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We investigate many-body spin squeezing dynamics in an XXZ model with interactions that fall off with
distance r as 1=rα in D ¼ 2 and 3 spatial dimensions. In stark contrast to the Ising model, we find a broad
parameter regime where spin squeezing comparable to the infinite-range α ¼ 0 limit is achievable even
when interactions are short ranged, α > D. A region of “collective” behavior in which optimal squeezing
grows with system size extends all the way to the α → ∞ limit of nearest-neighbor interactions. Our
predictions, made using the discrete truncated Wigner approximation, are testable in a variety of
experimental cold atomic, molecular, and optical platforms.
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Introduction.—Quantum technologies receive an enor-
mous amount of attention for their potential to push beyond
classical limits on physically achievable tasks. In order to
be useful, however, these technologies must demonstrate a
practical advantage over their classical counterparts. While
most public attention has focused on a quantum advantage
in the realm of computing, the quantum metrology com-
munity has made tremendous progress in developing
strategies and platforms for surpassing classical limits on
measurement precision [1–5]. A key element in these
strategies is the use of entanglement to enhance the
capabilities of individual, uncorrelated quantum systems.
Spin squeezing is one of the most promising strategies for
using entanglement to achieve a quantum advantage in
practical sensing applications [6,7].
The paradigmatic setting for spin squeezing is the “one-

axis twisting” (OAT) model [7,8], which generates spin-
squeezed states by use of uniform infinite-range Ising
interactions that do not distinguish between the constituent
spins. These uniform interactions can be implemented
directly via collisional interactions between delocalized
atoms [9–11], as well as indirectly through coupling
to collective phonon modes [12–14] or cavity photons
[15–19]. Despite numerous proof-of-principle demonstra-
tions, however, no spin squeezing experiment to date has
achieved a practical metrological advantage, and current
platforms relying on infinite-range interactions face a host
of technical and fundamental difficulties that will require
new breakthroughs to overcome.
The Ising model with power-law interactions that fall off

with distance r as 1=rα generates squeezing that scales with
system size when α < D in D spatial dimensions [20],
which is highly desirable for metrological applications.
Conversely, the power-law Ising model generates only a

constant amount of squeezing that is independent of system
size when α > D. In practice, only a limited number of
platforms can achieve long-range spin interactions
(α < D), making it highly desirable to shed light on
the possibilities for scalable spin squeezing with short-
range interactions (α > D), which encompasses, e.g.,
superexchange, dipolar, van der Waals, and far-detuned
phonon-mediated interactions.
Motivated by the intuition (echoed in Refs. [11,21–25])

that adding spin-exchange interactions to the Ising model
should energetically protect collective behavior reminiscent
of the OAT model, in this Letter we investigate the spin
squeezing properties of the power-law XXZ model, whose
ground-state physics was studied in Ref. [26]. Remarkably,
we find a broad range of parameters for which the power-
law XXZ model nearly saturates the amount of squeezing
generated in the infinite-range (α ¼ 0) limit. Even when
interactions are short ranged (α > D), we observe a large
region of collective squeezing behavior in which the
amount of achievable spin squeezing grows with system
size. This region extends through to the α → ∞ limit of
nearest-neighbor interactions. Our Letter opens up a new
prospect of spin squeezing in variety of cold atomic,
molecular, and optical systems, including ultracold neutral
atoms [27,28], Rydberg atoms [29,30], electric and
magnetic dipolar quantum gases [31–34], and trapped ions
[12,35].
Background and theory.—We begin with a brief review

of spin squeezing and the OAT model, described by the
Ising Hamiltonian

HOAT ¼ χ
XN

i;j¼1

sz;isz;j ¼ χS2z ; ð1Þ
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where χ is the OAT squeezing strength; the spin-z operator
sz;i ≡ σz;i=2 is defined in terms of the Pauli-z operator σz;i
on spin i; and Sz ≡P

N
i¼1 sz;i is a collective spin-z operator.

Eigenstates of HOAT can be classified by a (non-negative)
total spin S ∈ fN=2; N=2 − 1;…g and a projection mz ∈
fS; S − 1;…;−Sg of spin onto the z axis. The manifold of
all states with maximal total spin S ¼ N=2 (e.g., spin-
polarized states) is known as the “Dicke manifold” [7].
Equivalently, the Dicke manifold consists of all permuta-
tionally symmetric states that do not distinguish between
underlying spins. States in the Dicke manifold can be
represented by distributions on a sphere, whose variances
along different axes must satisfy an appropriate set of
quantum (Heisenberg) uncertainty relations (see Fig. 1). In
the case of a single (two-level) spin, this distribution has a
fixed Gaussian-like shape that is uniquely characterized by
its orientation. Identifying the peak of this distribution
recovers the representation of a qubit state by a point on the
Bloch sphere. For N > 1 spins, meanwhile, this distribu-
tion can acquire additional structure with metrological
utility.
Given an initial state of N spins polarized along the

equator, represented by a Gaussian-like distribution on a
sphere, the net effect of the OAT Hamiltonian is to shear
this distribution, resulting in a squeezed state with a
reduced variance ðΔϕÞ2 along some axis. This reduced
variance allows for an enhanced measurement sensitivity to
rotations of the collective spin state along the squeezed
axis, at the expense of a reduced sensitivity to rotations
along an orthogonal axis. Spin squeezing can be quantified
by the maximal gain in angular resolution Δϕ over that
achieved by a spin-polarized state [7],

ξ2 ≡ ðΔϕminÞ2
ðΔϕpolarizedÞ2

¼ min
ϕ

varðS⊥ϕ Þ ×
N

jhSij2 ; ð2Þ

where S≡ ðSx; Sy; SzÞ is a vector of collective spin
operators; the operator S⊥ϕ ≡ S · n̂⊥ϕ is the projection of S
onto an axis n̂⊥ϕ parametrized by an angle ϕ in the
plane orthogonal to the mean spin vector hSi; and

varðOÞ≡ hO2i − hO2i denotes the variance of O. A spin
squeezing parameter ξ2 < 1 implies the presence of many-
body entanglement [36] that enables a sensitivity to
rotations beyond that set by classical limits on measure-
ment precision [1]. The OAT model can prepare squeezed
states with ξ2 ∼ 1=N2=3, whereas the fundamental
(Heisenberg) limit imposed by quantum mechanics is
ξ2 ∼ 1=N [1].
To accommodate for the fact that physical interactions

are typically local, the OAT Hamiltonian in Eq. (1) can be
modified by the introduction of coefficients 1=jri − rjjα in
the coupling between spins i and j at positions ri and rj,
resulting in the power-law Ising model. The introduction of
nonuniform couplings means that the power-law Ising
model breaks permutational symmetry, coupling the
Dicke manifold of permutationally symmetric states with
total spin S ¼ N=2 to asymmetric states with S < N=2 and
thereby invalidating the representation of squeezing
dynamics shown in Fig. 1. The leakage of population
outside the manifold of permutationally symmetric states
can be energetically suppressed by the additional intro-
duction of spin-aligning si · sj interactions, where si ≡
ðsx;i; sy;i; sz;iÞ is the spin vector for spin i. In total, we thus
arrive at an XXZ model described by the Hamiltonian

HXXZ ¼
X

i≠j

J⊥si · sj þ ðJz − J⊥Þsz;isz;j
jri − rjjα

: ð3Þ

When interactions are uniform, α ¼ 0, the
P

i≠j si · sj ∼
S2 ¼ SðSþ 1Þ term in Eq. (3) is a constant of motion
within manifolds of definite total spin S, resulting in an
OAT model with χ ¼ Jz − J⊥.
When Jz − J⊥ ¼ 0, the XXZ model contains only the

spin-aligning si · sj terms, and if interactions are long-
ranged, α ≤ D, then the Dicke manifold is gapped away
from all orthogonal states by a nonvanishing energy
difference Δgap ≳ jJ⊥j (see the Supplemental Material
[37]). As a consequence, for any finite N and α ≤ D there
exists a nonvanishing range of coupling strengths Jz ≈ J⊥
for which a perturbative treatment of the anisotropic
Ising terms in Eq. (3) is valid. In this case, the XXZ
model becomes precisely the OAT model at first
order in perturbation theory, with a squeezing strength
χeff ¼ hαðJz − J⊥Þ, where hα is the average of 1=jri − rjjα
over all i ≠ j. If interactions are short ranged with α > D,
then, generally, Δgap → 0 as N → ∞, formally invalidating
perturbation theory for any Jz at sufficiently large N.
Nonetheless, the spin-aligning terms of the XXZ model
can still enable a nonperturbative emergence of collective
behavior resembling perturbative gap-protected OAT. We
numerically explore the prospect of spin squeezing with
short-ranged interactions in the following section, finding
that squeezing comparable to OAT may be possible with a
wide range of α and Jz, including the α → ∞ limit of
nearest-neighbor interactions.

FIG. 1. Representations of the state jψðtÞi of N ¼ 40 spins
initially polarized along the equator and evolved under the OAT
Hamiltonian for a time t up to the optimal OAT squeezing time
χtOATopt ∼ 1=N2=3. Darker colors at a point n̂ on the sphere
correspond to a larger overlap jhn̂jψðtÞij2, where jn̂i is a state
in which all spins are polarized along n̂.
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Results.—Whereas the quantum Ising model is exactly
solvable [38,39], the XXZ model in Eq. (3) is not. We
therefore investigate the spin squeezing properties of the
XXZ model using the discrete truncated Wigner approxi-
mation (DTWA) [40] for N ¼ 4096 ¼ 642 ¼ 163 spins,
focusing on the case of two (D ¼ 2) and three (D ¼ 3)
spatial dimensions (see the Supplemental Material [37] for
D ¼ 1, where our main results are less striking but still
hold). DTWA has been shown to accurately capture the
behavior of collective spin observables in a variety of
settings [40,41], and we provide additional benchmarking
of DTWA for the XXZ model on lattices of up to 7 × 7
spins in the Supplemental Material [37], although it will
ultimately be up to experiments to verify our findings. Our
main results are summarized in Fig. 2, in which we explore
the squeezing behavior of the XXZ model in Eq. (3) around
the isotropic (Heisenberg) point at Jz ¼ J⊥ by varying both
Jz=J⊥ and the power-law exponent α. Specifically,

we examine (i) the optimal squeezing parameter
ξ2opt ≡mint ξ2ðtÞ ¼ ξ2ðtoptÞ, (ii) the minimal squared
magnetization throughout squeezing dynamics, hS2imin≡
mint≤topthS2iðtÞ, and (iii) the optimal squeezing time topt.
First and foremost, Fig. 2 confirms the theoretical

argument that OAT-limited squeezing should be achievable
with any power-law exponent α ≤ D for some nonvanish-
ing range of Ising couplings, Jz ≈ J⊥. Moreover, when α ≤
D we observe that this capability persists well beyond the
perturbative window with jJz − J⊥j ≪ jJ⊥j, covering all
Jz=J⊥ < 1 shown in Fig. 2 and an increasing range of
Jz=J⊥ > 1 as α → 0. Even more striking than the behavior
at α ≤ D, Fig. 2 shows that squeezing well beyond the Ising
limit can still be achievable for a wide range of Ising
couplings Jz=J⊥ < 1 when interactions are short ranged,
α > D. In a nearest-neighbor XXZ model (α → ∞), the
region jJzj < jJ⊥j corresponds to the equilibrium XY
phase, whereas Jz=J⊥ < −1 and Jz=J⊥ > þ1 correspond
to the equilibrium Ising ferromagnet and antiferromagnet
phases (depending on the sign of J⊥) [26,46]. The
asymmetry about Jz ¼ J⊥ in Fig. 2 thus hints at an
interesting connection between equilibrium physics [26]
and far-from-equilibrium dynamical behavior of the XXZ
model (discussed further in the next section) [47].
Though the attainable amount of squeezing generally

decreases with shorter range (increasing α) and stronger
anisotropy (decreasing Jz=J⊥ < 1), a region of collective
squeezing behavior connected to the OAT limit persists
through to the α → ∞ limit of nearest-neighbor inter-
actions. This region is reminiscent of the 2

3
D ≤ α < D

region of the power-law Ising model (J⊥ ¼ 0), in which
squeezing falls short of the OAT limit, but still grows with
system size [20].
In fact, the transition between collective and Ising-

limited squeezing regions, which we, respectively, denote
S-collective and S-Ising (with an “S-” prefix to emphasize
the role of squeezing in their characterization), is marked
by a discontinuous change in both the minimal squared
magnetization hS2imin and the optimal squeezing time topt,
signifying the presence of a dynamical phase transition.
The dynamical phases in question can be characterized by
the behavior of optimal squeezing ξ2opt, which either scales
with system size or saturates to a constant value. We discuss
and clarify these points below.
The discontinuity in optimal squeezing time topt at the

dynamical phase boundary in Fig. 2 is the result of a
competition between local optima in squeezing over time,
shown in Fig. 3. Large amounts of spin squeezing are
generated in the S-collective phase near the isotropic point
at Jz ¼ J⊥. The amount of squeezing generated by col-
lective dynamics falls off away from the isotropic point,
until it finally drops below an “Ising” squeezing peak that is
generated at much short times, resulting in a discontinuous
change in the time at which squeezing is optimal. The
discontinuous change in the optimal squeezing time is, in

FIG. 2. The optimal squeezing ξ2opt (top), minimal squared
magnetization hS2imin (middle), and optimal squeezing time topt
(bottom) for N ¼ 4096 ¼ 642 ¼ 163 spins in D ¼ 2 (left) and
D ¼ 3 (right) spatial dimensions. Spins are initially polarized
along the equator and evolved under the XXZ Hamiltonian in
Eq. (3). Squeezing ξ2opt is shown in decibels, and hS2imin is
normalized to its initial value hS2i0 ¼ ðN=2Þ½ðN=2Þ þ 1�.
Dashed gray lines mark α ¼ D, and dotted gray lines track local
minima of hS2imin, marking the boundary between regions of
collective and Ising-limited squeezing dynamics, respectively,
denoted “S-collective” and “S-Ising.” Other markers in the
middle panels indicate vales of Jz=J⊥; α; D that are currently
accessible with neutral atoms [42,43] (cyan line), Rydberg atoms
[29,30,44] (red dots), polar molecules [31,32,45] (green line),
magnetic atoms [33,34] (pink square), and trapped ions [12] (blue
line). DTWA results are averaged over 500 trajectories.
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turn, responsible for the sudden change in the minimal
squared magnetization hS2imin, which has less time to
decay in the Ising-limited (S-Ising) regime.
It is no surprise that quantities such as topt and hS2imin

that are defined via minimization exhibit discontinuous
behavior, and these discontinuities do not by themselves
indicate a transition between different phases of matter. We
can formally distinguish the S-collective and S-Ising phases
by examining the nature of squeezing that is generated in
these regions. Specifically, the S-Ising phase generates an
amount of squeezing that is insensitive to system size,
whereas the S-collective phase generates an amount of
squeezing that scales with system size as ξ2opt ∼ 1=Nν,
where the exponent ν generally depends on the values of α
and Jz=J⊥ [37]. Numerically, we find that the S-collective
phase spans all Jz=J⊥ < 1 when α ≲D, whereas the
transition between S-collective and S-Ising phases occurs
at a critical Ising coupling Jcritz that either diverges
logarithmically with system size (Jcritz ∼ − logN) or stays
constant when α ≳D (see Fig. 4, where we focus onD ¼ 2
and α ¼ 3 due to its experimental relevance, and the
Supplemental Material [37]). We note that small oscilla-
tions in squeezing over time (see Fig. 3) add minor
corrections to the behavior of ξ2opt and Jcritz . These oscil-
lations are responsible for the discontinuous behavior of topt
and hS2imin seen in Fig. 2 within the S-collective phase.
Discussion.—The mechanism behind the collective

dynamics featured by the XXZ model far from the isotropic
point at Jz ¼ J⊥ is not obvious and lies in a parameter
regime beyond the reach of exact treatment with current
theoretical capabilities. While an in-depth understanding of
collective dynamics will most likely require experimental
investigations in the spirit of quantum simulation, we
discuss possible phenomenological explanations below.
Collective squeezing behavior when α < D is the least

surprising, as the XXZ model essentially interpolates
between perturbative gap-protected OAT (near Jz ¼ J⊥)
and the long-range power-law Ising model (at Jz → �∞),

both of which generate collective spin squeezing. When
α > D, as long as D > 2 or α < 2D (i.e., all α > 3 when
D ¼ 3, and 2 < α < 4 when D ¼ 2), a generalized version
of the Mermin-Wagner theorem [48] allows for the exist-
ence of long-range order in the thermodynamic limit, below
a critical temperature [23,24]. Our observations may there-
fore be indicative of thermalization to a long-range-ordered
steady state in an equilibrium XY phase [47], with
significant amounts of collective spin squeezing present
in the transient dynamics. This explanation is supported by
the fact that the squared magnetization hS2i approaches a
nonvanishing steady-state value in Fig. 3 (see also the
Supplemental Material [37]). Nevertheless, the persistence
of long-range order is a necessary but insufficient condition
to characterize the types of dynamical phases considered in
this Letter. Instead, these phases are defined operationally
by whether attainable spin squeezing scales with system
size and are thus sensitive to transient effects.
For even shorter-range interactions (α ≥ 2D) when

D ≤ 2, long-range order is forbidden in the steady state.
Even so, a spin-polarized initial state can still take an
appreciable amount of time to thermalize to a disordered
steady state. Squeezing beyond the Ising limit can therefore
occur as a transient phenomenon, before long-range order
is disrupted [37].
Experimental applications.—As indicated in Fig. 2, our

results are readily applicable to the generation of spin-
squeezed states in a variety of experimental platforms that
have been shown to implement the power-law XXZ model,
including neutral atoms (α → ∞) [42,43], Rydberg atoms
(α ¼ 3, 6) [29,30,44], polar molecules (α ¼ 3) [31,32,45],
and magnetic atoms (α ¼ 3) [33,34]. Note that one may
additionally have to consider the effects of a subunit filling
fraction on the realization of a spin model. In principle,
subunit filling introduces effective disorder into the XXZ
spin couplings [24,49]. Nonetheless, the precise form of

FIG. 3. Squeezing ξ2 and squared magnetization hS2i over time
for the power-law XXZ model with α ¼ 3 on a 2D lattice of
64 × 64 spins. Color indicates the value of Jz=J⊥, and red lines
(at Jz=J⊥ ¼ −2.2) mark the approximate transition between
S-collective and S-Ising phases, when the collective squeezing
peak at τ≡ t × jJz − J⊥j ∼ 6 drops below the Ising peak at τ ∼ 1.
For the parameters shown, hS2i reaches a minimum at τ ∼ 2,
which means that optimal squeezing at τ ∼ 1 is reached before
maximal decay of hS2i in the S-Ising phase.

FIG. 4. Optimal squeezing ξ2opt as a function of system size
for the power-law XXZ model with α ¼ 3 on a 2D lattice of
N ¼ L × L spins. Whereas the amount of squeezing generated in
the S-Ising phase is insensitive to system size, squeezing in the S-
collective phase grows with system size and as Jz=J⊥ → 1 (from
below). Dotted gray line tracks minima of hS2imin as a function of
Jz=J⊥, as in Fig. 2, marking the approximate dynamical phase
boundary.
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these interactions is not essential to the existence of an
S-collective phase in the XXZ model, as evidenced by the
fact that this phase persists through to the α → ∞ limit of
nearest-neighbor interactions (see the Supplemental
Material [37]).
Finally, we discuss the application of our results to Ising

systems without 3D spin-aligning si · sj interactions, as in
the case of some Rydberg atom (α ¼ 3, 6) [29,30] and
trapped ion (0 ≤ α < 3) [12] experiments. In this case, 2D
spin-aligning interactions within the y − z plane can still be
engineered by the application of a strong transverse driving
field ΩSx. If the drive strength jΩj ≫ 1

2
NhαjJzj, with hα the

mean of 1=jri − rjjα over all i ≠ j, then moving into the
rotating frame of the drive and eliminating fast-oscillating
terms results in an XX model described by the Hamiltonian

HXX ¼ Jz
2

X

i≠j

sy;isy;j þ sz;isz;j
jri − rjjα

; ð4Þ

which is a special case of the XXZ model in Eq. (3), with
ðJ⊥; JzÞ → ðJz=2; 0Þ. Ising systems with a strong trans-
verse field can thus access a vertical cut along Jz=J⊥ ¼ 0 in
Fig. 2. In a similar fashion, dynamic Hamiltonian engineer-
ing protocols [50,51] can transform the Ising model into an
XXZ model with any Jz=J⊥ ≥ 0, albeit at the cost of added
complexity.
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