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Insights from graph theory on the morphologies of actomyosin networks with multilinkers
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Quantifying the influence of microscopic details on the dynamics of development of the overall structure of a
filamentous network is important in a number of biologically relevant contexts, but it is not obvious what order
parameters can be used to adequately describe this complex process. In this paper we investigated the role of
multivalent actin-binding proteins (ABPs) in reorganizing actin filaments into higher-order complex networks
via a computer model of semiflexible filaments. We characterize the importance of local connectivity among
actin filaments, as well as the global features of actomyosin networks. We first map the networks into local
graph representations and then, using principles from network-theory order parameters, combine properties from
these representations to gain insight into the heterogeneous morphologies of actomyosin networks at a global
level. We find that ABPs with a valency greater than 2 promote filament bundles and large filament clusters to
a much greater extent than bivalent multilinkers. We also show that active myosinlike motor proteins promote
the formation of dendritic branches from a stalk of actin bundles. Our work motivates future studies to embrace
network theory as a tool to characterize complex morphologies of actomyosin detected by experiments, leading
to a quantitative understanding of the role of ABPs in manipulating the self-assembly of actin filaments into

unique architectures that underlie the structural scaffold of a cell relating to its mobility and shape.
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I. INTRODUCTION

Living cells actively regulate the morphologies of acto-
myosin networks to control their shape and mechanical forces
during various cellular processes [1,2]. They do so, in part,
by regulating the activity of specific actin-binding proteins
(ABPs). Some ABPs, such as myosin II (a molecular mo-
tor) [3], depend on the hydrolysis of adenosine triphosphate
(ATP) to actively produce force within actomyosin networks.
Other ABPs, e.g., a-actinin, are passive and coordinate con-
traction and change the morphology of actomyosin networks
by crosslinking two filaments [4]. There also exists another
kind of ABPs, such as calcium/calmodulin-dependent kinase
II (CaMKII) [5,6], that can link together more than two fila-
ments simultaneously [7] to assemble actin filaments [7,8]. In
addition to its multivalent actin-binding nature, CaMKII may
translate chemical calcium signals into mechanical responses
in actomyosin networks when it binds to a calcium-bound
calmodulin (CaM) protein and consequently dissociates from
actin filaments [8]. The dynamic connectivity between actin
filaments facilitates certain transformations, often linked to
the function of these networks, such as expansion cell motility
[9,10], or contractility [8,11-13], or morphological plasticity
of dendritic spines in neuronal cells [14].
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Because ABPs regulate the dynamic connectivity between
actin filaments, they reorganize the topology of actomyosin
networks; thus its architecture becomes increasingly complex.
CaMKII stands out among other bivalent ABPs due to its
ability to bind more than two filaments at once [7]. CaMKII is
a large protein complex with 12 identical subunits assembling
into a double-decked hexagon [15]. Each subunit has pieces
of modules to bind CaM as well as actin filaments. Although
CaMKII has 12 possible binding sites with actin filaments,
only a fraction of these binding sites are permitted to associate
with actin filaments such as junctions and bundles due to vol-
ume exclusion [7,16]. We hypothesize that the actin-binding
multivalency of a single protein complex, such as CaMKII,
facilitates hierarchal mesoscopic actin scaffolds by increasing
the possible local linking combinations of actin filaments.

We tested our hypothesis that linkers’ multivalency drives
the complexity of network architecture using CYTOSIM [17], a
software developed to simulate mesoscopic cytoskeletal bio-
logical systems [11,18]. CYTOSIM represents polymeric actin
as filaments with bending elasticity and models linkers as
stochastic entities that can bind and connect filaments into
a network. Extending CYTOSIM’s modeling of motors, actin
filaments, and bivalent ABPs (crosslinkers), we incorporated
a model for multivalent ABPs (multilinkers). The simula-
tions of actomyosin networks with multilinkers allowed us
to investigate how the valency of multilinkers shapes random
actomyosin networks from random mesh grids into a hierar-
chical scaffold.

©2020 American Physical Society


https://orcid.org/0000-0002-8141-5288
https://orcid.org/0000-0002-1400-8092
https://orcid.org/0000-0001-9235-7661
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.102.062420&domain=pdf&date_stamp=2020-12-23
https://doi.org/10.1103/PhysRevE.102.062420

ELIAZ, NEDELEC, MORRISON, LEVINE, AND CHEUNG

PHYSICAL REVIEW E 102, 062420 (2020)

To quantitatively describe the emergent complexity in the
architecture of this network from the ABP-mediated assem-
bly of actin filaments, we reduced its high dimensionality
using a wide range of order parameters drawn from polymer
physics theory, gelation theory, and graph/network theory.
We organized all of these order parameters based on their
correlations and plotted the time evolution of selected order
parameters to better understand the quantitative features of the
topology that can be captured by individual parameters. We
find that the order parameters from network theory provide
useful qualitative insights for investigating the properties of a
filament network connected by ABPs which are not captured
by polymer or gelation order parameters. By treating an actin
filament as a node, the actomyosin network forms a graph
generated by their spatial distributions, with the formation of
cliques, clusters, or communities in varying graininess. A key
measure from network theory is to characterize the hierarchy
among nodes by assessing the importance of each node in the
network using a variety of centrality measures drawn from the
literature [19,20]. The measure of centrality, such as between-
ness [21], distinguishes the topographical importance of actin
filaments (or nodes) in a global network. Additional order
parameters, such as assortativity [22], characterize the corre-
lations between centrality within the network, a quantity not
easily captured using traditional polymer physics and gela-
tion theory. Such expanded measures signify how topological
complexity of an actomyosin network emerges from multiva-
lent linkages of an ABP. Furthermore, we establish testable
predictions by generating a state diagram in planes of motor
activity and multilinker concentration based on observations
of the emergent structural elements of the network. With
this expanded toolbox of quantitative descriptors, we gained
new insight by observing heterogenous structures beyond the
two-state narrative (e.g., sol-gel), typical of gelation theory or
polymer physics theory.

II. MODELS AND METHODS

A. Coarse-grained model of actomyosin networks

We used a coarse-grained computational model to study
the morphology and structure of actomyosin networks. In
our 3D model, an actin filament is represented as an incom-
pressible bendable polar fiber with rigidity of 0.075 pN um?
(persistence length of 18 um) [23]. A myosin motor is a
bivalent ABP with two walking heads, each of which operates
independently and walks toward the plus end of a different
filament. Additionally, we have two types of passive linker
species: one that resembles an «-actinin bivalent crosslinker
and second, the multivalent linker inspired by CaMKII with
a variable valency that is fixed along the simulation. In this
article, for brevity we refer a multivalent linker as a multi-
linker. As depicted in Fig. 1, the simulated systems contain
filaments, passive bivalent crosslinkers, passive multivalent
linkers (multilinkers), and active bivalent motors.

B. Collective constrained Langevin dynamics

The filaments and multilinkers are represented by N three-
dimensional vertices, which are combined into a vector x(t) of
dimension 3N, describing the physical objects in the system
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FIG. 1. Illustration of CYTOSIM’s model and its components. A
vertex-based model of actin filament in (a) with an accompanying
crystal structure of ten globular actin (G-actin) monomers build up
a filamentous actin (F-actin) in (d), based on PDB ID: 3J8I. In (b)
and (c) are the side and front views of the CaMKII crystal struc-
ture (PDB ID: 3SOA) visualizing only the association domains of
CaMKII. The protein complexes in (b)—(d) were generated using
UCSF CHIMERA [25]. A multilinker of v valency was built using a
sphere with v active sites arranged on its surface such as to maximize
the minimum distance between any two binding entities. The special
case of tetravalent (v = 4) linker with a 6-nm radius attached to two
filaments is depicted here (e). An «-actinin-like bivalent crosslinker
is modeled as a spring between two filaments as shown in (f). In
(g) and (h), there is an illustration of binding and unbinding of a
diffusive particle such as a motor, a crosslinker, or a multilinker from
a filament. A myosinlike motor, walking on a filament and exerting
a force, is depicted in (i) with the motor’s force-velocity relation-
ship. CaMKII’s functional domains are shown in (j), including the
association domain that binds F-actin [8] and the catalytic domain
that binds to ATP and is regulated by the regulatory (Reg.) domain,
which becomes active by calcium/calmodulin signaling [26].

at time ¢. The equations of motion are evolved by Langevin
dynamics via the vectorial stochastic differential equation
[17]: dx(t) = p fiot (X, t)dt + dB(t), where p is a 3N x 3N
diagonal matrix consisting of the mobility coefficients of all
objects, fit(X,7) is a vector contains all the forces acting
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on the points x(¢) at time f. Lastly, B(z) is a vector that
recapitulates the random Brownian noise due to molecular
collisions; its ith coordinate, B;(z), is a temperature-dependent
value drawn from a normal distribution with a zero mean
and a standard deviation equals +/2dtD;, where dt is the
integration time. Per Einstein’s relation we set the diffusion
coefficient of the ith random molecular degree of freedom to
be D; = p;kgT, where kg is Boltzmann’s constant and 7 is
the fixed temperature of the system.

C. Motor activity and binding and unbinding events

We used the software CYTOSIM [17] to propagate the
equations of motion. We augmented its feature to include
multilinkers, and an example input file is provided in the
Supplemental Material [24]. After the collective Brownian
mechanics have been calculated, CYTOSIM executes two sub-
routines to account for chemical processes such as binding,
unbinding, and motor walking. The first subroutine simulates
the binding and unbinding events of actin-binding proteins
according to fixed rates ko, and k., respectively (please see
the Supplemental Material Methods section [24]). The second
subroutine emulates motor activity on the filaments based on
the forces experienced by motors (please see the Supplemen-
tal Material [24], Methods section), displacing the motors
along the filaments [17].

D. Simulation parameters

Our system is a I-um> cube with an internal medium
viscosity of 0.5 pN um~2 s. Filaments have length of 0.5 4m
and are uniformly distributed in the cubic system at¢ = 0. The
a-actinin-like crosslinkers are modeled as a Hookean spring
between two binding entities where each binding entity has a
binding range of 17.5 nm. The myosinlike motors are inex-
tensible objects with two independent motor heads separated
by a resting length of 100 nm. Multilinkers are a third type
of ABP to emulate CaMKII’s multivalency. A multilinker of
valency v has v binding hands residing on the surface of a
sphere of radius 6 nm, and all hands are linked to the sphere
with v springs.

To study the effect of the multilinkers’ valency on
the global network, we have run simulations at varied
conditions. Each of these conditions is defined by five pa-
rameters: the number multilinkers in the system Npyyilinkers €
{250, 500, 1000}, their valencies v € {2,3,4,5,6,7}, the
number of motors Nyoors € {250, 500, 1000}, the number of
filaments Ngjamenss € {250, 500, 1000}, and the number of «-
actin-like crosslinkers Neposstinkers € {10, 250, 500, 1000}). For
example, one system included 250 pentavalent (v = 5) multi-
linkers, 500 filaments, 1000 motors, and 10 crosslinkers.

In the Results section we extensively compare between two
system conditions: high motor content, i.e., the ratio among
motors, multilinkers, a-actinin crosslinkers, and filaments in
the 1-um? box with 1000 filaments is 1 :1:1: 1, and Sys-
tems at low motor content condition, i.e., the ratio among
motors, multilinkers, «-actinin crosslinkers, and filaments in
the 1-um? box with 1000 filaments is 1: 100 : 100 : 100.
Using these two sets, low and high motor content, we compare
the behavior of different order parameters. We have conducted

600-second-long mesoscopic simulations using CYTOSIM, and
for the low and high motor content, we collect statistics from
30 simulations with different random initial conditions. More-
over, in a few cases we highlight three specific multivalency
conditions v =2, 3, and 6 to study how the multilinker’s
valency tunes the complexity of actomyosin networks at both
low and high motor content.

E. Order parameters

Here we explore the use of various order parameters to
analyze actomyosin network simulations. An order parameter
should reflect a physically meaningful feature of a system,
ideally reducing the high-dimensional configuration space of
an actomyosin network into a single quantity. We employed
three interrelated families of order parameters: (i) those based
on the locations of the coarse-grained geometrical vertices
of actin filaments; (ii) those based on the interconnectivity
between filaments induced by ABPs; and (iii) those based
on graph theory and the graph representation of actomyosin
network as an undirected graph, which is a mathematical
structure to represent nodes and their connections. We keep
the details and physical meaning of most measures from (i)
and (ii) in the Supplemental Material [24], and provide the
details from (iii) below.

1. Network theory order parameters
computed on the graph of filaments

We harness ideas and order parameters from graph theory
(network theory) [19,27,28] to explore their ability to quantify
the dynamics of actomyosin networks. The key strength of
network theory is to assess the layout of complex networks
[19,20,29] by incorporating far greater information about the
high order of relations between nodes in the network. We
reduce the complex actomyosin network to a graph represen-
tation by defining it into a coarse-grained network in terms
of the spatial distance between actin filaments without direct
reference to any ABP between them, as the local microscopic
information of connectivity between ABPs and filaments is
not always available experimentally. The graph representation
G = (V, E) of a snapshot of an actomyosin network is defined
by a set of nodes V, which correspond to the filaments, and
a set of edges E, which accounts for the relations between
nodes. An edge exists between any two nodes if their two
corresponding filaments in the system are within a cutoff
distance d,.;. We define the distance d (v, w) between filament
v and w to be the minimum Euclidean distance among all
pairs of their segments’ centers of mass. Mathematically, the
graph representation of the actomyosin network is defined as
an adjacency matrix

1,
Avw = {0’

where d.;; = 200 nm. The number of vertices in the graph
G = (V,E) is |V| = Milamenss» and the number of edges |E|
varies depending on the spatial distribution of the filaments.
Topological measures of a graph can be used as order pa-
rameters at varying graininess from a node, a local, to a
community viewpoint. They are sorted into three viewpoints:
(a) the topology of pairs or triplets of nodes that quantify

d(v, w) < dey
otherwise

) ey
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FIG. 2. Fundamental graph properties at a node level on two
network models (a) and (b). Each model comprises five nodes, V =
{A, B, C, D, E}. The difference between the network in (a) and the
network in (b) is the set of edges connecting these nodes. Graph
(a) has one triangle ({A, B, C}). While in graph (a) all nodes are
connected, in graph (b) there are two separate components: {A, C}
and {B, D, E}. In (a), the clique number, which is the largest subset
of nodes that are all directly connected, is 3, and the largest clique
is {A, B, C}. In contrast, the largest clique in graph (b) is {A, C}.
The degree of a node is the number of edges connected to it. For
example, in (a), the degree of node B equals 3. The shortest path
between two nodes uses the minimal number of edges to join one
node to the other. In graph (a), the shortest path between node D
and node A is D <+ E <> B <> A. Nodes that are disconnected, as
in the case of D and A in (b), are said to be separated by an infinite
path, by definition. The betweenness of a node is the number of the
shortest paths between any other nodes that go through this node.
For example, in (a), node B has the largest betweenness of 4, as the
shortest path between D and A, between D and C, between E and A,
and between E and C, all go through B.

the node-level topology in a network, which is illustrated in
Fig. 2(b) the local-level measures of centrality, which quan-
tifies the connectivity or the importance of local nodes in a
network, and (c) the detection of community-level structures
in a global topology of a network. The node-level measures of
the networks are illustrated in Fig. 2. Below, we will explain
other network-theory order parameters in greater detail as they
describe the mesoscopic features of a network (e.g., local
or community) more than node-level measures. Here we list
the order parameters and measures from network theory that
we have found the most useful to characterize the complex
morphologies of actomyosin networks in our study.

a. Graph density and mean centrality. Graph density
measures the number of edges in a network relative to the
maximum number of edges that could exist if all nodes were
connected. It is defined as the ratio of the average node degree,

d= ﬁ S A = % over the largest possible node degree,

V-1
_d 2|
V-1 |[VIIV=1|

dg 2

The degree of a node, k, = ), Ay, can also be used to
define the centrality of a node, quantifying the importance of
an individual node in a network (with the degree centrality
defined by the number of edges a node has). A number of
alternate definitions for centrality, which quantify the local
topology of the network in specific ways, are described in the
Supplemental Material [24]. While graph density represents
a normalized mean degree of centrality of each node in the

network, multiple order parameters based on the centrality of
nodes, such as the betweenness and the eigenvector centrali-
ties, have been used.

b. Assortativity. In addition to considering solely node
connectivity (through node degree), it is useful to quantify
the local network topology in a complex network based on
sorting the connections between nodes. The degree assorta-
tivity coefficient [30], as defined by Newman et al. [22,31],
is an order parameter that explores the correlation between
the nodes with similar degrees to be directly connected. The
degree joint counting matrix, J;,,, is the number of edges in a
graph linking a node of degree [ with another node of degree
m:

Jim =, v):

where k, = Zw A, is the degree of node u. The degree
assortativity coefficient (often referred to as the assortativity)
is defined as:

v,u€eE Ak, =1 Ak, =m}|, (3)

l m = m
. Doim m(Jz2 pip )’ @
%

where p,, =Y, Jim = Y_; Ju (the probability of seeing a
node with degree m), and o), is the standard deviation of the
set { pm}‘nz;lgl. If there were no bias in the connectivity in a
large network, we would expect J;,, = p;pm, leading to p = 0
in a random network. We note that p ranges from 1 to —1 with
a positive (high) assortativity, indicating that there is a central
core of highly connected nodes and a negative (low) assor-
tativity indicating a starlike topology in the network (with
high-degree nodes connected to only low-degree nodes).

c. Clustering coefficient. In many physically and biolog-
ically relevant networks, it has been found that triplets of
nodes share edges [form a triangle, e.g., the triplet {A, B, C}
in Fig. 2(a)] more often than would be expected by random
chance [32]. This is referred to as a clustering coefficient
in network-theory literature [19] and is conceptually distinct
from the clustering discussed in the gelation literature (see the
Appendix). The normalized clustering coefficient, counting
the number of triangles that exist in the network relative to
the number that could exist, is computed using

ALiAA,

o 1 Zi,/ .
e TP P e T ©)

veV

A high clustering coefficient implies that the connectivity
is dense locally (with a propensity to develop triangles in the
network), even if the graph density of the network is sparse.
Note that in the actomyosin networks, a triangle could imply
a physical triangle of filaments but given the coarse-grained
nature of our graph could refer to many possible geometries.
Of note, we often refer the clustering coefficient as the average
clustering.

2. Correlations in global connectivity

In addition to the node-level (degree) and local-level (as-
sortativity or clustering) order parameters, there are a variety
of network measures that account for the global topology.
These include communities and cliques of nodes, where a high
or complete connectivity between nodes indicates regions of
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high connectivity within the graph. These network measures
are conceptually distinct from the gelation representation of
a cluster, which accounts solely for the existence of a path
between constituent filaments without regard for the density
of connections between filaments in the cluster.

a. Community structure. Community structure is widely
used to quantify global network topology [33] and indicates
the presence of heterogeneity in the density of links in a
network: if some nodes are more likely connected with each
other than with the rest of the network, they may be said
to form a community. In the network science literature [20],
a community refers to a collection of nodes that are more
highly interconnected between each other than they are with
the rest of the network. This is distinct from the gelation
formalism, where a presence or absence of a path between
filaments determines the membership in a cluster of filaments
(please see the Supplemental Material [24]). The heuristic
definition of a community has spawned an enormous literature
on the subject of community structure in networks [33-36].
In this paper we focus solely on a commonly used method:
the Clauset-Newman-Moore greedy modularity maximization
method [37]. The modularity Q is a measure which evaluates
the strength of division into distinct modules/communities in
a network. We apply the commonly used greedy maximiza-
tion technique to find the membership of the communities
in a graph G. Denoting the community of a node v € V by
sy, the greedy modularity maximization algorithm assigns a
unique community s, to each node v € V to maximize the
modularity:

0= ﬁ Z |:Avw -
(v,w) € E

kyku
= Ssl..sw ) (6)
|E| ] '

where k, is the degree of node v and 4, is the Kronecker
8 function, which equals 1 if @ = b and O otherwise. This
definition of modularity divides nodes between communities
based on whether nodes within a community are more densely
connected than would be expected by random chance. Using
this definition of a community, we define the order parameter
Neom to be the number of communities in a graph G.

b. Clique number. A clique in a graph refers to a subset
of nodes that are fully connected with one another and thus
represent a more extreme heuristic definition of a community
in a network than is realized using modularity maximization.
We consider cligue number the maximal clique size as an
order parameter (schematically illustrated in Fig. 2), which is
the largest subset of vertices from V such that each two nodes
in the subset have an edge between them.

F. Potential of mean force of actomyosin networks

In molecular dynamics simulations, the potential of mean
force (PMF) is a common technique to investigate the depen-
dency of the free energy on a specific order parameter. The
PMF, or U, is defined as the negative natural logarithm of the
probability density function (PDF), or P, against some order
parameter of a system [38]. If we consider a normalized order
parameter £ € [0, 1] and let P(§) be its PDF, we can compute
the PMF U(§), as elaborated further in the Supplemental

Material [24], Methods section, Sec. VI, using the relation

UEE — ksT IP(&) @

The U(§) of an order parameter can be thought of as the

free energy profile of the system with respect to £ along a

trajectory, and the relation in Eq. (7) is applicable for both

equilibrium and nonequilibrium systems at a constant temper-
ature, 7 [38,39].

III. RESULTS

A. Multilinkers with a high valency enrich arborization
of actin bundles

We first show how multilinker’s valency, v, changes the
topology of actomyosin networks at a high motor content with
time by examining the snapshots from the CYTOSIM simula-
tions for v = 2, 3, and 6 in Fig. 3. Initially, at time # = 7y, all
three networks start out as a dispersed filament network (we
called it the solution state) and form small lumps att = 50 s,
as seen in Fig. 3(a). Then they form large fuzzy assemblies
(we called it disordered gel) by the time ¢ = 100 s. The system
with hexavalent (v = 6) multilinkers has the most filaments
participating in the formation of the largest assembly. At
t = 200 s, in Fig. 3(b) we observed the formation of ordered
bundles grow thicker as time evolves, and most noticeably
for multilinkers of high valency (v = 6), the thick bundle
breakouts into a treelike structure as seen at both ¢ = 400 s
and + = 600 s in Fig. 3(b). This is a new state of ordered
bundles forming a large stalk with one or more thinner bundles
adjoining the main stalk. We refer to this topology of dense
bundles attached to thin branches as the arborization of the
actin network.

B. Graph representations of complex actomyosin networks

Regardless of whether these active networks of filaments
thicken the ordered bundles or arborize into thinner bundles
from a stalk, an immediate challenge is to identify proper
descriptors that capture the complexity in the evolving acto-
myosin network as the ABPs remodel the filaments in space.
Our strategy is to mirror a snapshot of actomyosin network
into its graph representation and apply tools from network
theory to capture the topological properties of the underly-
ing actomyosin network. Figure 4 shows four such graph
representations of snapshots from Fig. 3 representing the sim-
ulations for v =2 and v = 6 at t = 1 s [Figs. 4(a) and 4(b)]
and at r = 600 s [Figs. 4(c) and 4(d)].

The topologies of these two networks appear distinctive
after 600 s of temporal evolution. These differing features
of these networks have been clearly captured by the order
parameters from network theory in Fig. 4. With a greater
graph density of 0.42, the actomyosin networks containing the
hexavalent multilinker with v = 6 creates centralized, higher
interconnected nodes than the networks containing the biva-
lent multilinker (a graph density of 0.14). The former has
an average node degree of 422.2, whereas the latter has an
average node degree of 140.7.

By measuring the betweenness centrality of each node
(defined in the Supplemental Material [24]), we quantify the
importance of this node in connecting any two other nodes
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FIG. 3. Snapshots from CYTOSIM simulations at three multilinker
valency conditions. All simulations are in a 1-um? box with the same
components of filaments, motors, multilinkers, and «-actinin-like
crosslinkers. These three systems differ only by the valency of the
multilinkers. On the leftmost column in (a) and (b), the multilink-
ers are bivalent (v = 2). On the middle column, the multilinkers
are trivalent (v = 3). On the rightmost column, the multilinkers
are hexavalent (v = 6). The time evolves from the top panels to
the bottom panels. In (a) the snapshots are in an increment of 50
seconds, starting at time ¢ = #;, where 7, = 1 s. In (b) the snapshots
are in an increment of 200 seconds, ending at r = 600 s. Notice-
ably, for a system with hexavalent multilinker at + =400 s and
t = 600 s in (b), the main stalk in the middle of the snapshot is a
thick bundle with adjoint thinner bundles (a phenomenon we called
arborization).

t=1sec
(@) g

v=2

t=%005ec
v=6

FIG. 4. Graph representations of four actomyosin network snap-
shots shown in Fig. 2. The graph visualization of a system with
bivalent (v = 2) multilinkers (a) at # = 1 s and (c) at t = 600 s. The
graph visualization of a system with hexavalent (v = 6) multilinkers
(b) at t =1 s and (d) at + = 600 s. We produced these graphs by
iterating the same visualization procedure starting from a random
network layout produced by OPENORD [40] and followed by Hu’s
visualization algorithm [41], both with the default parameters in
GEPHI 0.92 [42]. The betweenness of a node counts the number of
times it lies on the shortest path between any two other nodes (please
see the Supplemental Material [24]).

by being in the shortest path between them. We visualize
this information of betweenness by coloring them in a scaled
purple color in Fig. 4. There are far more dark purple nodes
after 600 s of simulations in Fig. 4(d) for v = 6 than Fig. 4(c)
for v = 2, indicating that there are more nodes serving in the
shortest paths between any two nodes within the actomyosin
systems containing the hexavalent multilinkers than those
containing bivalent multilinkers. Alternatively, this observa-
tion is also supported by the fact that the average path length
between any two nodes is 3.1 in the system with hexavalent
multilinkers, whereas the average path length becomes 6.1 in
the system with bivalent multilinkers.

C. Correlation of the order parameters from polymer physics,
gelation theory, and network theory

The rich actomyosin structures shown in Fig. 3 have
prompted us to seek appropriate order parameters to char-
acterize the complexity and heterogeneity of actomyosin
dynamics in space over time. We have compared order param-
eters inspired by three domains of theories: polymer physics,
gelation theory, and network theory, as described in the Meth-
ods section in the Supplemental Material [24]. Figure 5 shows
the Pearson correlation of all these order parameters evalu-
ated for each actomyosin configuration from the simulations
performed using CYTOSIM. Each category of order parameters
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FIG. 5. The Pearson correlation between the order parameters
used for this study colored in a heat map. The order parameters
are sorted by the pairwise correlation distance. To aid visualization,
they are further grouped into three categories by their physical order
parameter: polymer physics (labeled in gray dashed brackets in the
right), gelation theory (labeled in purple brackets in the left), or
network theory (labeled in red brackets in the right).

presents a different insight into the actomyosin morphology.
The three order parameters from polymer physics (defined in
the Appendix) are highly correlated. When we examine their
time signals, it turns out all of the three fluctuate around a
global mean value, as illustrated in the cumulative distribution
functions in Figs. S1 and S3(g). Even though the polymeric
order parameters are insufficient to describe the morphol-
ogy of the network, their power spectral density (PSD) [43]
profiles show that high motor content increases the power
density by two orders of magnitude (20 dB), as shown in
Fig. S2. The insufficiency of the polymeric order parameters
to describe the dynamics of our complex systems contrasts
with previous computational studies at which the radius of
gyration R, and the shape parameter S (both introduced in
the Appendix) were appropriate order parameters to describe
actomyosin networks containing Arp2/3 (actin-related pro-
tein 2/3) which nucleates on a mother filament and grows
a daughter branch at a fixed angle [13,44]. However, these
polymer physics order parameters are no longer sufficient in
addressing the increased complexity in a network topology
when multilinkers are present, and the number of filaments
in the system increased significantly from 50 to 1000. No-
tably, all three polymer order parameters are correlated within
their own category, but they are nearly uncorrelated with
the order parameters from gelation theory or graph theory
(Fig. 5). We showed that order parameters from gelation and
network theories are suitable for assessing the complex and
diverse morphologies of the simulated actomyosin networks
by showing their positive correlations in Fig. 5, even though
the ways to define these order parameters are different. The
gelation-theory order parameters are computed from a list
of connections between filaments directly made by ABPs,
whereas the network-theory order parameters are computed
from the distances between filaments that are not necessarily

in direct contacts. Noticeably in Fig. 5, most gelation-theory
order parameters are clustered together by themselves, and
most network-theory order parameters are clustered together
by themselves. Yet there is still positive correlation between
the two categories of order parameters. (For further analysis
using gelation-theory order parameters, please see the Supple-
mental Material [24]). Finally, there are two order parameters
that that negatively correlate with the rest. One is the node
degree assortativity (or simply assortativity) that measures
whether the filaments with the same node degree prefer to
connect or not, and the second is the number of gelated
clusters (“Number of Clusters” in Fig. 5, which is defined
in the gelation theory in the Appendix). The assortativity has
a negative correlation with most order parameters, because,
as we discussed later, the higher the valency of multilinkers
the lower the assortativity in the networks. The total number
of gelated clusters is negatively correlated, because as time
evolves the networks in our simulations prefer to connect
more filaments together into a large ordered gel.

D. Analysis of actin filament networks
in graphical representation

Although the order parameters from gelation theory cap-
ture the size and the distribution of filaments that are linked
with ABPs (please see the Supplemental Material [24]), it
is less sensitive to the formation of complex structures be-
yond immediately connected actin filaments. Therefore they
are unable to capture higher-order organization in a com-
plex network. We characterize the higher-order complexity
in a network by applying the network-theory order parame-
ters. To achieve that, we first converted actomyosin networks
into graphical representations where the heterogeneously dis-
tributed filaments are nodes (see Sec. III B about graph
representations). We then apply appropriate descriptors from a
wide range of network-theory order parameters with varying
graininess to characterize their patterns in connectivity and
size, and to detect communities.

We measure how interconnected the network is with the
average clustering value that ranges from O to 1. This measure
is similar to asking a question, Do my neighbors know each
other or not? In Fig. 6(a) at low motor content, multilinkers
with higher valency (v > 3) gradually create a more intercon-
nected network than those with v = 2 by showing increased
clustering coefficients over time. At high motor content
[Fig. 6(b)], almost all multilinkers create highly intercon-
nected networks with clustering coefficient above 0.6. Such
measures show that multivalency produces distinct topolo-
gies in networks with either high or low motor content. This
knowledge is absent from gelation-theory order parameters.

At low motor content there is less variation in the net-
work topologies as the time signals of the clique number
in Fig. 6(c) suggest. Nonetheless, in Fig. 6(d) high motor
content systems with multilinkers of higher valencies create
larger cliques in the network. Namely, although multilinkers
increase the number of possible binding sites to actin in the ac-
tomyosin networks, valency plays a small role in determining
the higher-order assembly of the network when motor content
is low. On the other hand, at high motor content, motors
further increase the higher-order organization of the network
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FIG. 6. Time signals of the network-theory order parameters
computed from the simulations of actomyosin networks with mul-
tilinkers. All the systems have the same compositions (filaments,
crosslinkers, motors, multilinkers) with multilinkers at various va-
lencies and at low and high motor content. The right column (a), (c),
(e) shows the time signals from systems with low motor content and
the right column (b), (d), (f) shows the time signals at high motor
content. Three order parameters are shown: (a), (b) the average clus-
tering defined in Eq. (5), (c), (d) the clique number of the network,
and (e), (f) the number of communities [37].

by enhancing the local assembling of filaments in the graph,
as shown by a larger clique number in Fig. 6(d). The motor
activity allows multilinkers of higher valencies to amplify the
clique number of the network by efficiently bundling multiple
actin filaments at once.

As the systems become more complex and heterogeneous,
we asked whether these ordered bundles further collapse into
thicker bundles or do they arborize into thinner branches.
We are essentially asking to which community do ordered
bundles belong. We applied modularity maximization to count
the number of distinct communities [37]. We show that as
the number of communities increases, so does the hierarchy
in a network, particularly at high motor content and with
multilinkers of high valency. Interestingly, the profiles of the
number of communities in Figs. 6(e)-6(f) resemble those of
the average clustering profiles in Figs. 6(a) and 6(b). This
exemplifies the roles of active motors and passive multilinkers
in increasing the complexity of a graph by increasing the
number of distinctive communities instead of collapsing the
actomyosin networks into a single homogenous community
(or a gelation phase).
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FIG. 7. The temporal evolution of the node degree assortativity
coefficient [Eq. (4)] of actomyosin networks in the presence multi-
linkers with varying valency. The top row is from simulations at low
motor content. The bottom row is from simulations at high motor
content. The snapshots in (b) and (d) are taken from the simulations
at t = 600 s where the multilinker valency is v = 6. The actin fila-
ment bundle branches out at a high concentration of motors, while
actin filaments form a mesh grid of thick bundles in space at a low
concentration of motors.

E. Decreases in node degree correlation (assortativity)
suggest arborization

Next, we zoom out to a nonlocal level to view the hierarchi-
cal ordering of nodes (filaments) in a network by examining
the node degree of assortativity. Assortativity ranges between
—1 and 1. A positive assortativity indicates that nodes with
similar degrees are more frequently connected to each other.
In the graphical representations of the actomyosin networks
in our simulations, assortativity goes above 0.35 over time
in Figs. 7(a) and 7(c). Assortativity of systems with higher-
valency multilinkers attenuates over time compared to those
with lower-valency multilinkers. At low motor content, as-
sortativity plateaus [Fig. 7(a)] as filaments group into thick
bundles [Fig. 7(b)]. At high motor content, the profiles first
sharply drop and then rise again instead. The extent of recov-
ery depends on valency. The profiles for systems with v > 3
rise very little, and the assortativity remains low [Fig. 7(c)],
because filaments first form thick bundles and then arborize
to form treelike branches [Fig. 7(d)] in the presence of high
valent multilinkers and high content of motors. In other words,
actomyosin networks actively branch out rather than forming
into a single stalk.

F. Network-theory order parameters reveal higher-order
assemblies in actomyosin network

To reveal the spatial heterogeneity of actomyosin networks
at a community level, we applied the graph density order
parameter that measures how dense (nonsparse) the adjacency
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FIG. 8. Graph density of actomyosin networks in the presence of
multilinkers with varying valency. The graph density is plotted (a) in
a low motor content and (b) in a high motor content. Each profile in
(a) and (b) is an average of 30 independent trajectories with the same
species parameters with a confidence interval of CI = 90%.

matrix of a graph is. In Fig. 8(a), the graph density shows
that even for low motor activity, the presence of multilinkers
with v > 2 increases the density twofold, although the overall
graph density still remains low.

Notably, in systems with high motor content in Fig. 8(b),
the graph density is tenfold larger than systems with low
motor content. Not only do they become denser, the profiles of
graph density for high motor content become more complex
and resemble logistic curves in Fig. 8(b). For example, the
profile for a trivalent multilinker (v = 3) evolves in steps
characteristic of a double logistic pattern: the graph density
evolves in the first 100 s and remains at around density of
0.1 until + =200 s. Next, it rises to 0.2 and plateaus after
t =300 s. For pentavalent multilinkers (v = 5), the graph
density profile even undergoes more than two transitions, and
the graph density increases by another 50% to 0.34 compared
to those for v = 3.

This observation of three transitions suggests that there
are at least four phases of organization. As shown in the
simulation snapshots in Fig. 3, the first three phases from the
simulations for trivalent multilinkers (v = 3) are the solution
phase of the actomyosin at + = ¢y in Fig. 3(a); the second
phase of the network is a gel at + = 200 s in Fig. 3(b); and
the third phase is the order bundled phase of actomyosin at
t = 600 s. To visualize the fourth phase of arborization, we
turn to the last snapshot for hexavalent multilinkers (v = 6)
att = 600 s. The descriptors from network theory are able to
capture the details of these transitions better than those from
polymer theory or gelation theory.

To further investigate the utility of using network-theory
order parameters, we compare the profiles of the PMF es-
tablished with a network-theory order parameter and with
a gelation-theory order parameter. We computed the PMF
against the average neighbor degree of nodes from network
theory in Fig. 9(a) against the sizes of gel clusters from
gelation theory in Fig. 9(b). For v = 6, in addition to the
two global minima near £ = 0.0 and & = 0.7, there are two
intermediate local minima at around £ = 0.2 and & = 0.4 in
Fig. 9(a). In contrast, only one intermediate state is appar-
ent on the PMF characterized by the gelation-theory order
parameters in Fig. 9(b). It is evident that using only order
parameters from gelation theory is insufficient to capture the
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FIG. 9. Potential of the mean force (PMF) curves of actomyosin
systems with three types of multilinkers at high motor content.
(a) The PMF is plotted against the average neighbor degree from
network theory. (b) The PMF is plotted against the cluster size from
gelation theory.

complexity in a dendritic growth from actomyosin networks,
since the gelation formalism is not sensitive to the growing of
multiple thinned branches out of a common stalk. Therefore
it is essential to employ order parameters from network the-
ory as descriptors to capture these higher-order, hierarchical
topologies.

G. Network-theory order parameters reveal a rich state
diagram of actomyosin networks for experimental prediction

We have identified network-theory order parameters nec-
essary for describing local or nonlocal features in a complex
network. We further set up our hypothesis that in addi-
tion to multilinkers’ valency, the motor content also plays a
significant role in ordering the hierarchy of a complex net-
work. We first established a state diagram by compiling these
network-theory order parameters from all of the steady-state
simulations (the last 20 seconds of any trajectory) in plane
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of both the motor content and the multilinker content. State
diagrams in Fig. 10 reveal the states of solution, gelation,
ordered bundles, and arborization, and provide readily appli-
cable guidelines for experimentalists to probe these phases
and transitions in reconstituted or living samples.

When reviewing the state diagram of graph density in
Fig. 10(a), we recognized that the graph density increases
with the multilinker content as well as the motor content in a
nonmonotonic fashion. This plot suggests that the actomyosin
networks become densest when the motor-filament as well as
the multilinker-filament ratios are about 2 : 1, and the graph
density diminishes at the highest motor or at the highest mul-
tilinker content. This feature is interesting because it signifies
higher-order assemblies of actomyosin networks beyond a
homogenous gelation state.

We exemplify the formation of higher-order assemblies by
scanning the two-dimensional (2D) state diagrams at constant
multilinker-to-filament ratios [the horizontal gray dashed lines
in Figs. 10(a) and 10(b)]. We noted that both graph density
[Fig. 10(a)] as well as degree assortativity [Fig. 10(b)] de-
crease at high motor content. When assortativity in a network
decreases, mathematically we interpreted that there are fewer
nodes being connected to another node with a similar node
degree. How does it relate to changes in the morphology of
actomyosin network? We observed from the simulations that
it comes from a distinctive feature where an ordered bundled
stalk thins out into several dendritic branches, rather than
growing into a common stalk. Such a dendritic process is
also reflected in decreased graph density from 0.3 to 0.06 in
Fig. 10(a). The state diagram captures the emergence of a new
arborization phase, as shown in Fig. 7(d).

Under certain conditions, filaments form bundles without
higher-order organization of thick stalks or arborized mor-
phologies. When we set up the system with a low motor
content on the state diagram [the vertical black dashed lines
in Figs. 10(a) and 10(b)]; the graph density does not vary
[Fig. 10(a)] while assortativity does. Assortativity first in-
creases from 0.45 to 0.65 at low content of multilinkers and
then decreases from 0.65 to 0.45 at high content of multi-
linkers [Fig. 10(b)]. This signifies that multilinkers facilitate
the formation of evenly distributed ordered bundles [as shown
in Fig. 7(b)] in a network, without self-assembling into a
higher-order scaffold such as a common stalk with dendritic
branches.

Another order parameter that possibly reveals a rich variety
of local topology is the clique number, shown in Fig. 10(c).
We see that the clique number remains low in systems with
multilinker content of low valency such as v < 3 (vertical
dashed line at v = 3), while it increases quickly for high
valency such as v > 3 (e.g., along the vertical dashed line at
v = 6). This signifies how multivalency increases the com-
plexity in connectivity among nodes in the network.

IV. DISCUSSION

A. Network-theory approach is necessary to characterize
the dendritic features on actomyosin networks

We have simulated the evolution of actomyosin net-
works mediated by actin-binding proteins using CYTOSIM. The
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FIG. 10. State diagrams of network-theory order parameters. The
state diagram of (a) graph density and (b) assortativity in plane
of multilinker content and motor content. (c) The state diagram of
clique number normalized by the number of nodes (filaments) in the
system in plane of multilinker content and valency of multilinker.
For each data point in the state diagrams, the information from the
last 20 seconds in a steady state from each trajectory was taken for
averages. Of note, to create a continuous plot in (c) along the valency
of multilinker axis, a Gaussian filter was used to smooth the signal
along the x axis.
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simulated actomyosin networks are complex as the filaments
form higher-order architectures under the influence of pas-
sive linkers and the active motors. As the system becomes
increasingly heterogenous, we found that order parameters
from polymer physics and gelation theory lack the ability to
characterize the higher-order assemblies. By converting the
actomyosin network into a graph representation with nodes
and edges, we are able to quantify the hierarchy of a dendritic
network with network-theory order parameters that provide
principles for combining multiple local models into a joint
global model.

The ability to compute global and local properties from
the same graph allows us to connect local and global levels
of information. By combining these descriptions that connect
microscopic properties to macroscopic phenomena, we reveal
the principle of self-organization that encompasses multiple
length and time scales, allowing experimental designs for
validation. In the dynamics of the global graph density in
Fig. 8, we noticed a subtle double sigmoidal shape suggest-
ing that there is a two-step transition in high motor content,
signifying transitions from solution, gelation, and ordered
bundles. When the valency of multilinkers increases to 6 or
higher, there are multiple-step transitions that relate to higher-
order dendritic structures. Global parameters such as clique
numbers in Fig. 10(c) allow us to scrutinize whether local
properties such as valency of multilinkers can potentially im-
pact global morphology. Such detailed descriptors to observe
complex properties of an active matter are not captured by
using either polymer or gelation order parameters.

By mapping an actomyosin network into a graph, our
work shows that many interesting features of actomyosin
networks can be captured from the connectivity between fil-
aments created by actin-binding proteins, or alternatively, by
considering only the distances between filaments without ex-
plicitly considering actin-binding proteins. Because a matrix
of connectivity is a reduced representation of the system,
this approach with the descriptors (order parameters) from
network theory reflects faithfully on the reorganization of
actomyosin networks mediated by motor and actin-binding
proteins. Our approach will not only be useful for analyz-
ing actomyosin networks from computer simulations but also
for analyzing their images from high-resolution experiments
where the clusters of the filaments are measured but not neces-
sarily the positions of ABPs. One could use adaptive rheology,
as demonstrated by Gupta et al. [45], and record the dynamics
of the F-actin via their fluorescent labeling using RFP-Ftractin
[46]. To compute the graph representation from a rheology im-
age, we suggest using classical image processing techniques
such as the Canny edge detection algorithm [47] to identify
filament segments. From those segments one could construct
a graph representation, which could be used similarly to how
we constructed the graphs from CYTOSIM.

B. Multilinker valency and motor proteins drive the complexity
of actomyosin networks

Using the network-theory order parameters provided new
insight into the hierarchy of self-assembly that forms ac-
tomyosin networks. We observed that such details cannot
be adequately characterized by a two-state formalism (solu-

tion and gel). In addition to these two states, we observed
another two states, ordered bundles and arborization (den-
dritic bundles), depending on the conditions of multilinker
valency, multilinker concentration, and motor concentration.
We therefore use them as variables and created three state
diagrams in Fig. 10, illustrating how they contribute to the
complex morphologies of actomyosins. The concept of cre-
ating these state diagrams follow the experiments and data
analytics from the protocol by Bendix er al. [12]. They
explored the role of «-actinin and motors on actomyosin
architectures by varying their content with respect to actin
monomers. In one dimension, by varying the motor content
they were able to explore how its active process contributes
to the contraction of the actomyosin networks. In the other
dimension, by varying the linker content they were able to
identify antagonistic mechanism that opposes contractions.
Their work has inspired development of computational ap-
proaches [13,44] at a mesoscopic scales (including ours).
Our actomyosin networks are more complex than Bendix’s,
because here we have included the valency of multilinkers
as another key variable that drives the complexity of the
morphology. While motor proteins actively contract the actin
filaments by exerting forces on them fueled by ATP hydroly-
sis, multilinkers such as CaMKII are able to bind more than
two filaments at once. Multilinkers with high valency provide
more ways to bundle filaments than bivalent crosslinkers such
as a-actinin. Using network-theory order parameters such as
graph density or assortativity to describe global features, we
are able to make predictions on the conditions that drive
higher-order topologies of actomyosin networks, such as an
ordered bundled state or a thick stalk with arborized, dendritic
branches. Also, using network-theory order parameters, such
as the clique number of a graph representation, we are able
to establish hypotheses on the role of multilinker valency in
increasing the complexity of a network by growing the local
connectivity among individual nodes (i.e., filaments).

C. Actomyosin structures mediated by multivalent
actin-binding proteins may shape neural dendritic spines

Our work was inspired by the unique feature of multi-
valency in CaMKII that is important to the formation of
dendritic filaments and actin bundles in dendritic spines of
a neural cell [7,13]. (Please see Supplemental Material [24]
for the relevant background knowledge on CaMKII and den-
dritic spines.) CaMKII has a dual role—one role is to amplify
the calmodulin-mediated calcium signaling by autophospho-
rylating all the CaMKII units; the other role is to reorganize
the actin filament network and to maintain the stability of
actin filaments [16]. In our recent work we have solved the
seemingly conflicting role by understanding the molecular as-
sembly of actin/CaMKII complex [8]. Although high CaMKII
content promotes highly stable actin bundles that last for
days [16], once calcium-bound calmodulin (CaM) activates
CaMKII in a CaMKII-bound actin bundles, CaMKII quickly
releases actin in less than a second [5,6]. Another prominent
feature of CaMKII that stands out from other bivalent ABPs
is its high valency—binding multiple actins at once or form
geometrically complexes with actin filaments [7,8]. With this
distinctive feature, we speculate it plays a significant role in

062420-11



ELIAZ, NEDELEC, MORRISON, LEVINE, AND CHEUNG

PHYSICAL REVIEW E 102, 062420 (2020)

driving the morphology of a dendritic spine, from a filipodia
conformation [48], the neck of a spine, to its mushroomlike
head structure.

With the simulations we executed with CYTOSIM and the
network order parameters, we revealed the impact of multi-
linker valency in driving the complexity in the dynamics and
properties of actomyosin networks. With global order param-
eters such as graph density as well as assortativity, we show
that high multilinker content indeed creates ordered bundles.
Whether it spawns more ordered bundles or arborizes into
higher-order, dendritic thin branches will depend on the motor
content. At a low motor content, filaments grow into ordered
bundles. At high motor content, it generates dendritic actin
structures, arborizing thin branches from a thick stalk. With
these useful order parameters from network theory, we have
provided state diagrams that could be validated experimen-
tally.

V. CONCLUDING REMARKS

Our results highlight the relevance of network-theory order
parameters for studying the complex structure and dynamics
of actomyosin networks by projecting an actomyosin network
on a reduced representation of a graph. Leveraging network
theory, we characterize the higher-order topologies of ac-
tomyosin networks. We discovered higher-order complexes
such as ordered bundled states and the arborization states
and established state diagrams in the two-dimensional plane
of motor and linker contents that enable experimental val-
idations. We believe that the representation of actomyosin
networks as graphs would be useful beyond the scope of
our analysis. It may help to automate the process of coarse-
graining using a graph neural network [49] or it could lead
to the integration of nonequilibrium physics theories [50-52]
with statistical physics on probabilistic graphical models [53],
which would further our understanding of the principles of
molecular self-assemblies that lead to emergent biological
functions.
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APPENDIX

Herein we define the order parameters used from poly-
mer physics and gelation theory. The three polymeric order
parameters are derived from the moment of inertia tensor

defined from the distribution of filament vertices in space. The
gelation order parameters are defined on filaments and how
they are connected with one another by ABPs.

1. Distribution of actin vertices in space

We explored the dynamical changes in shape and structure
of networks in the presence of multilinkers, for both low and
high motor concentrations. We used three order parameters
from the protein folding field [54]: the radius of gyration R,
(the variance of all the positions of filament vertices), which
is a proxy for the macroscopic structure, and the asphericity
and shape parameters [13] that quantify the spatial asymmetry
in the network. In order to define these order parameters, we
first define the moment of inertia tensor of filament vertices at
time 7:

N

1
Tap(t) = 515 D Wia () = Xja(Ollrip (1) = 10, (A1)
ij=1

where r;,(¢) is the o component of a filament vertex, N is
the number of filament vertices, and «, B € {X,y, z} are the
indices of the Cartesian elements. Then the radius of gyration
is given by the sum of the eigenvalues, A; > A, > A3, of T at
time ¢:

(A2)
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3
in(z).
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We let A(7) = nl;& be the average tensor trace of T(¢) and
define [54,55] the asphericity,

[0, (i) — 20))]

3
AO=3 [T ’ (A3
and the shape parameter,
AP
Sy — (T, i) = 7)) (Ad)

[LrT)]

The shape order parameter [54] specifies how prolate (S >
0) or oblate (S < 0) is the conformation of an actomyosin
network, while asphericity measures how an actomyosin net-
work conformation differs from a perfect sphere (A = 0), and
occurs over the range —% <S<2and 0< A1 These
order parameters quantify the physical size and shape of the
system as a whole, without accounting for the connectivity
between any filaments due to the presence of crosslinkers or
motors.

2. Gelation of actin filaments into clusters governed
by actin-binding proteins

Order parameters that explicitly account for the connectiv-
ity give a complementary approach to quantify the dynamics
of actomyosin networks. Previous work [13] has explored the
sol-gel phase transition with respect to the molecular con-
nectivity of ABPs and filament, which suggests a number of
potential order parameters based on the size of filamentous
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clusters. The ith cluster at time 7 is a gelated group of filaments
connected by either motors, linkers, or both; we denote the
number of filaments in the ith cluster as N,;(¢). By conven-
tion, a pair of filaments forms the smallest cluster of size 2;
hence N,;(t) > 1 always holds. We denote N,(¢) as the total
number of clusters in the system at time ¢ and denote Ny as the
number of filaments in the system. The mean gelation ratio
(the fraction of filaments found contained in any cluster),

B 1 Ne(1)
Nea(t) = 5 DN @), (A5)
i=1

is a natural choice for an order parameter, as it quantifies
the number filaments that are linked to other filaments. Com-
plementary order parameters include the normalized mean
cluster size

Ne(1)

o1 1
A = 5 > N : (A6)

i=1

and the normalized largest cluster size

_ 1
Nmax(t) = —  max

Np 1<i<N(0) {Ne. ()}, (A7)

which measures the typical size of a cluster or the size of the
largest cluster. The reasoning behind normalizing gelation-
related quantities by the number of filaments is to map them
onto the segment [0, 1], with 0 indicating a completely unclus-
tered network and 1 indicating a network with a single large
cluster. Equations (6)—(8) quantify the degree of crosslinking
within a network in similar ways and are expected to be
correlated. The variance of cluster sizes within the network,

Ne(0)

3 [No@) =N me]’, (A8

i=1

N
)= N N

quantifies the heterogeneity of cluster sizes and forms an ad-
ditional order parameter we will use to quantify the dynamics
of filamentous clusters in the network.
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