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Key Points:

e Farley-Buneman simulations based on PIC are remarkably successful, but new ap-
proaches are needed to explore non-local processes.

« Hybrid continuous solvers are now an alternative when plasma structures are com-
parable to PIC numerical noise.

« Various aspects of Farley-Buneman instabilities were reproduced, with magnitudes
comparable to experiments.
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Abstract

We implemented a hybrid continuous solver for fluid electrons and kinetic ions. Because
the simulation is continuous, numerical noise is not an issue as it is for particle-in-cell
approaches. Moreover, given that the ion kinetic equation is solved using a character-
istic based method, no particle pushes have to be done. Our main goals are to reduce
the computational cost of the simulations proposed by Kovalev (Kovalev, D.V. et al., 2008)
and reproduce the main experimental features of Farley-Buneman instabilities measured
by radars and rockets. The equations were derived from first principles using the approx-
imations that are satisfied in the auroral E-region. Various tests will be presented to as-
sess numerical accuracy. With the proposed numerical framework, we are able to recover
important nonlinear features associated with Farley-Buneman instabilities: wave turn-
ing of dominant modes, and saturation of density irregularities at values consistent with
experiments.

1 Introduction

Coupling between the magnetosphere and the high latitude ionosphere through en-
ergetic particles and electromagnetic fields results in the production of Hall currents that
drive Farley—Buneman instabilities (Farley, D.T., 1963) which generate a spectrum of
field—aligned plasma density irregularities (Rojas, E.L. et al., 2016). Numerous studies
have shown that these irregularities can modify the mean state of the ionosphere through
wave heating (St.Maurice, J.P., 1990), (Bahcivan, H., 2007). Furthermore, by affecting
the local temperature several other parameters can also be modified: plasma density, com-
position, conductivity, and transport. Consequently, neutral wind surges, gravity waves,
and traveling atmospheric and ionospheric disturbances can be produced which can ul-
timately affect ionospheric stability at lower latitudes (Fuller-Rowell, T.J. et al., 1994).
Recently, studies have suggested that these instabilities can change the evolution of mag-
netospheric dynamics by changing the conductivity of the ionosphere (Wiltberger, M.
et al., 2017).

Farley-Buneman waves belong to the family of two—stream instabilities. They de-
velop at altitudes between 95 km and 120 km in the auroral and equatorial E region and
to lesser extent at mid—latitudes (Sahr, J.D. & Fejer, 1996). In these regions, due to their
different mobilities and collision rates, magnetized Hall-drifting electrons induce polar-
ization drifts on the unmagnetized ions. Because of their inertia, ions tend overshoot the
polarization field recovery and accumulate in the crests of the local density irregulari-
ties faster than diffusion opposes them (Hysell, D.L. et al., 2013). As a result, longitu-
dinal density waves are formed. The propagation of these waves is nearly in the direc-
tion of the electron drifts, and their dominant wavelengths are in the order of few me-
ters. In contrast to the equatorial case, in the auroral electrojet, wave heating plays an
important role. Electric fields parallel and perpendicular (in lesser extent) to the back-
ground magnetic field have been shown to be important in explaining the heating ob-
served in nature (Hysell, D.L., 2015). Moreover, these changes in temperature will in-
fluence the dynamics of the instabilities by changing some of the state parameters such
as the ion—acoustic speed.

Linear, local fluid theory of Farley—Buneman instabilities, although limited, has pro-
duced some important, verified predictions. For instance, it gives a reasonable estimate
for the threshold electric field (Ey,) required to trigger the instabilities: the electron con-
vection driven by this threshold fields has to be larger than the ion—acoustic speed to
produce wave growth. Linear analysis of the full 5—-moment system of equations has mod-
ified the initial estimates of Ey;, to take into account the role of thermal instabilities, which
also produce a change in the direction of the waves (Dimant, Y.S. & Oppenheim, 2004).
Although linear fluid theory predicts incorrectly the rapid growth of very short wave-
lengths, linear kinetic theory shows that ion Landau damping effectively suppresses this
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growth (Schmidt, M.J. & Gary, 1973). Using these linear approximations, empirical mod-
els have been developed to interpret coherent radar backscatter and estimate local con-
vection fields (Rojas, E.L. et al., 2018). Nevertheless, linear theory falls short in explain-
ing several features observed in the experimental data (Oppenheim, M. et al., 1996). Most
of the solutions of these problems cannot be expressed in closed form due to the strongly
nonlinear behavior. Therefor, numerical simulations have to be implemented.

The first simulations of Farley-Buneman instabilities were based on a fluid plasma
model (Newman, A.L. & Ott, 1981) with the inclusion of a wavelength dependent vis-
cosity term as a proxy for Landau damping to avoid growth of small scale waves. Their
simulation recovered wave turning effects. Shortly thereafter, Machida and Goertz (Machida,
S. & Goertz, 1988) used a particle in cell (PIC) approach to model fully kinetic Farley—
Buneman instabilities in a plane parallel to the magnetic field. Because of the geome-
try of the problem, the main source of nonlinearity for these irregularities was not in-
cluded (Oppenheim, M. et al., 1996). Janhunen (Janhunen, P., 1994) also tried a fully
kinetic PIC approach but modeled the instabilities in the direction perpendicular to B.
Although these simulations did not achieve wave growth saturation (cessation of wave
amplitude increase), some wave turning effects were seen.

The first numerical approaches were able to reproduce a number of experimental
features of Farley—Buneman instabilities was developed by Oppenheim (Oppenheim, M.
et al., 1996) using a hybrid (kinetic and fluid) model. Electrons were modeled as a fluid
using the continuity and the inertialess momentum equation while ions evolved in phase
space to preserve kinetic behavior. The kinetic evolution was performed using PIC in-
tegration, and the ion-neutral collisions were reproduced by a Monte Carlo approach.
Quasineutrality was imposed by forcing the total current density to be solenoidal. This
simulations were able to reproduce several experimental features: wave growth, secondary
instabilities perpendicular to the electron flow, wave turning, and phase speed satura-
tion close to the ion—acoustic speed. On time, Oppenheim extended this simulations first
to a fully kinetic PIC approach (Oppenheim, M. & Dimant, 2004), then to a large—scale
2D simulation region of more than 100m (Oppenheim, M. et al., 2008), and finally to
the full 3D case (Oppenheim, M. & Dimant, 2013).

Unfortunately, PIC simulations suffer from limitations that make them in some cases
prohibitively expensive for studying non—local phenomena, especially when the full phase—
space has to be considered. This is because PIC simulation noise decreases as 1/v/N,
where N is the number of particles in each simulation cell. The implication of this re-
striction is that the number of particles required to have a significant signal to noise ra-
tio will increase very rapidly with the size of the simulation box. Furthermore, the time
integration of a system with a very large number of particles often requires the use of
artificial particle masses and other nonphysical assumptions to decrease the computa-
tion time which complicates the final interpretation of the results.

In the past few years, several attempts have been made to simulate Farley-Buneman
instabilities avoiding PIC approaches in order to create frameworks more suitable for non—
local studies. Hassan (Hassan, E. et al., 2015) used a two—fluid simulation that included
an additional stress term to emulate Landau damping, solving the continuity and mo-
mentum equation for both electron and ions species. However, Hammet (Hammett, G.W.
& Perkins, 1990) has shown that a fluid Landau damping operator can be successfully
constructed if higher moments are considered. More recently, Dolgov (Dolgov, S.V. et
al., 2014) developed a hybrid fluid—electron kinetic—ion simulation and used a Tensor—
Train format to reduce the dimensionality of the kinetic solver. Even though the mem-
ory reduction was significant, it is not yet clear to what extent in which the assumptions
required for the Tensor-Train format affect the dynamics of the instabilities. Finally, Ko-
valev (Kovalev, D.V. et al., 2008) used also a hybrid fluid-kinetic approach, assuming
isothermal electrons. In subsequent years thermal electrons were included by solving the
full 5-moments electron equation (Kovalev, D.V. et al., 2009), but the final results seemed
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to suggest that the energy equation did not fully reproduced the temperature evolution.
This last approach employed a Semi-Lagrangian (SL) solver for the ions. The SL solver
has gained increasing popularity in the plasma simulation community due to its local-
ity, precision, simplicity, and the fact that it does not depend on the Courant—Friedrichs—
Lewy (CFL) condition (Groppi, M. et al., 2016). These features make the SL solver a
good candidate for studying the non—local behavior of Farley-Buneman instabilities.

In the present work, we implement a hybrid continuous solver for fluid electrons
and kinetic ions using the SL method for the kinetic solver. Because the simulation is
continuous, numerical noise is not an issue as it is in PIC approaches. Moreover, given
that the SL solver is based on interpolation along the characteristics of the kinetic equa-
tion, no particle pushes (time integrations) have to be done. Our main goals are to re-
duce the computational cost of the simulations proposed by Kovalev and reproduce the
main experimental features of Farley—Buneman instabilities obtained with radars and
rockets. Although we are not going to address non—local phenomena in this work, we think
that exploring these hybrid continuous strategies (even for small scale systems) is a nec-
essary step in that direction.

The plasma models used in this simulation will be presented in the second section
of the paper. The final form of the equations will be obtained from first principles us-
ing the approximations that are satisfied in the auroral E-region. In section three, the
choice of numerical algorithms used to solve the model equations will be justified. Also,
some benchmarks and tests will be presented in the appendix to assess the numerical ac-
curacy of the algorithms. In section four, several simulations runs will be presented along
with appropriate diagnostics. Section five will describe the main conclusions and future
work.

2 Hybrid Plasma Model: Theory

Although the linear theory of Farley-Buneman instabilities has a limited set of ver-
ifiable predictions, it still can be used to identify the dominant processes and inform the
choice of modeling equations for the hybrid solver. The linear, local dispersion relation
of these waves can be written as (Farley, D.T., 2009):

alk) = 1o 1)
¥ 2 22 Vin w(k)k
v(k) = m(“ (k) — k°C3) + Q. Lk2E - 2amn, (2)

where v(k) represents the growth rate for wave—number k, V; is the electron advection
speed, C; the ion acoustic speed, a the dissociative recombination rate, n. the electron
density, L the scale length of density gradients, and

VenVin Qg
V() =~ a0 <1+ 02) (3)

Here, Qe s, Ven,in are the gyrofrequencies and neutral collision frequencies of electrons and
ions, respectively. The angle 6 indicates the complement of the angle between wave vec-
tor k and the magnetic field B (6 = 0 corresponds to k perpendicular to B). kg is the
wave vector component in the direction of the background electric field.

Equation (2) has three terms corresponding to different contributions to wave growth.
The first term measures the net effect between the destabilizing ion inertia and the sta-
bilizing diffusion and is the one responsible for Farley-Buneman waves. The second and
third terms correspond to the destabilizing or stabilizing effect of density gradients and
the stabilizing effect of recombination, respectively. Moreover, the second term contributes
to significant wave growth when v, ~ ; for wavelengths on the order of tens of me-
ters (Fejer, B.G. et al., 1984). In the nonlinear regime, secondary waves are formed obliquely
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to the primary wave by this same mechanisms. PIC simulations suggest that the cou-
pling between these first and secondary waves is what cause the saturation of the wave
growth (Oppenheim, M. et al., 2008).

Another important feature of equation (2) is its dependence on 6. In the auroral
E region, the electrons are strongly magnetized (2 > v, ), which means that even small
values of 8 will give ¢ > 1, making 6 =~ 0 the preferred direction for wave growth. This
result is consistent with coherent scatter radar measurements, where echoes are observed
roughly speaking from within 2 degrees of the plane perpendicular to B (Sahr, J.D. &
Fejer, 1996). Nevertheless, it is important to mention that a significant number of ex-
periments have consistently detected plasma fluctuations at much larger aspect angles.
Several nonlinear mechanisms have been proposed to explain these large aspect angle
fluctuations. Furthermore, there is evidence that waves parallel to B may be responsi-
ble for heating observed in incoherent scatter measurements (Bahcivan, H. & Cosgrove,
2010). When neglecting the last two terms in equation (2), it is evident that the high-
est growth will coincide with the smallest wavelengths. Schimdt (Schmidt, M.J. & Gary,
1973) showed that this non—physical growth rate was a limitation of the fluid dispersion
relation and that including linear kinetic effects was enough to obtain realistic growth
rates. They observed that Landau damping prohibited high wave number growth. Al-
though both species experience Landau damping, electron damping is only effective at
short wavelengths. Nevertheless, ion damping suppresses the oscillations at these short
wavelengths. In other words, by resolving Landau damping with the ions, we make un-
necessary the use of a kinetic model for the electrons. This of course assumes that Lan-
dau damping is the only kinetic process with a significant role in the evolution of Farley—
Buneman instabilities.

Given that most of the dynamics occurs at small aspect angles, the model equa-
tions will be chosen to be two—dimensional, perpendicular to B. Also, in order to avoid
contributions from gradient drift and recombination, the simulation sizes will be limited
to less than 10 m. In summary, to prevent non—physical linear wave growth at small wave-
lengths, ions will be modeled kinetically.

2.1 Electric field model

Most ionospheric hybrid simulations enforce quasineutrality by constraining the to-
tal current density to satisfy V - J = 0. We will not assume quasineutrality. Instead,
to couple both species, we will solve Poisson’s equation:

vl~5E:*£(ne*ni) (4)
€0

As will become evident in section 3.1, the motivation for choosing to solve equation (4)

is computational efficiency rather than the need to resolve deviations from quasineutral-
ity.

2.2 Electron fluid model

Electrons will be modeled using an isothermal approximation of the simplified 5—
moment transport equations in two dimensions, where only the perpendicular flow will
be consider:

one
ot

+V, (ne'uJ_e) =0 (5)
V]elVenMeNe = _VJ_pe + ene(EJ_ +vie X B) + nemeG7 (6)
where e, pe, Mme, Ne, and v, . are the electron charge, pressure, mass, density, and fluid

velocity perpendicular to B, respectively. Also, E, is the total electric field perpendic-
ular to B and G the acceleration due to gravity. Equation (6) is written in the frame
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of reference of the neutral particles, in the plane perpendicular to B, and assuming in-
ertialess electrons. Following (Schunk, R. & Nagy, 2009), neglecting the gravity and the
diamagnetic drift, the electron velocity can be expressed explicitly as:

kT, 1 v e/(MeVen) n 1
Mevenpe 1+ 02702, P T 1022, T T BRI+ 022

Ve = — EL x B (7)
In this work, we assume that electrons are isothermal. Moreover, using the ideal gas ap-
proximation, V| p. = kT.V 1 n.. The electric field can be decomposed such that E, =
Ey+J0E, where Ej denotes the background electric field that account for the free en-

ergy source for the system and JF the electric field caused by density perturbations. Given
that the electrons are strongly magnetized, (1+Q2/v2 )71 ~ 12, /Q2. The convention
chosen for the coordinate system will be as follows: the magnetic field B || 2, and Ey ||

9. Applying these approximations and conventions to equation (7) yields:

Ven€

kT Vey, Ven€ 1
_— OF — 2E0+Vb+ﬁ§ExB, (8)

Ne me§)2 meS)

€

where V) = Ey x B/B2. In order to combine the momentum equation (8) with the
electron continuity equation, the expression for V, -(n.v ) has to be calculated. Af-

ter some algebra, equation (5) can be written in the form of a diffusion-advection-reaction
partial differential equation:

one

o +D.Vin,+A.-Vine+ Rene =0, (9)
where
T,
D, = -— 1
e ek B ( 0)
1 1
Aez == —EéEx + E(sEy + VO (11)
Ay = ——sB,—LtsE,— LB (12)
v = T xBY B " kB "
1
R, = —— 0E, 13
HBVJ_ (13)

and £ = Q./Vey denotes the magnetization of electrons. Equation (9) is a second or-
der linear partial differential equation. The reaction term R, is proportional to (n. —
n;) and so is expected to be small. Because of the isothermal assumption, the diffusion
term D, will be constant. The advection term A, will dominate equation (9). Further-
more, § E will increase due to the difference in mobility between electrons and ions in
the Z direction. Moreover, we can see how dF, contributes to the advection perpendic-
ular to the direction of the primary wave, setting the stage for secondary instabilities as
expected from radar experiments.

2.3 Ion kinetic model

In order to resolve ion Landau damping, ions will have to evolve following the ki-

netic equation. If f; = fi(x,v,t) is the ion distribution function in the phase—space,
then:
of; _ ,
T +vi - Vfi+a;-Vofi = J(fi) (14)

The acceleration a; will be completely determined by the electric field because ions are
not magnetized in the E-region. The operator V, represents the gradient in velocity co-
ordinates. The term on the right hand side corresponds to a general collision operator.
Following the rationale established at the beginning of this section, we want to build a
kinetic equation in the plane perpendicular to B. This can be achieved by neglecting 2
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direction in configuration space. Assuming that the ion distribution in the ¢, direction
will be independent to the other directions, f; = n; fvwﬂ,y ﬂm where the hat indicates
a multivariate normal distribution. After replacing [ f;dv. — f; and writing the ac-
celeration explicitly we get:

68? +UJ_i-VJ_fi+mii(E0+5E)'vvJ_fi = J(fi) (15)

On the right hand side of (15), J(f;) is a general form collision operator that depends
just on f;.

The plasma in these regions is considered weakly ionized, and collisions are pre-
dominantly with neutral particles. Furthermore, according to (Dimant, Y.S. & Oppen-
heim, 2004), the time scale for the evolution of Farley-Buneman irregularities is given
by 1/v;y,. This suggests that in order to reproduce a realistic time evolution, the kinetic
collision operator should be adequate. Because of its complexity, the full Boltzmann col-
lision operator will not be used in the present work. Instead, we will use the BGK (“Bhatnagar—
Gross—Krook”) operator to model ion—neutral collisions. This operator has the follow-
ing form:

J(fi) = —vin(fi = M[fi]) (16)

Here, M|[f;] represents a drifting Maxwellian distribution defined by the velocity mo-
ments of f;. It can be proven that this operator satisfies (Cercignani, C., 2012):

/akJ(fi)d?’v =0 (17)
/ log fiJ (fi)d < 0, (18)

where oy, represents the different velocity moments ax = (1, m;v;, m;v?/2). Equation
(17) shows that the BGK operator conserves the first three moments locally by construc-
tion. The expression (18) is the Boltzmann inequality for the BGK operator, and it ex-
presses the tendency of the plasma towards a Maxwellian distribution. Notice that the
collision frequency is taken to be velocity independent. This approximation is appropri-
ate for non—resonant ion—neutral collisions in the ionosphere (Schunk, R. & Nagy, 2009).

The final form of the ion kinetic equation is then:

of;
aJ; +v,-Vifi+ mii(EO +0E) -V fi = —vin(fi — M[fi]) (19)

It is worth noting that equation (19) is strongly nonlinear, even more than for the case
with the full Boltzmann collision operator. The main advantage of the chosen collision
operator is that it is much easier to compute numerically (by estimating the velocity mo-
ments at each point in phase—space and constructing the corresponding Maxwellian dis-
tribution M|f;]).

3 Hybrid Plasma Model: Numerics

In this section, the numerical algorithms to implement equations (4), (9), and (19)
will be presented. Before going into the details of the solver, additional comments will
be made about some numerically relevant physical features of Farley—Buneman insta-
bilities. First, given the relatively small amplitude of these irregularities (dn. = 0.1ny),
we will assume that no significant shocks are going to be present. Furthermore, it can
be argued that the quasi-linear structure of equation (9) does not indicate the presence
of shocks in the electron density. Given that the electrons are dominated by advection,
the characteristic curves will not intersect. The absence of shocks supports the use of
spectral methods. Secondly, as mentioned before, the simulation size will be taken to be
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on the order of 10 meters at maximum. Because no boundary effects are expected at these
dimensions, we will assume periodic boundary conditions.

It is often convenient to decompose equations like (9) and (19) using the technique
called operator splitting (Hundsdorfer, W. & Verwer, 2013). If an equation can be ex-
pressed as

ou

— = (51 + 52)u 20

5 = (014 52) (20)
then the analytical solution for a time At will be u(t+At) = e2H51+52)y(t). By con-
structing the corresponding series of the exponential operator, we can see that if the op-
erators Sy and S, commute, the solution can be written as u(t+At) = eAt51eAt52y(t),
which would be equivalent as solving the system

Ou
ou

and using the solution of (21) as the initial condition of (22) instead of solving the more
complicated (20) without any numerical error caused by the splitting. If the operators
do not commute, the global numerical error will be of the order of O(At). In this case,
the error can be diminished using Strang splitting (Strang, G., 1968) instead, in which
case the solution would be expressed as u(t+At) = e3 51865205 514(¢). Using Strang
splitting, the global error will be of the order of O(At?). Furthermore, this approach can
be extended for an arbitrary number of operators, such that if
ou

E:(Sl—f—...—l—Sn)u (23)

then,
u(t+ At) = 351 | e Sno1eASn S S | o5 S1y() (24)

keeping the global error at O(At?). This means that equation (23) can be solved with
second order precision in time by solving for each operator S; and using as the initial
condition the solution of the equation corresponding to the operator S;_;. Higher or-
der splitting methods have been developed, but they are significantly more expensive to
implement. We will use this second order splitting because it provides a good balance
between complexity and precision (Glowinski, R. et al., 2017).

3.1 Electric field solver

As mentioned at the beginning of this section, given that shocks are not expected
and periodic boundary conditions are imposed, a spectral collocation method for the elec-
tric field solver is justified. Writing (4) in terms of the electric potential ¢ and dn and
taking the Fourier transform at both sides:

Vi = —on— —|k[2¢ = —on (25)
o o
- eon
where 0E = —ik¢ and the tilde indicates the Fourier transformed function. The elec-

tric field can be recovered by applying the inverse Fourier transform to (26). The peri-
odic bounds cause each wave component to be zero when integrated over the whole do-
main. The exception is the component corresponding to the zero wave—number which
will be a constant. Consequently, to enforce periodic bounds, we will make (5(07 0)=0

in equation (25). The full calculation of the perturbed electric field can be described with
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the algorithm EFIELDSOLVE described in Figure 1. Notice that 7, and F~! denote the
Fourier transform and its inverse, respectively. However, given that this procedure does
not include de—aliasing, the solver precision will be affected when higher wavenumbers
components start increasing.

Algorithm Electric Field Solver

procedure EFIELDSOLVE(n,, n;)

1:

2: Ok, ky) = *SO‘%P}—{T@ —n;}

3 $(0,0)=0 )

4: 0E = F~Y{—ik¢} > Keeping just real part
5 return 0F

Figure 1. Numerical algorithm for the solution of Poisson equation.

3.2 Electron fluid solver

There are two fundamental reasons to split equation (9). First, we see that the dif-
fusion term has a constant diffusion coefficient which means that it can be solved effi-
ciently with a Fourier spectral collocation method (Hesthaven, J.S., 2017), and the re-
action term is simple enough to be solved analytically. Secondly, by isolating the advec-
tion term, we can use a characteristic-based method. Even though it is possible to ex-
tend the diffusion equation to include the reaction term as a heat source in order to have
just one splitting, this will not be a significant advantage because the algorithm would
still be of second order. Moreover, the computational cost of adding an extra step for
the reaction term is minimal as will be shown.

We can rewrite the electron evolution equation as

One
ot

where Sp, Sa,and Sy correspond to the diffusion, advection, and reaction operators, re-
spectively. In order to define the decomposition of equation (9), we first have to verify
whether the operators commute. As proven by (Lanser, D. & Verwer, 1999), [Sp, Sa] =

0 when D, and A, are position independent, [Sa, Sg] = 0 when V- A, =0 and R, is
position independent, and [Sp, Sr] = 0 when R, is linear in n. and position indepen-

dent. As we can see from the definitions of D., A., and R., none of the commutation
conditions are satisfied. Consequently, the time evolution of equation (9) in terms of Strang
splitting will be:

= (SD + Sa + SR)ne (27)

ne(z,y,t + At) = e%SDe%sReAtSAe%sRe%SDne(x, Y, t) (28)

An intuitive way to understand equations (9) and (28) is the following: the electron den-
sity wave modes are damped at a rate D., the density perturbations are amplified by
the charge separation, and constant parcels of density are transported along A..

The diffusion step
one
ot
can be solved with a spectral collocation method using the Fourier basis, as indicated
before. Taking the spatial Fourier transform at both sides of (29) gives
Ofe
ot

= Spn, = —D.V?n, (29)

= iD.|k|*7, (30)
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where 7. (k, t) is the spatial Fourier transform of the electron density. Integrating (30)
over a time step At and applying the inverse Fourier transform to go back to physical
space will results in the solution of (29).We can write the full solution of the diffusion
step as

ne(t+ At) = FHe P A F L (1)} (31)

Because there is no interaction between modes, and we are using periodic boundary con-
ditions, no further corrections need to be made to this approximation. Furthermore, the
precision and speed of this estimate will be determined by the precision and speed of the
fast Fourier transform function used. The reaction step

one
ot

can be solved by directly integrating over a time step At because although R, depends
on the time evolution of the electric field, at each split term, the electric field can be con-
sidered constant in time. Therefor, the reaction step can be written as

ne(t + At) = e~ BeBlp (1) (33)

= SRNe = —Rene (32)

Even though —R, > 0, because is very small, the amplification caused by this term is
almost negligible even if there is a significant charge separation. Finally, the advection
step

one
ot

can be solved using the method of characteristics (Hesthaven, J.S., 2017). Therefor, if
(z*,y*) is a point in the characteristics of (34) corresponding to a time step backwards
in time, then the density can be expressed as n.(z,y,t) = n.(z*,y*,t — At). Defining
sy =x —x* and s, =y — y*, we can use the recursion proposed be (Robert, 1981) to
estimate (x*,y*):

= San. = A, -Vn, (34)

s = AtA (r — sP AL) (35)

Notice that this is only necessary because the advection field is position dependent. Once
s is calculated for each grid point, we can integrate (34) a time At:

Ne(x,y,t + At) = ne(x — sz (2,y),y — sy(2,y), 1) (36)

Clearly, the points (z—s,(z,y),y—sy(z,y)) will not in general be defined on the grid
points, but the values of n. on these coordinates can be estimated with interpolation meth-
ods. This approach is called semi—Lagrangian because it solves the equation along the
characteristics but in an eulerian reference frame. We use a cubic spline interpolation
because it has been shown to perform better than high order polynomial interpolation

and it preserves the continuity of the first and second derivatives by construction. If g

is a one dimensional function and sj3 is its cubic spline representation, it can be shown
(Quarteroni, A. & Valli, 2008) that

5
lg — s3] < @h‘l Inax{g(4)} (37)

, where ¢(* denotes the fourth derivative of g and h the width of the domain’s partition,
which implies that the spline error is O(h?*). In Figure 2 we see explicitly the numeri-
cal algorithm proposed to solve (9). It is important to notice that R, and A, are cal-
culated with the density values at each split step. As we will see in section 3.4, the elec-
tron solver runs several iterations before the ion step. By recognizing that [Sp, Sp] =

0 and using equation (28), we can group together adjacent diffusion steps from consec-
utive iterations. For instance, with just two electron evolution steps:

Atg At Atg. Atg. Atg At Atg. At
ne(z,y,t +2At) = €72 ez SreAtoa T TG ST 0T IR AN T SR TS0y (1, y, 1)

At At At At At At
ez SD€ > SReAtSAe > SReAtSDe > SReAtSAe > Sne > SDne(x,y,t) (38)
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Figure 2. Numerical algorithm for the evolution of electrons a time r:At..

The inner loop starting at line 3 makes the electron evolve a number r; of times. If At,
and At; are the electron and ion time steps, respectively, then r; = At;/At.. The con-
ditional of line 13 activates only at the last iteration, which corresponds to the last dif-
fusion half step as seen in equation (38). Following (Robert, 1981) approach, the recur-
sion of line 9 iterates three times. The fluid model was split to avoid nonlinearities, so
each fractional step is approximately linear and periodic. Although the splitting is sec-
ond order, because the electric field is not being calculated at fractional time steps but
is assumed constant, the fluid time step will be affected. As the electric deviates from
constant, the second order accuracy will move to first order.

3.3 Ion kinetic solver

The kinetic equation (19) has the form of a advection-reaction equation in a 5D
phase-space. We will solve (19) using the semi-Lagrangian approach as described by (Cheng,
C. & Knorr, 1976) and (Filbet, F. et al., 2001). There is a vast literature on semi—Lagrangian
methods for the electrostatic and the electromagnetic Vlasov equation. Various numer-
ical experiments have shown that semi—Lagrangian methods outperform spectral, finite
diference, and finite volume methods in reproducing streaming instabilities and Landau
damping (Sonnendriicker, E. et al., 1999). Furthermore, these tests suggested that the
results obtained with spline interpolation are comparable to ninth—order polyniomial in-
terpolation. However, general spline interpolation does not have any positivity constraints
which are needed for the distribution function. Moreover, spurious diffusive oscillations
are known to occur under polynomial interpolation. Some strategies to overcome these
difficulties have been proposed, for instance, WENO (“Weighted essentially non—oscillatory”)
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interpolation methods (Qiu, J. & Christlieb, 2010). These new strategies are subjects
of future work.

Following the approach of the previous section, we can express the ion evolution
equation as:

afi
ot

where Sa, and Sa, correspond to the advection in the (z,y) plane and the (v;,v,) plane,
respectively. Operator Spgk represents the reaction term corresponding to the BGK op-
erator. Note that the splitting in this case is different from the electron case. For instance,
the advection term is split by dimension and not by operator type. Furthermore, the BGK
operator is significantly more complex than the electron reaction term because it con-
tains several integrals over velocity space for the calculation of moments. This makes equa-
tion (39) very nonlinear but significantly easier to solve numerically than the full Boltz-
mann equation. As for the electron case, in order to determine the appropriate opera-

tor decomposition, the commuting properties of the operators in equation (39) have to

be evaluated. The commutators to calculate are [Sa,,Sa,], [Sa,, SBck], and [Spak, Sa.,]-
The two advection operators do not commute because of the electric field dependence

on position, and the BGK operator term does not commute with any of the advection
terms because it also depends on position. Therefor, Strang splitting is required to pre-
serve the second order precision in time:

= (Sa, + Sa, + Seck) fi, (39)

fi(xv Y, Vg, Uy, t+ At) = €%SBGK€%SAT eﬁtSAve%SAre%SBGKfi(x’ Y, Vg, Uy, t) (40)

This splitting, without taking into account the collision term, was proposed first by (Cheng,
C. & Knorr, 1976). An intuitive way to understand equations (19) and (40) is as follows:
the BGK operator changes the local distribution to a Maxwellian at a rate v;,, constant
parcels of f; are transported along lines of constant velocity and constant acceleration.

The collision step
ofi
ot

can be solved analytically, because the maxwellian M|f;] is determined by the ion mo-
ments (n;, w;, T;) at each instant of time for each point in phase space. All the moments
can be obtained from the following relations:

T
e ENT = Jwil? B,
(nl)nlu’mEl) - 13’”17 2 fzd UZ

nu?  nkT;

= Spakfi = —vin(fi — M[fi]) (41)

E; , 42
where E; is the ion kinetic energy per unit mass, and the | symbol has been dropped
from the ion velocity. After defining the corresponding maxwellian, equation (41) can
be integrated a time At (Liboff, R.L., 2003):

filrivi t + At) = fi(rg,v5,t)e A + M{f;(ri, v;,8)](1 — e A1) (43)
The advection steps in the (z,y) and (vg, v,) planes:
Ofi
8]; = Sa.fi=-v-Vf; (44)
8]"} e
= Sa,fi=—(Eg+d6E)-V,f; 45
D A S mi( 0+ 0E) f (45)

can be solved using the semi-Lagrangian method presented before. In this case, we see
that the interpolations can used in the (z,y) and (v, v,) planes assuming that the ve-
locity and position are constant, respectively for each fractional step. Equations (44) and
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(45) can then be integrated a time At by:

fi(ri,vi, t+ At) = fi(ri — v;At, v;,t) (46)
fi(ri,vi, t+ At) = fi(rivvi_%(EO‘F(SE)Atat)v (47)

respectively. Notice that in (46), the shifting of the grid will not change as the system
evolves because v; are the grid values in the v, v, plane and will be defined when the
system is initialized. On the other hand, to interpolate (47),  E will have to be calcu-
lated at each new time iteration, which involves the calculation of the zeroth moment.
Equations (46) and (47) are by far the most computationally demanding of this simu-
lation. For instance, if the velocity grid has a size of N, x N,, and the position grid a
size of N, x N,, equation (46) will involve N2 interpolations on a N2 grid and equa-
tion (47) N2 interpolations on a N2 grid. This step is analogous to the particle push in
PIC simulations.

Algorithm Ion Kinetic Solver

1: procedure IONSOLVE(n., f;, At;)

2: (nh n;u;, El) — le‘;:ax (1, v, |‘u£|2> flAU?

5T e B )

4 Map M[f;] with (n;, u;,T;)

5 fz — fie—umAt/Q +]w[fi](1 _ e—ymAt/Q)

6: for (v, ,vy,) where (o, 8) € [1,N,] x [1,N,] do
7 (x*,y*)e(x—vzaAti/Q,y—vyaAti/Q)

8: filz,y) < fi(@*,y")

9: ng = Y0 fi Av?

10:  6E + EFIELDSOLVE(n.,n;)

11: for (z,ys) where (o, 8) € [1,N;] x [1, N;] do
12: (vy,vy) = (vz — miidEzAti,vy - %(EO +0E,)At;)
13: fi(vz»vy) <_f1(ULUZ)

14: for (v, ,vy,) where (o, 8) € [1,N,] x [1,N,] do
15: (@, y") = (. — va, Al /2,y — vy, At /2)

6 filey) ) 2

17: (ni,njug, E;) < Zi";‘;’;x (1,1)1-, %) filv?

18: TZF%(Q*PU@P)

19 Map M[fi] with (ni,u;, T)
20: fq — fiefu,,,LAt/Z +M[fz](1 _ e*l/“bAt/Q)
21: return f;

Figure 3. Numerical algorithm for the evolution of ions a time At;

Figure 3 shows the numerical algorithm for the evolution of ions. Lines 2-5 and 17-
20 correspond to the collision steps, the rest are for the advection in configuration and
velocity space. Note that in line 10 the perturbed electric field has to be recalculated with
the updated values of f;. In contrast to the electron case, here the characteristic curves
can be taken as constant on each fractional step, which obviates the need to use the re-
cursion (35).

3.4 Building the hybrid solver and diagnostics

Now that each solver has been described, we can construct the final form of the hy-
brid solver. Given that charge mobility is inversely proportional to the mass, we see that
for the E region context, electron mobility is much higher than ion mobility. This dif-
ference in mobility allows the solver to have At; > At.. Consequently, r; can have rel-
atively high values. We can construct the hybrid solver using the previously described
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algorithms as shown in Figure (4). The present method differs from the one used in (Kovalev,

D.V. et al., 2008) in two fundamental ways. First, they used an alternate-direction im-
plicit method for the fluid electrons, and second, they solved the kinetic system by a mod-
ified semi-Lagrangian interpolation that includes the collision term. The electron den-

Algorithm Hybrid Solver

1: Pink noise dn

2: Ne,n; < no(1+ on)

3: f; initialized as Maxwellian

4: for i = 1: Nyeps do

5: Ne  ELECTRONSOLVE (N, ni, Ate, 7t)
6

7

8

9

fi + IONSOLVE(ne, fi, At;)

if (¢ mod Ngample) = 0 then > Perform diagnosis
Collect Erms, < 6n% >
Collect 7. (k,w)

0: Write to file

=

Figure 4. Numerical algorithm for the Hybrid Solver proposed in this work to study Farley—

Buneman instabilities.

sity was initialized by simulating a pink noise distributed perturbation (én) of the back-
ground plasma density (ng), such that n.(z,y,t = 0) = no(1 + dn) (Figure 5). The
amplitude of the perturbation was chosen to be on the order of 0.1% of the background
density. The ion distribution function was initialized by using the same charge distri-
bution of the electrons (n;(z,y,t = 0) = n.(z,y,t = 0)) and a Maxwellian velocity
distribution centered at the origin (Figure 5). The chosen coordinate system is illustrated
in Figure 5, with earth’s magnetic field B in the direction perpendicular to the plane,
the background electric field Ey || § and Vy || Eo x B || . Given that two consecutive
electron At/2 time steps commute, using a second order splitting to evolve both species
will be equivalent to do consecutive At steps as long as the first step is At/2. These ap-
proximations will be tested in future work through scaling studies.

0.080 0.96
0.060
0.80
0.040
0.020 _ 0.64
~
0.000 §
& 0.48
-0.020 =~
-0.040 0.32
-0.060
0.16
-0.080
-0.100 0.00
-1.0 -05 0.0 0.5 1.0
z (m) v, (km/s)

Figure 5. Left: Initial dn/no distribution generated with attenuated noise (o< 1/|k|'/?). Right:
Integrated initial ion distribution function over all configuration space and selecting a sub inter-

val of the full velocity domain.

As we can see in Figure 4, the diagnostic block will retrieve from the solver sev-
eral important variables every Ngiops iterations. These time series will be constructed
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in the same way as has been presented in most of the literature. The root mean square

(rms) electric field Fryg estimate will be calculated from just the perturbed electric field,

in other words, using J E without considering Ej. For measuring the nonlinear wave growth,
we will calculate the standard deviation of the perturbed component of the density én =
ne/no—1. The other component of the diagnostic section is the spectral analysis of the
density perturbations, which will focus on the monitoring of the relative power and the

phase speed of different wave k-modes. By calculating the spatial Fourier transform 7. (k,t) =
F{ne(r,t)}, we can visualize how the wave modes are distributed by plotting the nor-
malized power spectral density.

It is worth noting that Ng.ps has to be large enough to sample at times that are
on the order of magnitude of the period of the density irregularities.

4 Simulation Runs and Discussion

In this section, we will use the numerical algorithms designed in section 3 to solve
equations (9), (19), and (4). These equations capture the relevant physics of Farley-Buneman
instabilities. The coeflicients for this system of equations will be calculated using the pa-
rameters from Table (1). The simulation will be initialized as described in section 3.4.

The background electric field Ey is well above the threshold for instability (=~ 20 mV/m),
according linear theory. Notice that the coarse discretization of the velocity space will
affect how well Landau damping is resolved. The impact of the velocity resolution on
the simulation results will be a topic of future work. All the tests presented in this work
were done on a laptop (Intel core i5 and 4GB of RAM) and took between 2 a 4 hours

to run.

Table 1. Simulation parameters

Name ‘ Symbol ‘ Value
Background Electric field Ey 50 mV/m
Background Magnetic field By 5x 107°T
Ton—neutral collision frequency Vin 2.5 x 103Hz
Electron and Ion temperatures T. =1T; 300K
Plasma density Ny 1019m—3
Ion time step At; 5 x 10705
Number of grid points in each dimension N, N, 256,32
Lateral size of simulation box L 3m
Ton Velocity range [—6vtp, 6vgp] | [—1.75,1.75]km/s
Ratio At;/At, T 10

Figure (6) illustrates the early stages of wave growth. Each row corresponds to a
different time iteration. The first column shows the perturbed electron density dn, =
ne/nop—1. The second column shows the root mean square values of 6 E and of dn, rel-
ative to the background ngy. These two metrics are widely used in the literature because
they capture important signatures of nonlinear dynamics. The dashed black line indi-
cates the value of the background electric field. In the third column, we show the nor-
malized power spectra |R.(kg, ky)| for the corresponding density distribution which pro-
vide information about the dominant wave modes.

The first row of Figure (6) represents the system a few iterations after initializa-
tion. We see that |dn.| < 0.01 and is not yet resolvable with the scale used. This also
can be seen in the adjacent plot, where the perturbations in the electric field are still very
small. Likewise, the power spectra shows a broad energy distribution across many wave
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modes which are the remnants of the white noise used for initialization. Its vertical and
horizontal axis correspond to the the A, and A, waves modes. In the second, row we show
the system after 7,000 ion time steps. The density perturbations are now dn., < 0.05

and show a well defined wave-like structure. As expected from linear theory, we see that
the root mean square of dn. follows an exponential increase. The power spectra is now
concentrated in a few oblique modes and shows a clear deviation from the Ey x By ||

x direction. Moreover, large wavelength modes perpendicular to Egx By started to form
around the origin which corresponds to the perpendicular secondary waves driven by the
y component of §E.
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Figure 6. Evolution of dn. and §E. Right: Density perturbations. Middle: Root mean square
of time series of dn. and E. Left: Normalized |fi(ks, ky)|. Top: 300 ion time steps. Bottom:
7000 ion time steps.

Figure (7) represents the system close to and after the amplitude saturates. In the
first row, we see the system after 8500 ion time steps. The density irregularities are clearly
propagating at an angle different to the = direction, and their amplitude is on, < 0.1.
Furthermore, we can clearly see irregularities forming in the vertical direction. The am-
plitude of the density irregularities is still increasing exponentially. The root mean square
electric field has increased to be much larger than Ey, which contradicts the results from
PIC simulations and rocket in—situ measurements. These runs were stopped when E,.,,, ~
10Ey. The power spectra show that the wave modes surrounding the origin in the pre-
vious plot have now coupled together with the primary waves. Furthermore, we see that
the wave modes have clustered between the axis, which suggest a tilt in the main modes
of wave propagation with respect to the £ x B direction. This wave turning effect is
consistent with previous PIC simulations and radar experiments. The system presented
in the second row has evolved for 9,700 ion time steps. The rms peak of dn. indicates
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533 saturation which means that the system is now dominated by the strongly nonlinear § E.
534 Both the power spectra and the density plots show that formation of small scale wave
535 modes after saturation.
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536 Figure 7. Evolution of dn. and §E. Top: 8500 ion time steps. Bottom: 9700 ion time steps.

537 A second run was made using almost the same simulation parameters from Table
538 (1), using new values for At; = 2 x 1075s, Eg = 80mV/m, and 7; = 20. The rest of

539 features of this second run are the same as the first one.

540 Figures (8) and (9) correspond to the second run, and show the density perturba-
541 tions at three different times and the temporal evolution of § Erys and the root mean

542 square of the irregularities, respectively. Notice that each density plot is label with a let-
543 ter that is located at its corresponding location in the time series of Figure (9).

544 The first density plot (A) was taken after 1400 ion time steps when the exponen-
545 tial wave growth is occurring. Because the background electric field used for this run is
546 larger than the one used in the previous run but the threshold for instability is the same,
547 wave growth starts sooner. The second density plot (B) was taken after 1800 ion time
548 steps, just before the system saturates. After saturation, we see that the irregularities

549 fluctuate around 0.7n, consistent with rocket measurements (Sahr, J.D. & Fejer, 1996).
550 In this run, we see that the electric field saturates at values much closer to Eg, a behav-

551 ior better aligned with the experimental evidence (Sahr, J.D. & Fejer, 1996; Bahcivan,
552 H. et al., 2006). The last plot (C) illustrates the density irregularities after 3600 ion steps.

553 Although the temporal evolution of the irregularities is more stable in this run, we see
554 that small scale structures emerged after saturation that were not present in the previ-
555 ous run. These small scale structures are not present in PIC simulations of Farley-Buneman

556 instabilities (Oppenheim, M. et al., 1996, 2008).
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Figure 8. Evolution of dn.. A: 1400 ion time steps. B: 1800 ion time steps. C: 3600 ion time
steps

In both runs, we found that the system started deviating from number density con-
servation as it approached saturation. At the exponential growth phase, the difference
between the total number density and the total number density at initialization was ap-
proximately 10~7ng. Close to saturation, this number increased to approximately 10™°ng.
This ratio keeps increasing after saturation until the simulation becomes unstable. This
is an expected behavior because our numerical approach was not built to be conserva-
tive. The lack of number density conservation may be related to numerical artifacts that
create charge imbalances, producing electric fields that could be related to the small scale
structures we see after saturation. Furthermore, we see that in both cases, § E increased
past Ey, which is not supported by the experimental data.

5 Conclusions and Future Work

Since their discovery more than fifty years ago, we have answered numerous ques-
tions about the dynamics of Farley-Buneman instabilities. Linear theory, although lim-
ited, has produced some important verified predictions. Particle in cell simulations were
able to reproduce some of the essential nonlinear local phenomena seen with rockets and
radars. Using these tools together, empirical models have been constructed to improve
our understanding of the Doppler signatures of these instabilities. Nevertheless, current
models are unable to simulate large systems that are needed to explore non-local phe-
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Figure 9. Evolution of dn. and JF for 10000 ion time steps.

nomena. Understanding this large—scale processes are fundamental to answer some of
the remaining open questions, for instance, how does density gradients affect these pro-
cesses? What are the dominant wavelengths involved in Farley—Buneman turbulence?
What are their Doppler signatures at off-perpendicular angles? What is the physics in-
volved in the wave—heating processes?

In order to address these questions systematically, we need approaches that go be-
yond the limitations of current models and experimental techniques. Large scale spec-
tral features, as well as the local plasma state parameters, have to be coupled by phys-
ical models. This will only be achieved with more scalable modeling and new ways to
assess our empirical models.

Ton kinetic effects are needed to avoid numerical artifacts in the simulation of Farley—
Buneman instabilities. However, because we are interested in non-local behavior, the
high dimensionality of the kinetic equations becomes a big hurdle. Although PIC meth-
ods have been used to model kinetic behavior with great success, some of its limitations
make them unsuitable for large—scale problems. For instance, due to numerical noise, is
extremely difficult to resolve structures close to the amplitude of statistical noise and
high energetic populations. Moreover, ionospheric plasmas require expensive Monte Carlo—
simulated collisions. These limitations makes the PIC approach prohibitively expensive
for non—local investigations. The goal of the present work is to build and test a small
continuous hybrid simulation of Farley—Buneman instabilities to overcome some of these
shortcomings.

We used a fluid isothermal model for the magnetized electrons, an electrostatic ap-
proximation for the fields, and a BGK kinetic equation for unmagnetized ions. The fluid
solver was implemented by solving the corresponding diffusion-advection-reaction equa-
tion. The diffusion and reaction parts could be solved with direct integration and a Fourier
spectral solver, respectively. Because of the high speed electron flows, the advective part
required a characteristic based method, and for this work we used the semi-Lagrangian
approach. The ion equations were split into a configuration and velocity space terms.

Each of the kinetic terms were also solved using the semi-Lagrangian formalism.

Using this hybrid continuous method, we were able to resolve some of the most im-
portant features of Farley—Buneman instabilities: wave modes growing from white noise,
exponential wave growth, wave turning due to thermal effects, saturation of the electric
field and the density irregularities, and the primary/secondary wave dynamics. Further-
more, the simulated electric fields and density irregularities were roughly consistent with
the experimental measurements from radars and rockets.
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Our results are just the first steps in the direction to solve the problems related to
non-local Farley-Buneman instabilities in the auroral region. Nevertheless, the tools de-
veloped here have potential for future developments. Before extending the proposed method,
further analysis is needed to assess and rectify the overestimation of the perturbation
electric field. Then, we need to implement thermal equations for the fluid electrons which
are specially needed in the auroral region where heating can have a significant effect. Also,
conservative forms of the semi-Lagrangian approach can be tested along with less os-
cillatory forms of interpolation. Moreover, a de—aliasing technique is required to resolve
small scale structures and intermediate solutions of the electrostatic potential within each
fractional step will preserve the second order accuracy of the time splitting. A more am-
bitious improvement would be to implement a tensor train methodology to express the
phase space as tensor multiplications, reducing the effective dimensionality of the prob-
lem.

A Numerical Tests

In order to assess the numerical algorithms proposed, some tests will be presented.
We will assume that the electron reaction and the diffusion steps will not require addi-
tional analysis because they are based in a direct computation and a Fourier transform,
respectively. In the following numerical tests, unless explicitly mentioned, we will use the
physical parameters described in Table A.1 that are representative of conditions in the
auroral E-region.

Table A.1. Numerical tests: Physical parameters

Name ‘ Symbol ‘ Value
Background Electric field Ey 50 mV/m
Background Magnetic field By 5x 107°T
Ton—neutral collision frequency Vin 2.5 x 10°Hz
Electron and Ion temperatures | T, = T; 300K
Plasma density No 1019m=3

Furthermore, we will define a set of simulation parameters for the baseline case.
These parameters are shown in Table A.2.

Table A.2. Numerical tests: Baseline simulation parameters

Name ‘ Symbol ‘ Value
Time step dty 2.5 x 107 7s
Number of grid points in each dimension Ny 128
Lateral size of simulation box Ly 3m

A.1 Testing ElectronSolve

The tests for the electron solver will assess the expected precision of the operator
splitting approach and the advection step. Because both the physical and simulation pa-
rameters give a CFL number greater than one and periodic boundary conditions are as-
sumed, the grid had to be extended to interpolate values outside the grid in every iter-
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ation. For these tests, we will ignore ion dynamics. Therefore, contributions from § E
will be neglected.

For the first test, we will solve 9 with constant coefficients, ignoring ion coupling.
An analytical solution can be obtained by assuming a plane wave solution of the form
n = nge(Be=Delkul))t co5( A, -kt — 7), where ky, is an arbitrary wave vector, and the
terms A, D, and R, can be calculated using just the linear terms of equations (9) and
the values of Table A.1. With this approach, we can explore how relevant is each term
in the system and whether the numerical error bound (37) holds.

The advective CFL number is given by:

At NAt
CFL:maX(Am,Ay)E :max(Aw,Ay)T, (A.1)
where A, ,, L, At, and N are the velocity components, length of grid, time step, and
number of grid cells, respectively. For our purposes, A, , is determined by the physical
parameters of Table A.1. Consequently, to investigate the relation between simulation

parameters, CFL number, and numerical precision we will focus on L, At, and N.

We compared the numerical solver for different simulation parameters, keeping the
CFL number equal to the baseline CFL;. Next, we modify each baseline simulation pa-
rameter so CFL = 2CFL; and compared the errors.

Figure (A.1) shows the results of the first set of tests. The colored texts indicate
the simulation parameters in terms of the baseline parameters. Both error bounds in the
top plot where calculated using equation (37). The quantity dngrys corresponds to the
root mean square of the difference between the estimated and the theoretical densities.
The black dots and the black line represent the errors obtained with the baseline param-
eters in the top and bottom plots, respectively.

The two curves of the top plot from Figure (A.1) correspond to runs with the same
CFL number (CFL, = 3.75). We see that both errors are well bounded by the theo-
retical error bounds. Because the error bound for cubic splines is inversely proportional
to the number of grid points, smaller errors were obtained when N = 2N,. These er-
ror estimates are not significantly affected by the diffusion and reaction term, were the
latter is several order of magnitude smaller than the former. As splitting theory shows,
the error due to time splitting is negligible because the operators commute when their
coefficients are constant. Furthermore, we see that the case when the time step and the
length are doubled match almost exactly with the baseline case.

In the bottom plot from Figure (A.1) we compare the baseline case (black lines)
against runs having twice the CFL number. Notice how the case were the CFL number
is doubled by halving the box length shows the same errors as the case where the CFL
number is doubled by doubling the time step. Doubling the number of grid points (blue
line) reduces the error even if the CFL number is doubled.

The second test assess the precision of the semi-Lagrangian solver when the ad-
vection velocity is position—dependent. A 1D equation with a x dependent advection ve-
locity will be used. The equation and its analytical solution are:

on 4 A(l + fsin(kz))% = 0 (A.2)

ot
n <A 1 — f?t — 2arctan <f+mn(ka:/2)>> , (A.3)

n(z,t)

V1—f2
where A, f, and k were chosen to have magnitudes representative of auroral environments.

The magnitude of the advection was taken to be A = Fy/By, where the sinusoidal term
emulates the perturbations caused by JFE with f to modulate its amplitude. Notice that
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Figure A.l. Assessing precision of electron solver with constant coefficients (Top:) with the
same CFL=CFL; number and (Bottom:) between CFL; and 2CFL; cases.

the solution (A.3) reduces to the constant advection case when f = 0. We compare the
theoretical solution with two different numerical implementations of the semi-Lagrangian
step: one estimating the bottom of the characteristics with the second order method out-
lined in section 4.3.2, and other that assumes the characteristics are position indepen-
dent.

Each row of Figure (A.2) correspond to runs with different values of f. In the first
column, we can see the initial density plotted in red and the distribution evaluated at
subsequent times plotted in blue. In the second column, we show the errors associated
with the first order (blue) and the second order (green) semi-Lagrangian steps for the
iteration 5000. Finally, the last column shows the root mean square error of both im-
plementations for 10,000 iterations.

We can see that even when f = 0.1, the second order method gains two orders
of magnitude of precision. Furthermore, the precision of these estimates can be signif-
icantly improved by increasing the number of grid points or taking smaller time steps.

—292—



691

692

693

694

704

705

706

707

708

709

710

712

713

714

logg dnrats
oL
4 2 o
> & = &

2000 4000 6000 8000 10000
Tteration

logg dnrms
Lo
L
& 5 &

2000 4000 6000 8000 10000
Tteration

logg dnrus
! | | | |
g R ow
S &L 5 & =

2000 4000 6000 8000 10000

T x Tteration

Figure A.2. Assessing precision of electron solver for 1D position—-dependent advection. First,
second and third column correspond to the solution at different times, errors at iteration 5000,
and root mean square of the errors for 10000 iterations, respectively. Top: f = 0.1. Middle:
f =0.75. Bottom: f =0.9.

A.2 Testing IonSolve

In order to assess the kinetic ion solver, we will use two different tests. First, we
will solve the 2Dx2V Vlasov equation for constant acceleration a, for which the solu-
tion can be obtained analytically:

v2 + 02
f(r,v,0) = g(r,v)=sin(2rk;x) cos(2mk,y) exp (—(I;—y)> (A4)

g—{+v~Vf+a-va =0 (A.5)

2
f(teo)(r,'v,t) = g <r — a% —vt, v — at> (A.6)

Equation (A.4) represents the initial distribution function in terms of g, equation
(A.5) is the Vlasov equation with constant acceleration, and expression (A.6) is the an-
alytical solution of (A.5). The velocity range was chosen to be [—6uvy, 6vsp], the accel-
eration magnitude |a| ~ eFy/m;, and the time step dt = 10~%. This scenario emu-
lates the evolution of the unmagnetized ion distribution function in the auroral region
if electron coupling is neglected. We used a large time step to decrease the computational
cost of the analysis.
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Figure A.3. Errors between theoretical and numerical solutions for constant advection in the

4D phase space and for different grid sizes.

Figure (A.3) shows the root mean square error between the theoretical and numer-
ical estimates for different configuration and velocity grid discretizations. Notice that
the errors are only slightly decreased when N, = 64. Although the numerical precision
will increase with smaller time steps, the computational cost of increasing the number
of time steps of the kinetic solver is considerable.

For the second test, we will assess the behavior of the BGK operator qualitatively.
We applied the kinetic solver to a 1D x1D collisional two—stream instability. The sys-
tem was initialized with two counter—streaming electrons with Maxwellian distributions
in a background of constant opposite charges and a small sinusoidal density perturba-
tion. The electric field was calculated using a 1D Poisson spectral solver.

Figure A.4. 1Dx1D two-stream instability simulation using the BGK-Semilagrangian
scheme. Left: v =0. Middle: v = 0.1 Right: v =0.2.

Figure (A.4) shows the normalized distribution functions for different collision fre-
quencies at the same iteration step. We can see that increasing the collision frequency
thermalizes the system, raising the population of particles with zero velocity and damp-
ing the instability.

Acknowledgments

This work was supported by awards AGS-1342895 and AGS-1818216 from the National
Science Foundation to Cornell University. Data were not used, nor created for this re-
search.

—24—



737

738

739

740

742

743

744

745

746

747

748

750

751

752

753

754

755

756

757

758

760

761

763

764

765

766

767

768

770

771

773

774

775

776

77

778

779

780

781

783

784

785

786

787

788

789

790

References

Bahcivan, H. (2007). Plasma wave heating during extreme electric fields in the high-
latitude E region. Geophysical Research Letters, 34(15).

Bahcivan, H., & Cosgrove, R. (2010). On the generation of large wave parallel elec-
tric fields responsible for electron heating in the high-latitude E region.  Jour-
nal of Geophysical Research: Space Physics, 115(A10).

Bahcivan, H., Hysell, D., Lummerzheim, D., Larsen, M., & Pfaff, R. (2006). Obser-
vations of colocated optical and radar aurora. Journal of Geophysical Research:
Space Physics, 111(A12).

Cercignani, C. (2012). The boltzmann equation and its applications (Vol. 67).
Springer.

Cheng, C., & Knorr, G. (1976). The integration of the Vlasov equation in configura-
tion space. Journal of Computational Physics, 22(3), 330-351.

Dimant, Y.S., & Oppenheim, M. (2004). Ion thermal effects on E-region instabilities:
Linear theory.  Journal of Atmospheric and Solar-Terrestrial Physics, 66(17),
1639-1654.

Dolgov, S.V., Smirnov, A., & Tyrtyshnikov, E.  (2014). Low-rank approximation
in the numerical modeling of the Farley—Buneman instability in ionospheric
plasma. Journal of Computational Physics, 263, 268—-282.

Farley, D.T. (1963). A plasma instability resulting in field-aligned irregularities in
the ionosphere. Journal of Geophysical Research, 68(22), 6083-6097.

Farley, D.T. (2009). The equatorial E-region and its plasma instabilities: A tutorial.
Ann. Geophys, 27(4), 1509-1520.

Fejer, B.G., Providakes, J., & Farley, D. (1984). Theory of plasma waves in the au-
roral E region. Journal of Geophysical Research: Space Physics, 89(A9), 7487
7494.

Filbet, F., Sonnendriicker, E., & Bertrand, P. (2001). Conservative numerical
schemes for the Vlasov equation.  Journal of Computational Physics, 172(1),
166-187.

Fuller-Rowell, T.J., Codrescu, M., Moffett, R., & Quegan, S.  (1994). Response of
the thermosphere and ionosphere to geomagnetic storms. Journal of Geophysi-
cal Research: Space Physics, 99(A3), 3893-3914.

Glowinski, R., Osher, S., & Yin, W.  (2017).  Splitting methods in communication,
imaging, science, and engineering. Springer.

Groppi, M., Russo, G., & Stracquadanio, G.  (2016). High order semi-Lagrangian
methods for the BGK equation. Communications in Mathematical Sciences,
14(2), 389-414.

Hammett, G.W., & Perkins, F.  (1990).  Fluid moment models for Landau damp-
ing with application to the ion-temperature-gradient instability. Physical re-
view letters, 64(25), 3019.

Hassan, E., Horton, W., Smolyakov, A., Hatch, D., & Litt, S.  (2015).  Multiscale
equatorial electrojet turbulence: Baseline 2D model. Journal of Geophysical
Research: Space Physics, 120(2), 1460-1477.

Hesthaven, J.S. (2017). Numerical methods for conservation laws: From analysis to
algorithms. STAM.

Hundsdorfer, W., & Verwer, J. (2013). Numerical solution of time-dependent
advection—diffusion—reaction equations (Vol. 33). Springer.

Hysell, D.L. (2015). The radar aurora. In Auroral dynamics and space weather (pp.
191-209). John Wiley & Sons.

Hysell, D.L., Aveiro, H., & Chau, J.  (2013).  Ionospheric irregularities: frontiers.
Geophys. Monogr. Ser, 201, 217-240.

Janhunen, P. (1994). Perpendicular particle simulation of the E region Farley—
Buneman instability. Journal of Geophysical Research: Space Physics, 99(A6),
11461-11473.

—25—



791

792

793

794

795

796

797

798

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

Kovalev, D.V.; Smirnov, A., & Dimant, Y. (2008). Modeling of the Farley-Buneman
instability in the E-region ionosphere: A new hybrid approach.  Annales Geo-
physicae, 26(9), 2853.

Kovalev, D.V., Smirnov, A., & Dimant, Y. (2009). Simulations of the nonlinear
stage of Farley-Buneman instability with allowance for electron thermal ef-
fects. Plasma Physics Reports, 35(7), 603-610.

Lanser, D., & Verwer, J. (1999). Analysis of operator splitting for advection—
diffusion—reaction problems from air pollution modelling. Journal of Computa-
tional and Applied Mathematics, 111(1-2), 201-216.

Liboff, R.L. (2003). Kinetic theory: Classical, quantum, and relativistic descriptions.
Springer.

Machida, S., & Goertz, C. (1988). Computer simulation of the Farley—Buneman in-
stability and anomalous electron heating in the auroral ionosphere. Journal of
Geophysical Research: Space Physics, 93(A9), 9993-10000.

Newman, A.L., & Ott, E. (1981). Nonlinear simulations of type 1 irregularities
in the equatorial electrojet.  Journal of Geophysical Research: Space Physics,
86(A8), 6879-6891.

Oppenheim, M., & Dimant, Y. (2004). Ton thermal effects on E-region instabilities:
2D kinetic simulations. Journal of Atmospheric and Solar-Terrestrial Physics,
66(17), 1655-1668.

Oppenheim, M., & Dimant, Y. (2013). Kinetic simulations of 3D Farley-Buneman
turbulence and anomalous electron heating.  Journal of Geophysical Research:
Space Physics, 118(3), 1306-1318.

Oppenheim, M., Dimant, Y., & Dyrud, L. ~ (2008). Large-scale simulations of 2D
fully kinetic Farley—Buneman turbulence. Annales Geophysicae, 26(3), 543—
553.

Oppenheim, M., Otani, N., & Ronchi, C. (1996). Saturation of the Farley-Buneman
instability via nonlinear electron ExB drifts. Journal of Geophysical Research:
Space Physics, 101(A8), 17273-17286.

Qiu, J., & Christlieb, A. (2010). A conservative high order semi-Lagrangian WENO
method for the Vlasov equation. Journal of Computational Physics, 229(4),
1130-1149.

Quarteroni, A., & Valli, A. (2008). Numerical approzimation of partial differential
equations (Vol. 23). Springer.

Robert, A. (1981). A stable numerical integration scheme for the primitive meteoro-
logical equations. Atmosphere-Ocean, 19(1), 35—46.

Rojas, E.L., Hysell, D., & Munk, J.  (2018).  Assessing ionospheric convection es-
timates from coherent scatter from the radio aurora. Radio Science, 53(12),
1481-1491.

Rojas, E.L., Young, M., & Hysell, D. (2016).  Phase speed saturation of Farley—
Buneman waves due to stochastic, self-induced fluctuations in the background
flow. Journal of Geophysical Research: Space Physics, 121(6), 5785-5793.

Sahr, J.D., & Fejer, B.  (1996).  Auroral electrojet plasma irregularity theory and
experiment: A critical review of present understanding and future directions.
Journal of Geophysical Research: Space Physics, 101 (A12), 26893-26909.

Schmidt, M.J., & Gary, S. (1973). Density gradients and the Farley-Buneman insta-
bility. Journal of Geophysical Research, 78(34), 8261-8265.

Schunk, R., & Nagy, A. (2009). Ionospheres: physics, plasma physics, and chemistry.
Cambridge University Press.

Sonnendriicker, E.; Roche, J., Bertrand, P., & Ghizzo, A. (1999). The semi—
Lagrangian method for the numerical resolution of the Vlasov equation. Jour-
nal of Computational Physics, 149(2), 201-220.

St.Maurice, J.P. (1990). Electron heating by plasma waves in the high latitude
E-region and related effects: Theory. Advances in Space Research, 10(6), 239—
249.

—26—



846

847

848

849

850

851

Strang, G. (1968). On the construction and comparison of difference schemes. STAM
Journal on Numerical Analysis, 5(3), 506-517.

Wiltberger, M., Merkin, V., Zhang, B., Toffoletto, F., Oppenheim, M., Wang, W,
... Sitnov, M.  (2017). Effects of electrojet turbulence on a magnetosphere-
ionosphere simulation of a geomagnetic storm. Journal of Geophysical Re-
search: Space Physics, 122(5), 5008-5027.

27—



