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Dithering on non-Euclidean domains

' ith the surge in the volumes and dimensions of data de-
Wfined in non-Euclidean spaces, graph signal processing

(GSP) techniques are emerging as important tools in our

understanding of these domains [1]. A fundamental problem
for GSP is to determine which nodes play the most important
role; so, graph signal sampling and recovery thus become es-

sential [2]. In general, most of the current sampling methods are

based on graph spectral decompositions where the graph Fourier
transform (GFT) plays a central role [2]. Although adequate in
many cases, they are not applicable when the graphs are large
and where spectral decompositions are computationally difficult
[3]. After years of beautiful and useful theoretical insights devel-
oped in this problem, the interest has now centered on finding
more efficient methods for the computation of good sampling
sets. Looking to the spatial domain for inspiration, substantial
research has been performed that looks at the use of spatial point
processes to define stochastic sampling grids with a particular
interest at point processes that generate “‘blue noise.”

The term blue noise was first coined by Ulichney [4] in the

field of halftoning to describe a homogeneous distribution of
printed dots used by inkjet printers to reproduce shades of
gray that are spaced as far apart as possible, having a power
spectra dominated by high-frequency energy where blue is
the high-frequency component of white light [S]. Minimiz-

' ing low-frequency or red energy creates dot patterns that are
©ISTOCKPHOTO.COM/ALISEFOX L. .
least visible to the human visual system, and by understand-
ing the relationship between interdot spatial characteristics
to desirable spectral properties, an algorithm developer can
focus on optimizing these spatial characteristics instead of
spectral. And because these arrangements also define good
stochastic sampling patterns as well as sampling sets on
graphs [6], [7], it is expected that vertex-domain sampling
algorithms exist for graphs that are computationally efficient
and applicable to large graphs where Fourier-based methods
are impractical.
Concepts similar to blue noise in relation to graph sampling
—— — include the early work of Stadler [8], who developed spectral
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signals on the vertex domain for some families of graphs. Also
included is the work of Pesenson [9], who defined sampling
patterns based on the covering of a manifold by means of open
sets of the same size, while de Silva and Ghris [10] used a simi-
lar concept of disk coverings to capture homological proper-
ties with graphs. Tremblay [11] proposed graph sampling with
a point process having a repulsion property that minimized
the possibility of nearest neighboring samples existing within
a predefined range, all based on the approach proposed by
Puy et al. [12] who introduced blue-noise-like random sam-
pling strategies based on the local graph properties.

Lacking a single, unifying framework for good graph sam-
pling with low computational complexity, it is the goal of this
article to translate the concept of blue noise for spatial-domain
sampling onto graphs such that the attributes of the algorithms
of halftoning can be justifiably employed in the vertex domain
as an alternative to methods that require the
calculation of eigenvalues and eigenvectors.
A fascinating aspect of this article is that it
draws from various disciplines within sig-
nal processing, spectral graph theory, and
from digital halftoning. Additionally, the
concept of admissible partitions proposed
in [13], although theoretical, put the seeds
for the development of diffusion sampling
methods based on blue-noise sampling principles. As error dif-
fusion is one of the most successful and computationally effi-
cient blue-noise halftoning algorithms in the spatial domain
[14], we expect it to become a standard technique for graphs.

Beyond unidirectional, connected graphs, this article also
considers multigraphs, where signals can be defined and pro-
cessed exploiting concepts from GSP but where a unique set
of challenges arises from the intrinsic characteristics of mul-
tigraphs. Without a clear definition of frequency, sampling
algorithms proposed for simple graphs like those of Anis
et al. [15] do not have multigraph variants. Yet even though
there is no clear understanding of blue noise in the spectral
domain, the vertex-domain definition of blue noise as a pro-
cess that minimizes clustering of sampling nodes is more
easily extended to nonsimple graphs, such as multigraphs.
Within the context of digital printing, we hypothesize that
multigraphs are similar to color halftones composed of cyan,
magenta, yellow, and black inks where the individual half-
tones observe blue-noise properties as well as the composite
color halftoned when viewed in the monochrome, luminance
space [16]. As such, this article demonstrates a series of
modifications to our graph algorithms to also sample mul-
tigraphs where we extend the idea of jointly blue noise to
multigraph sampling.

Background and notations

Before introducing the details about blue-noise sampling, we
note that the graphs considered in this discussion are undirect-
ed, weighted, connected, and simple. They are represented by
G = (V(G), E(G)), where V(G) is the set of nodes and E(G)
the set of edges. The weights associated to the edges in E(G)

A fascinating aspect of this
article is that it draws from
various disciplines within
signal processing, spectral
graph theory, and from
digital halftoning.

are stored in the symmetric matrix W, being W (u, v) = 0, the
weight associated to the edge connecting the nodes u and v.
The diagonal matrix D stores the degrees of the nodes in the
graph, and its entries are given by D (u, u) = X,evic) W (1, v).
The values of D can be used to characterize any graph G by
its volume as vol(G) = ZuevD(u, u). On any graph, sev-
eral graph shift operators can be considered to exploit dif-
ferent properties of the graph and to define a GSP frame-
work [1], [17]. For our discussion, we use the combinatorial
graph Laplacian L =D — W, which is a symmetric-positive
semidefinite matrix whose eigenvalues are represented as
0= 1 < pur <---< un, N=1|V(G)|. A path between the nodes
u1 and ug is given by a sequence of nodes {u;}?-, such that
W (ui,ui+1) #0 for all 1 <i<gqg—1, and its length is given
by ZiZ ! | W (ui, ui+1) |- Then, the distance (geodesic) between
u1 and u, is defined as the minimum length of all the paths
between u; and u,; we store the values
of these distances in the matrix I', where
I'(u, v) is the distance between the nodes
u and v.

A real-valued signal x on the graph G is
defined as a function x:V(G) — R, which
is associated to a vector x € R". The com-
ponent x (v) represents the value of the sig-
nal on the node v € V(G). The support of
x, defined as the set of nodes where x is different from zero,
is indicated by supp(x), and the restriction of x on a subset
of nodes § is represented by x(S). Considering the spectral
decomposition of the Laplacian as L = UAU', the GFT of
a graph signal x on G is defined as x = U'x [1]. The band-
width of x is defined in terms of the nonzero components of x.
In particular, the bandwidth of x on the spectral axes is given
by we R+ if x € PWo(G)=span{Ui: ux < w}, where
PW,(G) is the so-called Paley—Wiener space of bandwidth
[18], and Uy is the matrix whose columns are the first k columns
of U. An alternative representation of the bandwidth is given
by the largest integer k such that ux < @. When considering
the realizations x1, x2,...,x4 of a random signal x, the power
spectrum of x is computed as p(0) = (N/g) Z{-1%:(O /| x: |3.

The notion of bandwidth on a graph is based on the fact
that any signal on the graph can be represented by means of
its nonzero coefficients in the GFT, which states a minimum
number of values of the signal for its unique representation.
In this context, we consider the sampling of a signal x on the
graph G by selecting the components of x on a subset of
nodes S = {s1,...,5m} C V(G). These values are represented
by x(S) =Mx, where M is a binary sampling matrix. A
reconstructed version of x can be obtained from x(S) as

Xree = argmin | Mz — x(S) |3 = Us(MUL) x(S),

zespan(Ux)

6]

where (MU)' is the Moore—Penrose pseudoinverse of MUy
[6], [15]. The closeness between x and X is directly depen-
dent on the choice of the sampling set S; therefore, the central
challenges in sampling are two. First, given a fixed value of
the bandwidth of the signals, it is desired to find the subset of
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sampling nodes S such that the reconstruction in (1) provides
the minimum error, and second, given a fixed number of sam-
pling nodes, it is desired to find the subset of nodes S, which
extends or maximizes the bandwidth of the signals that can be
represented in a unique way on S.

In [18], some quantities have been defined to character-
ize the goodness of sampling sets, relying on the concept of
removable sets. In particular, any subset of nodes S C V(G) is
said to be a A-removable set if

[xhL=(1/M|Lx], v xeLS), ©)
where L2(S) is the set of all signals x, with support in
S C V(G) and finite 0> norm. The highest-value A for which
(2) holds, is represented as As. This can be associated to the

quality of a given sampling set. Indeed, as stated in [18], if for a
set S C V(G), it happens that S° = V(G)\S

on the other hand, introduced a way to find the optimal distri-
bution p” based on determinantal point processes, considering
sampling sets of size m = k when Uy is available. An efficient
implementation of this sampling technique was later developed
in [11]. The recovery of the signal for the methods in [11] and
[12] is given by

Xree = argmin: e pnwy [P~ (Mz = x())|3, 3)
where P = diag(p”). Note that (3) can be considered a particu-

lar instantiation of (1), where the effective sampling matrix is
P71/2 M.

Blue-noise graph sumpling

As an alternative to deriving eigenvectors and values, blue-

noise sampling on graphs provides a framework for the effi-
cient generation of sampling sets relying on

is a Ag—removable set, then all signals in The notion of handwidth the simplicity of generating vertex-domain
PW4(G) are completely determined by on a graph is based on the blue-noise-like patterns using algorithms
their values in S whenever 0 < @ < Age. fact that any signal on the originally derived for halftoning. Although
As such, Age provides a measure for the blue-noise sampling can be described by
quality of the set S as a sampling set. In graph can he_renresemeu means of simple and intuitive ideas, its
[13], other parameters connected to As: are by means of its nonzero connection with formal theoretical results
introduced and a detailed discussion about coefficients in the GFT. about graph sampling [6] provides a solid

them can be found in [6], where it is also

shown that sets of nodes with large values of As are desired
not only for the uniqueness of the representation but also for a
high-quality reconstruction.

Different approaches have been considered in the literature
for the search of optimal sampling sets [6], [15], [17]. Most of
these approaches rely on the minimization or maximization of
a cost function that is directly or indirectly related to the val-
ues of /s as a consequence of the fact that finding the subset
of nodes that provides the maximum value of As is a com-
binatorial NP-hard problem. The different cost functions are
based on the minimization of the error in the reconstruction
[6] achieved by means of greedy algorithms that add one node
at a time. A detailed discussion of the recent methods can be
found in [6] considering different types of sampling schemes
and optional reconstruction methods. Illustrated in “Exam-
ple 1” is one such sampling method from [15] that relies on the
systematic calculation of the first eigenvector and eigenvalue
of a Laplacian matrix indexed by the nodes in the complement
set of a temporary sampling set S. In particular, denoting by
1 (Lse, so) the first eigenvalue and u its associated eigenvec-
tor of the matrix obtained from L deleting the rows and col-
umns indexed by S, an optimal sampling set S is obtained as
S =SU {v}, where v corresponds to the index of the compo-
nent of u; with maximum absolute value. This process starts
with § = 0 and repeats the desired number of sampling points.

Also illustrated in “Example 1" are the sampling methods
proposed in [12] and [11]. In [12], m samples are drawn inde-
pendently according to the sampling distribution p* € RY,
which minimizes the graph-weighted coherence given by
pi=|Ufei|,/Z1 | Ui €i |, where €; is the N-dimensional
Kronecker column vector centered at i. Tremblay et al. in [19],

ground for the development of simple, ef-
ficient, and fast algorithms with consequences in applications
where large networks are considered. As various studies have
looked at how to convert a continuous-tone image into a blue-
noise halftone, we similarly are interested in algorithms for
building blue-noise sampling patterns on graphs.

As stated previously, Ulichney [4] demonstrated that the
best halftoning algorithms are the ones that maximize the high
or blue-noise frequencies or, conversely, minimize the low or
red-noise frequencies; however, doing so is much easier, com-
putationally, in the spatial domain assuming that we know the
spatial properties corresponding to minimizing a pattern’s
redness. Likewise, Parada-Mayorga et al. [6] show that good
graph sampling is defined by binary graph signals whose GFT
also minimizes redness, which they define as a weighted mea-
sure of the signal’s total energy according to

1 N

20 _ 13- 5°0
2, mrg:z ,

Rs =
3= Mo

w1

where § is the GFT of s, and the square of each coefficient
is weighted by the inverse of the corresponding eigenvalue/
frequency. In this way, the lowest frequency components have
much greater weight than do the highest. In the vertex domain,
these binary signals have intersampling node-spatial proper-
ties, which are characterized as a homogeneous distribution
of sampling nodes spaced as far apart as possible while also
uniformly spanning the area of the graph at a given density. To
illustrate this, “Example 2” compares well-formed blue noise
with uncorrelated white-noise patterns generated by associat-
ing to each node a Bernoulli random variable with a probabil-
ity of success of p = m/N.
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The void-and<cluster (VAC) and error-diffusion methods
have the advantage that spectral decompositions are not
required, whereas the other used methods do. The patterns
generated by adaptive VACs are similar to those generat-
ed using spectral decomposition (see Figure S1).

To compare the performance of various sampling methods,
a numerical experiment using the 2,642-node Minnesota
graph was generated. One hundred band-limited signals
with bandwidths of 0.05v(G)| were generated having addi-
tive Gaussian noise with a signalto-noise ratio of 20. An
example of these signals is depicted in Figure S2(a). The sig-
nals were then sampled and reconstructed using different
methods according to the sampling nature; deterministic
methods used (1) for the reconstruction, while probabilistic

Anis et al.

Puy et al.

methods (Puy et al. [12] and Tremblay [11]) used (3). The
mean-squared errors (MSEs) between the reconstructed and
original signals were compared for all the methods [see
Figure S2(b)].

A VAC with @ =1.5 has an MSE that quickly converges
to the sampling patterns of Anis et al. [15] and Tremblay
et al. [11] and performs substantially better than random
sampling. A VAC with o =0 produces a uniform spatial
distribution, independent of the underlying graph structure;
in the case of the Minnesota graph, this causes a poor per-
formance. Even though error diffusion does not outperform
a VAC with a=1.5, it offers lower computational com-
plexity, and its performance is comparable to the method
proposed by Puy et al. [12].

VAC Adaptive Sampling
a=1.5

VAC Uniform Sampling

FIGURE $1. Different sampling strategies on the Minnesota graph with a density of 10%.
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FIGURE $2. Example of (a) a band-limited signal and (b) reconstruction errors for different sampling methods.

Like halftones, white-noise graph signals have a flat Fou-

rier response for all frequencies, while blue noise shows a

substantial reduction in red energy near ¢ = 0. It is this reduc-

tion in redness that makes blue noise beneficial to graph sig-
nal sampling. Specifically, Parada-Mayorga et al. [6] proved

34

that the redness of any sampling pattern, with support in a set

S C V(G), is related to the value of A according to

2
Ry 5

vol(G)Rs —m(1 —%)2

Ase>Cs
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In Figure S3, the red lines represent the ideal spectral
shape defined by Ulichney [4] for digital halftones
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FIGURE S3. Graph power spectra on a sensor network generated by
random and void-and-cluster sampling patterns with horizontal axes
L. representing the normalized eigenvalues (frequency), while p ()
are the intensities of the power spectrum calculated as the squared
average of the kth coefficient of the graph Fourier transform.

where § is the isoperimetric dimension of the graph, and Cs
is a constant that depends only on §. Note that low values of
Ry are desired because, as Rs decreases, the right-hand side of
() increases, providing the guarantee that the minimum pos-
sible value of As increases as well. The proof of (5) relies on
the use of the Dirichlet inequality up(S) > Cs(1/vol(S) 8y,
where up(S) is the first eigenvalue of the combinatorial
Laplacian on the induced subgraph by S C V(G), and on the
fact that vol(S) = m?(1 —m/N)2/(Z0-25(0) % /i) [6]. Addi-
tionally, we note that (5) is consistent with an intuitive inter-
pretation of the relationship between Rs and the correlation
between sampling nodes. We recall that as pointed out in [8],
the correlation length of a signal x on a K-regular graph is
given by 0y = K/ | % 32122 (% (0)*/u) and, therefore, the red-
ness of a sampling pattern can be seen as directly linked to
how correlated the sampling nodes in a sampling pattern are.
And this correlation is intuitively expected to decrease when
the distance between sampling nodes is increased, which at the
same time would lead to a reduction of the redness.

Now, as ideal blue-noise sampling patterns inherit the
low values of Rs, it is our goal to establish a spatial-domain
statistic on which we can develop vertex-domain optimiza-
tion algorithms sans eigenvectors. Translating Ulichney [4]
from halftoning to graphs, blue-noise graph signals can be

IEEE SIGNAL PROCESSING MAGAZINE | November 2020 |

transcribed to the graph Fourier transform. The graph
power specira of random or white-noise sampling is char-
acterized by a flat shape across all of the frequencies,
while blue-noise patterns d=0.05 and 0.15 are character-
ized by the suppression of low-frequency components that
becomes more pronounced for patterns with higher density.
Note that the location of the peaks in the ideal frequency
response (Figure S3) and the pair correlation (Figure 2)
move in opposite directions, but a closed-form expression
can be derived for only specific families of graphs. Patterns
with higher densities require more iterations to arrive at
their stable form, while patterns with lower densities are
stabilized after just a few iterations (see Figure S4).

Redness

d=0.01— d=10.05
—d=01 —d=0.2

> 04 \

——
0.2 ‘
0 50 100 150 200
Iteration

FIGURE S4. An example of how the redness (R,) of the patterns,
computed using (4), decreases as the number of iterations in the void-
and-cluster algorithm increases.

described as a set of fixed radius disks covering the graph
such that the area of the disk is equal to the area of the graph
divided by the number of sampling nodes [6]. The radius of
these disks is then the average distance (geodesic) between
the nearest neighboring sample nodes indicated by A, and
referred to as the principal wavelength of blue noise [14].
Although the relationship between A, and the gray level of a
binary halftone is deterministic and proportional to the square
of the density, it is not so on graphs, which may vary greatly in
the way nodes are connected. Hence, the principal wavelength
of an ideal blue-noise sampling pattern can be related to the
number of sampling nodes according to d = 1/E{N(A)},
where E{N(4s)} is the expected number of 1s on an open
ball of radius A, and d =| s|o/N is the density of the sam-
pling pattern. Because E {N(1s)} is graph dependent, so is
As. The value of A, can be computed experimentally consid-
ering the histograms of the number of nodes inside a given
radius for a given node.

It is important to point out that, for a particular graph, the
values of £ {N(As)} may vary dramatically from one region
to the other if the local properties of the graph are not homoge-
neous. This leads to a dilemma, as to have a consistent relation-
ship between d and A», the spacing between sampling nodes
should be modified accordingly. For the remainder of this
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section, we consider graphs with this local homogeneous struc-
ture measured by the local isoperimetric dimension. In these
types of graphs, equal spacing leads to an optimal reduction
of the redness which, as it is shown in [6], is a desired attribute
of good sampling patterns. Note that when this property is not
satisfied, a partition of V(G) can be built such that each element
in the partition has the same local properties.

Assuming a local homogeneous graph structure, we expect
the average distance between sampling nodes, As, to have
some variation with too large a variation having a noisy or
uncorrelated (white) point distribution, while too small a
variation has a periodic or rigid sampling arrangement. Sta-
tistically, we can quantify the variation in A, using the pair
correlation to measure the increased/decreased likelihood of
a sampled node occurring at a given distance from another
sampled node. In [6], the graph pair correlation is introduced
to analyze the vertex-domain characteristics of sampling pat-
terns following the same principles used by Lau et al. [20]
in traditional halftoning to provide a clear description of the
distance between the closest points in a sampling pattern.
Its definition relies on the use of concentric ring sets (annu-
lus) given by Bo(v,p) = {u € V(G):p—0=|yvu|<p+6},
where v, is the shortest path between the nodes v and u. Note
that Be(v, p) can be obtained as the set difference of two open
balls centered at v with a radius of p—6 and p + 6, respec-
tively. With this notion, the sample pair correlation of a sam-
pling s is given by

# > I's(Bo(si, o)) ||y
Re(p) == ’ ©
L% s o0 o

ve V(G)

where m=|s|, is the size of the support of s, i.e., S =supp(s)=
{s1,52,...,8m}, and | s (Bo(si, p)) o is the number of elements

in the support of s on Bo(si, p).

To help illustrate the meaning of the pair correlation, Fig-
ure 1 shows in green all of the nodes within a shortest path
distance of an arbitrary p from a sample node of interest for
a random sensor network. A close inspection of the figure
shows that p is measured based on the weights of the connec-
tions and not the Euclidean distance, as the disk of green has
a rough edge. Shown in orange are all of the nodes that are
within £6 of p from the node of interest; while the sample
nodes in blue are within the set of orange nodes. So the pair
correlation is the ratio of the number of blue sample nodes
over the total number of orange nodes. Thus, the numerator is
the average number of elements in S enclosed on a ring cen-
tered in another element s; € S, while the denominator is the
average number of elements in S enclosed on a ring centered
in any node v € V(G). The value of 6 is selected according
to the distribution of nonzero values of W being the average
of these values of the typical selection [6]. When a random
pattern is considered via g of its realizations §,,...,S4, the pair
correlation is calculated as R(p) = 1/gX?_, Rs,(p), where the
values of p for which R(p) reaches a peak are an indication
of a frequent occurrence of a given distance between sampling
nodes, while the valleys indicate a suppression at these inter-
point distances.

Presented in Figure 2(a) and (b) are the pair correlations for
a white- and blue-noise process, respectively, where, for white
noise or random sampling, the expected number of selected
nodes stays constant for all values of p, with the pair corre-
lation exhibiting a flat shape. Given the nature of blue-noise
sampling to minimize clustering and equally space sam-
pling nodes, we expect the pair correlation of a well-formed
blue-noise sampling pattern to match that depicted in Fig-
ure 2(b), which exhibits the following properties: 1) given a
sampling node, no other sampling nodes lie within a path of
length p < Ap; 2) for p > A, the expected number of sam-
pling nodes per unit area (on the geodesic domain) tends to a

FIGURE 1. How to calculate the pair correlation for a given set of sampling nodes where (a) the green nodes are all nodes within a radius p of a

given sample nodes, (b) the orange nodes are within +6 of p from the node of interest, and (c) the blue nodes are sample nodes within the set of

orange nodes.
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constant value; and 3) the internode distance with the highest
occurrence is Ap.

As stated previously, as the variance in the distance between
the nearest sampling nodes increases, we expect to see the val-
ley in Rs(p) for p < Ap to fill in, while the peak at p = A
is expected to dissipate until it becomes flat for all p, which
is characteristic of uncorrelated or white-noise sampling pat-
terns. From Figure 2(b), we see the characteristic peak when p
is equal to A, with a noticeable suppression of samples nodes
at a distance less than A, apart. In [11], Tremblay referred to
this suppression as a repulsion property. We summarize this
result by saying that ideal blue-noise sampling patterns on
graphs have their sampling nodes spread as far apart as pos-
sible from each other.

Void and cluster

To demonstrate that good blue-noise sampling patterns can be
constructed entirely in the vertex domain, Parada-Mayorga et
al. [6] proposed a blue-noise generator for graphs inspired by
Ulichney’s void-and-cluster (VAC) algorithm [21]. For halfton-
ing, VAC modifies the concentration of printed pixels moving
dots from regions with high concentration to regions with low
concentration. For graphs, VAC relies on the use of geodesic
distances between sampling nodes on the graph, maximizing
for each sampling node the sum of distances with respect to
other sampling nodes. Specifically, VAC uses the Gaussian
kernel, K(u, v) = exp (=TI (u, v)%/o), to map the geodesic dis-
tance I'(u, v) between nodes u and v into a new set of values
that are directly used to measure the density of sampling nodes
in a given region. The values of K (u, v) are close to 1 and O for
the small and large values of I' (u, v), respectively.

Initially, we set the signal s to a random binary signal where
the signal’s support, supp(s), becomes the set of sampling nodes
wheresisequalto 1. The density of the sampling nodes, supp (s),
is calculated as c(supp(s)) = ZK(supp(s), supp(s)), while
the density of the remaining nonsampling nodes, supp(s)*,
is calculated as c(supp(s)“) = ZK(supp(s), supp(s)‘) — 7,
where 7> N and XK(A, B) = X4, K(ai, bj) with a; € A,
b; € B. The new location of the nodes in s is done accord-
ing to s(argmax;{c(i)}) =0 and s(argmin;{c(i)})=1. That
is, s(argmax;{c(i)}) is the sampling node with the high-
est corresponding local density. We make this node a non-
sampling node by setting its signal value to 0. Likewise,
s (argmin; {c(7)}) is the nonsampling node having the least or
sparsest local density, which we make into a sampling node
by setting its signal value to 1. Repeating these steps until the
same two nodes flip back and forth leads to a sampling pat-
tern like the one depicted in Figure S1 (in green) in “Exam-
ple 1,” which shows a uniform and homogeneous spreading
of the samples.

As proposed, the uniformity of the sampling pattern
obtained by means of VAC does not consider the density of
the connections around each node. As a consequence, the
richness of the information associated to a given sampling
node might be poor. This density can be included considering
the mapping W (u,v) — W (u, v)max {p(u), p(v)}*, where

p ()= N(u)/D(u, u), N(u) is the number of neighbors of u,
and o € R*. In this way, the weights will be increased in
regions of the graph where we have nodes with a large num-
ber of connections, allowing the nodes to be further away
than they would be with no modification of the weights. At
the same time, those regions with a low density of connec-
tions will have low concentrations of sampling nodes, as the
weights will be decreased, resulting in patterns like Figure S1
(in blue) in “Example 1.”

Error diffusion

Although VAC produces good blue-noise patterns, its com-
putational complexity, O (N?), makes it especially expensive
for large graphs. So, we propose a method of error diffusion
[7] that performs well with only O(N(2 + dace)) complexity,
where daeg is the average degree of the nodes in the graph.
In digital halftoning, error diffusion has been extensively
studied and improved for generating blue-noise-like patterns.
The basic premise is to process signal samples serially along
a predefined raster path, quantizing each sample to its nearest
binary value and propagating the quantization error into the lo-
cal neighborhood of yet-to-be-processed samples. How exactly
the quantization error is divided into neighboring samples is
determined by a user-defined error filter kernel, with differ-
ent kernels producing different halftone textures—some more
blue than others.

For the sampling of graph signals, we follow the same prin-
ciple where graph edges take over the role of the error filter
kernel to define how much the quantization error from a given
node gets propagated to neighboring nodes. And just as with
images, error diffusion on the graph requires a predefined ras-
ter path, with some paths leading to better blue-noise sample
sets than others. We note that the idea of using diffusion for
the generation of sampling patterns is connected to the notion
of admissible partitions proposed in [13]. Then, although error
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FIGURE 2. Plots of the pair correlation for (a) white-noise and (b) blue-
noise graph-sampling sets.
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diffusion was developed originally for halftoning applications,
it can be considered on graphs as an attempt to generate the
optimal sequence of admissible partitions that would lead to
an optimal sampling set.

In this article, error diffusion on the graph starts by defin-
ing a constant signal x =(m/N)1yx1 or x with amplitude
d = m/N along with a raster path defining the order on which
we will visit each node of the graph and a quantization thresh-
old fn defining when a scalar sample is closer to 0 or 1. In
graphs, the raster path is defined using the labeling of the
nodes assigned when the graph is generated. This labeling is
not unique [1], but for our discussion, we consider graphs gen-
erated by the GSP toolbox with the labels it provides for the
construction of the raster paths. Then, starting with the first
node in the raster, an error is generated as e, = s(1) —x(1),
where s(1) =1 if x(1)>tm or s(1) =0 if x(1) <twm. The
value of e, is then diffused to the neighbors of this first node,
N, as e()) = WL, Dep/(ZienayW(,1)),i € N(1). This
process is repeated iteratively following the ordering given
by the raster in such a way that the error at node v would
be computed as e, =s(v)—u with s(v) =1 if u > ta or
s()=0 if u <tm and u = x(v) —e(v), diffusing this error
as e()) =e()) + (W, Dep/ZicnwyW(v,i)). In this way, the
error is propagated according to the local connections of each
node, ignoring connections to the nodes already processed.
Note that this diffusion of error is completely equivalent to the
one performed in traditional halftoning [4] in the sense that the
amount of propagated error is not amplified or diluted in any
way because the sum of the diffusion weights is exactly equal
to 1; however, each node has its own error filter kernel that is,
in part, determined by the raster order, as error can only be
propagated to as-not-yet-processed nodes. There is the occa-
sional situation where a node is the last to be processed within
a local neighborhood with its corresponding error simply dis-
carded, a situation analogous to error being diffused beyond
the left and right edges of an image.

Displayed in Figure 3(b) is a cropped region in a 50,000-
node random sensor network that has been sampled by means

R(p)
=)
(2]

FIGURE 3. (a) The pair correlation and (b) the snapshot of a sampling
pattern obtained by means of error diffusion on a random sensor network
with 50,000 nodes.

of error diffusion with a sampling density of 2%. As a means
of statistically characterizing the spatial distribution of nodes,
Figure 3(a) shows the corresponding pair correlation with an
inhibition of clustering with Rs(p) < 1 for p < 0.04. The
lack of a clear peak at the principal wavelength is indicative
of excessive varying in the average spacing between sample
nodes relative, for instance, to the spacing from the pair cor-
relation in Figure 2(b). This varying in spacing is visible in
Figure 3(b) by the snake-like vertical strands/paths formed
by blue dots; however, Figure 3(b) is clearly more organized
than random sampling as Rs(p) approaches 0 for smaller
values of p.

Now as a means of quantitatively evaluating error diffusion
on graphs for signal sampling, “Example 1"’ shows the perfor-
mance of error diffusion in comparison with other sampling
approaches described in the “Void and Cluster” section. We
can observe a clear improvement with respect to uniform
random sampling as well as VAC when « = 0, providing an
alternative for sampling when graphs with a local isoperimet-
ric dimension that is not homogeneous. Although not as good
as VAC for o = 1.5, error diffusion performs sampling with
substantially lower computational complexity. To see this, we
consider complexity in terms of two separated components.
The first is the presampling set search (SS) component, which
is associated with the calculations that are involved before the
SS, while the second part is the cost of the SS itself, i.e., finding
the sampling set. For error diffusion, we have none of the pre-
liminary calculations with pre-SS=0 and SS=O (N (2 + dueg)).
For VAC, we have a pre-SS=O(N(| E(G)|+N)logN) and
SS=O((N — 1)(m + 2)). For Anis et al. [15], we have pre-SS=
O(q|E(G)| kTh) and SS=O(Nk), where g is the power of
the Laplacian considered in the application of [15], m is the
number of sampling nodes, k is the bandwidth of the signals
considered, w represents the average of the nonzero elements
in W, Jdeg is the average number of neighbors of each node, o
is a constant associated to the difference between the desired
number of sampling nodes and its effective value, and 77 is the
average number of iterations required for the convergence of a
single eigendecomposition pair.

Blue-noise sampling on multigraphs

The principles of blue-noise sampling on graphs can be gen-
eralized to richer graphical structures like multigraphs. The
interaction between Facebook and Twitter, for instance, is a
system that can be represented as a multigraph. Compared
to simple graphs, there are few approaches to the problem of
sampling on multigraphs [22], [23] given that, despite the fact
that the spectral decomposition of the matrix operators on the
subgraphs exists, it is not clear how to get a general spectral de-
composition that involves all of the subgraphs. A naive way to
generalize the sampling methods proposed for simple graphs,
such as the ones proposed by Anis et al. [15], Puy et al. [12],
Tremblay [11], and the adaptive VAC introduced in the “Void
and Cluster” section, is to construct an equivalent simple graph
by aggregating the subgraphs information. One of the simplest
approaches is to define an equivalent weight matrix as the sum
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of the weight matrix W; of each set of edges, Ei(G). Thus, the
resulting Laplacian consisting of the sum of the simple graphs’
Laplacians is

P
L(G) = X L(G. )
=1

Other approaches suggested for the spectral representa-
tion of multigraphs consider the summation of the individual
spectral kernels or the linked matrix factorization that approx-
imates the graph through a low-rank matrix approximation
using the common factors among graphs and the characteris-
tics of each graph G, [24]. The problem with sampling based
on the equivalent weight matrix is that the combination or
superposition of independent stochastic sampling patterns,
each designed for a different set of edges E(G), does not nec-
essarily produce aggregate patterns with ideal characteristics.
The VAC algorithm may open the door to a new generation of
vertex-domain algorithms whose aim is to produce ideal pat-
terns per set of edges E(G), yet produce combined sampling
patterns with ideal aggregate properties. At the very least, it
will demonstrate the flexibility of the vertex-domain interpre-
tation of blue noise.

For multigraph sampling, we generalize the VAC algorithm
from the “Void and Cluster” section by measuring the sample
density in each graph G; using Gaussian kernels K;(u,v)=
exp(—Ii(u, v)?/o) with a final density, denoted as C, comput-
ed as the sum of graph densities, ¢/, according to C = Z{_;c..
As before, each density vector ¢; is computed for the sam-
pling nodes as ¢;(supp(s)) = ZK;(supp(s), supp (s)) and for the
remaining nodes c¢;(supp(s)) = ZK;(supp(s), supp(s)“) — .
The new location of the nodes is selected depending on the
multigraph density measure C as s(argmax; {C(i)}) =0 and
s (argmin; {C(i)}) =1, moving 1s from high-density regions
[large values of C(i)] to regions of low density [low values
of C(i)]. This will force the selected vertices to be spread
apart as far apart as possible in the multigraph as well as the
individual graphs while maintaining an intersample spacing
approximately equal to the blue-noise wavelength; alternative-
ly, a weighted sum could increase a particular layer’s influence.
Regardless, it is clear that when p = 1, the algorithm reduces
to the original VAC, which makes this algorithm a generalized
version of VAC for p = 1.

To illustrate the performance of sampling on multigraphs,
consider a multimodal sensing application using hyperspec-
tral images (HSIs) merged with 3D depth maps. HSIs pro-
vide spectral signatures of materials across a wide range of
wavelengths, but they do not provide structural and elevation
information. On the other hand, 3D depth cameras provide
the size, structure, and elevation of different objects. Their
fusion provides unmatched capabilities in an array of applica-
tions [25], [27]. To this end, a multispectral point cloud was
captured in five spectral bands centered at 370-nm ultravio-
let (UV), 470-nm (blue), 530-nm (green), 700-nm (red), and
783-nm near-infrared response (NIR) using a calibrated set
of Intel Real-Sense D415 and Nurugo UV cameras. NIR-red-
green-blue-UV+ depth focal plane array measurements were

captured over 15 viewing angles separated by 10° [26]. A
19,812-multispectral point cloud was then obtained by fusing
the multispectral measurements. The 3D point cloud consists
of a set of points @ ={g;|j = 1,...,N}, where each point has
an associated 3D coordinate vector t; = [x, y, z] representing
its spatial location. The spectral information in ¢; is stored in
the vector b; =[b}", b%, b%, b%, BT,

The multigraph G, representing a 3D point cloud, assigns
each voxel in the point cloud to a vertex v € V(G). Two sets of
edges, E1(G) and E2(G), are assigned based on the geometry
of the point cloud and its relative luminance ¥; = 0.2126b% +
0.7152b5 + 0.0722b% . In the case of E1(G), two nodes, v; and
v;, are connected if their 3D spatial distance D;; = t: —t; |, is
among their K-nearest neighbors, assigning W1 (v, v;) = Dj;.
For the set of edges E2(G), node v; is connected to node v; if
it is one of the K-closest and most similar neighbors accord-
ing to the relative luminances Dy;=|Y;—Y;|, assigning
Wa(vi,v) = Dyy. Let {(b°e RY:c e {UV,B,G,R,NIR}}
be a set of real signals on the graph, defined by the mapping
b:V(G) — R, where b(v) is the pixel value associated to
v € V(G) in the ¢ spectral channel. We explore different sam-
pling methods using this multigraph in “Example 3.”

Condlusions

In this article, we reviewed the theory of blue-noise sam-
pling as an extension of spatial dithering to graphs in both
the vertex and Fourier domains. Previous works in spectral
graph sampling exist that can be considered blue noise, but
this article demonstrated that popular vertex-domain halfton-
ing algorithms can be similarly effective with substantially
lower computational complexity. We specifically looked at
VAC as well as error diffusion. Although VAC outperformed
error diffusion, error diffusion’s O (N(2 + daeg)) complexity
makes it especially appealing for large graphs. Future re-
search in these spatial dithering techniques will look at how
to optimally sample on large graphs, especially in light of
the lack of alternate approaches. We hypothesize that VAC
will be especially advantageous at sampling large graphs
by independently processing partitions with a smoothing of
sampling nodes along the boundaries. Additionally, we con-
sider that there is great potential in the mathematical tools
presented in [13], where the properties of the ordered parti-
tions of nodes are studied in connection with uniqueness sets
for band-limited signals.

In terms of its graphical structures, graph blue-noise
sampling suits, in a natural way, signal processing approach-
es where the knowledge of local properties is essential. As
shown with multigraphs, blue noise applied for each induced
subgraph obtained from the different families of edges leads
to a simple strategy that does not ignore the intrinsic struc-
ture of the multigraph and does not require the spectral
decomposition of an equivalent graph. Now, in some applica-
tions where the key role is to find and process a compressed
representation of the information, one equivalent graph rep-
resentation might not preserve or represent with fidelity the
original properties of the signal on the multigraph. Beyond
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To compare the effectiveness of sampling by means of void
and cluster (VAC) on multigraphs, we perform a numerical
experiment using a multigraph, G, with close to 20,000
nodes representing a 3D multispectral point cloud [see
Figure S5(a)]. The sampling patterns for m =0.2N using
the different methods are depicted in Figure S5(b). Here,
sampling methods proposed for simple graphs, such as the
ones proposed by Anis et al. [15], Puy et al. [12], Tremblay
[11], and the adaptive VAC introduced on multigraphs
“Void and Cluster” section, use the equivalent weight matrix
computed as W(G)=yW, + (1 — Y)W., where the individ-
uval weight matrices, W, and W., were first normalized
and the parameter v determines the influence of one set of
edges over the other. The generalized VAC on G considers
instead (1—7y)W, and yW. because, the smaller the
weights the higher the influence of the edges when defer-
mining the sampling pattern, thus being the opposite effect
when considering the addition of the weight matrices to
compute W(G), as is the case with the former approaches.
Adaptive VAC with o =3 and y = 0.6 were used for this
experiment. Note that the methods proposed by Anis et al.
[15], Puy et al. [12], and Tremblay [11] require either the
estimation of the spectral decomposition or the computation

uv Blue

Random

VAC W(G)

47

of eigenvalues and eigenvectors, whereas VAC algorithms
do not.

The mean square error (MSE) between the reconstructed
and original signals was computed for all the spectral
channels, and their average is displayed in Figure S6.
Here, the proposed generalized VAC on the multigraph G
significantly outperforms the adaptive VAC on the equiva-
lent weight matrix W(G), random sampling, and sam-
pling on multigraphs G proposed by Gjoka [22]. The

) 200 3 —— Random Tremblay W(G)
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FIGURE $6. Reconstruction error for sampling patterns of different
sizes using a down-sampled point cloud (N = 4,737).
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FIGURE $3. Approximately band-limited multispectral signals (approximate bandwidth of 0.11N) supported on a 3D point cloud (a) and sampling
patterns with sample size m=0.2N using different sampling methods (b). UV: ultraviolet; NIR: near-infrared response.

(Continued)
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Example 3 (Continued)
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FIGURE S7. Absolute error between the original and reconstructed green (a) and ultraviolet (b) signals using different sampling methods. Gamma

correction with y.=1/3 was applied only for display purposes.

MSE of the generalized VAC on G closely approaches
Puy et al.’s [12] MSE and, together with Tremblay [11],
have a lower MSE compared to Anis et al.’s [15] for a
small sample size. Tremblay [11] has the best performance
for a small sample size.

However, because the methods proposed by Puy et al. [12]
and Tremblay [11] are randomized, perfect reconstruction

graphs and multigraphs, both multilayer and directed graphs
are two important types of graphs where one can envision
extending the concepts of VAC and error diffusion given
the flexibility of the vertex-domain interpretation that ideal
blue-noise sampling patterns on graphs have their sampling
nodes spread as far apart as possible from each other.
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