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Disorder-controlled relaxation in a three-dimensional Hubbard model quantum simulator
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Understanding the collective behavior of strongly correlated electrons in materials remains a central problem
in many-particle quantum physics. A minimal description of these systems is provided by the disordered
Fermi-Hubbard model (DFHM), which incorporates the interplay of motion in a disordered lattice with local
interparticle interactions. Despite its minimal elements, many dynamical properties of the DFHM are not
well understood, owing to the complexity of systems combining out-of-equilibrium behavior, interactions, and
disorder in higher spatial dimensions. Here, we study the relaxation dynamics of doubly occupied lattice sites
in the three-dimensional DFHM using interaction-quench measurements on a quantum simulator composed of
fermionic atoms confined in an optical lattice. In addition to observing the widely studied effect of disorder
inhibiting relaxation, we find that the cooperation between strong interactions and disorder also leads to the
emergence of a dynamical regime characterized by disorder-enhanced relaxation. To support these results, we
develop an approximate numerical method and a phenomenological model that each capture the essential physics
of the decay dynamics. Our results provide a theoretical framework for a previously inaccessible regime of
the DFHM and demonstrate the ability of quantum simulators to enable understanding of complex many-body
systems through minimal models.
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I. INTRODUCTION

Strong disorder and interactions are known to give rise to
the celebrated Anderson and Mott metal-insulator transitions.
In an Anderson insulator, a random spatial potential localizes
noninteracting particles through destructive interference [1,2],
while for a unit-filled Mott insulator, strong repulsive interac-
tions create an energy gap that prevents particle motion [3].
The combined presence of disorder and interactions in many
physical systems poses the open challenge of understanding
the interplay between these vastly different localization mech-
anisms [4,5]. The development of highly tunable and isolated
quantum simulators, such as ultracold atoms trapped in optical
lattices, has created new opportunities to experimentally study
this long-standing problem using a minimal model combining
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both elements: the disordered Fermi-Hubbard model (DFHM)
[6].

A potential result of combined disorder and interactions
in isolated systems is many-body localization (MBL), in
which relaxation to thermal equilibrium is prevented by suffi-
ciently strong disorder [7–10]. Despite a concerted theoretical
effort in recent years and several experimental results for
one-dimensional chains [11–14], many questions still remain
regarding the nature of this phenomenon. This shortcoming
is especially true for systems with more than one spatial
dimension, although initial experimental studies with atoms in
two- and three-dimensional optical lattices have also observed
slow dynamics consistent with MBL [15–17].

Another mechanism that can suppress relaxation emerges
in the strongly interacting regime of the DFHM: the formation
of quasibound doubly occupied sites (i.e., doublons), which
slowly decay in a clean lattice through high-order processes
that generate many low-energy excitations [18,19]. The ef-
fect of disorder on doublon relaxation is largely unexplored.
Reconciling the interplay of slow dynamics caused by dou-
blon binding and disorder-induced localization is critical to
obtaining a more complete understanding of thermalization in
the DFHM, including the possibility of MBL. However, ad-
vancing this frontier demands exploring the highly nontrivial
regime characterized by comparable disorder and interaction
energies.

Here, we investigate how strong interactions and disor-
der compete and cooperate to affect the far-from-equilibrium
dynamics of the three-dimensional (3D) DFHM. Using a
quantum simulator of fermionic atoms in an optical lattice,
we perform measurements of doublon relaxation following
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FIG. 1. Experimental setup. (a) A nonequilibrium doublon pop-
ulation for atoms in two spin states is prepared in a 3D cubic lattice
using an interaction quench. (b) The atoms are described by the
disordered Fermi-Hubbard model [Eq. (1)], which involves tunneling
with amplitude t , doublon formation with interaction energyU , and a
local disordered energy offset ε with an exponential distribution ρ(ε)
characterized by disorder strength �. (c) While the full dynamics of
the system involve the interplay of doublons and single atoms, the
case of an isolated doublon is useful for intuition about the dynamical
regimes. For weak disorder (compared to U ), the decay of doublons
into pairs of single atoms is suppressed by the gap between the
doublon and single-particle energies. Moderate disorder can enhance
the decay rate by creating resonant pairs of sites with an energy
difference comparable to U . However, sufficiently strong disorder
can hinder decay by suppressing diffusion to these resonant sites.

an interaction quench and use the resulting decay times to
characterize the system behavior. Exploring the parameter
regime from interaction-dominated to disorder-dominated be-
havior, we are able to classify the dynamics in terms of
two distinct regimes: disorder-suppressed relaxation at strong
disorder, and disorder-enhanced relaxation at weaker disor-
der. The latter effect has yet to be observed in a quantum
simulator platform and may be related to disorder-driven
insulator-metal transitions observed in certain correlated ma-
terials [20–22]. We compare our results to beyond-mean-field
numerical simulations of the quantum dynamics, which cap-
ture many features of our observed results and suggest the
creation of resonances in the lattice by the disorder as the
physical origin of this disorder-enhanced regime. We further
supplement this picture by developing a simple phenomeno-
logical model that incorporates both disorder-enhanced and
disorder-suppressed mechanisms for doublon decay.

II. MEASURING AND SIMULATING RELAXATION

We employ an optical lattice experimental platform (Fig. 1)
described in previous work [15]. Two spin states (denoted
| ↑〉 and | ↓〉) of fermionic 40K atoms are trapped in a cubic
lattice superimposed with 532 nm optical speckle disorder.
This system realizes the DFHM with confinement (Fig. 1):

H =
∑

〈i, j〉,σ
(−ti j ĉ

†
jσ ciσ + H.c.) +

∑
i

Uini↓ni↑

+
∑
i,σ

(
εi + 1

2
mω2r2

i

)
niσ . (1)

Here, σ indexes the two spin states, ti j is the tunneling en-
ergy between sites i and j (restricted to nearest-neighbors,
indicated by 〈i, j〉), Ui is the on-site interaction energy, εi is
the local disordered energy offset, ω is the harmonic confine-
ment, m is the atomic mass, and ri is the distance of site i
from the trap center. The single-particle bandwidth is 12t in
the absence of disorder. The applied speckle potential creates
disorder in the t , U , and ε terms, leading to distributions of
these Hubbard parameters with widths that depend on the opti-
cal power [23,24]. We characterize the disorder strength by �,
which is approximately equal to the standard deviation of the
ε distribution [Fig. 1(b)]. The influence of spatial correlations
in the disorder potential is weak, since the correlation length
of the speckle field is smaller than two lattice spacings along
every lattice direction. Because of the harmonic confinement,
all measurements are averaged over a density profile that
varies from an estimated occupancy 〈n〉 = 0.5 at the center
of the trap to zero at the edges of the system.

To probe far-from-equilibrium doublon dynamics, we
measure the population of atoms in doubly occupied sites
following a quench in which the interactions are reversed from
attractive to repulsive using a Feshbach resonance. Before
the quench, the gas is in equilibrium with an energetically
favorable doublon population. The equilibrium temperature
is estimated (from measurements of the entropy before the
lattice and disorder are turned on) as T/12t = 5.3, resulting
in an initial state that is at high temperature with respect to
the ground band. After the quench, the doublons become ex-
citations that can decay by breaking apart into a pair of single
atoms (“singles”). The atomic doublon population is allowed
to evolve in a disordered lattice by turning on the optical
speckle field following the interaction quench. After a variable
time, the doublon population is measured by mapping each
doublon to a tightly bound Feshbach molecule and selectively
transferring the | ↓〉 atom in each molecule to an ancillary spin
state using an rf sweep [25]. Alternatively, we can selectively
transfer and image only atoms from singles, which allows us
to separate doublon decay from overall number loss.

In all regimes, the doublon population decreases follow-
ing the quench with a rate sensitive to the disorder strength.
Typical results at different disorder strengths are shown in
Fig. 2. To quantify the decay, we fit the data to a model
that describes exponential doublon decay with a time constant
τ towards an equilibrium value, which itself slowly decays
because of overall particle loss with τloss = 2100h̄/t (see the
Supplemental Material [25] for model details). While we find
that this fit provides a reasonable characterization of the decay
timescale, the functional form of the relaxation is unknown
beyond the clean limit. We therefore turn towards numerics
to provide an interpretation of the timescale with disorder
present.

The large scale and dimensionality of our system, as well
as the far-from-equilibrium nature of the dynamics, preclude
exact numerical studies and commonly employed approx-
imate techniques, such as density matrix renormalization
group (DMRG) or diagonalization methods. Furthermore, the
fermionic sign problem forbids use of quantum Monte Carlo
methods. We therefore develop a numerical method—a gen-
eralized discrete truncated Wigner approximation (GDTWA)
[26–29]—to simulate the relaxation process. The GDTWA
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FIG. 2. Examples of experimental and numerical doublon relax-
ation data at (a) �/U = 0.07, (b) 1.1, (c) 2.7, and (d) 4.7. All data
are taken at U/12t = 1.8 (corresponding to a 12ER lattice depth in
the experiment). Sample traces of the doublon population vs time
for different disorder strengths are shown for experimental measure-
ments (points); the error bars give the statistical standard error of
the mean for averaging over multiple measurements. The fits used to
extract τ are shown using solid lines. The dashed lines denote the
fit values for the equilibrium doublon population, which is typically
10% of the total atom number [25] and which decays over time
due to overall number loss. The corresponding GDTWA simulations
[25] are displayed as shaded regions that show the standard error
of the mean from disorder and trajectory averaging. The horizontal
axis for (d) (the strongest disorder case) is compressed to bring the
slow decay into view. At the highest disorder the doublon lifetime τ

becomes closest to the overall number loss τloss, potentially affecting
the fitted value for the equilibrium doublon fraction [25].

approach invokes a factorization of the density matrix ρ̂ of
the many-body system over individual lattice sites i, ρ̂ =⊗

i ρ̂i. Furthermore, random sampling of initial conditions
from a discrete semiclassical phase space accounts for quan-
tum noise. GDTWA thus provides a numerically tractable
method for examining the role of quantum correlations in the
system dynamics.

More specifically, we can fully describe the reduced state
ρ̂i at lattice site i (with a four-dimensional local Hilbert
space spanned by basis states {|↑↓〉 , |↑〉 , |↓〉 , |0〉}) by a 16-
dimensional vector �λi, so that ρ̂i = ∑

α λα
i 
̂

α
i for a complete

basis of local observables {
̂α
i }. Inserting the product state

ansatz into the von Neumann equation ∂tρ̂ = −ih̄[Ĥ , ρ̂] re-
sults in a set of nonlinear differential equations describing
the evolution of each �λi, and which may be numerically in-
tegrated to obtain the mean-field dynamics. While this ansatz
retains full information regarding the strong on-site Hubbard
correlations, such a solution describes a product state at all
instances in time and therefore neglects the important cross-
site quantum correlations responsible for doublon decay. In
fact, for an initial product state of definite particle number and

spin, the mean-field solution results in no dynamics for this
system, highlighting the importance of quantum correlations
in enabling doublon decay.

To capture the buildup of quantum correlations between
sites, we instead describe the initial value of each �λi as a prob-
ability distribution over a discrete phase space that samples
over all allowed values for each observable in our local basis
[25]. Averaging independently evolved sets of randomly sam-
pled initial conditions from this distribution yields a highly
nontrivial solution for the dynamics (owing to the nonlinear
nature of the dynamical equations) and describes the evolution
to a correlated state exhibiting entanglement [27,29]. This
approximation, while only rigorously valid at short times,
has demonstrated the ability to provide accurate results in
generic spin models at longer times and properly capture
quantum thermalization of local observables [27,30,31]. Here,
we adapt the GDTWA to model DFHM dynamics and we
provide benchmarks for its applicability in the Supplemental
Material [25].

The GDTWA results, shown as traces in Fig. 2, approxi-
mately capture the observed changes in doublon population
decay with applied disorder. With the notable exception of
�/U = 0.067, the GDTWA real-time dynamics generally re-
side within experimental error bars. For small disorder where
doublon decay is expected to proceed via a large number of
high-order processes [18,19], we expect that the nature of our
approximation will be unable to fully account for all involved
decay channels. The GDTWA dynamics also allow us to de-
termine, within the assumptions of the technique, the extent
to which τ accurately characterizes the relaxation timescale.
As illustrated in Fig. 2, we observe qualitative differences
between the measurements and simulations, which tend to
exhibit a faster initial decay (over timescales h̄/t) before
transitioning to a slower decay on longer timescales that is
well fit by an exponential decay. Nonetheless, by constraining
the initial doublon fraction in the fitted exponential decay
to the measured value, we are able to obtain a reasonable
exponential fit of the entire dynamical curve that is used to ex-
tract a consistent relaxation timescale. The resulting effective
timescale incorporates both the initial nonexponential features
and the subsequent exponential decay [25].

To account for the spatially varying trap density and vari-
ations in the initial preparation, which affects the equilibrium
doublon density, we choose initial single densities for the
simulations that yield best fits to the experimental data. These
best-fit single densities in the simulations are generally con-
sistent with the experimentally measured single density at the
trap center, except at small disorders where GDTWA does not
fully capture the decay processes associated with the clean
system and thus results in a much larger equilibrium doublon
density for all initial single densities, as evidenced in Fig. 2(a)
(see also the Supplemental Material [25]). However, we have
also confirmed that the relaxation timescale is not strongly
influenced by the average density nor the spatial profile of
the gas in the regime of interest [25]. These observations
support characterizing the doublon relaxation dynamics by a
single parameter τ : τ primarily depends on the interplay of
disorder with interactions and tunneling and is insensitive to
parameters that may fluctuate or have some uncertainty in the
experiment.
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FIG. 3. Dynamical regimes of doublon relaxation. The doublon
lifetime τ shows a strong nonmonotonic dependence on disorder,
first decreasing (green region, labeled 1) and then increasing (blue
region, labeled 2) with larger disorder strength. The measurements
(points) are compared to numerical GDTWA simulations (crosses).
The error bars for the experimental data provide the standard error
of the fit used to determine τ , while the error bars for the GDTWA
numerical data are smaller than the symbols. The solid line represents
a fit of the measurements to the analytical reaction-diffusion model
with a diffusion constant that decreases monotonically with disorder.
The lifetime for overall number loss in the experiment τloss (dashed-
dotted line) is independent of disorder and more than an order of
magnitude slower than the doublon lifetime at all but the highest
disorder value. (a)–(d) indicate the values of �/U corresponding to
Figs. 2(a)–2(d).

III. ANALYSIS OF DYNAMICAL REGIMES

The dependence of τ on disorder is shown in Fig. 3; the
qualitative features are shared by experiment and numerics.
Strikingly, we find that applying disorder first causes the
relaxation time τ to rapidly decrease. For the clean system,
τ is substantially longer than the single-particle tunneling
time h̄/t , which is consistent with previous studies that
identified doublons as repulsively bound pairs [18,19,32–34].
However, disorder causes τ to decrease to a minimum value
comparable to the tunneling time h̄/t at a disorder value near
� ∼ U/2. While the complementary phenomenon of
interaction-driven delocalization has been observed in
similar systems [11,15,35], here we observe a disorder-driven
increase in relaxation in a quantum simulator with a high
degree of isolation and tunability.

As � is increased beyond U , τ eventually increases, grow-
ing by over two orders of magnitude at the strongest disorder
we can apply in the experiment. The separation into two
dynamical regimes (distinguished by the slope of τ with �)
combined with the crossover at � ∼ U suggest that the dy-
namics are controlled by competing mechanisms arising from
interactions and disorder.

We can understand these dynamical regimes using a mini-
mal model of diffusing doublons in a disordered environment.
In this model, the interchange between doublon-hole pairs
and pairs of opposite-spin singles is controlled by a set of

reaction-diffusion (RD) equations. The RD model [25] aug-
ments the classical continuum diffusion equation for each
particle species with a source term that converts a doublon-
hole to a single-single combination, only when the local
parameters allow this process to be resonant. In particular,
our model requires the local energy difference arising from
the speckle disorder to lie within a window of width ∼t
around U (see Fig. 1). The doublon diffusion coefficients are
taken to decrease monotonically with disorder strength, as in-
creasingly large local energy differences will inhibit doublon
transport throughout the lattice.

The RD model gives the decay rate 1/τ as a product of the
effective diffusion rate Deff and the probability Preaction for a
conversion between a doublon-hole pair and two singles (↑
and ↓):

1/τ = Preaction × Deff. (2)

The probability of a reaction per site encountered (derived
in the Supplemental Material [25]) is then expressed via a
product of the exponential speckle disorder amplitude at the
conversion energy U , and a term corresponding to the width
of a conversion resonance, as follows,

Preaction = p+ exp(−U/�) sinh(
√

2zt/�), (3)

where the additional constant p is a small (i.e., of order
0.01) parameter denoting the probability of reactions in the
clean limit, and z is the lattice coordination number. The
effective diffusion coefficient Deff gives the rate (linear in
time) at which new sites are sampled by any particular dou-
blon. We expect Deff to decrease rapidly with disorder since
it is controlled by the doublon diffusion constant. Even in
the asymptotically localized phase predicted at large disorder
(where doublon diffusion vanishes), Deff should be supple-
mented by an additional small velocity that allows sampling
of sites within the finite localization length.

The exact dependence of diffusion Deff on disorder �/U is
not qualitatively important as long as Deff decreases mono-
tonically to a very small or vanishing value. In Fig. 3, we
choose a diffusion coefficient that decreases exponentially
with disorder. For this functional form, the best-fit value for
Deff is of order t/h̄ at low disorder (4 ± 1 t/h̄) and is reduced
by a factor of over 100 (to 0.02 ± 0.008 t/h̄) at the highest
�. We find that an algebraically decaying diffusion coeffi-
cient yields quantitatively similar decay rates at all measured
disorder strengths. The combined expression for the decay
rate 1/τ within this reaction-diffusion model explains the two
relaxation regimes as follows.

In regime 1 (� � U ), increasing disorder leads to decreas-
ing decay times. This regime is controlled by the reaction
probability Preaction. In the clean limit, the reaction rate
is greatly suppressed by the strong interaction energy U ,
and doublon decay occurs slowly. However, as the disorder
strength increases, the tail of the local energy distribution
allows for a finite probability of an adjacent site energy
difference of order U . By compensating the interaction en-
ergy U through this mechanism, the disorder produces a
quantum resonance that allows the decay reaction to pro-
ceed with high probability, thereby resulting in fast doublon
relaxation.

L012009-4



DISORDER-CONTROLLED RELAXATION IN A … PHYSICAL REVIEW RESEARCH 3, L012009 (2021)

In regime 2 (� � U ), increasing disorder leads to increas-
ing decay times. This regime is controlled by the diffusion
constant Deff, which becomes heavily suppressed by local-
ization effects produced by the large disorder. To a lesser
extent, the gradual suppression of the reaction probability
due to fewer resonances also contributes to the behavior
in this regime. Recent theoretical work suggests that, aside
from rare region fluctuations, diffusion should vanish at suf-
ficiently large disorder and signal an asymptotic many-body
localized phase [10]. The diffusion in the 3D interacting
system is an unknown function of the disorder ratio to the
bandwidth �/12t and interactions �/U , but dimensional con-
siderations suggest a reduction when the ratios become of
order unity, consistent with the observations Fig. 3. While
the experimental data cannot distinguish between Deff =
0 and Deff saturating to a finite small value, we can ro-
bustly conclude that diffusion must be highly inhibited in
regime 2.

IV. CONCLUSION

Quantum many-body systems involving interactions and
disorder can exhibit emergent behavior that, especially in
two and three dimensions, is challenging to predict from first
principles. By experimentally constructing a DFHM quantum
simulator in a 3D optical lattice, we are able to study the dy-
namical out-of-equilibrium behavior of doublons across vastly
different scales of disorder and interactions. Remarkably, we
find that constructing a simple model for this extraordinarily
complicated system is possible using reaction-diffusion equa-
tions that are analytically solvable. We devise a numerical

approach that captures the same physical effects and shows
quantitative agreement with the experiment.

Intriguing open questions remain to be explored. In the
intermediate disorder regime (� ∼ U ), the observed fast dou-
blon relaxation may be related to the behavior of “bad metals”
[36,37], which can be characterized by a lack of conserved
excitations [38]. Because the rapid doublon decay can be
understood as a consequence of disorder disrupting the gap in
the single-particle spectrum, spectroscopic measurements in
this regime could identify a disorder-created pseudogap in the
density of states [20,21]. As a practical tool, the fast disorder-
mediated thermalization that we observe also suggests an
approach to avoid challenges in the adiabatic preparation of
strongly correlated atomic gases [39]. In the strong disorder
regime, our measurements imply a suppression of particle
transport as disorder is increased. However, we are unable to
distinguish whether this behavior is a manifestation of slow
diffusion or a signature of asymptotic many-body localization.
Further experiments could clarify this difference and extend
the results of Ref. [15] to the U/12t > 1 regime.
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