

D. Searching for dark states

In order to address the more complicated case n � 3, we
outline here a general procedure to search for dark states using
the basis of total angular momentum states. This will further
allow us to show that Eqs. (21) and (22) are the only dark
states for n = 2. An alternative proof of this using the single-
particle Fock basis is provided in Appendix D.

We divide the search for dark states into three steps.
(1) Write down all angular momentum states allowed by

fermion statistics.
(2) Use dipole selection rules to check if any angular

momentum state is dark.
(3) Analyze decay channels of the remaining angular mo-

mentum states to search for superposition dark states.
To exemplify this, we focus here on the example of n =

2 and search for single-excitation dark states. We start by
writing down all states allowed by fermion statistics, both with
zero and one excitation. As argued above (see Sec. III), when
both atoms are in the ground manifold only states with even
total F are allowed. For a given half integer fg ≡ f , this means
that the Hilbert subspace of two atoms in the ground manifold
is given by

|F = 0,M〉gg,
|F = 2,M〉gg,
|F = 4,M〉gg,

...

|F = 2 f − 1,M〉gg

(23)

where the quantum number M can take any value from −F to
F , as usual. States with one e excitation are not restricted by
fermion statistics, since the two atoms become distinguish-
able. The available states now depend on the internal level
structure. For the multi-� structure one has

fe = fg ≡ f : |F = 0,M〉ge,
|F = 1,M〉ge,

...

|F = 2 f ,M〉ge,

(24)

and for the multi-V structure we get

fe = fg + 1 ≡ f + 1 : |F = 1,M〉ge,
|F = 2,M〉ge,

...

|F = 2 f + 1,M〉ge.

(25)

The absence of dark states for the multi-� level structure
can be shown similarly to the absence of other dark states
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different from Eqs. (21) and (22), and hence will not be further
discussed.

Next, we study whether any of the basis states in Eqs. (24)
and (25) are dark by looking at their possible decay channels
and using dipole selection rules. It is straightforward to see
that all basis states except the ones from Eqs. (21) and (22)
have at least one open decay channel. For example, for the
multi-� structure [Eq. (24)], the state |1,M〉ge can decay to
both |0, 0〉gg as well as |2,M ′〉gg, whereas the state |2 f ,M〉ge
can decay to |2 f − 1,M ′〉gg.

This first analysis, however, does not completely rule out
the possibility of dark states made of superpositions of dif-
ferent angular momentum states. In the last step, we consider
this possibility. As shown in Sec. IV B, dark states are made
of states with the same magnetic number M. Therefore, we
start by writing down all available basis states |F � M,M〉ge,
omitting the states which have already been shown to be
dark. We then analyze all the distinct decay channels with
polarization q and final state |φ f 〉 of these states. This gives
a homogeneous set of equations with ndecays equations equal
to the number of distinct decay channels, and nstates variables
(amplitudes of states) given by the number of available states.
Since the Clebsch-Gordan coefficients are real, the variables
can be assumed to be real too.

To find out if solutions to the linear system of equations
exist, it suffices to know its rank. While this can of course be
computed by explicitly writing down all equations, estimating
it on general grounds is hard. For the purpose of estimation,
we assume that if all states involved have different total F then
all equations are linearly independent. Using this, the number
of dark states can easily be estimated from nMdarks = nstates −
ndecays. For the cases considered here we find this assumption
to be indeed consistent with the numerical results for the total
number of dark states (see Sec. V). In the hypothetical case
where this assumption may break, the estimates made here
constitute at least a lower bound on the number of dark states
for a given system.

Using this one can show that there exist no other dark
states for n = 2 than the ones given in Eqs. (21) and (22).
As an example, consider the multi-� structure with f >

1/2 and let us look for dark states with M = 2 f − 1. In
this case, there are two basis states that can be used to
form dark states: |2 f , 2 f − 1〉ge and |2 f − 1, 2 f − 1〉ge. Both
these states can decay to two states, |2 f − 1, 2 f − 1〉gg and
|2 f − 1, 2 f − 2〉gg, via polarizations q = 0 and 1, respec-
tively (recall that D̂−

q leads to M → M − q). Therefore, the
number of dark states is nMdarks = 2 − 2 = 0. The same pro-
cedure can be applied to all possible values of M to rule out
the possibility of dark states different from Eqs. (21) and (22).
Nontrivial superposition dark states will emerge for n � 3, as
we show next.

E. Dark states for n � 3 fermions per site

Using the concepts introduced in the previous section
(Sec. IV D), we study the dark states for fillings n � 3. As
opposed to the n = 2 case, finding general analytical expres-
sions for n � 3 dark states for generic level structures is
rather complicated. Therefore, we concentrate on some simple

cases, derive the total number of dark states, and discuss their
general properties.

We start with filling n = 3 and consider first fg = 3/2 since
for smaller fg the states are trivial. Following the discussion
in Sec. III only the following states with three atoms in the
ground manifold are allowed (see Appendix E):

fg ≡ f : |F = 3/2,M〉ggg. (26)

To write down the allowed single-excitation states (gge) we
start by coupling the two atoms in the ground manifold into
states | f12,m12〉gg with f12 = 0, 2. This we can straightfor-
wardly couple with the third atom to obtain all the allowed
states. To simplify the notation, we will write the allowed
states in the format

fg ↔ fe : |( f12)F,M〉gge. (27)

The allowed states for the three level structures of Eq. (1) are
then given by

3

2
↔ 1

2
: |(0)F,M〉gge,F = 1

2
,

|(2)F ;M〉gge,F = 3

2
,

5

2
, (28)

3

2
↔ 3

2
: |(0)F,M〉gge,F = 3

2
,

|(2)F ;M〉gge,F = 1

2
,

3

2
,

5

2
,

7

2
, (29)

3

2
↔ 5

2
: |(0)F,M〉gge,F = 5

2
,

|(2)F ;M〉gge,F = 1

2
,

3

2
,

5

2
,

7

2
,

9

2
. (30)

For the multi-� level structure fg = 3/2 ↔ fe = 1/2 we find
again no dark states, because there are too many decay
channels.

To find the dark states for the multi-� and multi-V level
structures, it is important to notice that in both cases there ex-
ist distinct sets of states with the same total F but different f12

[see Eqs. (29) and (30)]. Because of this, the decay channels
of the two sets of states can indeed be shown to be linearly
dependent. To see this, consider a superposition α|a〉 + β|b〉
with the states |a〉 ≡ |( f a12)F,M〉 and |b〉 ≡ |( f b12)F,M〉 with
f a12 �= f b12, and assume that they can both decay to |q〉 ≡
|F ′,M − q〉 with q = 0,±1. This gives rise to three equations
to be fulfilled, 〈q|D̂−

q |a〉α + 〈q|D̂−
q |b〉β = 0, one for each

value of q. Using Eq. (17) one can show, however, that

〈q|D̂−
q |a〉

〈q|D̂−
q |b〉 = R

(
F,F ′, f a12

)
R
(
F,F ′, f b12

) , (31)

where R is a reduced dipole moment. This means that the
ratio of the prefactors of α and β is q independent, and hence
that the three equations are exactly equivalent up to an overall
prefactor.

For the multi-� level structure, fg = 3/2 ↔ fe = 3/2 we
find a total of 12 dark states. First of all, the basis states
|(2)7/2,M〉gge are automatically dark because the maximal F
of the ggg states is 3/2. Apart from this, we can form dark
states combining the states |(0)3/2,M〉gge and |(2)3/2,M〉gge.
Following the previous argument, these two states (with the
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same F ) can decay to |3/2,M − q〉ggg, where the three condi-
tions (q = 0,±1) are linearly dependent, i.e., effectively they
have only one decay channel. Thus, there is a superposition
which is dark for every M. As a proof of principle, we com-
pute this superposition explicitly in Appendix F. Therefore,
there are a total of 8 + 4 = 12 dark states.

For the multi-V level structure fg = 3/2 ↔ fe = 5/2 we
find a total of 24 dark states. In this case, both the
|(2)9/2,M〉gge and |(2)7/2,M〉gge basis states are dark. Apart
from this, there exist dark states made up of superpositions of
|(0)5/2,M〉gge and |(2)5/2,M〉gge for each M. Thus, the total
is 10 + 8 + 6 = 24.

The same game can be played for level structures with
fg > 3/2, which leads to ever increasing numbers of dark
states. In this way, for example, we obtain 30 dark states
for fg = 5/2 ↔ fe = 5/2, 60 for fg = 5/2 ↔ fe = 7/2, and
again none for fg = 5/2 ↔ fe = 3/2. Finding general results
for dark states made of superpositions of different basis states
is complicated for n = 3. However, we can easily generalize
which single basis states are dark for generic level structures.
To do so, note that the maximal F of ggg states is 3 fg − 3
(see Appendix E), whereas the maximal F of gge states is
2 fg − 1 + fe. The difference is fe − fg + 2. Therefore, for the
multi-� structure ( f ↔ f ) the states |(2 f − 1)3 f − 1,M〉gge
are always dark, whereas for the multi-V structure ( f ↔ f +
1) the states |(2 f − 1)3 f ,M〉gge and |(2 f − 1)3 f − 1,M〉gge
are dark. In neither of the above examples, however, do we
find double-excited dark states.

For filling n = 4 we do find explicit double-excited dark
states. As an example we consider fg = 3/2 ↔ fe = 5/2. In
this case, one can show that there exist 21 single-excitation
dark states, specifically the ggge states with F = 2, 3, 4. To
find the double-excited states recall first that for three atoms
in the ground manifold the only allowed state is |3/2,M〉ggg
[see Eq. (26)]. Therefore, the single-excited states for n = 4
are given by

3

2
↔ 5

2
: |F,M〉ggge,F = 1, 2, 3, 4. (32)

To find the available double-excited states we first con-
struct | f12,m12〉gg with f12 = 0, 2, and | f34,m34〉ee with
f34 = 0, 2, 4. Coupling the two-atom states together then
gives rise to the following double-excited states (notation:
|( f12, f34)F,M〉ggee):

3

2
↔ 5

2
: |(0, 0)F,M〉ggee,F = 0,

|(0, 2)F,M〉ggee,F = 2,

|(0, 4)F,M〉ggee,F = 4,

|(2, 0)F,M〉ggee,F = 2,

|(2, 2)F,M〉ggee,F = 0, 1, 2, 3, 4,

|(2, 4)F,M〉ggee,F = 2, 3, 4, 5, 6.

(33)

From this one can immediately see that the double-excited
states |(2, 4)6,M〉ggee are dark, because the maximal F of the
ggge states is 4. Moreover, using the same method of counting
the multiplicities of states with the same F and their decay
channels (taking their linear dependence into account) reveals

that there exist double-excited dark states for superpositions
of F = 0, 2, 4 states, respectively. This gives a total of 13 +
1 + 5 + 9 = 28 double-excited dark states.

For the multi-� structure with fg = 3/2 ↔ fe = 3/2 and
n = 4 we also find one double-excited dark state, made of a
superposition of two F = 0 ggee states. Apart from this, it has
13 single-excited dark states corresponding to ggge states with
F = 0, 2, 3. For the multi-� structure with n = 4 we find no
double-excited dark states, but we do find five single-excited
dark states with total F = 2. This is because while two of
the atoms block two ground levels the remaining two atoms
see an effective 1/2 ↔ 1/2 level structure (with Clebsch-
Gordan coefficients determined by the original 3/2 ↔ 1/2
transitions).

Dark states for yet higher fillings can be found using the
same procedures, or with numerical simulations.

F. Bosonic dark states

Of course, the formalism introduced here is readily appli-
cable to the bosonic case too, where bosonic statistics can help
constructing dark states. For filling n = 2, the available states
with two bosonic atoms in the ground manifold are given by

|F = 0,M〉gg,
|F = 2,M〉gg,

...

|F = 2 f ,M〉gg,

(34)

where now f is assumed to be an integer. In this case, for the
multi-� structure fe = fg ≡ f the state |F = 0,M = 0〉ge is
again a dark state, because it can only decay to |0, 0〉gg which
is again forbidden by selection rules. However, for the multi-V
structure there are now no dark states at all. In particular, the
states |F = 2 f + 1,M〉ge have now an open decay channel to
|2 f ,M ′〉gg, as opposed to the fermionic case.

The special case of effective two-level bosonic atoms is
interesting. This effective level structure can be achieved
using a strong magnetic field to isolate two stretched levels,
without populating the other levels. In this case, the state
(|ge〉 − |eg〉)/

√
2 is not allowed by boson statistics when both

atoms are in the ground motional state. The only allowed
states in that case are the symmetric states, which are not
dark. Thus, in order to create dark states with two bosonic
two-level atoms on a single site, one would need to involve
higher motional bands. A thorough analysis of the dark states
of bosons for higher bands or for general filling n is beyond
the scope of this paper.

V. NUMERICAL EIGENSTATES

In this section, we numerically investigate the full spectrum
of eigenstates for the single-site problem. We numerically
check in this way the analytical predictions of the previous
section, and further provide some insights into the structure
of the remaining eigenstates.

To this end, we rewrite the master equation, Eq. (8),
as dρ̂/dt = −i/h̄(Ĥeffρ̂ − ρ̂Ĥ†

eff ) + Lrec(ρ̂) in terms of the
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effective non-Hermitian Hamiltonian

Ĥeff = −h̄
∑
i, j

∑
q,q′

G i, j
q,q′ D̂+

i,q D̂−
j,q′ , (35)

with G i, j
q,q′ = Ri, j

q,q′ + iI i, j
q,q′ , and the recycling term

Lrec(ρ̂) = 2
∑
i, j

∑
q,q′

I i, j
q,q′D̂−

j,q′ ρ̂ D̂+
i,q. (36)

The action of the effective Hamiltonian Ĥeff conserves the
total number of excitations, n̂e ≡ ∑

i,m ĉ†i,em ĉi,em . Therefore, its
(right) eigenstates can be labeled in terms of their number of
excitations ne. For a given ne, the eigenvalues of the |k〉ne
eigenstate can be written as λk = εk − iγk/2, where εk is
the energy and γk describes the total decay rate into the
(ne − 1)-excited manifold. It can also be obtained from γk =
Tr[Lrec(|k〉〈k|)] [45]. Notice that this quantity only gives the
decay rate into the next excited manifold, and not the total
decay rate into the manifold with zero excitations.

In the following, we numerically compute the eigenstates
of Ĥeff for n atoms on a single site (we drop the index i
in the following). The structure of eigenstates depends, in
principle, on the geometry of the onsite trapping potential.
Recall that the onsite Green’s tensor is given by ReGii ∝
U (k0, �)(1 − 3eLz ⊗ eLz ) and Im Gii ∝ 1 [see Eqs. (13) and
(14)]. The geometry dependence enters in the prefactorU and
the relative orientation of the lattice and quantization axes,
θ ≡ ∠(ez, eLz ).

For a given onsite prefactor U , however, the eigenvalues
of Ĥeff are independent of the relative orientation of lattice
and quantization axis (θ ), and the eigenstates for different
orientations are related by rotations with respect to θ . This
is because one can always define the atomic basis with the
quantization axis pointing along the lattice direction. The
obtained eigenstates can then be written in terms of a basis
with a different quantization axis by applying a rotation.
However, the eigenvalues remain untouched in this operation.
The situation is of course different if an explicit symmetry-
breaking magnetic field is applied, which then singles out a
particular direction.

Except for the dark states and other particular cases, the
energies and decay rates generally depend on the value of the
prefactor U . For simplicity, we will consider in the following
the limit of an isotropic local lattice potential such that the
coherent part of the onsite dipolar interactions is zero, U ≡ 0.
In this case, the effective Hamiltonian is given by

Ĥeff ∝
∑
q

D̂+
q D̂−

q . (37)

Note that the only terms contributing to the dynamics are
those with q = q′ and hence it conserves the total magnetic
number,6 such that eigenstates can be labeled by both ne
and M.

6The total magnetic number M is also conserved for U �= 0 when
eLz ‖ ez. In that case, the terms e∗T

q (eLz ⊗ eLz )eq′ originating from the
coherent part are nonzero only for q = q′ = 0, which conserves the
total M.

The expression
∑

q D̂+
q D̂−

q appearing in Eq. (37) is a scalar
operator under rotations, because it can be written as the scalar
product of two spherical operators (see Appendix C). This
implies that this operator commutes with the total angular
momentum operator F̂, and hence all its eigenstates can be
labeled by F . Therefore, the eigenstates of the Hamiltonian in
Eq. (37) are given by the total angular momentum eigenstates.
Moreover, given that the Hamiltonian does not depend on the
quantization axis, we expect a degeneracy of all M states cor-
responding to the same angular momentum quantum numbers.

Figure 3 shows for filling n = 2 the decay rates γk of the
different eigenstates k for the multi-� (left), multi-� (top),
and multi-V (bottom) level structures. We provide examples
for fg = 1/2 relevant for 171Yb, fg = 5/2 relevant for 173Yb,
and fg = 9/2 relevant for 87Sr. The different colors corre-
spond to different numbers of excitations ne.

In all cases shown in Fig. 3 the number of dark states
(γk) matches the analytical prediction of the previous section,
Sec. IV C, i.e., no dark states for the multi-�, one dark
state for the multi-�, and 2 f + 1 dark states for the multi-
V level structure. The remaining eigenstates form various
degenerate manifolds with the same decay rate, either sub-
or super-radiant. The multiplicity matches perfectly well the
Zeeman multiplicity of the |F,M〉ge states. This allows to
straightforwardly associate the different eigenstates and decay
rates with the |F,M〉ge states. Some examples of the total F of
the eigenstates are given (in blue font) inside the plots. Apart
from this, the ne = 0 and 2 eigenstates trivially decay with
zero and 2�, respectively.

Note that due to Pauli blocking some states with γk < �

may actually be super-radiant, in the sense that interference
from emission is constructive. For example, for fe = fg =
1/2 the eigenstate |1, 0〉ge decays with γk = 2/3�. This state
is, however, super-radiant compared to the decay �̃ = 1/3�

obtained for the states |g∓1/2e±1/2〉 when dipole interactions
are ignored and only Pauli exclusion is taken into account.
The prefactor results from a Clebsch-Gordan coefficient.

Figure 4 shows for filling n = 3 the decay rates of the
eigenstates for the multi-�, multi-�, and multi-V level struc-
tures with fg = 3/2. Again, the number of dark states pre-
dicted in the analytical section, Sec. IV E, matches the number
of dark states found numerically in Fig. 4, i.e., none for multi-
�, 12 for multi-�, and 24 for multi-V . We also checked that
the dark states predicted for fg = 5/2 match the numerical
results. All the remaining eigenstates are again grouped into
degenerate sets of states and their degeneracy is consistent
with the 2F + 1 degeneracy expected for states of the same
total angular momentum F .

The case of states with the same F but different f12

is interesting. For multi-� ( fg = 3/2) we have two sets
of single-excitation states with F = 3/2 for f12 = 0 and 2,
respectively [see Eq. (29)]. These states separate into two
sets of four eigenstates each, made up of superpositions of
f12 = 0, 2 states. One of these sets is dark, as argued in
Sec. IV E. The other four superposition states are nondark and
degenerate, as seen from the four blue dots at around 2/3� in
Fig. 4. The same happens for multi-V , where the two sets of
single-excitation F = 5/2 states split into a dark subset and a
degenerate subset at around 2� (see Fig. 4).
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Figure 5 shows for filling n = 4 the decay rates of the
eigenstates for the multi-�, -�, and -V level structures with
fg = 3/2. The number of dark states again agrees with the
analytical discussion of Sec. IV E. In particular, notice that in
this case the multi-� system has dark states.

VI. PREPARATION

We discuss in this section different possibilities to coher-
ently excite the single-site dark states presented in Sec. IV
starting with the atoms in the ground state. In particular,
we extend the discussion on the Raman excitation scheme
presented in Ref. [38], and consider another method based
on lifting the Zeeman sublevel degeneracy using magnetic
fields or off-resonant dressing beams. In the following, we
consider only doubly occupied sites, n = 2, since they will
be experimentally most relevant, and consider only a single
site.

Before starting it is instructive to note that, starting with
both atoms in the ground manifold, the atoms cannot be
directly excited to a dark state using simply a laser. This is
because the matrix element of the laser Hamiltonian connect-
ing dark and ground states is zero, for the same reason that
makes dark states dark. More specifically, the laser Hamil-
tonian is given by ĤL = −h̄

∑
q (�q D̂+

q + H.c.) with Rabi

frequency �q ≡ �(e∗
q · εL ) and laser polarization εL. Since the

dark states |D〉 considered here fulfill the condition (18), this
implies that 〈D|ĤL|G〉 = 0 for any ground state |G〉.

A. Raman excitation

The Raman excitation scheme consists in coupling both g
and e states off-resonantly to an intermediate state s, for which
we assume a total angular momentum fs, ms ∈ [− fs, fs], fre-
quency ωs, and decay rate �s [see Fig. 6(a)]. The Hamiltonian
is given by

Ĥ (1,2)
L = − h̄

∑
m,n

[
�(1)

smgn σ̂smgn + �(2)
smen σ̂smen + H.c.

]

− h̄�
∑
m

σ̂smsm , (38)

where �
(l )
ambn

= �(l )eiφl 〈 fb n; 1m − n| fa m〉(e∗
m−n · ε

(l )
L ), ε

(l )
L is

the polarization of the l laser, �(l ) is the Rabi frequency,
φl = k(l )

L · ri is the phase of the laser at array site i, ω(l )
L = ck(l )

L
is the laser frequency, and the first sum runs only over values
with |m − n| � 1. The Hamiltonian is given in a frame where
the states e rotate with ω0 and the states s rotate with ω

(1)
L

(the frequency of the g-s laser). In this frame, the s states
are detuned by � = ω

(1)
L − ωs. Notice that a site dependence
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enters in the phase φl , but we suppress the i index for nota-
tional simplicity.

When the detuning is large, |�| � �(1),�(2), �s, the in-
termediate state can be adiabatically eliminated [52] and the
resulting effective Hamiltonian reads

ĤRaman = h̄
∑
m,n

[
�eff

mn σ̂emgn + H.c.
]

(39)

with effective Rabi coupling �eff
mn ≡ ∑

k �(2)∗
skem�

(1)
skgn/�. The

reason why this Raman Hamiltonian will allow us to couple to
the dark state is that the effective Rabi couplings �eff

mn have, in
general, a different structure than the single-laser couplings.

As an example, consider fg = fe = fs = 1/2 and let
us start with both atoms in the ground state, |G1/2〉 ≡
|g−1/2g1/2〉. Using a single ez polarized laser, the correspond-
ing Hamiltonian is given by ĤL ∝ ∑

mC
0
m[σ̂emgm + H.c.],

which couples the initial state to the super-radiant state |S〉 ≡
(|g1/2 e−1/2〉 + |g−1/2 e1/2〉)/

√
2. This is because for this level

structure we have C0
1/2 = −C0

−1/2. In contrast, if we use the
Raman scheme with two ez polarized lasers, we get Ĥ eff

L ∝∑
m(Cq=0

m )2[σ̂emgm + H.c.], which instead couples the ground
state to (only) the dark state Ĥ eff

L |G1/2〉 ∝ |D0〉{ 1
2 , 1

2 }. Note

that the Raman scheme essentially changes the symmetry of
the state as compared to the single laser, due to the square
(C0

1/2)2 = (C0
−1/2)2.

Figure 6(c) shows an example of this for a relatively
large effective Rabi coupling �eff = 3�, where we defined
�eff ≡ �(1)�(2)/� and set φl = 0. As it can be seen, the
lasers manage to excite the dark state (solid blue line labeled
“dark”) up to an occupation ≈0.5. However, the same lasers
also couple the dark state to the double-excited state |ee〉 ≡
|e−1/2e1/2〉 (dashed gray line), which subsequently decays,
e.g., into the super-radiant state |S〉 (dash-dotted red line) [see
Fig. 6(b)]. The population of the |ee〉 state can be suppressed
by choosing a small effective Rabi coupling, �eff � �. Due
to the quantum Zeno effect, the doubly excited state is then
only populated at a rate ≈(�eff )2/�. Figure 6(d) shows that
high-contrast coherent oscillations between ground and dark
states are obtained for �eff = 0.03�.

The same method can be used to address other dark states
in other level structures. For this, one needs to choose (i) an
initial ground state |gmgn〉 and (ii) an intermediate state and
laser polarizations such that the coupling to the dark state is
nonzero. Figure 6(e) shows an example for fg = fs = fe =
9/2, starting with |G9/2〉 = |g−9/2g9/2〉 and using ez polarized
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FIG. 5. Eigenstates for n = 4. Decay rates γk/� of all eigenstates |k〉 for different level structures (indicated inside the plots) for n = 4
atoms on a single site, assuming that the coherent dipole interaction part is zero. Each data point corresponds to an eigenstate and the colored
symbol indicates the number of excitations as given in the legend.
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FIG. 6. Raman excitation scheme. Left: Sketch of Raman excitation for fg = fe = fs = 1/2 and ez polarized light in (a) single-particle and
(b) eigenstate basis. Middle: Excitation of dark state |D0〉{1/2,1/2} for fg = fe = fs = 1/2 level structure with (c) �eff = 3� (no Zeno effect) and
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structure with �eff = 0.001�. (f) Excitation of dark state |D−4〉{5/2,7/2} for fg = fs = 5/2, fe = 7/2 level structure with �eff = 0.001�.

lasers. Using again a small Rabi coupling to suppress popula-
tion in other nondark states, we obtain coherent oscillations of
the dark state |D0〉{9/2,9/2}. In this case, however, other ground
states |GM<9/2〉 ≡ |g−MgM〉 get excited along the way, such
that we do not achieve a full inversion into the dark state.
Figure 6(f) shows another example for fg = fs = 5/2, fe =
7/2, starting with |g−5/2g−1/2〉 and using ε

(1)
L = ez, ε

(2)
L = e+.

Again, we can achieve a large (but not unit) occupation of
the dark state |D−4〉{5/2,7/2}. As opposed to before though, the
process does not rephase.

We note that, in reality, energy shifts from collisions will
make some transitions off-resonant, so the Zeno effect may
not be always necessary. This is in particular true of double-
excited states. Apart from this, we emphasize that the aim of
this section was to coherently prepare a given dark state. If
the conditions for Zeno suppression are not experimentally
feasible, the dark state can also be prepared in a probabilistic
manner using a larger Rabi coupling.

B. Zeeman excitation

Another alternative to coherently excite a dark state is
to add a detuning between the Zeeman sublevels of the g
and/or e manifolds [see Fig. 7(a)]. This can be achieved by
off-resonant dressing, or applying external magnetic fields.
When the Zeeman sublevels are not degenerate, the dark states
are not perfect eigenstates anymore, but instead couple to
other bright states with a strength proportional to the Zeeman
splitting [see Fig. 7(b)]. Shining on a laser with appropriately
chosen characteristics will then allow us to couple to the dark
state through a sort of Raman transition with the bright state as
intermediate state. This is particularly well suited when there
is a large energy gap between dark and bright states, due to,
e.g., collisional shifts, because then the bright state is only
virtually occupied.

We consider the atoms to be addressed by a laser with
detuning � from resonance, and subject to an external

magnetic field. We assume that the g factor of the ground
state is negligible and that the Zeeman splitting between
subsequent e levels is �z. Thus, the total Hamiltonian in the
laser’s rotating frame is (in units of h̄)

ĤZeeman = − h̄
∑
m,n

[
�emgn σ̂emgn + H.c.

] + h̄
∑
m

�m σ̂emem ,

(40)

with �emgn = �Cm−n
n (e∗

m−n · εL ) and �m = m�z − �. Fur-
thermore, we emulate the possibility of having energy shifts
between dark and bright states by varying the strength
U of the coherent dipolar interactions [see Eq. (13) and
Appendix B].

As a specific example, we consider again the case fg =
fe = 1/2 with ez polarized light. The laser couples the ground
state |G1/2〉 to the super-radiant bright state |S〉 with a
strength �̃ ≡ −�

√
2/3 due to Clebsch-Gordan coefficients,

whereas the Zeeman detuning couples |S〉 with |D0〉 with
a strength �z = �z/2. Thus, the Hamiltonian (40) in the
{|G1/2〉, |S〉, |D0〉} basis reads

ĤZeeman + Ĥshifts = h̄

⎛
⎝0 �̃ 0

�̃ εS − � �z

0 �z εD − �

⎞
⎠. (41)

Here, we included the energy shifts εS and εD of the super-
radiant and dark states. Note that if these shifts came from the
coherent dipole interaction alone then we would have εD =
0. However, other collisional effects such as van der Waals
interactions can lead to εD �= 0.

Figure 7(c) shows the result of this excitation scheme
assuming no energy shifts (U = 0), εS = εD = 0. Here, we
chose � = 0 to make the dark state resonant, and a large
Zeeman splitting �z = 10� with � = 5�. Although the dark
state gets excited up to about 0.5, the super-radiant state
and the double-excited state also do. Their population can be
suppressed if there is an energy gap, δgap ≡ εS − εD, between

043816-12



SUBRADIANCE OF MULTILEVEL FERMIONIC ATOMS IN … PHYSICAL REVIEW A 101, 043816 (2020)

0.0 0.5 1.0 1.5 2.0 2.5
Time: Γt

0.00

0.25

0.50

0.75

1.00

S
ta
te
:
|α

α
|

no gap

|G1/2

|D0

|S
|ee

0 500 1000 1500 2000 2500
Time: Γt

0.00

0.25

0.50

0.75

1.00
S
ta
te
:
|α

α
|

gapped

|G1/2

|D0

|S
|ee

|g, mg

|e, me
(a)

0 20 40 60 80 100
Time: Γt

0.00

0.25

0.50

0.75

1.00 |G9/2

|G7/2

|G5/2

|G3/2

|G1/2

|D0

Δ
Δz

0 50 100 150 200 250
Time: Γt

0.00

0.25

0.50

0.75

1.00 |g−5/2g−1/2

|g−5/2g−3/2

|g−3/2g−1/2

|D−4

ω0

|G1/2

|S
|D0

Δz
(b)

(c) (e)

(f)
(d)

fg = fe = 1/2 fg = fe = 9/2

fg =5/2
fe=7/2

da
rk

da
rk

dark

da
rk

FIG. 7. Zeeman excitation scheme. Left: Sketch of Zeeman excitation for fg = fe = 1/2 in (a) single-particle and (b) eigenstate basis.
Super-radiant state |S〉 and dark state |D0〉 are defined in text. Middle: Excitation of |D0〉{1/2,1/2} for fg = fe = 1/2 level structure starting
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the dark and the super-radiant state. Figure 7(d) shows an
example of this for U = 100�, �z = 1�, � = √

3/8�. The
latter value is chosen such that |�̃| = |�z|.

Figures 7(e) and 7(f) show further examples of this excita-
tion scheme applied to more complicated cases: (e) |D0〉 for
fg = fe = 9/2 and (f) |D−4〉 for fg = 5/2, fe = 7/2. In these
cases, the initial ground state couples to more than one bright
eigenstate, which in turn couple to the dark state. Because of
this, estimating the optimal values for the parameters becomes
more complicated. Nevertheless, Figs. 7(e) and 7(f) show that
with appropriately chosen parameters we can reach a large
occupation of the dark state. In Fig. 7(e) the occupation does
not reach 1, because other ground states get excited along the
way, similarly to the Raman scheme in the previous section
[see Fig. 6(e)]. In Fig. 7(f) we note that a detuning of � =
−2.33�z was used to compensate the energy shift of the dark
state due to the Zeeman term.

VII. IMPLEMENTATION

Alkaline-earth(-like) atoms are promising candidates to
realize the multilevel dark states presented here due to their
lack of hyperfine coupling in the ground state, which has total
electronic angular momentum J = 0. Examples of possible
isotopes currently used in experiments [41,53] include 171Yb,
173Yb, and 87Sr, which have nuclear spins I = 1/2, 5/2, and
9/2, respectively.

The atoms may be loaded into an optical lattice or tweezer.
To load n � 2 atoms per optical lattice site, one can first
prepare a Mott insulator with filling fraction n in the trap
center, and then spectroscopically select the sites with the
desired filling fraction [41,54]. To ensure n � 2 atoms in a
tweezer, one can first prepare the atoms in separate tweezers
and then transfer atoms between tweezers one by one using
adiabatic passage [44] or direct time evolution [42].

To form a dark state with alkaline-earth atoms, one pos-
sibility would be to use the clock transition g = 1S0 to e =
3P0, which has a linewidth � ∼ mHz. As intermediate states
for the Raman state preparation one could use s = 1P1, 1S1,
1D2, or 3D2. However, because of the generally ultralong
lifetime of the bare 3P0 state, observing an enhancement of
this lifetime due to subradiance will be challenging, especially
because of other competing decay mechanisms such as light
scattering from the laser beams used to trap the atoms [55].
This limits the lifetime of any state, including the dark state,
due to dressing with higher-lying short-lived electronic levels.

To circumvent this issue, we propose instead to prepare the
dark state in a faster decaying transition such as 3P1 with � ∼
1–100 kHz. In this case, the dark state could also be prepared
using the 3P0 state as intermediary for the Raman scheme. The
advantage of this would be that due to the long lifetime of
the 3P0 state the preparation procedure could be accomplished
in two steps by applying two subsequent π pulses. Another
possibility would be to prepare the dark state in the 1P1 state,
except that � ∼ MHz strong dipolar interactions may induce
fast mixing with higher motional bands and the atoms in the
excited state will not be trapped, as noted in Ref. [56].

VIII. EXPERIMENTAL LIMITATIONS

One important limitation to the lifetime of the dark state
will be set by the effective decay rate to higher motional
bands. In the Lamb-Dicke regime assumed here (η � 1), the
decay to the next excited band is given by �eff ∼ η2� [45].
This effect can in principle be suppressed by increasing the
intensity of the trapping laser. Note, however, that this will
also lead to higher scattering rates from the trapping light.

Another source of decay are nonvanishing stray magnetic
fields. As explained above, such terms generally couple dark
and bright states to each other. While this can be used for
preparation (see Sec. VI B), once prepared a non-vanishing
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Zeeman detuning �z will induce an effective decay rate on
the dark state. Fortunately, if this detuning is much smaller
than the linewidth, �z � �, the quantum Zeno effect will
suppress this effect as �eff ∼ �2

z/�. Alternatively, the Zeeman
coupling can be suppressed if the dark state is energetically
well separated from the bright state. This is, for instance, the
case in the 3P0 state, where energy shifts due to collisions are
≈kHz [41,53].

Collisions can also induce mixing between dark and bright
states. However, if the atoms are tightly trapped such that they
are confined to be in the motional ground state, the complexity
of the collisions is greatly reduced. In particular, since the
dark states are eigenstates of the total angular momentum,
they should be good eigenstates of collisions too, as long
as collisions are dominated by the long-range part of the
potential. In this case, we anticipate collisions to just introduce
energy shifts without adding new decay channels to the dark
states. The effect of the short-range interaction part, which is
beyond the scope of this paper, is generally hard to estimate
[57–59] and ultimately should be tested experimentally.

IX. CONCLUSIONS

In this paper, we have studied the subradiance proper-
ties of n � 2 multilevel fermions loaded into a single trap
(e.g., an optical lattice site or a tweezer), thus extending our
previous work [38]. The atoms are assumed to occupy the
lowest motional band and interact with each other dominantly
via dipolar (coherent and incoherent) exchange interactions.
The multilevel nature combined with fermion statistics and
quantum interference gives rise in this system to a set of
dark (perfectly subradiant) eigenstates. While the focus of
the paper was on single sites, multisite dark states on optical
lattices or tweezers can be prepared by creating product states
where atoms in each site are either in the ground or in an
excited single-site dark state (or in a superposition of them).

We have found and characterized all single-site dark states
appearing for different fillings n and internal level structures
fg ↔ fe. We have shown that these dark states are related to
eigenstates of the total angular momentum of the n atoms, and
we have given generic prescriptions to identify dark states
by counting their respective decay channels, using dipole
selection rules, and the properties of dipole matrix elements.
Moreover, we have seen that the full eigenstate structure of the
single-site problem corresponds to total angular momentum
states when the coherent dipolar interaction part is zero. This
shows the usefulness of the total angular momentum basis to
describe multilevel systems.

We proposed two different schemes to coherently prepare
the dark states with close to 100% fidelity in some cases.
The first approach is based on a Raman-like transition, which
allows us to couple ground and dark states using the properties
of Clebsch-Gordan coefficients. The second approach instead
makes use of magnetic-field-induced energy shifts between
Zeeman sublevels to couple bright and dark states.

These multilevel dark states can be implemented using
alkaline-earth atoms in optical lattices or tweezers and can
find applications in different quantum technologies. Superpo-
sitions of ground and dark states can be used, e.g., as logical
clock states with vanishingly small decay rate for quantum

metrology. In particular, this opens the door to building atomic
optical clocks on internal level transitions that are not natu-
rally long lived. A big advantage of using these multilevel dark
states for clocks would be that such states would not suffer
from dipolar interaction shifts (since they are zero eigenstates
thereof), which will potentially limit the accuracy of current
three-dimensional lattice clocks. Apart from this, ground and
dark states could also be used as the basis for decoherence-
free qubits in quantum information, for quantum simulation,
and to build interesting quantum optical devices.
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APPENDIX A: DERIVATION OF THE MASTER EQUATION

1. Light-matter Hamiltonian

We derive in this section the multilevel dipolar master
equation, Eq. (8), starting from the light-matter Hamiltonian
of Eqs. (3)–(5), following Refs. [47–49] (see also Ref. [60]).
We recall that the light-matter Hamiltonian is given by

Ĥtot = Ĥatom + Ĥfield + ĤAF, (A1)

with

Ĥatom =
∫

dr
∑
m

h̄ωem σ̂emem (r) +
∑
n

h̄ωgn σ̂gngn (r), (A2)

Ĥfield =
∑
k,λ

h̄ωk

(
â†k,λâk,λ + 1

2

)
, (A3)

ĤAF = −
∑
m,n

∑
k,λ

∫
dr gk

(
demgn σ̂emgn (r) + H.c.

)

· (εk,λâk,λe
ik·r + H.c.). (A4)

Here, we consider arbitrary energies ωem > ωgn to include the
possibility of having nondegenerate Zeeman sublevels.

We start by switching to the interaction picture with Ĥ0 ≡
Ĥatom + Ĥfield, where the equation of motion for the full atom-
field density matrix ρ̂AF is given by

dρ̂AF

dt
= 1

ih̄
[V̂ (t ), ρ̂AF], (A5)

with the interaction part V̂ (t ) = eiĤ0t/h̄ĤAF e−iĤ0t/h̄. It is given
by

V̂ (t ) = −
∑
m,n

∑
k,λ

∫
dr gk

(
demgn σ̂emgn (r) eitωmn + H.c.

)

· (εk,λâk,λe
i(k·r−ωkt ) + H.c.) (A6)

with ωmn ≡ ωem − ωgn .
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2. Born-Markov approximation

We perform the usual Born-Markov approximation by
assuming that (i) the atoms and the field degrees of freedom
are essentially uncorrelated (i.e., very short correlation time)
and (ii) the state of the field is independent of time. For this
we consider a window of time �t = t − t0 small enough such
that the state of the atoms does not change, but much larger
than the correlation time between atoms and field. Integrating
Eq. (A5) from t to t0 we get

ρ̂AF (t ) = ρ̂AF (t0) + 1

ih̄

∫ �t

0
dτ [V̂ (t − τ ), ρ̂AF (t − τ )]. (A7)

Inserting this again into Eq. (A5), using ρ̂AF(t − τ ) ≈ ρ̂a(t −
τ ) ⊗ ρ̂ f , ρ̂a(t − τ ) ≈ ρ̂a(t0) ≈ ρ̂a(t ), and tracing out over the
field degrees of freedom, we obtain the master equation

d ρ̂a

dt
= 1

ih̄
Tr f [V̂ (t ), ρ̂a(t ) ⊗ ρ̂ f ]

− 1

h̄2 Tr f

∫ �t

0
dτ [V̂ (t ), [V̂ (t − τ ), ρ̂a(t ) ⊗ ρ̂ f ]]

≡ �ρ̂ (1) + �ρ̂ (2). (A8)

In the presence of a coherent laser field, the first-order term
�ρ̂ (1) gives rise to the usual Rabi Hamiltonian, which is
derived further below. Here, we consider first the case of
vacuum electromagnetic field, for which the first-order term
vanishes. In this case, the second-order term gives rise to
dipolar interactions, as we show next. In the following, we
drop the subscript a and write ρ̂ for the atomic density matrix.

For vacuum background field only the â†â and ââ† terms
in �ρ̂ (2) with k = k′ and λ = λ′ survive. Assuming the en-
ergy differences ωem − ωgn are much larger than the energy
differences within the ground and excited manifolds (which is
true for optical frequencies), we further neglect all terms of
the form σ̂ σ̂ and σ̂ †σ̂ †. Going back to the frame rotating with
Ĥatom as ρ̂ ≡ e−iĤatomt/h̄ρ̂a eiĤatomt/h̄ the second-order term then
reads

�ρ̂ (2) = − 1

h̄2

∫
r,r′

∑
m,n

∑
m′,n′

∑
k,λ

g2
k

∫ �t

0
dτ (T̂1 + T̂2 + H.c.),

(A9)

with

T̂1 ≡ eik·�re−iτ (ωk+ωm′n′ )P1 �1, (A10)

T̂2 ≡ eik·�re−iτ (ωk−ωm′n′ )P2 �2, (A11)

where �r ≡ r − r′ and

�̂1 ≡ σ̂ †
emgn (r) σ̂em′gn′ (r

′) ρ̂ − σ̂em′gn′ (r
′) ρ̂ σ̂ †

emgn (r), (A12)

�̂2 ≡ σ̂emgn (r) σ̂ †
em′gn′

(r′) ρ̂ − σ̂ †
em′gn′

(r′) ρ̂ σ̂emgn (r), (A13)

P1 ≡ (
d∗
emgn · εk,λ

)(
dem′gn′ · εk,λ

)
, (A14)

P2 ≡ (
demgn · εk,λ

)(
d∗
em′gn′

· εk,λ

)
. (A15)

Next, we perform the integral over time and the sum over
the momentum modes and polarization directions. For the

time integral we make the approximation
∫ �t

0
dτ −→

∫ ∞

0
dτ. (A16)

Using the well-known identity∫ ∞

0
c dτ eic(k±k0 )τ = π δ(k ± k0) + iP

1

k ± k0
, (A17)

where P denotes the principal value, the time integral in
Eq. (A9) yields∫ ∞

0
cdτ (T̂1 + T̂2) (A18)

= eik·�r
{
P1 �̂1

(
π δ(k + km′n′ ) − iP

1

k + km′n′

)

+P2 �̂2

(
π δ(k − km′n′ ) − iP

1

k − km′n′

)}
, (A19)

where we defined kmn ≡ ωmn/c.
Using the fact that the two polarizations εk,λ and k̂ ≡ k/|k|

form an orthonormal system, we can perform the sum over
polarization directions,

∑
λ P1,2, as

∑
λ

(d1 · εk,λ)(d2 · εk,λ) = d1 · d2 − (k̂ · d1)(k̂ · d2)

= dT
1 · (1 − k̂ ⊗ k̂) · d2

≡ dT
1 · P(k̂) · d2 (A20)

where d1,2 stands for dipole matrix elements, e.g., demgn . Here,
1 is a three-dimensional unit matrix and (a ⊗ b)αβ = aαbβ .

To perform the sum over the momentum modes k we take
the continuum limit as

∑
k

−→ V

(2π )3

∫
d3k. (A21)

We start with the angular part of the k integral:

I� ≡
∫ 2π

0
dϕk

∫ π

0
dθk sin θk e

ik·�rP(k̂). (A22)

This can be computed by expressing the vector k in a co-
ordinate system with �r as z axis. In this way, one obtains
I� = G̃I (k,�r) with

G̃I (k, r) = 4π

{
1

[
sin(kr)

kr
+ cos(kr)

(kr)2
− sin(kr)

(kr)3

]

+ r̂ ⊗ r̂
[
− sin(kr)

kr
− 3

cos(kr)

(kr)2
+ 3

sin(kr)

(kr)3

]}
,

(A23)

which is related to the electromagnetic Green’s tensor in
vacuum. In the limit �r → 0 one can show that I� = 8π

3 1.
Putting everything so far together, the quadratic contribu-

tion to the master equation is given by

�ρ̂ (2) = − 1

h̄2

∫
r,r′

∑
m,n

∑
m′,n′

(Ik + H.c.) (A24)
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with

Ik ≡ h̄

2ε0(2π )3

∫ ∞

0
dk k3

×
{
P̃1 �1

(
π δ(k + km′n′ ) − iP

1

k + km′n′

)

+ P̃2 �2

(
π δ(k − km′n′ ) − iP

1

k − km′n′

)}
, (A25)

and P̃1 ≡ d∗T
emgn · G̃I (k,�r) · dem′gn′ , P̃2 ≡ P̃∗

1 . The δ functions
in this expression give rise to the incoherent Lindbladian
part of the master equation, whereas the principal value part
leads to the coherent Hamiltonian part. We write �ρ̂ (2) ≡
�ρ̂

(2)
coh + �ρ̂

(2)
inc and give the two contributions separately in

the following.
Before doing so, we do an additional approximation by

assuming that |kmn − km′n′ | � (kmn + km′n′ ), i.e., the typical
energy differences between different ground (excited) states
are small compared to the gap between the ground and excited
manifolds (this is justified for optical transitions). This allows
us to substitute km′n′ ≈ kmn → k0 in the expressions above,
where k0 can be seen as the mean frequency difference be-
tween the e and gmanifolds. One can imagine this as a Taylor
expansion around k0 up to leading nonvanishing order.

Since km′n′ > 0 the δ(k + km′n′ ) terms vanish and the inco-
herent contribution becomes

�ρ
(2)
inc = −

∫
r,r′

∑
m,n

∑
m′,n′

[
dT
mn · Im G(k0, r − r′) · d∗

m′n′
]

× [{
σ̂emgn (r) σ̂ †

em′gn′
(r′), ρ̂

} − 2σ̂ †
em′gn′

(r′) ρ̂ σ̂emgn (r)
]
,

(A26)

where the electromagnetic tensor G is defined in Eq. (12),
and we now included the k0 dependence explicitly. For r → 0
one obtains Im G(r) → �

2 1. In this expression, we used the
Wigner-Eckart decomposition of the dipole matrix elements
given in the main text. The radial part has been absorbed into
�, and we dropped the superscript “sph” from the spherical
part, dmn ≡ dsph

mn .
After combining the terms in Eq. (A25) with their Her-

mitian conjugates, the terms proportional to σ̂ †ρ̂σ̂ and σ̂ ρ̂σ̂ †

vanish and the rest reduces after some reordering to

Icoh
k = −ih̄

4π2ε0
dT
emgn ·

(
P

∫ ∞

−∞
dk

k3Im G(k, r − r′)
k − k0

)
· d∗

em′gn′

× σ̂mn(r) σ̂
†
m′n′ (r′) ρ̂. (A27)

Using contour integration the coherent contribution to the
master equation becomes

�ρ̂
(2)
coh ≡ − 1

i

∫
r,r′

∑
m,n

∑
m′,n′

[
dT
mn · ReG(k0, r − r′) · d∗

m′n′
]

× [
σemgn (r) σ †

em′gn′
(r′), ρ̂

]
. (A28)

Strictly speaking, ReG(k0, r − r′) diverges as �r → 0, but
this will be smoothed out once the integrals over r and r′ are
carried out.

Equations (A28) and (A26) are already very close to the
final expression for the master equation given in the main text.

To finish the derivation we just need to expand the operators
in the basis of Wannier functions and write the dipole matrix
elements in terms of Clebsch-Gordan coefficients.

As a side remark, we notice that in the limit where the
energy difference ωmn − ωm′n′ for some (m, n) �= (m′, n′) is
much larger than �, the corresponding terms σ̂emgnσ

†
em′gn′

are
fast rotating and can be ignored.

3. Wannier basis

We assume the atoms are resting in the lowest band
of an optical lattice and expand the field operators in
the Wannier basis as ψ̂am (r) = ∑

i wi(r) ĉi,am , where a ∈
{g, e} and i denotes the lattice site. We make a harmonic
approximation and set wi(r) ≈ ψ0(r − ri ), where ψ0(r) =∏

n={x,y,z}
1

(2π�2
n )1/4 e−r2

n/(4�2
n ) is the ground state of the oscilla-

tor, �2
n ≡ h̄/(2mωn), ωn ≡ (2Vn k2

L/m)1/2 are the onsite trap
frequencies, kL is the trap wave vector, m is the mass, and
Vn is the trap depth in the corresponding direction, V (r) =∑

n={x,y,z}Vn sin(kLrn)2.
We insert the Wannier expansion into the above expres-

sions and obtain in this way dρ̂/dt = −i/h̄[Ĥ, ρ̂] + L(ρ̂ )
with

Ĥ = − h̄
∑
m,n

∑
m′n′

∑
i j

(
dT
mn · ReGi j · d∗

m′n′
)
σ̂ (i)
emgn σ̂ ( j)

gn′ em′ ,

(A29)

L(ρ̂ ) = −
∑
m,n

∑
m′,n′

∑
i j

(
dT
mn · Im Gi j · d∗

m′n′
)

× ({
σ̂ (i)
emgn σ̂ ( j)

gn′ em′ , ρ̂
} − 2σ̂ ( j)

gn′ em′ ρ̂ σ̂ (i)
emgn

)
, (A30)

where we defined σ̂ (i)
gmen ≡ ĉ†i,gm ĉi,en as in the main text. The

interaction tensors are given by

Im Gi j ≡
∫

dr dr′ Im G(k0, r − r′) |wi(r)|2 |w j (r′)|2, (A31)

ReGi j ≡
∫

dr dr′ ReG(k0, r − r′) |wi(r)|2 |w j (r′)|2. (A32)

For i �= j we approximate the square of the Wannier functions
by δ functions and obtain Im Gi j ≈ Im G(k0, ri − r j ) and
ReGi j ≈ ReG(k0, ri − r j ). The onsite case i = j requires a
more careful treatment and will be computed in Appendix B.

Using the expression of the dipole matrix elements in terms
of Clebsch-Gordan coefficients, Eq. (7), and the definition
of the multilevel raising and lowering operators, Eq. (9), the
Hamiltonian and Lindbladian of Eqs. (A29) and (A30) turn
into the expressions given in the main text, Eq. (8).

4. Single-particle Hamiltonian

We give here the single-body Hamiltonian missing from
the master equation presented above, which we write as

Ĥsingle = ĤL + Ĥ�. (A33)

We assume the atoms are subject to a laser with electric
field given by E(t, r) = εLEei(kL ·r−ωLt ) + c.c. with amplitude
E , polarization εL, frequency ωL, and wave vector kL. The
first-order term of the master equation is then given by
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�ρ̂ (1) = 1/(ih̄)[ĤL, ρ̂], with

ĤL = −h̄
∑
i,m,n

[
�emgn σ̂ (i)

emgn e
ikL ·ri + H.c.

]
, (A34)

and �emgn ≡ (demgn · εL )E/h̄ ≡ �(dsph
mn · εL ). Here, we

went into the rotating frame of the laser using ρ̂ →
eiĤωL t/h̄ρ̂e−iĤωL t/h̄ with ĤωL = ∑

i,m h̄ωLσ̂
(i)
emem and performed

a rotating wave approximation. Thus, the Hamiltonian for the
level energies is given by

Ĥ� = h̄
∑
i,m

(
ωem − ωL

)
σ̂ (i)
emem + h̄

∑
i,n

ωgn σ̂
(i)
gngn . (A35)

APPENDIX B: ONSITE INTERACTIONS
FOR A DEEP TRAP

As shown in Appendix A, the onsite dipole interaction
matrices are given by

Gii =
∫

dr dr′ G(r − r′) |wi(r)|2 |wi(r′)|2, (B1)

where G(r − r′) is the dyadic Green’s tensor defined in the
main text, and wi(r) = w(r − ri ) is the Wannier function of
the lowest motional eigenstate of lattice site i. We consider
here the limit of a deep trap, such that wi(r) ≈ ψ0(r − ri )
can be approximated by the ground-state wave function of a
harmonic potential, ψ0(r) = ∏

n={x,y,z}
1

(2π�2
n )1/4 e−r2

n/(4�2
n ). Note

that the components rn of the position vector r are given with
respect to the coordinate system defined by the lattice axes.

The leading-order terms of G(r) for short distances are
given by

ReG(r) ≈ − 3�

4

1 − 3r̂ ⊗ r̂

(k0r)3
, (B2)

Im G(r) ≈ �

2
1. (B3)

This implies Im Gii = �
2 1. In the following, we explicitly

compute the integral ReGii using the approximation of
Eq. (B2).

1. Onsite coefficient

The aim is to compute the integral

ReGii = − 3�

4k3
0

∫
dr dr′ 1 − 3 �r̂ ⊗ �r̂

|�r|3 ρ0(r) ρ0(r′), (B4)

which is independent of i, and where we defined ρ0(r) ≡
|ψ0(r)|2, �r = r − r′, and �r̂ = �r/|�r|. We start by ex-
panding the vector �r̂ in spherical components with respect
to the lattice axes {eLx , eLy , eLz } as

�r̂ = − 1√
2

sin θ eiϕeL+ + 1√
2

sin θ e−iϕeL− + cos θ eLz , (B5)

where eL± = ∓(eLx ± ieLy ) as usual. Note that the prefactors are
proportional to the spherical harmonics Yl,m for l = 1. Using
this expansion we can write

ReGii = − 3�

4k3
0

×
{
V 0

[
1

2
(eL+ ⊗ eL− + eL− ⊗ eL+) + eLz ⊗ eLz

]
+V+z(eL+ ⊗ eLz + eLz ⊗ eL+) −V−z(eL− ⊗ eLz + eLz ⊗ eL−)

+V++eL+ ⊗ eL+ +V−−eL− ⊗ eL−

}
(B6)

where we defined the onsite coefficients

V 0 ≡
∫

dr dr′V 0(r − r′) ρ0(r) ρ0(r′), (B7)

V±z ≡
∫

dr dr′V±z(r − r′) ρ0(r) ρ0(r′), (B8)

V±± ≡
∫

dr dr′V±±(r − r′) ρ0(r) ρ0(r′), (B9)

with

V 0(r) ≡ 1 − 3 cos θ2

r3
, (B10)

V±z(r) ≡ 3√
2

sin θ cos θe±iϕ

r3
, (B11)

V±±(r) ≡ − 3

2

sin θ2e±2iϕ

r3
. (B12)

The problem is thus reduced to the computation of the coeffi-
cients V 0, V±z, and V±±.

All these expressions have the form of convolution
integrals, V× = ∫

dr dr′V×(r − r′) ρ0(r) ρ0(r′), where ‘×’
stands for any of the above superscripts. Using the convolution

theorem, one can compute them as

V× =
∫

dk
(2π )3

V×(k) ρ0(k) ρ0(−k), (B13)

where the Fourier transform is defined as V×(k) =∫
dr e−ik·rV×(r), and equivalently for ρ0. The Fourier-

transformed functions can be explicitly computed to be

V 0(k) = − 4π

3

(
1 − 3 cos θ2

k

)
, (B14)

V±z(k) = − 4π

3

(
3√
2

sin(θk ) cos(θk ) e±iϕk

)
, (B15)

V±±(k) = − 4π

3

(
−3

2
sin θ2

k e
±2iϕk

)
, (B16)

ρ0(k) = e− 1
2

∑
n k

2
n�

2
n = ρ0(−k), (B17)

where ϕk and θk are the spherical angles of k in the lattice
coordinate system. Up to a prefactor −4π/3, the functions
V×(k) have all the same form as Eqs. (B10), (B11), and (B12)
without the 1/r3. Therefore, the remaining integral can be
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written as

ReGii = �π

k3
0

∫
dk

(2π )3
(1 − 3 k̂ ⊗ k̂) e− ∑

n k
2
n �2

n . (B18)

In principle, the integral over k can now be computed numer-
ically for given values of �x,y,z.

We consider an axially symmetric trap, �x = �y ≡ �⊥. Per-
forming the integrals over ϕk and k yields

ReGii = 3�

4
U (k0, �z, �⊥)

(
1 − 3 eLz ⊗ eLz

)
, (B19)

with the prefactor

U (k0, �z, �⊥) = 1

24
√

πk3
0

∫ 1

−1
dx

3x2 − 1[(
�2
z − �2

⊥
)
x2 + �2

⊥
]3/2 .

(B20)

Recall that eLz is the z axis of the lattice and is not necessarily
the same as the quantization axis ez.

2. Scaling analysis of the onsite coefficient

We analyze now the dependence of the onsite interaction
prefactor (B20) on the laser wavelength λ0, lattice wavelength
λL, and lattice depth. The widths �n of the ground-state wave
function ψ0(r) are given by

�2
n = λ2

L

8π2√νn
, (B21)

where νn = Vn/ER is the depth of the lattice potential in
units of the photon recoil energy ER = h̄2k2

L/(2m) (see
Appendix A 3).

The onsite prefactor scales as

U (k0, �z, �⊥) =
(

λ0

λL

)3

(νzν⊥)3/8 Ũ (�z/�⊥), (B22)

where Ũ is proportional to the integral in Eq. (B20) and
needs to be computed numerically. This expression implies
that for fixed ratio �z/�⊥ we can make the onsite prefactor U
larger by increasing the lattice depth, although the increase
is relatively slow with (νzν⊥)3/8. Alternatively, one may use
a different lattice laser or transition frequency, so as to make
λ0/λL larger.

Figure 8 shows plots of U for fixed �z (�⊥) as a func-
tion of �⊥/�z (�z/�⊥) for different lattice depths. For this
we used λ0 = 689 nm and λL = 813 nm, which correspond
to the 1S0 → 3P0 transition of 87Sr on a magic wavelength
lattice [61]. Interestingly, in both cases the function reaches a
maximum absolute value at a given ratio and then decreases
monotonously. This can be understood from the fact that when
the ratio �⊥/�z (�z/�⊥) approaches 1 the integral vanishes
because of symmetry. On the other hand, when the ratio is
very large the interaction approaches zero because the atoms
are on average too far apart.

We numerically estimate the maximum to be at

arg max
�⊥/�z>1

|U (�⊥/�z )|�z=const| ≈ 1.66, (B23)

arg max
�z/�⊥>1

|U (�z/�⊥)|�⊥=const| ≈ 2.18. (B24)

FIG. 8. Top: Onsite prefactor U (k0, �z, �⊥) as a function of
�⊥/�z. Bottom: Onsite prefactorU (k0, �z, �⊥) as a function of �z/�⊥.
Both are plotted for different trap depths νn = Vn/ER in units of the
recoil energy, using λ0 = 689 nm and λL = 813 nm.

Using �⊥/�z = (νz/ν⊥)1/4 this implies that the ratio of lattice
depths at which the onsite interaction is maximal is νz/ν⊥ ≈
7.59 and ν⊥/νz ≈ 22.59, respectively. The maximum value
achieved is larger for the case �z/�⊥ > 1, i.e., for cigar-shaped
rather than pancake-shaped traps.

APPENDIX C: DIPOLE OPERATOR

The dipole operator d̂ can be expanded (ignoring the site
index i) as

d̂ =
∑
m,n

(
demgn σ̂emgn + H.c.

)
, (C1)

which was used in Eq. (5). The dipole operator is a vec-
tor under rotations and thus can be expanded in spherical
components as d̂ = ∑

q(−1)qe−qd̂1
q , where d̂1

0 = d̂z, d̂1
± =

∓(d̂x ± id̂y)/
√

2. Using the Wigner-Eckart theorem and the
symmetries of the Clebsch-Gordan coefficients [46], one can
then show

demgn =
∑
q

(−1)qe−q〈em|d̂1
q |gn〉

= 〈e, fe||d̂1||g, fg〉√
2 fe + 1

∑
q

(−1)qe−qC
q
n , (C2)
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with Cq
n as defined in Sec. II A, and the reduced dipole matrix

element d rad
ge = 〈e, fe||d̂1||g, fg〉. Inserting this into the above

expression and reordering terms one can then split the dipole
operator into

d̂ = 〈e, fe||d̂1||g, fg〉√
2 fe + 1

(D̂+ + D̂−
) (C3)

where

D̂+ ≡
∑
q

(−1)qe−qD̂+
q , (C4)

D̂− ≡
∑
q

(−1)qe∗
−qD̂−

q . (C5)

Since the dipole operator is a vector, and the operators D̂±

do not mix under rotations, it follows that the three com-
ponents (q = 0,±1) of D̂+

(D̂−
) also form a vector. We

note, however, that given the above expressions the spherical
components of D̂+

are D̂+
q , whereas the spherical components

of D̂−
are strictly speaking (−1)qD̂−

−q. This detail should
be taken into account when explicitly evaluating matrix
elements.

To compute matrix elements of the operators D̂±
q with

respect to eigenstates of the total angular momentum we use
the fact that they are spherical operators. Thus, using the
Wigner-Eckart theorem it follows as above that

〈η1, f1,m1|D̂+
q |η2, f2,m2〉

= 〈η1, f1||D̂+||η2, f2〉√
2 f1 + 1

〈 f2 m2; 1 q| f1 m1〉, (C6)

and similarly for D̂+
q → (−1)qD̂−

−q. Here, η1,2 accounts for
other quantum numbers associated to the states considered,
e.g., e and g.

In the main text, we encountered the scalar product

D̂+ · D̂− =
∑
q,q′

(−1)q+q′
e−q · e∗

−q′D̂+
q D̂−

q′

=
∑
q

D̂+
q D̂−

q . (C7)

Since the scalar product of two vectors gives rise to a scalar
under rotations, this shows that the sum

∑
q D̂+

q D̂−
q is a

scalar and thus commutes with the total angular momentum
operator.

APPENDIX D: DARK STATES FROM
THE SINGLE-PARTICLE BASIS

We prove here that the states of Eqs. (21) and (22) are the
only existing dark states for n = 2 using the single-particle
Fock basis.

In general, a dark state is a superposition of different Fock
states that has to fulfill Eq. (20). As argued in Sec. IV B, we
can assume that all Fock states in the superposition have the
same number of excitations ne and magnetic number M. Each
of these Fock states has different possible decay channels and
all need to be killed either by Pauli exclusion or through
destructive interference with the decay of a different state.

Because n = 2, there are at most two different Fock states
which can decay to the same final state |φ f 〉 via the same
polarization q. Therefore, Fock states can only interfere in
pairs in this case.

When a Fock state has a decay channel (|φ f 〉, q) that no
other Fock state has, we call it a unique decay channel. Fock
states with unique decay channels cannot be part of a dark
state superposition. This can be used to show the absence
of dark states for various cases: states with two excitations,
states with M �= 0 for the multi-� level structure, and any
state for the multi-� structure. For double-excited states, it
is straightforward to see that there exist no two states of the
form |em en〉 that can decay to the same final state via the same
polarization. For the multi-� level structure, one can show
that in any set of states with M �= 0 there is always one state
which has a unique decay channel. The same argument applies
to the multi-� level structure for any M.

For the remaining cases, it follows from the previous
considerations that we can write a dark state ansatz generically
as

|DM〉{ fg, fe} =
∑
m

α
( fg, fe,M )
m |gM−mem〉, (D1)

where the sum is restricted to − fg � M − m � fg and − fe �
m � fe. The corresponding amplitudes α

( fg, fe,M )
m need to ful-

fill the system of equations (20). Since the Clebsch-Gordan
coefficients are real, the amplitudes can be assumed to be real
too.

For Eq. (D1) to be dark, each decay channel (|φ f 〉, q) has to
be either blocked by Pauli exclusion or canceled out through
interference between a pair of states. In the latter case, for a
given final state |gmgM−m〉 and decay polarization q, the pair
of interfering states is given by |gmeM+q−m〉 and |em+qgM−m〉.
Both these states can decay to |gmgM−m〉 by emitting a photon
with q polarization. We call this pair of states a conjugate pair
with respect to q, or a q pair.

Interference happens between conjugate pairs of states.
For a conjugate pair in Eq. (D1) to interfere destructively, it
must fulfill (dropping the superscript of the amplitudes for
simplicity)

D̂−
q (αM+q−m|gmeM+q−m〉 + αm+q|gM−mem+q〉) = 0. (D2)

This implies that

Cq
M−m αM+q−m = Cq

m αm+q. (D3)

Note that the indices have to fulfill − fg � m,M − m � fg,
and − fe � m + q,M + q − m � fe. Thus, every distinct q
pair in Eq. (D1) gives rise to an equation of the form of
Eq. (D3), and the whole system of equations is made of
intertwined pairs.

It is useful to graphically represent the system of equations
by a network (see Fig. 9). Each node of the network represents
one of the Fock states involved in the superposition (D1)
and is labeled by the index m of its amplitude αm. Each
line connecting two nodes has a polarization q attached and
represents an equation of the form of Eq. (D3) connecting
the corresponding states of the nodes. The network corre-
sponding to each ansatz (D1) is connected, and the total
number of lines is equal to the total number of equations
to be solved. The network can in principle have more lines
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q ↔ Cq
m−qαm = Cq

n−qαn
m n

−→
m1

m2

m3

0 +1

−1 m1
m2

m3

0

−1

e.g.

m4

m1
m2

m3

0

+1

−1

0 −→e.g.

m4

m1
m2

m3

0

+1

−1

(a)

(b)

(c)

FIG. 9. (a) Graphical representation of the dark state equation
for a conjugate pair of states |gnem〉 and |gmen〉 for polarization q.
(b) Reduction of the triangle loop due to Eq. (D4). (c) Reduction of
the square loop due to Eq. (D5).

than nodes, such that the system of equations appears a priori
indeterminate.

Due to the properties of Clebsch-Gordan coefficients, how-
ever, some equations are redundant and can be eliminated.
Specifically, for the level structure f ↔ f + 1 one can show
that the Clebsch-Gordan coefficients fulfill the three-state
cycling property

C0
m−1

C0
m+1

C−
m+1

C−
m

C+
m

C+
m−1

= 1, (D4)

where |m ± 1| � f , as well as the four-state cycling property

C0
m

C0
n

C−
n+1

C−
m

C0
m−1

C0
n+1

C+
n

C+
m−1

= 1, (D5)

where |m|, |m − 1| � f , and |n|, |n + 1| � f . Note that the
properties (D4) and (D5) can be used to derive higher-order
cycling identities. For the level structure f ↔ f , the property
(D4) is not valid, but the property (D5) is fulfilled for n = −m,
which is relevant for the M = 0 case.

Using Eqs. (D4) and (D5), one can show that the q-pair
equations involved in closed loops of the network are not
linearly independent. Therefore, one of the equations form-
ing the closed loop can be eliminated from the system of
equations, as shown in Fig. 9 for a triangle and a square
loop. Following this procedure iteratively, one can reduce the
number of lines in the network until the number of lines is
V − 1 for V nodes. Once this is done, a unique solution to
the system of equations represented by the network can be
straightforwardly found.

This can be used to prove that the states (21) and (22) are
the only dark states for n = 2. For this, one can show first
that for the multi-V level structure, and for the multi-� level
structure with M = 0, all states in the dark state superposition
ansatz of Eq. (D1) have a conjugate pair state to interfere
with. In other words, for these cases the system of equations
D̂−

q |D〉 = 0 is made of a set of q-pair equations such as

Eq. (D3). The network associated to these equations can then
be solved as explained above.

APPENDIX E: TOTAL ANGULAR MOMENTUM STATES
FOR IDENTICAL PARTICLES

To find the allowed total angular momentum states
of n � 3 identical fermions we employ the method de-
scribed in Ref. [51]. It consists of writing down all single-
particle Fock states allowed by the Pauli exclusion prin-
ciple, calculating their total angular momentum projection
(M = m1 + m2 + m3 + . . .), and then inferring from this
the values of F associated with those same values of M.
For example, for n = 3 fermions with angular momentum
fg = 3/2 we have four allowed states: |g−3/2 g−1/2 g1/2〉,
|g−3/2 g−1/2 g3/2〉, |g−3/2 g1/2 g3/2〉, and |g−1/2 g1/2 g3/2〉, with
M = −3/2,−1/2, 1/2, and 3/2, respectively. Therefore, the
total F must be 3/2, since it leads to the same number of states
(4) and the same values of M as in the single-particle basis.

When not all atoms are identical, we proceed in two steps.
First, we find the allowed total angular momenta of the subset
of atoms that are identical, i.e., that are in the same orbital
state g or e. Then, we combine the result with the rest of the
atoms using the usual rules of angular momentum addition.
For example, to find out the allowed gge states, we first
construct the states | f12,M〉gg, where f12 can only be an even
number between zero and 2 fg. Each value of f12 is then added
to the fe of the remaining atom, similarly to Eq. (16), to form
|( f12)F,M〉gge, where F = | f12 − fe|, . . . , f12 + fe.

APPENDIX F: DARK SUPERPOSITION
OF DIFFERENT f12 STATES

We provide here an example of how to explicitly construct
a dark state made of a superposition of different angular
momentum states. Specifically, we consider n = 3 atoms with
fg = 3/2 ↔ fe = 3/2. As argued in the main text (Sec. IV E),
there exists a dark state superposition of the form

|DM〉n=3
{3/2,3/2} = α|(0)3/2,M〉gge + β|(2)3/2,M〉gge. (F1)

Following the arguments of the main text, the values of α

and β depend only on reduced dipole matrix elements and are
hence independent of M. Therefore, we consider M = 3/2.

Following the rules to construct states of Appendix E one
can show that

|(0)3/2, 3/2〉gge
= 1√

2
(|g3/2 g−3/2 e3/2〉 − |g1/2 g−1/2 e3/2〉), (F2)

|(2)3/2, 3/2〉gge = 1√
10

(2|g−1/2 g3/2 e1/2〉− 2|g1/2 g3/2 e−1/2〉

− |g−3/2 g3/2 e3/2〉 − |g−1/2 g1/2 e3/2〉).

(F3)

Since we showed that all q = 0,±1 decay channels acting on
states with the same F are linearly dependent on each other,
we only need to consider one single q. Acting with D̂−

0 on
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|DM〉n=3
{3/2,3/2} we find

D̂−
0 |D3/2〉n=3

{3/2,3/2} =
(

− 3√
30

α + 3

5
√

6
β

)
|g1/2 g−1/2 g3/2〉.

(F4)

Thus, α = β/
√

5. The normalized dark state is then given by

|DM〉n=3
{3/2,3/2} = 1√

6
(|(0)3/2,M〉gge+

√
5 |(2)3/2,M〉gge). (F5)

It can be checked explicitly that this state indeed fulfills
D̂−

q |DM〉n=3
{3/2,3/2} = 0 for all q and M.
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