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Charge transport in doped quantum paralectrics (QPs) presents a number of puzzles, including
a pronounced T2 regime in the resistivity. We analyze charge transport in a QP within a model
of electrons coupled to a soft transverse optical (TO) mode via a two-phonon mechanism. For T
above the soft-mode frequency but below some characteristic scale (Ep), the resistivity scales with
the occupation number of phonons squared, i.e., as T2. The T? scattering rate does not depend
on the carrier number density and is not affected by a crossover between degenerate and non-
degenerate regimes, in agreement with the experiment. Temperatures higher than Ey correspond
to a non-quasiparticle regime, which we analyze by mapping the Dyson equation onto a problem of
supersymmetric quantum mechanics. The combination of scattering by two TO phonons and by a
longitudinal optical mode explains the data quite well.

Quantum paraelectrics (QPs) are materials close to a
ferroelectric transition but never quite making it because
of zero-point motion which disrupts symmetry break-
ing [1-4]. This group includes several perovskites, e.g.,
SrTiO3 (STO), KTaO3 (KTO), and EuTiO3 (ETO), and
a number of rock salts, e.g., PbTe. Electron transport
in doped QPs is very much different from that in doped
semiconductors. To begin with, a very large static dielec-
tric constant (~ 25,000 in STO) translates into a micron-
long Bohr radius. Consequently, conduction in QPs
sets in at very low doping, e.g., at few times 10'® cm ™3
carriers in STO [5], and is prominently metallic above
107 cm™3. In the metallic regime, the resistivity in-
creases by several orders of magnitude from the helium
to room temperatures, exceeding formally the Mott-Ioffe-
Regel (MIR) limit around 100 K [6]. A very intriguing
observation is a prominent 72 scaling of the resistivity ob-
served in STO [7-9], KTO [10], and ETO [11]. Normally,
a T? resistivity is associated with the Fermi-liquid (FL)
behavior. However, a T2 resistivity in QPs is observed
already at very low doping, when umklapp scattering is
forbidden and only the lowest conduction band is occu-
pied [7], and straddles a number of relevant energy scales,
such as the plasma frequency and the Fermi energy (EF).
In addition, the T? scattering rate depends only weakly
on the electron number density, n [7, 8]. All of the above
contradicts the interpretation of the 72 behavior in terms
of the FL theory [3, 8, 12, 13].

In this Letter, we discuss the model of electrons inter-
acting with a soft transverse optical (TO) mode, which
is a defining feature of QPs. As temperature is lowered,
the frequency of the TO mode decreases, indicating the
tendency to a ferroelectric transition, but eventually sat-
urates at a small but finite value (as low as wp &~ 1 meV
for the E, mode in STO [14-16]). For electrons near
the Brillouin zone center, single-TO phonon scattering is
suppressed in a single-band system and in the absence of

spin-orbit interaction [17-22], and the lowest-order pro-
cess involves two TO phonons (2T0)[23-25].

We show that the model is characterized by a material-
dependent energy scale, Ey, separating the regimes of
quasiparticle and nonquasiparticle transport, at lower
and higher T, respectively. (In STO, Ej is on the or-
der of 100K). For wg <« T' < Ejy, the TO mode is in the
classical regime, and a T2 term in the resistivity arises
simply from the square of the phonon occupation num-
ber. A unique feature of the 2TO mechanism is that
the quasiparticle scattering rate, 1/7 ~ T2/ Ej, does not
depend on the electron energy. This explains why the
observed T2 scattering rate depends on n only weakly
for T' <« Er and does not exhibit a crossover at T' ~ EFp.

For T > Ey, the quasiparticles are not well-defined.
By mapping the Dyson equation for the self-energy onto
an exactly soluble problem of supersymmetric quantum
mechanics, we show that transport in this regime is dom-
inated by severely off-shell electrons. In this regime, the
resistivity scales as T7%/2 and violates the MIR limit.

Finally, we show that a more realistic model, which
incorporates the T dependence of the TO soft mode
and also includes scattering by longitudinal optical (LO)
phonons, explains the experimental data, if the freeze-
out of TO phonons for T < wy is ignored. We discuss
the advantages and shortcomings of the 2TO model and
propose a number of experiments that can falsify it.

We consider 3D electrons coupled to an O(3) electric
polarization P(r), produced by TO phonons. Because
V - P = 0, single-phonon coupling is forbidden and the
Hamiltonian starts with a two-phonon term [24, 25]:
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where go is the coupling constant (with units of the vol-
ume) [26]. Other than allowing for TO modes, we treat
the material as isotropic. For a TO mode with dispersion
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FIG. 1: Diagrams for the electron self-energy due to
scattering by TO phonons. a) Two-loop two-phonon
diagram; b) and c) three- and four-loop “umbrella”
diagrams without crossings; d) and e) examples of
diagrams with crossings; f) four-phonon diagram
resulting from adding a P* term to Eq. (1).
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where AZ = [e0(q) — £oc] Wq/47 [27], the sum over a =
1,2 accounts for two (degenerate) branches of the TO
mode, £o(q) and e, are the static and high-frequency
limits of the dielectric function, respectively, and bg is the
bosonic annihilation operator. The diagrams for the elec-
tron self-energy are shown in Fig. 1, where the solid and
wavy lines denote the (Matsubara) electron and phonon
Green’s functions, G(k,€,,) and D(q,w,), respectively,
and solid dots denote the electron-2TO-phonon vertex
Lop(q) = 9242 (00 — qaqs/q®). Phonons will be treated
as bare ones, hence D(q,wy,) = —2wq/(ws, + wg)-

We now focus on the classical regime, when phonons
can be treated as static “thermal disorder”[28], which
corresponds to setting w,, = 0 in the phonon lines. After
analytic continuation ie,, — €+ 0%, Fig. 1(a) yields
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where the correlation function of thermal disorder is
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Other diagrams can be treated in a similar manner.
We also assume for now that the material is very close
to the quantum-critical point, so that the gap in the
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phonon dispersion can be neglected, i.e., wq = sq. Ne-
glecting also €5, compared to e¢(q) and excluding £¢(q)
via the Lyddan-Sachs-Teller (LST) relation, eo(q) =
Qf /wZ, and integrating over q,, we obtain
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where Ej is characteristic energy scale of the model. The
1/q scaling of U(q) (or 1/r? scaling is real space) will be
crucial in what follows.

For T' <« Ey, thermal disorder is weak. This is the
quasiparticle regime, when diagram Fig. 1(a) with G re-
placed by its free-electron form, Go(k,¢) = (e — { + p+
i0)~! with & = k?/2m*, gives the leading-order result.
Accounting also for a transport correction, we obtain the
standard result for the transport scattering rate
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where 0 is the angle between k and k+q. (The difference
between the quantum and transport rates is insignificant
because our thermal disorder is relatively short-ranged;
as a result, the two rates differ only by a factor of 2/3.)

In general, 7 depends on the electron energy, &, via
the electron density of states. This is the reason why,
for example, the resistivity of a semiconductor due to
acoustic phonon scattering scales as T for T' < Er and
as T3/2 for T > Ep. Our case of U(q)  1/q is, however,
special: the 1/q factor cancels out with the density of
states, and the result does not depend on &. Evaluating
also Fig. 1(b) and (¢), we obtain
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The leading term in Eq. (7) is the most relevant one
for the experiment: because it does not depend on &,
its thermal average does not depend on the statistics of
charge carriers, and the corresponding resistivity
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scales as T? regardless of whether T is lower or higher
than Er. From the data [29], we extract Ey = 209K in
STO at n = 4 x 10'" ecm™3. Using the known parameters
of the phonon spectrum [30] (s = 6.6 x 10°cm/s and
Qp = 194.4meV) and m* = 1.8my [31], we find that
Ey = 209K corresponds to g2 = 0.60a3, where ag = 3.9A
is the STO lattice constant. This is close to an earlier
estimate [24, 25] of go = 1.0a3.

Strong thermal disorder (T' > Ej) corresponds to a
non-quasiparticle regime. Since Er < Ej for the rel-
evant range of electron number densities, we will con-
sider the non-degenerate case only. According to Eq. (7),
1/7 becomes comparable to the electron energy (T') at



T ~ Ey. If TO scattering is treated as purely elastic,
the condition T'T ~ 1 should indicate the onset of Ander-
son localization. However, small but finite energy trans-
fers give rise to dephasing, which turns out to be strong
enough to prevent localization. Indeed, in a typical scat-
tering event electron energy is changed by de ~ krs,
where kr ~ vm*T is the thermal electron momentum.
This corresponds to diffusion along the energy axis with
a diffusion coefficient D, ~ (§¢)?/7 ~ m*s*T3/Ey. The
phase-breaking time 74 can be estimated from the con-
dition that the phase accumulated during 7, is on the
order unity, i.e., A¢p = Aery = (D€T¢>1/2T¢ ~ 1 [32] or
7o ~ (Eo/m*s?)/3/T. We see that 74 becomes com-
parable to the elastic time 7 ~ Eo/T? at T ~ T, =
(m*s?/Eg)/?Ey < Ey, i.e., already in the quasiparticle
regime, and it is reasonable to assume that localization
can be neglected for all T' > T.

We now find the self-energy self-consistently from
Dyson equation (3). Relabeling q = k — k' and inte-
grating over the angle between k and k', we obtain

1
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where é = e—i—,u, A= 3T2/47rE0, £ = &, ¢ =
5uandK5§ = VE/EO(E - &)+ O —§). At
weak coupling (T <« Ep), when the Green’s function
can be replaced by its free- electron form, ImX(&,¢) =
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above the bottom of the band [33] We will now show
that at strong coupling (T > Ej) the threshold in
Im>(&, €) moves from € = 0 to a finite value which de-
pends on the coupling constant. This is an essentially
non-perturbative effect that defines transport in the non-
quasiparticle regime.

If a threshold does exist, ImX (€, €) must be small right
above the threshold. Therefore, Eq. (9) can be expanded
in v.(¢§) = —Im3(&,€). On the other hand, ReX(¢,€) is
expected to be regular near the threshold and to depend
on ¢ only weakly, so it can be absorbed into the chemical
potential. (Using Kramers-Kronig relation, one can show
that ReX depends on & and e only logarithmically [34])
Assuming that relevant € < 0, we expand the imaginary
part of Eq. (9) in 7.(§) as:
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At first, we drop the cubic term. The linearized inte-
gral equation can be transformed into a “zero-energy
Schroedinger equation” for ¢ (£) = £3/4y(€) [34]:
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The threshold is defined as the smallest value of € at

which the zero-energy Schroedinger equation has a non-
trivial solution, which is guaranteed to be the case if

the Hamiltonian, H, = —(“)52 + V(¢), is supersymmet-
ric (SUSY) [35]. This means that H, can be written as

= QTQ, where Q = 0¢+W (£), QT = -0+ W (£), and
W (&) is a superpotential satisfying the Riccati equation
W2(&) — W/(€) = V(€). Tt can be verified [34] that the
Riccati equation is solved by W (€) = —3/46+1/2(¢ —¢€)
if /A = —2/3, which is the condition for H, to be of
the SUSY type. This implies that the threshold in the
self-energy is located at € = —2\/3 = —¢g, while the
first-order equation Q. = 0 yields ~.(§) = ¢34, €=
C(&)/vE& + eo. The function C(€) is found by substitut-
ing the last equation in Eq. (10) and retaining the cubic
term. The final result for Im¥ near the threshold reads

Im¥(§,¢) = —+/(e0 + €)eo S(€/€p), (12)
where
1/2
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Note that what is relevant for the observables is the
threshold in € rather than in € itself. Nevertheless, we
need to determine p, as it is not guaranteed that at strong
coupling electrons are still in the non-degenerate regime.
Imposing the constraint of fixed number density, we find
u = —eo — (37/2)In(T/EF) [34]. Because p < 0 and
|| > T, we are indeed in the non-degenerate regime.

To find the resistivity in the nonquasiparticle regime,
we ignore the vertex corrections of both ladder and
Cooperon types for reasons given above. Then
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where N (&) = m*3/2,/2€ /7% is the density of states. The
numerator in Eq. (14) comes from the relation between
the chemical potential and number density. The lower
limit in the éintegrals is —eg, and the Boltzmann factor
e~/T is exponentially large near —ey. Therefore, the é
integrals come from the near-threshold region, where the

self-energy is given by Eqs. (12) and (13). Substituting
these forms into Eq. (14), we obtain
_ e 3/2
p=>56—5Teooc T%=. (15)
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Despite the Drude-like appearance of Eq. (15), its
physical content is very different because transport in this
regime is controlled by off-shell electrons with € ~ —¢g
and £ ~ €3. However, if one still chooses to interpret
Eq. (15) in a Drude-like way, the corresponding scatter-
ing time 7p ~ E1/2/T3/2 is shorter than the Planckian
bound, 7p = 1/T, for T > Ey. In Supplemental Mate-
rial [34], we show that the analytic results in Eqgs. (8),
(12) and (15) are confirmed by a numerical solution of



Eq. (9). In particular, the inset in Fig. 2 shows the re-
sistivity obtained by substituting a numerical solution of
Eq. (9) into Eq. (14).

We now discuss briefly the role of other diagrams in
Fig. 1. For Er < T < Ejy, the higher-order umbrella’
diagrams [Figs. 1(b), 1(c¢), etc.], provide corrections of
order 4/T/Ey, as specified in Eq. (7). For T > Ejy,
it is the self-energy near the threshold that matters to
transport. Near the threshold, umbrella diagrams mod-
ify scaling function S in Eq. (12) but not the square-root
singularity in Im¥ as a function of e [34]. Therefore,
these diagrams affect only the numerical coefficient in
Eq. (15) but not the T%/2 scaling of p. Next, Fig. 1(e) is
a vertex correction to Fig. 1(a), which is small by an ef-
fective Migdal parameter, m*s?/Ey ~ 0.03 [34]. Finally,
diagram f describes a four-phonon process, which gives a
subleading correction to the resistivity for 7" below the
melting temperature.

We now compare the theoretical results to the data
for STO, restoring the gap (wp) in the phonon disper-
sion. The T dependence of wy is obtained by substitut-
ing the measured £¢(T") [29] into the LST relation [above
Eq. (5)]. However, due to a partial cancelation between
the T-dependences of wy and of the rms electron mo-
mentum, the T dependence of wy does not change the
results significantly [24, 25, 34]. The 2TO contribution
to the resistivity is described by an interpolation formula
which reproduces the analytic results at low and high
T [Egs. (8) and (15), respectively], with 2TO coupling
constant g, as a fitting parameter. In the experiment, p
varies faster than 72 at higher T: a power-law fit gives
p o< T?7=3 [6, 36-38]. An exponent larger than 2 was
conjectured to result from multi-TO-phonon scattering
[38]. However, we have shown that TO scattering gives
a slower than 7 variation of p for T > Ej [cf. Eq. (15)].
An alternative explanation of the faster than 72 depen-
dence is scattering by LO phonons, [39-42]. We adopt the
latter model here and include scattering by the 58 meV
LO mode within the Low-Pines approach [43], treating
the Frohlich coupling constant « as a fitting parameter;
details of the fitting procedure are delegated to SM [34].

On the low-T side, the 2TO model should give p
exp(—wq/T) for T <« wp, whereas the observed resistiv-
ity continues to scale down as T2 up to the lowest T
measured (2 K) [44]. Nevertheless, if we extrapolate our
model to the region of T' < wy (where it should not be
applicable), it still provides a surprisingly good fit of the
data. A fit obtained in this way is shown in Fig. 2 for
g2 = 0.92a3 and o = 2.38 [45]. This value of gz, ob-
tained from fitting over the entire range of T, is slightly
larger than 0.60a3, obtained by fitting only the T2 part
of the data. To the best of our knowledge, no ab initio
estimate of g is currently available and would be highly
desirable. The value of « is higher than a = 0.7 [46] ex-
tracted from infrared reflectivity [47, 48] and transport
at high T (200 < T < 1000K) [39], but is consistent

with other transport measurements in the intermediate
temperature range (100 < T < 200 K)[41, 49].
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FIG. 2: Main panel: Resistivity (minus the residual
value pg) of SrTiO3 [29] (points, red) vs theory (solid,
black), which includes scattering by two TO phonons
and by the 58 meV LO phonon. An extrapolation of the
theory to the regime of T' < wy regime is shown by the
dashed line. The dash-dotted line is a T2 fit to the data
(shifted for clarity). Insets: (a) The temperature
dependence of the resistivity predicted by the 2TO
model, obtained by a numerical solution of Egs. (9) and
(14), along with the fits to the asymptotic results. Here,
ps = m*Eg/ne?. Inset b) An enlargement on the
low-temperature region of the main panel.

While we do not have a good answer to the question
why the theory, extrapolated to T < wy, still appears
to describe the experiment, we note that an exponen-
tial behavior of the resistivity is obtained only if the TO
mode is sharp. If it is damped (which inelastic neutron
[30, 50], THz [51], and microwave [52] spectroscopies in-
dicate), the exponential behavior is replaced by a power-
law one; however, the exponent is still larger than 2 [53].
Also, recent diagrammatic Monte Carlo calculations [54]
have shown that the onset of exponential behavior for a
Frohlich polaron is shifted down to lower temperatures
due to mass renormalization; a similar effect can be ex-
pected for 2TO polarons.

Finally, we note that the 2TO model provides a falsifi-
able prediction because the scattering mechanism in this
model is (quasi) elastic. This can be verified by check-
ing if the electron part of the thermal conductivity and
the electrical conductivity obey the Wiedemann-Franz
law (if the model is valid, they should) and if the optical
conductivity scales with T'/w (it should not).
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I. Electron self-energy for two-phonon scattering mechanism

Unlike single-phonon diagrams of the conventional diagrammatic technique,! diagrams with two-phonon vertices
acquire combinatorial coefficients arising from the number of ways the correlation function (II)_, P?(x,,)) (where N
is the number of two-phonon vertices and x,, is the n'" space-time point) can be partitioned into binary averages
(P(2,)P(x,,)). To find this number, we pick any particular n and write P%(z,,) as P(x,)P(x,). Now the first P(x,,)
can be paired with one of the two factors of P?(z,,) (with m # n), which gives a factor of 2. The remaining P(x,,)
van be paired with some other P(xj) also in two ways, hence another factor of two. This process continues until
the last pairing, which can be done only in one way. Therefore, the combinatorial coefficient is equal to 2V ~1. With
our choice of the two-phonon coupling constant as in Eq. (1) of the Main Text (MT), the N*® order two-phonon
diagram comes with a coefficient (go/2)" x 2¥~1 = g&¥ /2 for any N, and there is no need to follow the combinatorial
coefficients.



The two-loop two-phonon diagram for the electron self-energy is shown in Fig. 1a of the MT. Algebraically,

E(kaem = *Tz Z Zraﬁ q1 Fﬁa q-—- ql)D(qlvwm1)D(q_qlvwm2)G(k+Q7 €Em + W, +wm2)’

my,ma q:,9 af
(1)
where a factor of 1/2 arises from the diagrammatic rule explained at the beginning of this section, fp is a shorthand

for [d3p/(2m)3, G(p,em) = [i€m —&p + 11— Y(p,em)]” " and D(p,wy,) are the (Matsubara) electron and phonon
Green’s function respectively, &, = p? / 2m* is the electron dispersion,

=2 3 R ey (p) — el = g (30— 2222 ) feop) — o] 2 @

4
a=1,2

a=1,2

9—zy-(P) are the components of the unit polarization vector of the

is the electron-phonon interaction vertex, and e
a'h branch of a TO mode with dispersion

wa = wh + ¢ (3)

In what follows, phonons will be treated as free bosons with a Green’s function

_ “p
Do(p,wm) = —QM (4)
For T > max{wy, T}, phonons can be treated as static thermal disorder, which corresponds to setting w,, = 0 in
the phonon lines. (In Sec. IV, we showed that for STO this condition is reduced to T > wy.) Next, we simplify the
vertex by neglecting e, compared to €(q) in Eq. 2 and eliminating e (p) in favor of wp via the Lyddane-Sachs-Teller
relation, £o(p) = Qf/w?. This yields

o 02
Pus(p) = g2 (m—p fﬁ) 0| (5)

p 4dmwp

We also assume for the time being that the material is very close to the quantum-critical point, so that wy can be
set to zero, i.e., wp = sp. Summing over «, 3, we obtain an equation for the retarded self-energy ¥(k, ¢) = X(k, ie;, —
€+1id)

11 [a; - (a—qy)]”
Yi(k,e) = / Gk+q,e —_— |1+ =] 6
(I, €) 87T 84 )Q1 la —q;|? < atla —q|? ©

The integral over q; is solved as
2
*® dq ™ de 1 1 [qql cos b — q%]
5 a d (cosby) e T 1+ 5
o (2m) 0 2747 ¢* + qi — 2qq1 cos by 41 (q* + ¢i — 2qq1 cos b))

1 1 (x —y)? 3
= d d 1 = —
47r2q/o y/_l x1+y22xy< +1+y2*2xy 16g°

where z = cos#; and y = ¢1/q. Then

1
k, k - = k
S(k,0) = 5 L2 / G+ a9, = [ Gt a.qUta) (®)
where
3rT?
U(q) = 9
(@) =5~ o 9)
with
64735t
Ey = 10
0 m 9294 ( )

the characteristic energy scale of the model, defined in the MT. This reproduces Egs. (3) and (5) of the MT.



Relabeling k' = k + q and integrating over the angle between k and k', we obtain an equivalent form of the Dyson
equation for the self-energy, Eq. (9) of the MT, which is reproduced here for reader’s convenience:

maa:AAw%%@£%%&@ (11)

where 5 = £k7 fl = gk/v
A\ = 3T?/4n E, (12)

and

K(&¢) = \/Z@(f—ﬁ')Jr@(S’—E)- (13)

Although the full solution of Eq. (11) can be obtained only numerically (see Sec. ID), the asymptotic solutions in
the quasiparticle (T' < Ep) and non-quasiparticle (T > Ey) regimes can be found analytically. This is the subject of
Secs. A and 1C.

A. Quasiparticle regime

Suppose that the self-energy is small and G(k,¢€) in Eq. (8) can be replaced by its free-electron form Gg(k,¢€) =
(€ — & +i0T), where € = € + p. Then the quantum lifetime is related to the imaginary part of the self-energy on the
mass-shell € = & via

1 qu 1 m* 2k
—=2ImY(k, e =& —p) =27 | T —=50(8k — Ektra)U(Q) = o= dqqU(q) (14)
To (2m) 2r k Jo
(the last step is valid if U(q) is isotropic, which is the case here). For short-range disorder (U = const), 1/79 « k o /&,
which reflects the energy dependence of the density of states in 3D. But for our case of “medium-range” thermal
disorder with U o 1/g, the factors of k cancel each other and we obtain an energy-independent scattering rate
1 377
— =——. (15)
T0 2 EO
The transport scattering rate differs from the quantum one by the presence of the 1 — cos 8 factor, which suppresses
the contribution of small-angle scattering:

1 d3q
+ = 2n [ a6~ SV (@)1 — cos6). (16)
Since the integral in Eq. (14) is controlled by ¢ ~ k, the transport factor in Eq. (16) modifies the result only by a
number:

1 21 T2

121 17 17

T 310 Ep (17)

For elastic scattering, the Landau’s condition? for quasiparticles to be well-defined reads
1
— < max{T, Er}. (18)
-

(Since T ~ 79 in our case, it does not matter which of the two is be used in the left-hand side of the inequality above.)
In a typical experiment, Er < Ej and, therefore, Eq. (18) is satisfied as long as T' < Ey, regardless of the ratio of T'
and Ep. If Er > Ey, the entire region of T' < Fy is within the degenerate regime, where Eq. (18) is also satisfied.
Therefore, the condition T' <« Ej defines the quasiparticle regime of transport.

In what follows will need also the form of the self-energy for an arbitrary relation between ¢ and £ (but still in the
quasiparticle regime). The imaginary part of the self-energy can be readily obtained from Eq. (11) by substituting
ImG(¢',e) = —md(€ — &) in there and integrating over £ with the result

\@@(g—e) +@(g—g)]. (19)

ImX(&,€) = —mAO(€)




4

The ©(€) factor in Eq. 19 indicates that the ImY is non-zero only above the bottom of the band (for € > 0). For an
on-shell particle with € = &, Im% (¢, € — p) = —A = =312 /4Ey, which reproduces the result for 1/7y in Eq. (14).
The real part of the self-energy can obtained from the Kramers-Kronig relation,

ReX(€, €) —P/ g =& €) (20)

e —¢

where P denotes the principal value of the integral. From now onwards, we will denote ReX = ¥/ and Im¥ = ¥".
Substituting Eq. (19) in Eq. (20) and integrating over €, we obtain

/ ~/\/T/€_€+P/ de 6_6] (21a)

2—fln VE+VE +1n|§f€|, for € > 0,

(€, €

VE-VE
/ &l -1 /£ A p
2—2 ?tan m-‘-lngf‘gl, fOI'€<O7

where A is the ultraviolet cutoff of the model (on the order of 1/m*aZ, which is the same as the electron bandwidth).
Note that here is no singularity in X’ on the mass-shell, i.e., at € = £ > 0, because the log-divergent terms in the
first line in the equation above cancel each other. However, the derivative of ¥/ diverges logarithmically near the
mass-shell. Indeed, expanding the first line in Eq. (21b) near the mass-shell, we get

= )\ X (21b)

€ €

A E_
S(E,€) ~ —A [2 LInZ —2m2 62~5 ( om2 4t =4 N (22)
Even though the derivative of ¥’ diverges, the effective mass remains finite (and equal to the band mass) on the

mass-shell. Indeed, the mass renormalization factor is given by

’I’h_l 82"65

m*_1+32’|6 5

(23)

In our case, %' = Af(£/€), the derivative with respect to € gives (—\¢/€2) f'(£/€). Similarly, the derivative of ¥/ with
respect to & gives (A/€) f'(£/€). Since f’ o In|(£/€) — 1|, the divergences in the numerator and denominator of Eq. (23)
cancel each other and m/m* = 1.

B. A differential form of the Dyson equation

To analyze the non-quasiparticle regime, it is convenient to reduce the integral Dyson equation in Eq. (11) to a
differential form. To this end, we introduce two auxiliary self-energies, X< and ¥~ as

Y=X<4+%", (24)
where
B 13 e 1
<& €)= )\/0 dg \/>€—§’—E(f’,e) (25)
and

T _A/ et (26)

The auxiliary self-energies obey the differential equations:

%{\/EE<(£7 :| _Af~ g 2(57 )’ (273)
] (270)



A corollary of Egs. (27a) and (27b) is another differential equation:
1 d
E< Z> =0. 2
VEEBQ @mﬂ+% (€&€e)=0 (28)

Opening the derivative in the equation above and recalling Eq. (24), we arrive at yet another equation

2<(6 €) = ~26 (6, o). (29)

£

Multiplying the last equation by /&, differentiating the result over £, and using Eq. (27a), we obtain a non-linear
differential equation for X(¢&, €):

b
v

1

A
26—¢-3(¢ o) (30

& e gRea] -

C. Self-energy in the non-quasiparticle regime
1. Linearized differential Dyson equation

We now turn to the non-quasiparticle regime of T' > FEjy. In the quasiparticle regime, the spectral function
G =%"/[(€-&—3%)?+ (X")?] is non-zero only for € > 0, i.e., for particles with energies above the bottom of the
band. We will show at strong coupling the threshold in the self-energy is shifted to a finite energy, which depends on
A. In the MT, it was shown that the ReX depends on € and £ only logarithmically. Neglecting this weak dependence,
we approximate ReX by a constant and absorb this constant into the chemical potential. Taking the imaginary part
of Eq. (30) yields:

1 d |:£3/2 A 2//(576) (31)

VEdE |© dg 26— € +22(¢€)

Suppose that a threshold in e does exist. If we also assume (to be verified later) that € + g < 0 near the threshold,
while £ > 0 by definition, then there is no quasiparticle pole, i.e., the (...)? term in the denominator of the RHS
does not vanish. On the other hand, 3" (¢, €) vanishes at the threshold and must be small right above the threshold.
Then the RHS of Eq. (31) can be expanded in X" (¢, €). Introducing € = —é (by assumption, relevant € > 0), denoting
7Ye(€) = —X" (&, €) and retaining only the leading in 7.(§) term on the RHS of Eq. (31), we obtain a linear equation

}iFmi<4:‘Qi%v (32)

The threshold ¢ is the largest value of € at which this equation still has a non-trivial solution.
We now introduce a new function via

26.9] =3

Ve(§) = €%e(§), (33)
and choose a in such a way that the dy./d¢ term is eliminated. This gives a = —3/4 and we obtain
3 A

- 9021(5) - 16§2 + 2§(€_~_ §)2 506(5) =0, (34)

which is Eq. (11) of the MT. Equation (34) can be solved in two ways: straightforwardly and via supersymmetric
quantum mechanics.

2. Straightforward solution of Eq. (34)

A general solution of Eq. (34) can be written as

cos Q(§)

sin Q(¢), (35)

©e(§) = const x g1/4(£+€)1/2 % {



or

_ E+e cos 2(¢)
Ye(€) = const x £ * { sin Q(¢), "

where

Q(¢) = m tan ! \/g (37)

The integral Dyson equation, Eq. (11), as well as the physical content of the problem, impose two boundary conditions:
7e(0) < oo and 7.(§ — 00) — 0. The solution that satisfies the first condition corresponds to a choice

Ye(&) = const x 4| ¢ —fi_ ‘ sin Q(&). (38)

At £ — o0, however, the “frequency” 2(§) approaches a finite value of Q(c0) = (7/2)4/1 + 2A/€, whereas the prefactor
of the sine function in Eq. (38) approaches unity. Therefore, y(£) vanishes at £ — oo only if Q(c0) = mn, which implies
that € = 2\/(4n? — 1). The n = 1 eigenvalue € = 2)/3 is the largest value of € at which Eq. (34) still has a non-trivial
solution.® This means the threshold is located at

T2
27TEO ’

€0 =2)\/3 = (39)

Right at the threshold, the oscillatory solution in Eq. (38) is reduced to a rational form:

A
Yeo (§) = const x 4/ 5—260 sin \/@tan1 \/E] = jgi%' (40)

3. Supersymmetric solution of Eq. (34)

The existence of a threshold has an interesting interpretation in terms of supersymmetric (SUSY) quantum me-
chanics. Indeed, Eq. (34) can be viewed as a Schroedinger equation for the zero-energy eigenstate. Such an eigenstate
always exists if the corresponding Hamiltonian, H = 7852 + V (&), with

3 A

EA I T

(41)

is supersymmetric. For this to be the case, the Hamiltonian must be of the form H = QTQ (see, e.g., Ref. 4), where
Q=0:+W() and QF=—-0:+W(¢). (42)

Equating the original and SUSY forms of H, we arrive at a non-linear Riccati equation for the superpotential, W (§):
from where

, 3 A1 1 A 1
W'(€) =W?(§) = =V () = Toe 22 [5 - §+€] T %Gt (43)
We search for W(€) in the following form
A B
WO =5+ e (44
where A and B are constants. Then
vev 2 A+A* B+ DB 2AB {1_ 1 }



Comparing similar terms in Egs. 43 and (45), we find a system of equations for the coefficients A and B:

3
2 _— =
AZ4 A+ =0, (46a)
B +B-2—y (46b)
2
A
AB = ——. 4
e (46c)
From Eq. (46a), we find Ay = —1/4 and A_ = —3/4. Introducing r = A/€, we find from Eq. (46¢) that By =
—r/(4A4) =r and B_ = —r/(4A_) = r/3, respectively. Then Eq. (46b) yields either
rP4r—r/2=0—r=-1/2, (47)
or
1, 1 1
9" +§r—§r—0—>r—3/2. (48)

Since r must be non-negative, only the second solution makes sense. This corresponds to €/A = 1/r = 2/3. Accord-
ingly, the superpotential becomes W (§) = —3/4€ + 1/2(£ + €). The first condition implies that the threshold in the
imaginary part of the self energy is at eg = 2A/3. The zero-energy eigenstate of H is readily found from the first-order

supersymmetric equation, Qg (¢) = 0, which yields o, (£) = const x £3/4/\/EF €y or ¢, (€) = const/+/E + €p. These
are the same results as obtained in Sec. 1 C 2.

4. Self-energy above the threshold

In Secs. IC 2 and I C 3 we showed that the imaginary part of the self-energy vanishes identically below the threshold.
Now we need to find its form slightly above the threshold. To this end, we go back to the integral form of the Dyson
equation, Eq. (11), and take its imaginary part. In the notations of Sec. IC1, we have :

Ye(&')
(E+&)2+72(¢)

Following the same logic as in the previous Section, we again expand the RHS of Eq. (49) in 7. but now keep the
cubic term:

7€) = A /O Tk e (49)

e} / 3 (¢t
(© = [ aerEe | 2 ) | 50
e =x [ | 219 - 215 (50)
The linearized version of this equation (without the cubic term on its RHS) is equivalent to the differential equation
(32), whose solution right at the threshold is given by Eq. (40). Now we search for a solution of Eq. (50) close to but
finite distance from the threshold in the following form

Ve(§) = C(€)/ V& + e, (51)

assuming that € = ¢y — de with de < 9. When substituting Eq. (51) into Eq. (50), we expand the first term on the
RHS of Eq. (50) to first order in de and set de = 0 in the second term. This yields:

Cle) <, , C(e) 20eC(e)  C%(®)
N = )\/O d¢'K (£, &) |:<§/ —|—60)5/2 (& +€0)7/2 (& +€0)11/2 ) (52)

The first term on the RHS of Eq. (52) cancels out with the left-hand side, and from the remaining terms we find C(€)
as

Jo~ dEK (& €)(E +e0) T
fooo dg/K(&g/)(g/ + 60)_11/2

C?%(€) = 20¢ = Jeeo(€ +€0)S? (€/eo), (53)



where

20z+1)(2z+3) Y2

S(x) =
(@) = | 165 1 5622 + 707 + 35

The result for 7.(£) reads

Ye(€) = /(0 — €) €0 x S(§/e0) = /(€0 + €+ 1) €0 x S(§/e0). (55)

It can be readily checked that S(0) = 34/2/5 and S(x — oo) = /21/42z. Therefore, v.(0) is indeed finite and
Ye(§ — o0) — 0, in agreement with the boundary conditions 1mposed when solving Eq. (32) by the method of
Sec. IC2.

5. Position of the chemical potential in the non-quasiparticle regime

The chemical potential is found from the condition of fixed number density:

= [ Z “ar o [ T AEN(©E-)E" (€ o),

_ﬂm*3/2 o en (e o ’76(5)
R /_md F()/o dg\/g(e—éwfﬂf(&)’ %)

where N (&) = (m*)3/2/2€/7? is the density of states in 3D and where we again absorbed ¥’ into y. The non-
interacting electron gas would be non-degenerate for T > Er. We assume (and later verify) that this is also true
even in the non-quasiparticle regime; accordingly, ng(e) = e~¢/T. Introducing again € = —(e + u) and recalling that
Ye(€) =0 for € < eg = 2A/3 > T, we obtain

n— fm*3/2 H/T _ &/T < 76(5)
[ [ e o7

Because of the Boltzmann factor in the integrand, the integral is controlled by the region € ~ €. In this region, we
can neglect v.(§) in the denominator and replace 7.(£) in the numerator by Eq. (55). Also, the lower limit of the
€ integral can be replaced by 0 and € in the remaining term in the denominator can be replaced by €y. After these
steps,

2 %*3/2
n= f#e“/T deee/T\/ (0 — € eo/ \[S /60)

0 0

_ coV2m**? /T =.&/T — COfm /T jeo/T3/2
- d Ve — —5ap e T/, (58)

where at the last step we used that T" < ¢y and

VaS(z)
co—/o L = 10 (59)

Solving for u and expressing n via the Fermi energy, we obtain

3 T 8
= —€g 2Tln e + 3T (60)
To leading log order, the last term can be neglected, and we arrive at the result quoted in the MT. The second term,
which coincides with the chemical potential of a free Boltzmann gas, is smaller in magnitude than the first term
resulting from the interaction with phonons, as long as T' > Ej, i.e., in the non-quasiparticle regime. By the same
condition, the first term is larger in magnitude that 7', and we are indeed in the non-degenerate regime. Now we see
that the threshold in the original energy € is at

T
3T1n— — §T < €.

€1 = —€) — U= B EF 3 (61)



D. Numerical solution of the Dyson equation

In this section, we provide details of the numerical self-consistent solution of the Dyson equation, Eq. (11). We
rescale all the energies by Fy and write down real and imaginary parts of Eq. (11) as

o / _ /
S (B, w) = 3152/ ie' |\ EeE—-r)+oE - B) woE El(f ) (62a)
Ar Jo = [w—E' — 31 (E,w)]” + 33(F', w)
and
o0 )i /
Sy (B, w) = it?/ ie' [\ EeE - E)+oE - B) AR . (62b)
ar” J E [w— E — %, (E', w))? + $2(E', w)

where X1 = X' /Ey, 9 = =X"/Ey = v.(§)/Eo, E =§/Ey, E' = &'/eg, w = ¢/Fp and t = T/Ey. Contrary to what
was done in the previous sections, where ¥’ was assumed to be constant and absorbed into the chemical potential,
here we do the opposite—the chemical potential will be absorbed into ¥’. We will not attempt to find the chemical
potential self-consistently, as its position does not affect the resistivity, calculated in Sec. II. To solve Egs. (62a)
and (62b) self-consistently, we need to provide initial guesses for X1 (E,w) and ¥o(E,w) and run the code until the
solution converges. As an initial guess of X1, we use the perturbative solution given by Egs. (21a) and (21b) (with
all the energies rescaled by Ep). On the other hand, the perturbative solution in Eq. (19) is a bad initial guess for ¥
because it is zero for w < 0, while we need to allow for finite spectral weight at w < 0. This is achieved by replacing
O(w) in Eq. (19) by a smooth function with a non-zero support at w < 0, e.g., (1 + tanhw)/2. The initial guesses,
therefore, are chosen as

(63a)
and
(B w) = % [1 4 tanh w) {\/g@(E —w) + O(w — E)] , (63b)

where L = A/Ey.

We perform numerical integration in Egs. (62a) and (62b) using the standard Riemann sum over a regular partition
of the integration variable E. The step size and the upper limit for E-integral are chosen to be AEF = 0.04 and
Emax = 837 (this corresponds to 3A/8mEy = 100, which is more “natural” choice of units). The energy (w) is an
external parameter varied in steps Aw from 0.078 to 0.66, depending on the temperature (¢). The change in the step
size is dictated by the subsequent need to integrate over w in the Kubo formula for the resistivity, Eq. (67). For small
t, we choose Aw and the upper limit wpynax as small as possible in order to accurately capture the position of the
threshold as well ensure optimal convergence of the w-integral in Eq. (67). On the other hand, since larger ¢ require
also larger wpax, we choose larger Aw to reduce the computation time. For example, for ¢ = 0.42 (the lowest ¢ value
in our calculation), we choose Aw = 0.078 and wyax = 8.37. For ¢ = 25.12 (the highest value of ¢ in our calculation),
we choose Aw and w4, are 0.66 and 167.47, correspondingly. For small ¢, it usually takes roughly 15-20 iterations
to converge, while for higher ¢ the number of iterations goes up to 50. The solution is not sensitive to the choice of
the initial guess, as long as the former is a regular function.

Figure 1 shows numerically calculated ~.(§) = —X"(&,€) in the threshold region (dots) at t = T/Ey = 5.9 for a
range of E = £/Fy, as specified in the legend. The dashed lines are obtained from the analytic result in Eq. (55). We
remind the reader that the threshold position is determined up to the chemical potential; therefore, the horizontal axis
corresponds to € + u. In Fig. 64, we show the dependence of the threshold in the variable € = —(e + u) as a function
of T. In Sec. IC, we found that if the real part of the self-energy is assumed to be constant, then the threshold in €
is at eg = 2A\/3. Here, we find that the actual threshold in € + p is fitted better by the function

A
go = alx\ln (Cli\> s (64)

with a; = 0.88 and ay = 3.4. Given that the real part self-energy depends on € logarithmically rather than being
constant, the difference between the linear dependence of the analytic result on A and the Aln A dependence of the
numerical result is understandable.
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FIG. 1. The threshold behavior of the imaginary part of the self-energy as a function of e+ y for a range of electron dispersions,
&, as specified in the legend, and for T' = 5.9F), i.e., in the non-quasiparticle regime. Dots: numerical results; dashed lines:
analytical result in Eq. (55). Here, 7.(£) = —X"(£,€) and Ep is defined in Eq. (10).

500
€0 [ ® Numerically obtained threshold

100F —— Fit: Eq. 64

50

10F

. 1 5 10
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FIG. 2. Position of the threshold as a function of the temperature. Points: numerical results. Solid line: fit by Eq. (64) with
a1 = 0.88 and as = 3.4.

II. Resistivity in the quasiparticle and non-quasiparticle regimes
A. Kubo formula

Neglecting the vertex correction of both ladder and Cooperon types, the Kubo formula for the conductivity of
electrons with parabolic spectrum reads

o= [T (-2 ["aenioe e o, (63)

S 3mr )T Oe

where N (&) = m*3/2\/2€ is the density of states in 3D. The number density 7 is related to the spectral function via
the first line in Eq. (56). It will be convenient to multiply and divide Eq. (65) by carrier number density, n. Then
resistivity is given by

L 3me [T dénp(€) [T dEN(€)(—)G" (8, €)

= ~ ) (66)
2ne? 1 de (- 220 [< deN ()8 (G (€, 7))

p=o
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where € = € + p. In the non-degenerate regime, np(¢€) = e#=9/7 while —n/,(¢) = e#=9/T /T and thus the e*/T
factor cancels out between the numerator and denominator in the equation above. Then the resistivity is reduced to
L 3mrT [ dee T [F dEN (£)(—)ImG (€, €)

P=9 = oue2 [, dée=#/T [ deN (£)€ ImG(€,8)])* (67)

which is Eq. (15) of the MT.

B. Quasiparticle regime

In the quasiparticle regime, the spectral function in the numerator of Eq. (67) can be replaced by its free-electron
form. Then the integral in numerator is reduced to

jo%s) oo ~ o 3/2
/ dee—¢/T /O dE\/E(=)G" (&) = /_ - dée=/T /O dE\/E5(¢ — €) = %TW (68)

The integral in denominator is simplified by replacing the imaginary part of the self-energy by its perturbative form,
Eq. (19) and neglecting the real part of the self-energy, which is justified to leading order in the coupling constant, \.

Then
2
Ood~ —&/T Ood 3/2 1 (¢ 212 Oodfg/T Ood 3/2 X7(€, )
/,oo “ /0 el /0 ‘ /0 = ((eg)?ﬂz"(g,e)}?

/ dée€/T&3/2 [2(E,€) / dé 1 _T /0o dge_é/T€3/2|Z//(1 ; — 3ﬁz\’5/2 (69)
- 2 éé 8A
= (@rear) Pk |

where ¢ = ¢ — €. Using Eq. (12) for A, we find

3m* T2
2ne2E,’

p= (70)

The “transport correction”, resulting from resumming ladder diagrams, eliminates the factor of 3/2, and the resistivity

coincides with the expression given in Eq. (8) of the MT.

C. Non-quasiparticle regime

As in the calculation of the chemical potential (Sec. I C5), the integrals over € in Eq. (67) are controlled by a narrow
region near the threshold. Repeating the same steps as in Egs. (56-58), we arrive at

p= C%\/Teo o T3/2 (71)

where we used Eq. (39) for ¢y and

3/ fo dx(x-‘,—l)ZS()

4 [ dx ;j/f 52 ()

C=

~ 5.6. (72)

The numerical solution along with the analytic results in quasiparticle and non-quasiparticle regimes, Eqgs. (70) and
(71) correspondingly, are shown in the inset of Fig. 2 of the MT.

ITII. Higher-order processes

In this section, we discuss the role of higher-order diagrams, shown in Figs. 16 —1f of the MT. We will demonstrate
that the non-crossing diagrams forming an “umbrella” sequence, i..e, diagrams la-1c¢ and other diagrams of the same
type, can be resummed into a closed form. The result for the two-loop diagram (Fig. 1la) is reproduced as the first
term in this sequence, and we derive an explicit result for the three-loop diagram (Fig. 1b) quoted in Eq. (7) of the
MT. Finally, we will discuss the crossing diagrams in Fig. 1d and e of the MT.
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FIG. 3. Umbrella diagrams

A. Non-crossing “umbrella” diagrams
1. Resummation of “umbrella” diagrams

The sequence of umbrella diagrams is reproduced in Fig. 3. Note that the electron and phonon momenta are labeled
differently compared to the MT. As in Sec. I, we treat phonons as classically occupied modes with linear dispersion.
We define an effective vertex

Tapla) = TCas(@)Dola0) = 5 (805~ ©22). (73)
where
2
Dy and T', 3 are given Eqgs. (4) and (5), respectively. Next, we define an effective single-phonon “self-energy” as
S(p.e) = —/qT(Q)G(p +4,¢), (75)

where hats on S and Y indicate that they are 3 x 3 matrices, and G(p, ¢€) is the retarded Green’s function. Then the
sum of the umbrella diagrams for the self-energy is given by

S(k, ¢) = —;Tr/pf(p ~W[§+82 480+ = —;Tr/p Tip— & - &), (76)

The calculation is facilitated by switching to the real-space representation
Sas(p,€) = — / d*rYap(r)G(—1,€)e™P™. (77)
where G(r,€) = [, e™® TG (k, ) is the Green’s function in real space. Since the electron dispersion is assumed to be

isotropic, G(r,€) = G(—r,€) = G(r,€).
The real-space representation of the effective vertex is found as

4
Top = —a/ = (5a5 _ qaqﬁ) ( +aaﬂ> (78)
q e

) etar
Oup = —47r/ —QO‘Z’B T = / (79)
a 4 a

To calculate the last integral, we regularize it as

eiqr zq-r O e —Vbr 1 N
4 o ——— = = — ¢ T
7r/( 21 b)2 ab/q Ya bt avb (80)

and take b — 0 at the end. This yields

where

5a5 Talp
=2 81
b—0 2r + 2r3 (81)

62 1 ) fr _ 8 (1’.5 7\/7‘) — _ (5045 _ xaxﬁ _ \/B.’Eaxﬁ> e*\/gr

Tab = 81‘(13335 24/b Oz 2r 2r3 42

Therefore,

r r3

6(}{ «
Tup = —g <B 4 Totb > (82)
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2. Umbrella diagrams in the quasiparticle regime

In the quasiparticle regime, the electron Green’s function can be replaced by its free-fermion form. For on-shell
electrons, i.e., for {x = € = € + p,

G(r,k) = e, (83)

2mr
where k = v/2m*é 4+ i0T (Writing k in this form, we took into account that € > 0 for mass-shell particles. In the
rest of the calculations, k can be treated as purely real.) The self-energy in this regime also can be evaluated on
the mass-shell. Denoting the mass-shell value of S via S(p, k), we decompose S(p, k) into the sum of isotropic and
anisotropic parts:

i(kr+p-r) )
ma 3 € «B . Talg ma 0 1
Sas(P, k) = =7 /d r— ( T3 ) 1 10088 (0, k) + Sa(p, k)] (84)
The isotropic part is given by
ikr A k
Sp k) = [ drSe®r =1, (= 85
(p7 ) / r TZ € D 0 p 3 ( )
where
“dr 1 y+1
L) = | Zevmsing = = |70(1 - ‘1’ ’ 86
o) = [ ersing = 3 |01 - )+ im | (56)
The anisotropic part is given by
i(kr+p-r) 4 k k
1 _ 3 € AT PaPp PaPp
Saﬂ(p,k) = /d T7T4 TaTg = ? |:<5a/3 -3 ? >I1 (p) + i Iy (p)] ) (87)
where
®dr d sinx | 1 i
Li(y)=— —— W= —(1—y?)] = 88
) == [ e = 0= ) + (59)

Combining the two parts of S together, we obtain

w2 ) w @)

a. Second-order two-phonon process.
For completeness, we re-derive the result for the two-loop self-energy in the perturbative regime (to second order
in go) by using the representation developed in the last section. To the specified order in ga,

(k) =Sk, E = &) = —%Tr/ T(p - k)S(p, k). (90)

Choosing the polar axis of a spherical coordinate system along k and integrating over the azimuthal angle, we obtain
for the trace in Eq. (89)

27 x 2 2 .2
do dtm™*a k*sin“ 6

Next, the polar-angle integration yields

m*a? [ p+k| 2k P+ Kk |p+k
(k) = dp | —4(Iy + 1)1 — Iy —3L)(1- In|——- . 92
(k) Atk Jo p{ (°+1)np—k‘+p(0 1)< 2pk n‘p—k’ﬂ #2)
The imaginary part of Eq. 92 is read off as
* 2
y="%c, (93)

47
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where x = k/p and

> 1 322—-1 |z+1 41 2( 3 3-2* |z+1 > +1 |z+1
= dz |—4 1 | = -= 1 1- 1 = 3.
C2 /0 x{ (295Jr 422 nx—1‘>nx—1‘+x< 2z 422 nx—l)( 2x nx—l)} 5
(94)
Defining the (quantum) relaxation time as 1/79 = —2%", we get
1 3T? m*g3Qs 372
- mgQ 0 __ (95)

o 12873 st 2E,

which coincides with Eq. (15), obtained in a different way.

b. Third-order two-phonon process.

In this section, we will calculate the correction to the scattering rate due to a third-order two-phonon process,
depicted by diagram b Fig. 1 of the MT or, equivalently, by the middle diagram in Fig. 3. The third-order self-energy
reads:

(k) = —%Tr / T(p - K)&2(p, k). (96)

Integrating the trace in the equation above over the azimuthal angle, we find

27 *2 3 2 .2
d¢ 4mm*“a 5 k“sin”0
—Trl.]=————= |2(lo+ I ———(lg—3011)(38Ip — )| .
/0 o I'[ ] p2|p — k|2 |: ( 0+ 1) + ‘p — k‘g( 0o—3 1)(3 0 1):| (97)
The integral over the polar angle yields
*2 3 [e%s) 2 2
m*“a dp 9 |D+E k p*+k p+k
(k) =— — | =2(lo+ L) In|—— |+ —(lo—30)Bly— 1) |1 - In|——- .
(k) ok /0 » { (Io + 1) n‘ —k+p(0 31)(31p — I) Ik np—k (98)
The imaginary part of Eq. (98) is read off as
*2¢% [ dx 322 -1 (1 322-1_ |z+1 z+1
2 (k) = -2 / Zo@-1 = 1 1
(k) 2k Jy = (z—1) 22 :c+ 222z —1]) Mz -1
1 (72243  (ba?2+1)(22-3), |x+1 22+1 |z+1
— 1 1-— 1 99
x( 473 84 Sl P 2r |z 1 (99)
“2a® 6+ 217¢(3)] T v/m*
_ M | o17¢(3)) = BRI TV
64k 64m3/2 g3y,
The third-order correction to the scattering rate is thus given by
1 6+ 217¢(3)] T3v/m* T3v/m*
5 (T) _ | J;,zwi%/i( ) Ve~ 150 (100)
Ey 'k Ey“k

Note that the correction is negative, which is also the case for higher-order processes. This means that multi-phonon
processes reduce the scattering rate, which is consistent with the result that p in the non-quasiparticle regime varies
with 7" slower than in the quasiparticle one: as T°/2 vs T2.

The calculation of the transport scattering rate due at third order is too lengthy to be presented here. The result
is that the transport scattering rate is the same as in Eq. (100), except for the numerical coefficent of 1.50 is replaced
by 1.24. This is the result quoted in Eq. (7) of the MT.

3. Non-quasiparticle regime

In the previous section we showed that higher-order umbrella diagrams are parametrically smaller than the two-
phonon one in the quasiparticle regime; for non-degenerate electrons, the small parameter is /T /Ey. This indicates
that the contribution of high-order diagrams becomes important at T' ~ E;, and, in principle, one has to solve
Eq. (76) in the non-quasiparticle regime self-consistently. However, this presents a daunting task, both analytically
and numerically. In the MT and in Secs. IC and I D, we solved the self-consistent equation that corresponds to the
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first, two-phonon diagram diagram in Fig. 3 or, equivalently, to the first term in the expansion of Eq. (76) back in
S. In this section, we will argue that higher-order terms in S do change the result by O(1) but not more than that.
Since numerical coefficients do not play any role in the forthcoming analysis, we adopt a simplified “scalar” model,
in which the effective tensor vertex in Eq. (55) is replaced by its diagonal part

Tas(a) = To(a)das. (101)
where To(q) = —4;—2“. It can be checked that the scalar model reproduces all the results of the previous sections
except for a change in the numerical coefficients. Accordingly, Eq. (76) is replaced by

S(p,e)
Yk, e) = —/ To(p —k)—7—, (102)
o 1- S(p, 6)
where
Sp.0 =~ [ Go+a.9To(a) (103)
a

is now a scalar. Relabeling p + q = k’ and taking the imaginary part of Eq. (102), we obtain

(k')
[6— &0 — XK, 0] + [Z7(K, €)]

¥ (k,€) = /k To(k' —k — q)Yo(q) P

(104)
If the last factor in square brackets on the RHS of Eq. (104), symbolically denoted by R, is replaced by 1, we are
back to two-loop order. In the previous sections, we showed the two-loop self-energy exhibits a threshold behavior
as a function of € and that transport in the non-quasiparticle regime is controlled by energies near the threshold. In
terms of variable € = —e — 1, the threshold is at ¢y ~ A ~ T?/Ej. Near the threshold, ¥” is small and the threshold
position can be determined from the self-consistent equation linearized in X”. Since 8" and " are proportional to
each other, the R factor does not contribute extra O(X”) terms. At the two-loop level, we also assumed that X' is
a slowly varying function of its arguments and absorbed it into e. If we apply the same approximation to &', the
linearized equation for ¥ is reduced back to the two-loop form:

¥ (K, €)
(€4 &r)?

Therefore, in this approximation higher-order diagrams do not affect the threshold position.

The behavior near the threshold is obtained by expanding the non-linear equation (104) to O ([Z’ ! ]3) To two-loop
order, the result for v.(§) = —X" (&, €) is given by Eq. (55). Although in this case the scaling function S(x) is known
[cf. Eq. (108)], its explicit form determines only numerical coefficient C' in Eq. (71) for the resistivity, whereas the
T3/? scaling form of p is determined by the square-root threshold singularity in 7.(£) as a function of ¢y — €. We will
now argue that the threshold singularity is not affected by higher loop terms. Indeed, by expanding the R factor in
Eq. (104) to order O ([%]?), we add another O ([£”]®) term to the RHS of Eq. (50). Because the linear-order result
is still given by Eq. (51), the linear proportionality between C?(€) and de = € — ¢ still remains in place even in the
presence of an extra O ([£”]*) term. This implies that 7.(£) = v/(é0 — €)eo x S(&/€o) with some new scaling function

S (x) which, as we said above, determines only a numerical coefficient in the resistivity.

In reality, both ¥’ and S’ vary with € and £. Because ¥’ varies logarithmically with its arguments, one expects the
linear dependence of threshold €y on coupling constant A to change to Aln A, which is what we see in the numerical
calculation, cf. Fig. 2. To estimate the effect of S’ being a function of its arguments, we retain S’ in the linearized
equation, which then becomes

5 (k, €) = / Ty k- @) To(a) (105)

", = I E//(k/7€) 1
Ploe = ), ol ke ATz lp—s'(k’—q)]J’ oo

where

/ -\ _ 1 ~ T E
S0 = [ Tolo v~ e () 107)
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FIG. 4. Fourth-order crossing diagram.

where { = &, and

1 |V
f(gc)—/0 dyy+xln NS

such that f(z — 0) = 7% and f(z — o0) = 27/\/z. In the non-quasiparticle regime, transport is controlled by the
region of € ~ ey ~ T?/Ey and & ~ ¢y ~ T?/Ey. In this region, 8’ ~ 1, and therefore the threshold position can be
shifted by O(1) but not more than that.

; (108)

B. Crossing diagrams

In this section, we estimate the contribution from the crossing fourth-order two-phonon diagram, Fig. 1e of the MT,
which is reproduced in Fig. 4 for reader’s convenience. This diagram is a vertex correction to the second-order process,
Fig. 1a of the MT or, equivalently, the first diagram in Fig. 3 of this document. An analogous vertex correction for
single-phonon scattering is small by the Migdal theorem,® which applies in the adiabatic regime. In what follows, we
generalize Migdal’s argument for two-phonon scattering.

We are interested in the magnitude of triangular vertex A, as defined in Fig. 4. This vertex is dimensionless and
hence needs to be compared to 1. Also, because the vertex involves virtual states, it can be calculated at T = 0.
Finally, as we are interested only in an order-of-magnitude estimate, we again adopt a scalar model, in which the
tensor vertex in Eq. (5) is replaced by its diagonal part

Tag(a) = To(a)das, (109)

where ['g(q) = g203/47sq for massless phonons. After these steps, A is written as
A= [tk [ @ Qaalay Lok ~ k- ;) Do(Qe) Dol ~ K ~ Q)GolK' + Q)Ga(K"). (110)

where P = (p,iwy,), d*P = [dw,, [ d*p/(2m)*, Go(P) = (iwm — & + p) and Do(P) is given by Eq. (4). It can be
checked that all the momenta are on the order of incoming electron momentum k, whereas phonon frequencies are
on the order of sk. For non-degenerate electrons, k ~ kr and k > m™*s by the adiabatic condition, vgp > s, which
we assume to be satisfied. For degenerate electrons, k ~ vVm*T and k > m*s for T > m*s? ~ 5K in STO, which
we also assume to be satisfied. Therefore, k > m*s for all cases of interest, which implies that the typical phonon
frequencies, sk, are small compared to electron energy & = k?/2m. Neglecting phonon frequencies in the electron
Green’s functions, we estimate the latter as Go ~ 1/&x, while Dy ~ 1/sk. The integrals over momenta in Eq. (110)
give a factor of (k3)? while those over frequencies give a factor of (sk)2. Then A is estimated as

1 1 1 m*s?

A ~ 2Q4 2]{32 kG ~
92 (S )( )512( $2k2 g2k2 EO )

(111)

where Fj is defined in Eq. (10). We see that the effective Migdal parameter is small if m*s? < FEy, which is satisfied
with a large margin because m*s? ~ 5K while Ey ~ 200K. Therefore, the crossing diagram gives only a small
correction to the second-order result.
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IV. Boltzmann equation for two-phonon scattering

In the MT, we found the resistivity due to two-TO-phonon scattering in the classical regime, when phonons are
treated as static disorder. In this regime, one can simply calculate the corresponding transport time and substitute
it into the Drude formula. In this section, we consider the Boltzmann equation which allows one to analyze both
the classical and Bloch-Griineisen regimes. The latter is defined by the condition wy < T <« Tgg = 2kps. The
adiabaticity condition, s < v, implies that Tge < FEp, i.e., that electron statistics is degenerate. On the other
hand, the condition 7" > wy allows one to replace the TO phonon spectrum, given by Eq. 3, by an acoustic one:
wq = 5q. We solve the Boltzmann equation here under one additional assumption, i.e., we assume that 7" is low enough
such that impurities provide the dominant scattering mechanism. In this case, the electron-phonon collision integral
can be treated as a correction to the electron-impurity one. In a low carrier-density system, the Bloch-Griineisen
regime sets in at low temperatures, and thus the assumption of dominant impurity scattering is reasonable.

The collision integral for two-phonon scattering is given by

If(fllf = Z {W(p',ql, as;P) (np/(l —np)Ng, Nq, — np(1 —np ) (1 + Ng, )(1 + Ng,) J0(§ — Wq, — Wq,)

P’,d1,9
+W(p/7Q1§P7QQ) (np’(l - np)qu(l + qu) —np(l— ) 1+ Nq )Ng )5 Wq, + "J%)
+W(plaq2;paq1)(np’(1 —np)(1 + Ng,)Ng, —np(1 —np)Ng, (1 + Ng, )5 —&pr +wq, — wq,)
)5 —&pr +wq, Twg,) |-

(112)

—|—W(p';p,q1, dz) (np’(l —np)(1+ qu)(l + qu) - np(

Here W(S1;S2) denotes the scattering probability between states S; and S; specified by the electron and phonon
momenta, and np = np(ép) + Inp and Ngq = np(wgq) + 0Ng are the distribution functions of electrons and phonons,
respectively, with ny and np being the Fermi and Bose equilibrium distributions. It is understood that the scattering
probability includes the constraint imposed by momentum conservation, e.g.,

W(p',a;,q2:p) = Wi(p' —p— a; — q), (113)

etc. To lowest order in electron-phonon interaction, kernel W is same in all the scattering probabilities and related
to the vertex in Eq. (5) via

2 4 2

7 ol CURC))

=2 %2 a F o 1 . "
T E s(an)lsalaz) = 167‘('ququ< - 47 as e

A factor of 2 in the first part of the equation above is the combinatorial coefficient of the two-phonon diagrammatic
technique, as explained in Sec. I, and a factor of 1/4 is related to our definition of the coupling constant in Eq. (1) of
the MT.

The phonons are assumed to be in the equilibrium state, such that dNg = 0. The non-equilibrium electron
distribution is parameterized as 0np = —¢p0np/0p. After linearizing in ¢y, the Boltzmann equation is reduced to

e(p-E)onp  Onp ¢ 1 d3q, d3qo
w9 r/ ) / @)

where the first term on the right-hand side (RHS) is the electron-impurity collision integral with scattering time 7;,
W is the scattering probability after momentum-conservation constraint is resolved, and

WA(I%QMQQ) (115)

AP, a1, d2)= Adp_q,—q, pB(w1 + w2) [1 + np(wi)] [1 + np(w2)] [nr(lp — w1 — w2) = np(&p)] 6(5p — Ep—q,—q, — w1 — w2)
TA¢p—q,+a,.pnB(W1 — w2) [1 + np(wi)]np(w2) nF(§p — w1 +w2) = nr(€p)] 6(&p — €p—q,+q, — w1 + w2)
+A¢ptq,—a,pnB(—wi +w2)np [1 + np(w2)] nr(§p + w1 —w2) = np(&p)] 0(&p — Eptq,—q, T w1 — w2)
TAptq,+a, pnB(—w1 —w2)np(wi)np(wa) nF(§p + w1 +w2) —np(&p)] 0(&p — &ptay+a, Twi +wz),  (116)

where A¢y k' = ¢k — ¢ and w; = wq, (i = 1,2). We write ¢ = B + ¢, where ¢g = e(k - E)7;/T'm* is the solution

of (116) without the electron-phonon collision integral, and ¢j. is a correction found from

2

onp er; d3q, d3qy
B ag ¢%’ = m*T/(QW)?’ / (27T)3WA0(paq17q2)a (117)




18

where A°(p,q;,q,) is obtained from A°(p,q;,q,) in Eq. (116) by replacing all ¢’s by ¢°. A correction to the electric

current due to electron-phonon interaction is found as
d3p ong dQp 8n F P
sj=2e | —=| - =eNp [ d ! 118
! e/(?w)B( ¢ —° F/ g‘”/ w \ "o )% (118)
where N is the density of states at the Fermi energy. To necessary accuracy, p can be replaced pp = kpp/p anywhere

but in the Fermi functions. Using an identity [ d€ [np(€ —€) — np(£)] = €, we perform the integrals over &y and arrive
at the following expression for the correction to the conductivity

2 3 3

AOTT d a1 ]/ d q2 -~
do = 7W E)x
7 Tm*2E2/47r/ (P E)x

x {(m +w2><q1 + ) - E(np(wr +w2) [1+np ()] [1+15(02)] 6(Ep, — Eppay-a — w1 — w2)

— [+ (w1 + w2)] np(@1)ns(@2)0(E = Epptayta, + w1 +w2))
+ (@ = w2)(ay — ap) - B(na(wr — w2) [T+ np(wn)] np(@2)d(Ep, — Eppayra, — @i +w2)

[+ s = wa)] np(@n) [1+ n5(w2)] 0, — Eppray-a, + w1 —w2)) |-
(119)

Upon changing q; — —q;, the last two lines in Eq. (119), corresponding to simultaneous absorption and emission,
are written as

—(w1 —w2)(qy +ay) - E("B(Wl —w2) 1+ np(w1)np(w2)d6(ép, — &ppta,+a, — w1 +w2)

(120)
— [+ np(wr - wa)] np (@) [1+np(w2)] 6, — Eppay—a, +w1 — w2) ).
Changing to a new set of variables (q,q;), where q = q; + q,, we re-write the delta-functions as
1 g saq s la—aq
) — —q— — Wg— — Opqg— — — —— — —
(€pr —&pr—q —Wq, —Wq—q,) = Fq (COS PAT ok up g vp g
¢ sq s la—aq
0(py — &ppta + wWa, T Wq—q,) = 75 ( costpg + 57— ——— — — 1)
Fq 2k‘F VF ¢  VF ¢ (121)

5(§pp —&ppta — Wq, +wq—q1) 75 coslpg + o — + —— — —
VFq QkF

1 q S q1 S q—Q1|)
5 _ o+ Wa. — Wa_ 6(0089 t—— .
(€PF §PF q q a qJ VFq Pa 2kF VF q UF q

Now we have two regimes to consider. In the first regime, the two last terms under any of the delta-functions in the
equation above can be neglecting compared to ¢/2kr. Making an assumption (to be justified a posteriori) that typical
q and ¢y in the regime are given by ~ max{kr,T/s}, we see that this regime corresponds to the condition T >> ms?.
Next, we use that cosfqg = cos Opg €08 Opq + sin pE sin fpq cos(pp — ¢q), where Oyg is a polar angle of k, measured
with respect to E, and ¢y is the azimuthal angle of k. The second term in cos qg vanishes upon the integration over
the azimuthal angle, whereas a factor of cos fpq is replaced by +¢/2kr, depending on whether absorption or emission
processes are considered. Along with an extra factor of ¢ in Eq. (119), this gives a transport factor proportional to
¢

Eliminating the delta-functions and writing q, = q — q;, we obtain

2 2 20)4 2 p 00 1 N9
g5e“Np7i L) / 3/ 2/ 1 1 (Q'Q1_Q1)
0o =——>=—L d d d 0 —_— 14+ | x
7= T TssemomeepT f, M7 [, [ Aeosbaa ) n T g a2
X {(qu + wqfql) [nB(qu + wqfql) [1 + nB(wa)] [1 +np (wqfql)] + [1 + nB(qu + wqfql)] np (Wq1>nB(quq1)}

+ (Wq, = Wq—q,) {nB(qu — Wq—q, ) [1 +np (wa)] np(Wg-q,) + [1 + np(wq, — ‘*’q—ql)} np(wq,) [1 tnp (wq—ql)} } }v

(122)
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where qq, is the angle between q and q;. In a dimensionless form, Eq. (122) is re-written as

202 N 7204 T /T (x-y —y?)?
So — _T5M/ d / d / 0. ) (14229
o 53675 m 2sTup o Tz vy (cosbxy)| 1+ p——T X

[P o+ b= ¥+ )1+ im0 + (Ll + bx = D~ y)
Ly x-yl

= —] (nB(y —lx—y)A+ng)ns(x—y]) + (1 +nply— |x—y))ns(y) (1 +np(jx — y|)))}

(123)

where x = qs/T and y = q,s/7T. Using dp = —p3do, where pg = m/ne?r; is the residual resistivity, and defining the
effective transport rate due to electron-phonon scattering via dp = m* /ne?r;, we find

1 m*9294 Tsa/T
2 5 2°% / deaF 124
o 254 (Tea)?(2m) J weF(z) (124)
where
Ly -y
d d(cos Oxy )
=[] [ o (1 )
_|_ —
[P o b=y )1+ (= 310) + (Ll + [x = Do (ix ~ ¥)
y—Ix-vl
+4Ej§r*nﬂy—B—YDU+nﬂwmﬂR—YD+ﬂ+nﬂy—B—ymndwﬂ+nﬂk—ym :
(125)
Equation (124) is valid for any ratio of T/Tqg but only for T > m*s?
For T <« Tgq, the upper limit of z-integration in Eq. (124) can be extended to oo. In this limit,
1 aT>( T\
— =2 126
T w2 Ep (TBG> (126)
with Ey given in Eq. (10) and
o= / dexF(x) ~ 540.0. (127)

We see that the scattering rate in this limit scales as T°. A quick inspection of the integral in Eq. (127) shows
that x ~ y ~ 1, i.e., ¢ ~ q1 ~ T/s. Note that although the T° scaling of the scattering rate is the same as for
electrons interacting with acoustic phonons via the (single-phonon) deformation-potential mechanism, the coincidence
is accidental.

In the opposite limit of T" > Tpg, we assume that typical x ~ y < 1, which allows us to approximate the Bose
function np(x) by 1/z. In this limit,

1 T 32 * 204 Tec/T 0 1 v —2)2\ 1 1
= T2< ) WZ 92 = / dx:r3/ dyy/ d(cos Oxy) (1 + (X2 YU 3 ) 5
T2TO Tsc) s*(2m)° Jo 0 1 y?x -y ylx—yl

T2

ET)7

(128)

which reproduces the first term in Eq. (6) of the MT. We see that typical  ~ y ~ Tpg/T < 1, and thus our
assumption of x ~ y < 1 is justified.

To estimate the the crossover temperature between the 7° and T2 regime, we equate Egs. (126) and (128) and
obtain the crossover temperature as Te, ~ (72/a)'/3 ~ 0.26Tq. Calculating the integral in Eq. (124) numerically
and defining the crossover temperature as the intersection point of the T2 and T° asymptotes, we obtain a very close
value of T¢, =~ 0.25T3¢, see Fig. 5.

Now, we turn to the regime 7' < ms? when the ¢/2kr term in the arguments of all the delta functions in Eq. (121)
can be neglected compared to the two last term. A typical value of cosfpq in this regime is on the order of s/vp.



20

0.100 - Numerical result 1
3

~ 0.001 | 1
Y
o

2 1075} ]
=
=
=

o107 1
5
[
=

1079 1

10_11‘*”\ . M TR . M T . 14

0.01 0.05 0.10 0.50 1
H T/ZkFS

FIG. 5. Crossover between the T2 and T° scaling regimes of the transport scattering time (in units of Ep). The T2 and T°
asymptotes intersect at Tc, ~ 0.25TBc

Therefore, one factor of q is replaced by s/vr and the temperature dependence of the scattering rate is now 7 instead
of T5. After integration over cosfpq and switching to a dimensionless form, Eq. (119) can be written as

_ Bgze* Nrkrpr? Qg

do =
76875m*2vd s

(129)

where

[e%e] [e’e] 1 2\2
(x-y—vy°)

5:/ d:cx/ d / d(cos O« <1—|— X
0 0 v -1 ( Y) y2|x—y|2

8 {(erIX—yI)2
Ix —yl
_ _ 2

+(y Ix —yl)
Ix -yl

(ne(y+Ix = ¥D (A +nsu) (1 +nolx = y) + (1 +na(y + x = y)ne@ne(x—y)

(ney—Ix = yDA+ns@)ne(x—yl) + (1 +naly - x - y)ns)( +nB<|x—y|>>)}
~ 67.

Finally, the scattering rate for this limit reads

1:ﬂST2< T )2. (130)

T 7T2 (2 EO TBG

The crossover temperature between T and T° scaling is T* = (8/a)(s/vr)Tsa ~ 0.12(s/vr)Tee < Tha-

Our final result for temperature dependence of resistivity controlled by two-phonon interaction with massless TO
mode is as follows

T47 T < 0.12(S/UF)TBG
pox {5, 0.12(s/vp)Tse < T < 0.25The (131)
TQ7 T > 0.25Tpc.

For s = 6.6 x 10° cm/s and n = 4.0 x 1017 em ™3, 0.12(s/vr)Thc ~ 1.3K and 0.25Tp¢ ~ 6 K.

Now we recall that the gap in the spectrum for the lowest TO mode (the E, mode®®) is wy ~ 1 meV ~ 11K in
STO, which is higher than the crossover between the 72 and T® regimes, estimated above to be 6 K. This means that,
as T is lowered, the T? regime is followed by an exponential freezout (p o e~wo/ Ty rather than the T° regime. This
is the reason for ignoring the T° regime in the MT.

Two remarks are now in order. First, the analysis above ignores the interference effects between electron-phonon
and electron-impurity scattering,'® which become important when the phonon wavelength becomes longer that the
impurity mean free path, i.e., for T < T < s/vp7;. Our results can be extended into the low-temperature range
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provides that the lowest crossover temperature in (131), i.e., ms?, is still higher than T},;. The corresponding condition
is Tgg > 1/7;. Second, the T* regime has no analog for single acoustic-phonon scattering because the s/vp term in
this case cancels out exactly between the emission and absorption contributions to the collision integral.

V. Comparison with experiment

In this section, we give a short description of our fitting procedure to the available experimental data. We are
provided!! with the data for the dielectric constant (gq) of undoped STO at temperatures from 0.3 K to 300 K and
for the resistivity of oxygen-reduced STO with carrier density n = 4 x 10'7em™3 at temperatures from 2 K to 300
K. The dielectric constant data is used to parametrize the temperature dependent gap, wo(T"), of the TO phonon
dispersion, w?(q,T) = wi(T) + s*q® via an empirical Lyddan-Sachs-Teller (LST) relation, eo(g,T) = Q3 /w2(q, T') with
Qp = 194.4meV (Ref. 12).

For massive TO phonons, Eq. (17) for the the transport scattering rate in the quasiparticle regime is replaced by

% - r‘;ZF (). (132)

where qo(T) = wo(T)/s is the characteristic phonon momentum and

4 [t o ! 1 1 u-(z2—u)\’
Fz)=— dzz3 d 2/ d _ 1
(z) 72 /0 # /0 u -1 et (u—22)2 422 * ( u(zZ —u) ) (133)

with z = ¢/2k, v = q1/2k, p = cos(£{u, 2}) and © = qo/2k. Function F(z) is plotted in Fig. 6a. At z = 0 we
have F'(0) = 1, which reproduces the result for the massless case. For > 1, F(z) « 1/z. Both the numerator and
denominator in the quotient go/2k vary with temperature but in such a way that these two dependences partially
cancel each other.'®!? Indeed, when calculating the resistivity, 7(k) is being averaged over thermal distribution.
Consequently, k can be replaced by an rms electron momentum, k*(T) = [ déN(€)k*nly/ [ dEN(€)n)m, which varies
from k(T) = kp for T < EF to k(T) = vV2m*T for T > Ep. On the other hand, ¢y saturates at a T-independent
value at T'— 0 and varies as v/T at high T, when £o(T) follows a Curie dependence, eo(T) o 1/(T —T.) ~ 1/T. We
see that the argument of function F' is independent of T both at low and high T'. For intermediate temperatures, the
cancellation is not complete but, as Fig. 6b shows, the variation of go/2k with T over a wide temperature range is
not significant. A concurrent variation of F' with 7" is shown in Fig. 6¢.

In principle, the resistivity for massive phonons in the non-quasiparticle regime can be obtained from solving a
self-consistent Dyson equation, similar to the massless case considered in Sec. IC However, the non-quasiparticle
regime sets in at higher 7', where the effect of finite gap in the phonon spectrum is less pronounced. Therefore, we
ignore this complication and use the massless result p o< 7%/2 to describe the high-T part. Over the whole range of
tempartures, the resistivity from 2TO mechanism is described by an interpolating formula

m* T? 1 Qo
pQTo(T) = —" F < ) 5 (134)
ne* Eo 4 4 /Elo 2k(T)

where a = 4v/2/C73/? = 0.18 with C defined in Eq. (72). This formula reproduces the quasiparticle result for massive
phonons for T < Ey and scales as T%/2 for T > Ej. Since the scaling function in Eq. (132) is essentially independent
of T for T > 150K, it does not affect the dependence of p on T at higher T. To account for faster than 72 variation of
the observed resistivity with 7" at 7' 2 100 K, we include Frohlich-like scattering from the 58 meV LO mode in STO,
treating the Frohlich coupling constant, «, as a fitting parameter. Another fitting parameter is the 2TO coupling
constant, g2, which enters through Ey (cf. Eq. (10)). Then the final fitting formula for the resistivity reads

“LO

p—po = paro(T) + Ala)e™ 7, (135)
where pq is the residual resistivity, A(a) is the Low-Pines function'®
2wr,om* a3
Ala) = 2L0™ (1 7) , 136
(@) = =20 (142 (136)
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FIG. 6. a) Scaling function F'(z) in Eq. (132). b) Dimensionless argument, go/2k(T"), of the scaling function in Eq. (133) as
a function of temperature. The T-dependence of qo is calculated using the data for eo(7"). A kink at 7' =~ 70K is an artifact
resulting from combining two sets of data and is to be ignored. c¢) Variation of the scaling function in Eq. (132) with 7.

and wro = 58meV. The resultant fit is shown in Fig. 2 of the MT. The best fit is achieved for go = 0.92a3, where
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ap = 3.94 is the STO lattice constant, and o = 2.38, respectively.
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