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Multi-Hour Blood Glucose Prediction in Type 1 Diabetes:
A Patient-Specific Approach Using Shallow Neural
Network Models
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Abstract

Background: Considering current insulin action profiles and the nature of glycemic responses to insulin, there
is an acute need for longer term, accurate, blood glucose predictions to inform insulin dosing schedules and
enable effective decision support for the treatment of type 1 diabetes (T1D). However, current methods achieve
acceptable accuracy only for prediction horizons of up to 1 h, whereas typical postprandial excursions and
insulin action profiles last 4–6 h. In this study, we present models for prediction horizons of 60–240 min
developed by leveraging ‘‘shallow’’ neural networks, allowing for significantly lower complexity compared
with related approaches.
Methods: Patient-specific neural network-based predictive models are developed and tested on previously collected
data from a cohort of 24 subjects with T1D. Models are designed to avoid serious pitfalls through incorporating
essential physiological knowledge into model structure. Patient-specific models were generated to predict glucose
60, 90, 120, 180, and 240 min ahead, and a ‘‘transfer learning’’ approach to improve accuracy for patients where
data are limited. Finally, we determined subgroup characteristics that result in higher model accuracy overall.
Results: Root mean squared error was 28 – 4, 33 – 4, 38 – 6, 40 – 8, and 43 – 12 mg/dL for 60, 90, 120, 180, and
240 min, respectively. For all prediction horizons, at least 93% of predictions were clinically acceptable by the
Clarke error grid. Variance of historic continuous glucose monitor (CGM) values was a strong predictor for the
need of transfer learning approaches.
Conclusions: A shallow neural network, using features extracted from past CGM data and insulin logs, can
achieve multi-hour glucose predictions with satisfactory accuracy. Models are patient specific, learnt on readily
available data without the need for additional tests, and improve accuracy while lowering complexity compared
with related approaches, paving the way for new advisory and closed loop algorithms able to encompass most of
the insulin action timeframe.

Keywords: Blood glucose prediction, Neural networks, Artificial pancreas, Type 1 diabetes.

Introduction

Type 1 diabetes mellitus (T1D) is characterized as an
autoimmune condition resulting in the body’s inability

to produce insulin. Thus, individuals with T1D must con-
stantly monitor blood glucose (BG) levels and adjust doses of
exogenous insulin accordingly. However, determining a
proper dosing schedule is complicated by the need to calcu-
late how to control future BG levels amidst anticipated ac-

tivities such as meals and exercise, using insulin doses that
have action profiles lasting upwards of 4–6 h.1 To ease patient
burden, numerous advisory strategies and closed-loop sys-
tems have been created, although most rely on predictive
models that forecast 15–60 min into the future.2–4 Further-
more, we find no proposed predictive models with prediction
horizons over 120 min.5–11

Although current predictive models still fall short of the
4–6 h insulin action profile, recent work has sought to extend
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prediction horizons. Some notable longer term models include
that of Perez-Gandıa et al. who used past BG levels and a three-
layer feed-forward neural network to predict BG values 30–
45 min out, with root mean squared error (RMSE) 18–
27 mg/dL.6 Pappada et al.8 utilized a feed-forward network to
predict BG 75 min out using previous continuous glucose
monitor (CGM) data to achieve RMSE of 43.9 mg/dL for a
vector of 15 glucose values across the 75-min horizon. In fact,
the model with the longest prediction horizon identified in
literature thus far is that of Georga et al.,10,11 which predicts
out to 120 min. This model utilized support vector regression
and random forests methods using data from 15 patients, and
reported RMSE of 7.62 mg/dL using the support vector ma-
chine10 approach and 10.83 mg/dL using a random forest
classifier.11 However, their input sources of plasma insulin
concentration, instantaneous energy expenditure, and meal-
derived rate glucose rate of appearance may be difficult to
obtain outside a dedicated research center. Thus, although
these models show promise, a multi-hour discrepancy between
predictions and insulin action profiles remains.1

In this study, we propose approaches to learn neural net-
work predictive models from CGM and insulin pump logs
for patients with T1D. Using shallow neural networks, our
approach is able to provide useful and accurate predictions
for patients with T1D over time horizons of up to 4 h. This
represents a significant improvement over the current state-
of-the-art in terms of the accuracies achieved over such a
long-term horizon. Furthermore, our work used relatively
small neural network models that significantly reduced
complexity over related approaches, an important consider-
ation for use in automated insulin delivery applications.

Research Design and Methods

Patient data

The data set was collected during the observation period of a
clinical trial in individuals with T1D.12 The study included 16
continuous subcutaneous insulin infusion (CSII) and 8 multi-
ple daily injection (MDI) users, with a broad range of ages
represented. Overall key statistics are presented in Table 1,
with full details found in the original study article.12 During the
observational period for which our data are collected, indi-
vidual glucose measurements were collected using a blinded
Dexcom G4 Platinum CGM with Share (Dexcom, San Diego,
CA). Heart rate and step count from Fitbit devices were also
present, although these measurements were intermittent.

Data partitioning

Because of the high correlation between subsequent BG
and insulin values, and the neural network’s ability to overfit
the training data, the standard method of selecting a random
20% subsection of data to be used as testing data to evaluate
the model’s accuracy, and the remaining 80% to be used as
training data to learn the model is prone to yield falsely high
accuracy results (Fig. 1A).13 Thus, rather than performing a
purely randomized 80/20 split, we utilized a sectioned win-
dow randomization method to ensure correlations are mini-
mized. For each individual, we subdivided our time series
data into continuous windows of data sampled at 5-min in-
tervals. Within these windows, we obtained input–output
data vector pairs using a sliding window. Next, rather than

randomizing the individual data vectors, we randomized the
windows into training and testing data utilizing an 80:20 ratio.
This allowed us to ensure a minimum gap of 4 h existed
between end time of each training data vector, and start time
of each testing data vector, limiting correlations between the
two (Fig. 1B). For prediction time horizons <240 min, we
ensured that every hour of the day is represented in both the
training and test data. Because of data limitations when uti-
lizing a large window, this was not achievable for the 240-
min prediction time horizon. In this case, care was taken to
ensure a wide range of times of day and night are represented
in both training and test data. Two independent randomiza-
tions of windows into 80/20 splits were performed, models
were trained and validated on each split independently, and
reported results were averages from both splits. No signifi-
cant differences were found between the runs.

Statistical analysis of data quality

Without sufficiently varied data, neural network models
were unable to generalize.14 To evaluate whether we have
sufficiently varied data from an individual to train accurate
models, we considered the distribution of historic CGM val-
ues. By testing goodness of fit of various distributions onto
aggregate CGM data, we determined gamma distributions to
be the best fit. Gamma distributions are two-parameter, con-
tinuous distributions that are widely used to model continuous
variables that are always positive and have skewed distribu-
tions. In the case of BG values, distributions tend to be skewed
toward higher values rather than lower values. Various factors
influenced this trend, in particular, the unequal risk of hyper-
versus hypoglycemia. Fitting distributions to available data
grants us the ability to easily describe data based on the shape
and scale parameters, (a,b), of the distribution fit.

We fit gamma distributions, G(a,b), to individual patient’s
historic data using maximum likelihood estimation in
MATLAB.15 The shape parameter, a, denotes a stretching or
shrinking of the distribution and the scale parameter, b,

Table 1. Individual Demographics

and Data Overview

Characteristic

Mean – standard
deviation
(range)

Total number 24
Age, years 44.4 – 11.8 (21–62)
Weight, kg 42 – 16 (53–130)
T1D duration, years 21 – 11 (1–45)
HbA1C, % 7.2 – 1.1 (5.3–9.7)
Continuous days

of data, days
37.8 – 14.0 (22.9–75.0)

CGM measurements, number 11,534 – 4377 (6247–22,493)
SMBG measurements,

number
209.0 – 156.6 (20–691)

Insulin boluses, number 253.6 – 132.0 (112–627)
Meals and snacks, number 229.1 – 144.6 (66–565)

Statistics for individual demographics and overview of collected
measurements. Values are given as mean and standard deviation,
along with ranges. Units reported as (number) indicate the total
number of measurements.

CGM, continuous glucose monitor; T1D, type 1 diabetes.
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denotes a spreading out of the distribution. Specifically,
a¼ l

r

� �2
, where m is the mean and s is the standard deviation

of the data. Geometrically, the larger the shape parameter a
is, the lower the peak of the distribution is and the further
away from zero it is. For the scale parameter we have b¼ r2

l ,
the larger b is, the more spread out the distribution. Metrics
on goodness of fit of distributions for all individuals are
provided in Supplementary Table S1.

Neural network model structure

To predict BG values, feedforward (artificial) neural net-
works were utilized. A feedforward neural network model is
a black box, connectionist modeling approach, loosely based
on biological neural networks. These models seek to translate
input data to an output prediction through a series of inter-
connected neurons.14 Each neuron is associated with a non-
linear activation function, and the connections between
neurons have associated weights and biases that determine
how a given neuron weighs and propagates incoming infor-
mation. The presented models used the common rectified
linear unit function defined as s(z) = max(z,0) for all neurons.

Although neural network models are well suited for learning
predictive models from data, the process of inferring these
models can lead to networks learning incorrect causal rela-
tionships from correlations in data. Figure 2 illustrates one such
pitfall as related to models learned on CGM and insulin pump
data: the prevalence of insulin boluses before a meal and the

subsequent rise in BG level is potentially mistaken by a naive
approach as a causal relationship, thus leading to the outright
wrong inference that insulin causes BG levels to increase.

As demonstrated by Narasimhamurthy et al.,16 resultant
models might predict with high accuracy; however, they can
be dangerous if used for instance to treat low BG levels. To
avoid such pitfalls, we developed a novel, physiologically
informed neural network design that makes it easier to
incorporate background biological facts such as insulin-
lowering effect on BG levels. This is performed by (1) con-
straining training weights to match physiological knowledge
(e.g., insulin contributes negatively) and (2) partitioning the
first layer into insulin and noninsulin inputs, to mimic
learning an ‘‘insulin on board’’ term (Fig. 3). Neural network
weights are restricted such that insulin has a negative effect,
and other inputs provide positive influence, the extent to
which is determined in the training phase. A detailed analysis
of this type of network structure, in particular how it can be
utilized to improve model conformance to known physiology
such as ‘‘increased insulin decreases blood glucose values’’
can be found in the recent work of Kushner et al.17

Transfer learning

For a subset of patients who have limited data, as charac-
terized by the parameters of the gamma distributions fit to
historic CGM data, we utilized an adaptive training scheme
known as transfer learning to improve accuracy. Transfer

FIG. 1. Graphics depicting the standard random data partitioning method (top) and the window method utilized in this
paper (bottom Ui). In both graphics, the black trajectory line represents the original time series from which input is obtained
and the points are color coded into training (dark) and testing (light) points. Top graphic (A) depicts how a random selection
of training versus testing results in significant overlap between points used in both training and testing (blue/yellow split
color). Bottom graphic (B) depicts the window randomization method utilized in this article, which minimizes correlations
between training and testing data that may result in falsely high testing accuracy. Rather than randomizing individual input–
output vector pairs (U,G), we randomize windows, depicted as outlined boxes. The color-coded boxes depict how points are
grouped to fall into larger windows, boxed, and these windows are partitioned using an 80/20 split to be used as either
training (dark) or test (light) sets. Within each larger window, we show how input (boxed striped points, Ui) and prediction
[single point, dotted, Gi(t + D)] points used to train and test the network are contained fully within a box, with no overlap
between testing and training. Furthermore, we ensure there is at least a 4 h time gap between the last prediction point within
each box, UN(n), and the first input point of the following box, U1(1).
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learning is a broad term referring to the technique by which a
learned model is reused as a starting point to learn a model for a
different, but related, task or is fine tuned to improve accuracy
on a subset of the original model. This technique is often used
in cases where data are limited, or training from scratch would
take a very long time, often leading to increased generalization
in the model.18 In our case, we considered the application of
model ‘‘fine-tuning.’’ In this transfer learning protocol, the
biases and weights are trained on aggregate data from all pa-
tients, and then these are used as starting seeds for training the
patient-specific model. In this retraining step, only the last layer
of weights and biases are adjusted using backpropagation with
the individual patient’s data. The idea behind this is that the first
layers of the network pick out general patterns in BG trends,
and the final layer ‘‘fine tunes’’ the model for each patient.

Network training

Networks are trained using backpropagation in Tensor-
Flow software.19 The Adam (adaptive moment estimation)
optimizer, which is an extension to stochastic gradient de-
scent that keeps separate learning rates for each weight, is
used.20 Models are trained with 80,000 epochs for all net-

works. Retraining, which is carried out when adapting a
generalized model to a specific individual, is performed to
50,000 epochs. During the training phase, a randomly se-
lected subset of training data is labeled ‘‘internal test set.’’
The size of this subset is 15%–20% of the training data, based
on training data set size. After every 1000 epochs, the ac-
curacy is tested on this internal test set. The internal test set is
used to measure convergence of the training process in terms
of prediction accuracy over this internal test set. We note this
‘‘internal test set’’ is a subset of training data, rather than
selected from the true hold out set that is used for final model
validation. The number of epochs was selected to be the
minimum number of steps, rounded to the nearest 1000,
which consistently resulted in convergence in training ac-
curacy as measured by stabilization of training error for this
internal test set.

Accuracy assessment and features selection

Model prediction accuracy is assessed using RMSE and
the Clark Error Grid21 on a separate test dataset, prediction
accuracy of the models is compared with a zero hold model,
G(t + D) = G(t). RMSE along with heteroskedasticity in error

FIG. 2. A common problem with machine learning—neural network models falsely attribute increases in blood glucose
levels to previous large doses of insulin, rather than meals, owing to the unavailability of meal data. This results in highly
accurate predictive models that are incredibly dangerous to use in advisory systems owing to models learning improper
dynamics and taking dangerous dosing decisions: adding insulin when blood glucose is low.

FIG. 3. Schematic illustrating the network
structure. Data preprocessing steps are depicted
in light gray boxes, and neural network nodes
in dark gray. Network input vectors are as
follows:~F¼ carbs consumed (g), ~G¼ glucose
input from CGM (mg/dL), ~T¼ time of day
(h),~I¼ insulin input (units/5 min). The poly-
nomial ax3 + bx2 + cx + d is fit to symmetrized
CGM data over the past 60 min, and coeffi-
cients a,b,c,d are used as network inputs.
Symmetrization is based on the work of Ko-
vatchev et al.22 Note the first network layer
separates insulin inputs from all other inputs,
which the second is fully connected. CGM,
continuous glucose monitor.
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is used to inform features selected as inputs to the network.
These inputs are identified systematically by finding patterns
in input data that resulted in decreased prediction accuracy,
and adding features based on these patterns into the model
inputs with the goal of decreasing RMSE and hetero-
skedasticity. The process is started with the simplest input of
raw CGM and insulin historical data and built to the final
inputs presented in the Results section.

Results

Average training time for a network was 8 min 6 s and for
retraining in the transfer learning approach, average time was
2 min 39 s on a Macbook Pro laptop with 16 GB RAM.

Final network structure

The final network is selected to both minimize error on test
data and be parsimonious in the number of neurons and layers.
The networks are structured as given in Figure 3, with 16
neurons in the first layer, 16 in the second, and 1 output neuron.
The number of hidden layers was selected based on previous
work showing a two-layer feedforward network sufficient for
use in the BG prediction task.9 Number of neurons per layer
was determined akin to,9 by training range sizes and selecting
that which minimized error when tested on the internal test set
during trainings. The neurons that receive input from insulin
pump data are fully connected to the second hidden layer, as
are the neurons that receive input from noninsulin pump
sources. However, the inputs receiving insulin pump data are
not connected to neurons receiving noninsulin pump data. It

has previously been shown that this structure allows for
smaller networks with high prediction accuracy and permits us
to appropriately constrain weights for network conformance.9

Feature identification for networks

Final inputs to the network were identified systematically,
starting with the simplest input of raw CGM and insulin
historical data, and building to the final inputs defined here-
under and given in Figure 4:

� a,b,c,d: coefficients from a third order polynomial,
ax3 + bx2 + cx + d, fit to the past 1 h of BG (CGM) data.
CGM values are scaled according to the method de-
veloped by Kovatchev et al.22 before fitting. Fit is
identified using the polynomial curve fitting function,
polyfit(),in MATLAB.15

� G(t) - G(t – 30 min): difference in CGM values over
the past half hour, in mg/dL.

� h(t): hour of the day input as sin 2pHR
24

� �
, cos 2pHR

24

� �
,

where HR is the hour of day (0–23) at time t.
� sum(F(t – 60 min:t)): sum of carbohydrate intake for

the past 1 h.
� I(t – 180 min),.,I(t): raw insulin pump values (units

delivered over 5 min), input at 5-min intervals over the
past 180 min.

To symmetrize BG values, CGM values were scaled using
the method of Kovatchev et al.22 The third degree polynomial
fit to past glucose data was tested as a method for deter-
mining key features of past glucose traces, and was found to
improve model prediction accuracy over simply using BG

FIG. 4. Change in RMSE by a parameter, for each individual, at each time horizon. We find transfer learning yields on
average a decrease in RMSE when a < 7.6 while values a > 7.6 show an average increase in RMSE, although a = 6.03 and
a = 10.08 significant fluctuations among individuals exist. RMSE, root mean squared error.
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values. Similarly, other features such as the hour of the day,
difference in CGM values, and sum of food intake over the
past hour were considered subsequently. To determine a
feature, we checked correlations in prediction accuracy with
features in glucose, insulin, and meal inputs. This method
worked particularly well for meal inputs.

As an illustrative example, we show how the carbohydrate
term was added after finding that RMSE was notably higher if
an individual had consumed carbs over the past hour (with),
versus if they had not (without):

RMSE with: 31 mg/dL (zero hold model RMSE
45 mg/dL)

RMSE without: 24 mg/dL (zero hold model RMSE
34 mg/dL)

Building from this discrepancy, we alter the model to in-
clude a meal term, sum(F(t – 60 min:t)), as input. After this
term is included, we observed improved mean model accuracy
across all individuals when a meal had occurred (with), and
found no loss in accuracy when no meal occurred (without):

RMSE with: 27 mg/dL (zero hold model RMSE
45 mg/dL)

RMSE without: 24 mg/dL (zero hold model RMSE
34 mg/dL)

As demonstrated in this meal term example, our input
identification method improved robustness of prediction ac-
curacy and also decreased heteroskedasticity in residuals.

Accuracy metrics

Table 2 presents accuracy metrics from purely individu-
alized models forecasting BG values to prediction horizons
60–240 min. For all time horizons, we find at least 93% of
prediction to be clinically acceptable for determining treat-
ment strategy by the Clarke error grid (Table 2).21

Data characterization and prediction accuracy

We have identified a direct relationship between prediction
accuracy and the shape parameter, a, of the distribution in the
training data set. This relationship is strongest for prediction
horizons of 120 min, and tapers for both longer and shorter
term predictions (Table 3). For horizons of 90–180 min, the

fit regression is statistically significant with P < 0.05 versus
the null hypothesis of a constant model (Table 3). For the
edge cases of 60 and 240 min, the relationship is slightly
weaker (P = 0.0634 and P = 0.133, respectively). For all
practical purposes, we find the significance strong enough
such that partitioning based on the shape parameter is bene-
ficial in most cases for these prediction horizons. We note
that drop off at the 240-min horizon is likely owing to overall
limited data when training these networks.

We have also identified an inverse relationship between the
scale parameter, b, of the distribution and prediction accuracy.
Similar to the relation with the shape parameter, the strongest
correlation is found for prediction horizons of 120 min. How-
ever, this relation is weaker than that between the shape pa-
rameter and prediction accuracy, and hence the b parameter was
not utilized in selection criteria for transfer learning (Table 3).

Overall, this translates to models learned from individuals
who have lower average BG values being less generalizable
when testing on unseen data. We present further analysis on
this finding in the Discussion and Conclusion sections.

Leveraging aggregate data to improve accuracy
through transfer learning

By grouping individuals based on parameters of the
gamma distributions versus prediction accuracy, we find that
on average, individuals with small a parameters, a < 7.6,
fared worse than those with larger values with most

Table 2. Accuracy Metrics from Purely Individualized Models

Horizon
RMSE,
mg/dL

RMSE, zero
hold model,

mg/dL MARD, %

Clark error grid analysis zones

Zone A, % Zone B, % Zone C, % Zone D, % Zone E, %

60 32 – 6 37 – 7 17 – 3 72 24 0 3 0
90 39 – 7 47 – 10 21 – 5 63 31.5 0.5 5 0
120 45 – 9 53 – 13 27 – 7 55 38 1 6 0
180 49 – 13 65 – 16 28 – 7 52 40 1 7 0
240 49 – 16 69 – 15 30 – 9 50 43 2 5 0

Accuracy metrics and percentages of predictions within Clarke error zones of clinical correctness. Both zones A and B are clinically
acceptable errors with zone A corresponding to deviations of <20%, or predictions in the hypoglycemic range and zone B corresponding to
benign errors. Zones C–E are potentially dangerous, with increasing degree of inaccuracy. The zero hold model comparison is the model
G tþDð Þ ¼ G tð Þ: Results are presented when transfer learning is not included.

RMSE, root mean squared error.

Table 3. Prediction Accuracy Versus Gamma

Distribution Parameters and Improvements

in Root Mean Squared Error with Retraining,

by Time Horizon

Horizon Slope (a) P (a) Slope (b) P (b)

60 1.439 0.0634 0.019112 0.95
90 1.651 0.0126 -0.143 0.473
120 2.2559 0.00421 -0.448 0.0609
180 0.9523 0.0269 -0.18339 0.151
240 1.06 0.133 -0.256 0.19

P-values and slopes for regression fit to either shape (a) or scale
(b) parameters of gamma distributions on historic CGM values
versus percent of predictions within 10%. We find the a parameter,
rather than the b parameter to have strongest correlation.
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individuals benefiting with an average reduction in RMSE of
across all prediction horizons of -2.6 mg/dL (range: -12.4
to 7.3 mg/dL) compared with an increase in RMSE of
+0.27 mg/dL (range: -6.6 to 6.2 mg/dL) for a < 7.6 (Fig. 4).
Whereas the extent to which an individual benefits varies, we
find the relationship on the population level strong enough to
conclude that it is beneficial to have a larger spread in BG
values when training a predictive model.

To improve prediction accuracy for patients in the a < 7.6
group, we utilize the transfer learning protocol described in the
Methods section. In general, we find this method to be particu-
larly helpful for patients with small a parameters, an example
presented in Figure 5. For individuals with larger alpha values,
this method more often results in no improvements in prediction
accuracy, with a higher likelihood of worsening the prediction

accuracy by a few points (Fig. 5). The cutoff point was deter-
mined by iteratively testing cutoff points from 5 < a < 10 to
determine which provided highest improvement in RMSE. To
have a single value cutoff, 7.6 was selected as the midpoint of 7.0
and 8.1, which performed equally well because of a lack of
individuals in the range 7.1 <a< 8.0. We note that the amount of
testing and training data decreases as prediction horizon in-
creases, which could contribute to the discrepancy between
benefits gained by various prediction horizons (Table 4).

Discussion

We found that shallow neural network models, with inputs
selected based on feature identification, are able to predict
future BG values up to 240 min with clinically valuable

FIG. 5. Case A: example individual who did not benefit from retraining, historic CGM data reflects a wide distribution
with a= 10.08. Case B: example individual who benefited from retraining, historic CGM values reflect a tighter distribution
with a = 6.03. We note the spike in values at 40 and 400 are owing to the bounds on CGM output and may not reflect correct
blood glucose values.

Table 4. Accuracy Metrics for Final Models

Horizon
RMSE,
mg/dL

RMSE, zero
hold model,

mg/dL MARD, %

Clark error grid analysis zones

Zone A, % Zone B, % Zone C, % Zone D, % Zone E, %

60 28 – 4 37 – 7 15 – 3 75 22 0 3 0
90 33 – 4 47 – 10 19 – 4 68 27 0 5 0
120 38 – 6 53 – 13 24 – 6 58 36 0 6 0
180 40 – 8 65 – 16 25 – 6 53 40 0 7 0
240 43 – 12 69 – 15 26 – 8 52 41 0 7 0

Accuracy metrics and percentages of predictions within Clarke error zones of clinical correctness. Both zones A and B are clinically
acceptable errors with zone A corresponding to deviations of <20%, or predictions in the hypoglycemic range and zone B corresponding to
benign errors. Zones C–E are potentially dangerous, with increasing degree of inaccuracy. The zero hold model comparison is the model
G(t + D) = G(t). Results are presented when transfer learning is included for individuals with a < 7.6.
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accuracy. In particular we find that in all cases at least 93% of
our predictions fall into Clarke error grid zones A and B,
meaning that a treatment strategy based on these predictions
would be safe (Table 4). Furthermore, when compared with
the most recently proposed neural network models for BG
prediction at 60-min horizons,23 we found our models im-
proved both RMSE (28 mg/dL vs. 43 mg/dL) and percent of
predictions in zones A and B of the Clarke error grid (97% vs.
96%) while utilizing a significantly less complex model.

On an individual level, we find that model accuracy and
best training approach depends heavily on the distribution of
an individual’s available CGM data.

By fitting gamma distributions to each individual’s distribu-
tion of historic CGM values, we find a two-group divide based on
the shape parameter of the distribution: group (A) individuals
with a tighter distribution of CGM values,a< 7.6, and group (B)
individuals with a more varied distribution, a > 7.6. By training
two models for each individual, one with a standard training
protocol and one with a retraining protocol that leverages ag-
gregate patient data, we find that those in group (A) are more
likely to benefit from retraining with added data, whereas those
in group (B) are more likely to not benefit. We note a narrower
distribution does not imply to be well controlled, as the distri-
bution can center around any value. Although this cutoff point
was validated with multiple independent partitions of our orig-
inal dataset and models trained, and shown to balance im-
provements in RMSE across all prediction horizons, we note our
patient dataset did not include individuals with 7.1 <a< 8.0, and
this methodology run on a different dataset may find adjustments
in cutoff point are needed.

We propose two explanations for this trend: an over-
influence of a narrow range of CGM values during training,
and a high penalty from outliers during testing. First, the
process of training neural networks relies on minimizing
error over thousands of subsamples of the training dataset.
For individuals with a < 7.6, the range of CGM values most
often encountered is narrow and centered around the mean
leading the model to become very accurate in the narrow
range while sacrificing accuracy on outliers. These outliers
in turn present large errors during the test period. By first
training on aggregate data, the model encounters more
outliers and weighs the mean less, resulting in more bal-
anced training and improved accuracy for rarer events, such
as hypoglycemic values.

On the contrary, we postulate that for individuals who al-
ready have a wide distribution of CGM values, they likely do
not benefit from the retraining approach as the added data do
not widen the distribution of CGM values seen in the training
process and simply serves to reduce the patient specificity of
the model.

Finally, we note that while heart rate and step data from ac-
tivity tracking devices (e.g., Fitbit) was available and tested as
potential input, it did not have a significant affect or prediction
accuracy. However, despite this finding, we do not rule out the
importance of these inputs. Rather, it is hypothesized that this
lack of improvement is likely a result of insufficient breadth of
training data containing activity tracking information.

Conclusions

Using a physiologically motivated network structure, we
were able to utilize shallow neural networks to develop multi-

hour glucose predictive models. These models improve RMSE
over previously published work,5–9,23 and double previously
studied prediction horizons10,11 from 120 to 240 min while
removing the dependence on measurements of plasma insulin
concentration, instantaneous energy expenditure, and meal-
derived rate of glucose appearance, which may be difficult to
obtain outside a dedicated research center.

By use of gamma distributions fit to the collected CGM
data for an individual, we provide a simple method for
quantifying if data of sufficient quality exist for training a
patient-specific model. Using this metric, we show that in-
dividuals with tighter BG control and lower mean BG values
(a < 7.6) do not appear to generate optimal data for model
development and we developed a transfer learning approach
to improve accuracy for these individuals. We find the
transfer learning approach to be better suited as a method for
model accuracy versus simply boosting or normalizing an
individual’s training data by duplicating training points that
fall in the category of ‘‘rare events,’’ as it not only increases
the number of rare events, but also increases the variety of
dynamics the network is exposed to. Although seemingly
counterintuitive, we note this is a result of large errors for
‘‘rare events,’’ such as hypo and hyperglycemia, which are
not highly represented in training data for such individuals
but may exist in test data.

As an individual’s behavior and BG control patterns can
change over time, in future work we aim to extend our
modeling approach to address the question ‘‘how to best
select historic data for training.’’ This would require a longer
data set, on the order of 6+ months, which we did not have for
this work.

Overall, our modeling method present, to our knowledge,
the most accurate BG forecasts out to 240 min, with at least
93% of predictions considered clinically acceptable by the
Clarke error grid analysis, enabling this approach to pave
the way for new advisory and closed loop algorithms that
would be able to encompass most of the insulin action
timeframe.
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