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Key Points:5

• Farley–Buneman simulations based on PIC are remarkably successful, but new ap-6

proaches are needed to explore non-local processes.7

• Hybrid continuous solvers are now an alternative when plasma structures are com-8

parable to PIC numerical noise.9

• Various aspects of Farley–Buneman instabilities were reproduced, with magnitudes10

comparable to experiments.11
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Abstract12

We implemented a hybrid continuous solver for fluid electrons and kinetic ions. Because13

the simulation is continuous, numerical noise is not an issue as it is for particle-in-cell14

approaches. Moreover, given that the ion kinetic equation is solved using a character-15

istic based method, no particle pushes have to be done. Our main goals are to reduce16

the computational cost of the simulations proposed by Kovalev (Kovalev, D.V. et al., 2008)17

and reproduce the main experimental features of Farley-Buneman instabilities measured18

by radars and rockets. The equations were derived from first principles using the approx-19

imations that are satisfied in the auroral E-region. Various tests will be presented to as-20

sess numerical accuracy. With the proposed numerical framework, we are able to recover21

important nonlinear features associated with Farley-Buneman instabilities: wave turn-22

ing of dominant modes, and saturation of density irregularities at values consistent with23

experiments.24

1 Introduction25

Coupling between the magnetosphere and the high latitude ionosphere through en-26

ergetic particles and electromagnetic fields results in the production of Hall currents that27

drive Farley–Buneman instabilities (Farley, D.T., 1963) which generate a spectrum of28

field–aligned plasma density irregularities (Rojas, E.L. et al., 2016). Numerous studies29

have shown that these irregularities can modify the mean state of the ionosphere through30

wave heating (St.Maurice, J.P., 1990), (Bahcivan, H., 2007). Furthermore, by affecting31

the local temperature several other parameters can also be modified: plasma density, com-32

position, conductivity, and transport. Consequently, neutral wind surges, gravity waves,33

and traveling atmospheric and ionospheric disturbances can be produced which can ul-34

timately affect ionospheric stability at lower latitudes (Fuller-Rowell, T.J. et al., 1994).35

Recently, studies have suggested that these instabilities can change the evolution of mag-36

netospheric dynamics by changing the conductivity of the ionosphere (Wiltberger, M.37

et al., 2017).38

Farley–Buneman waves belong to the family of two–stream instabilities. They de-39

velop at altitudes between 95 km and 120 km in the auroral and equatorial E region and40

to lesser extent at mid–latitudes (Sahr, J.D. & Fejer, 1996). In these regions, due to their41

different mobilities and collision rates, magnetized Hall–drifting electrons induce polar-42

ization drifts on the unmagnetized ions. Because of their inertia, ions tend overshoot the43

polarization field recovery and accumulate in the crests of the local density irregulari-44

ties faster than diffusion opposes them (Hysell, D.L. et al., 2013). As a result, longitu-45

dinal density waves are formed. The propagation of these waves is nearly in the direc-46

tion of the electron drifts, and their dominant wavelengths are in the order of few me-47

ters. In contrast to the equatorial case, in the auroral electrojet, wave heating plays an48

important role. Electric fields parallel and perpendicular (in lesser extent) to the back-49

ground magnetic field have been shown to be important in explaining the heating ob-50

served in nature (Hysell, D.L., 2015). Moreover, these changes in temperature will in-51

fluence the dynamics of the instabilities by changing some of the state parameters such52

as the ion–acoustic speed.53

Linear, local fluid theory of Farley–Buneman instabilities, although limited, has pro-54

duced some important, verified predictions. For instance, it gives a reasonable estimate55

for the threshold electric field (Eth) required to trigger the instabilities: the electron con-56

vection driven by this threshold fields has to be larger than the ion–acoustic speed to57

produce wave growth. Linear analysis of the full 5–moment system of equations has mod-58

ified the initial estimates of Eth to take into account the role of thermal instabilities, which59

also produce a change in the direction of the waves (Dimant, Y.S. & Oppenheim, 2004).60

Although linear fluid theory predicts incorrectly the rapid growth of very short wave-61

lengths, linear kinetic theory shows that ion Landau damping effectively suppresses this62
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growth (Schmidt, M.J. & Gary, 1973). Using these linear approximations, empirical mod-63

els have been developed to interpret coherent radar backscatter and estimate local con-64

vection fields (Rojas, E.L. et al., 2018). Nevertheless, linear theory falls short in explain-65

ing several features observed in the experimental data (Oppenheim, M. et al., 1996). Most66

of the solutions of these problems cannot be expressed in closed form due to the strongly67

nonlinear behavior. Therefor, numerical simulations have to be implemented.68

The first simulations of Farley–Buneman instabilities were based on a fluid plasma69

model (Newman, A.L. & Ott, 1981) with the inclusion of a wavelength dependent vis-70

cosity term as a proxy for Landau damping to avoid growth of small scale waves. Their71

simulation recovered wave turning effects. Shortly thereafter, Machida and Goertz (Machida,72

S. & Goertz, 1988) used a particle in cell (PIC) approach to model fully kinetic Farley–73

Buneman instabilities in a plane parallel to the magnetic field. Because of the geome-74

try of the problem, the main source of nonlinearity for these irregularities was not in-75

cluded (Oppenheim, M. et al., 1996). Janhunen (Janhunen, P., 1994) also tried a fully76

kinetic PIC approach but modeled the instabilities in the direction perpendicular to B.77

Although these simulations did not achieve wave growth saturation (cessation of wave78

amplitude increase), some wave turning effects were seen.79

The first numerical approaches were able to reproduce a number of experimental80

features of Farley–Buneman instabilities was developed by Oppenheim (Oppenheim, M.81

et al., 1996) using a hybrid (kinetic and fluid) model. Electrons were modeled as a fluid82

using the continuity and the inertialess momentum equation while ions evolved in phase83

space to preserve kinetic behavior. The kinetic evolution was performed using PIC in-84

tegration, and the ion-neutral collisions were reproduced by a Monte Carlo approach.85

Quasineutrality was imposed by forcing the total current density to be solenoidal. This86

simulations were able to reproduce several experimental features: wave growth, secondary87

instabilities perpendicular to the electron flow, wave turning, and phase speed satura-88

tion close to the ion–acoustic speed. On time, Oppenheim extended this simulations first89

to a fully kinetic PIC approach (Oppenheim, M. & Dimant, 2004), then to a large–scale90

2D simulation region of more than 100m (Oppenheim, M. et al., 2008), and finally to91

the full 3D case (Oppenheim, M. & Dimant, 2013).92

Unfortunately, PIC simulations suffer from limitations that make them in some cases93

prohibitively expensive for studying non–local phenomena, especially when the full phase–94

space has to be considered. This is because PIC simulation noise decreases as 1/
√
N ,95

where N is the number of particles in each simulation cell. The implication of this re-96

striction is that the number of particles required to have a significant signal to noise ra-97

tio will increase very rapidly with the size of the simulation box. Furthermore, the time98

integration of a system with a very large number of particles often requires the use of99

artificial particle masses and other nonphysical assumptions to decrease the computa-100

tion time which complicates the final interpretation of the results.101

In the past few years, several attempts have been made to simulate Farley–Buneman102

instabilities avoiding PIC approaches in order to create frameworks more suitable for non–103

local studies. Hassan (Hassan, E. et al., 2015) used a two–fluid simulation that included104

an additional stress term to emulate Landau damping, solving the continuity and mo-105

mentum equation for both electron and ions species. However, Hammet (Hammett, G.W.106

& Perkins, 1990) has shown that a fluid Landau damping operator can be successfully107

constructed if higher moments are considered. More recently, Dolgov (Dolgov, S.V. et108

al., 2014) developed a hybrid fluid–electron kinetic–ion simulation and used a Tensor–109

Train format to reduce the dimensionality of the kinetic solver. Even though the mem-110

ory reduction was significant, it is not yet clear to what extent in which the assumptions111

required for the Tensor-Train format affect the dynamics of the instabilities. Finally, Ko-112

valev (Kovalev, D.V. et al., 2008) used also a hybrid fluid-kinetic approach, assuming113

isothermal electrons. In subsequent years thermal electrons were included by solving the114

full 5–moments electron equation (Kovalev, D.V. et al., 2009), but the final results seemed115
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to suggest that the energy equation did not fully reproduced the temperature evolution.116

This last approach employed a Semi–Lagrangian (SL) solver for the ions. The SL solver117

has gained increasing popularity in the plasma simulation community due to its local-118

ity, precision, simplicity, and the fact that it does not depend on the Courant–Friedrichs–119

Lewy (CFL) condition (Groppi, M. et al., 2016). These features make the SL solver a120

good candidate for studying the non–local behavior of Farley–Buneman instabilities.121

In the present work, we implement a hybrid continuous solver for fluid electrons122

and kinetic ions using the SL method for the kinetic solver. Because the simulation is123

continuous, numerical noise is not an issue as it is in PIC approaches. Moreover, given124

that the SL solver is based on interpolation along the characteristics of the kinetic equa-125

tion, no particle pushes (time integrations) have to be done. Our main goals are to re-126

duce the computational cost of the simulations proposed by Kovalev and reproduce the127

main experimental features of Farley–Buneman instabilities obtained with radars and128

rockets. Although we are not going to address non–local phenomena in this work, we think129

that exploring these hybrid continuous strategies (even for small scale systems) is a nec-130

essary step in that direction.131

The plasma models used in this simulation will be presented in the second section132

of the paper. The final form of the equations will be obtained from first principles us-133

ing the approximations that are satisfied in the auroral E–region. In section three, the134

choice of numerical algorithms used to solve the model equations will be justified. Also,135

some benchmarks and tests will be presented in the appendix to assess the numerical ac-136

curacy of the algorithms. In section four, several simulations runs will be presented along137

with appropriate diagnostics. Section five will describe the main conclusions and future138

work.139

2 Hybrid Plasma Model: Theory140

Although the linear theory of Farley–Buneman instabilities has a limited set of ver-141

ifiable predictions, it still can be used to identify the dominant processes and inform the142

choice of modeling equations for the hybrid solver. The linear, local dispersion relation143

of these waves can be written as (Farley, D.T., 2009):144

ω(k) =
k · Vd
1 + ψ

(1)

γ(k) =
ψ

(1 + ψ)νin
(ω2(k)− k2C2

s ) +
νin
Ωi

ω(k)kE
Lk2

− 2αne, (2)

where γ(k) represents the growth rate for wave–number k, Vd is the electron advection145

speed, Cs the ion acoustic speed, α the dissociative recombination rate, ne the electron146

density, L the scale length of density gradients, and147

ψ(θ) ≈ νenνin
ΩeΩi

(
1 +

Ω2
e

ν2
en

θ2

)
(3)

Here, Ωe,i, νen,in are the gyrofrequencies and neutral collision frequencies of electrons and148

ions, respectively. The angle θ indicates the complement of the angle between wave vec-149

tor k and the magnetic field B (θ = 0 corresponds to k perpendicular to B). kE is the150

wave vector component in the direction of the background electric field.151

Equation (2) has three terms corresponding to different contributions to wave growth.152

The first term measures the net effect between the destabilizing ion inertia and the sta-153

bilizing diffusion and is the one responsible for Farley–Buneman waves. The second and154

third terms correspond to the destabilizing or stabilizing effect of density gradients and155

the stabilizing effect of recombination, respectively. Moreover, the second term contributes156

to significant wave growth when νin ∼ Ωi for wavelengths on the order of tens of me-157

ters (Fejer, B.G. et al., 1984). In the nonlinear regime, secondary waves are formed obliquely158
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to the primary wave by this same mechanisms. PIC simulations suggest that the cou-159

pling between these first and secondary waves is what cause the saturation of the wave160

growth (Oppenheim, M. et al., 2008).161

Another important feature of equation (2) is its dependence on θ. In the auroral162

E region, the electrons are strongly magnetized (Ωe � νen), which means that even small163

values of θ will give ψ � 1, making θ ≈ 0 the preferred direction for wave growth. This164

result is consistent with coherent scatter radar measurements, where echoes are observed165

roughly speaking from within 2 degrees of the plane perpendicular to B (Sahr, J.D. &166

Fejer, 1996). Nevertheless, it is important to mention that a significant number of ex-167

periments have consistently detected plasma fluctuations at much larger aspect angles.168

Several nonlinear mechanisms have been proposed to explain these large aspect angle169

fluctuations. Furthermore, there is evidence that waves parallel to B may be responsi-170

ble for heating observed in incoherent scatter measurements (Bahcivan, H. & Cosgrove,171

2010). When neglecting the last two terms in equation (2), it is evident that the high-172

est growth will coincide with the smallest wavelengths. Schimdt (Schmidt, M.J. & Gary,173

1973) showed that this non–physical growth rate was a limitation of the fluid dispersion174

relation and that including linear kinetic effects was enough to obtain realistic growth175

rates. They observed that Landau damping prohibited high wave number growth. Al-176

though both species experience Landau damping, electron damping is only effective at177

short wavelengths. Nevertheless, ion damping suppresses the oscillations at these short178

wavelengths. In other words, by resolving Landau damping with the ions, we make un-179

necessary the use of a kinetic model for the electrons. This of course assumes that Lan-180

dau damping is the only kinetic process with a significant role in the evolution of Farley–181

Buneman instabilities.182

Given that most of the dynamics occurs at small aspect angles, the model equa-183

tions will be chosen to be two–dimensional, perpendicular to B. Also, in order to avoid184

contributions from gradient drift and recombination, the simulation sizes will be limited185

to less than 10 m. In summary, to prevent non–physical linear wave growth at small wave-186

lengths, ions will be modeled kinetically.187

2.1 Electric field model188

Most ionospheric hybrid simulations enforce quasineutrality by constraining the to-189

tal current density to satisfy ∇ · J = 0. We will not assume quasineutrality. Instead,190

to couple both species, we will solve Poisson’s equation:191

∇⊥ · δE = − e

ε0
(ne − ni) (4)

As will become evident in section 3.1, the motivation for choosing to solve equation (4)192

is computational efficiency rather than the need to resolve deviations from quasineutral-193

ity.194

2.2 Electron fluid model195

Electrons will be modeled using an isothermal approximation of the simplified 5–196

moment transport equations in two dimensions, where only the perpendicular flow will197

be consider:198

∂ne
∂t

+∇⊥(nev⊥e) = 0 (5)

v⊥eνenmene = −∇⊥pe + ene(E⊥ + v⊥e ×B) + nemeG, (6)

where e, pe, me, ne, and v⊥e are the electron charge, pressure, mass, density, and fluid199

velocity perpendicular to B, respectively. Also, E⊥ is the total electric field perpendic-200

ular to B and G the acceleration due to gravity. Equation (6) is written in the frame201
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of reference of the neutral particles, in the plane perpendicular to B, and assuming in-202

ertialess electrons. Following (Schunk, R. & Nagy, 2009), neglecting the gravity and the203

diamagnetic drift, the electron velocity can be expressed explicitly as:204

v⊥e = − kTe
meνenpe

1

1 + Ω2
e/ν

2
en

∇⊥pe −
e/(meνen)

1 + Ω2
e/ν

2
en

E⊥ +
1

B2(1 + Ω2
e/ν

2
en)

E⊥ ×B (7)

In this work, we assume that electrons are isothermal. Moreover, using the ideal gas ap-205

proximation, ∇⊥pe = kTe∇⊥ne. The electric field can be decomposed such that E⊥ =206

E0 +δE, where E0 denotes the background electric field that account for the free en-207

ergy source for the system and δE the electric field caused by density perturbations. Given208

that the electrons are strongly magnetized, (1+Ω2
e/ν

2
en)−1 ≈ ν2

en/Ω
2
e. The convention209

chosen for the coordinate system will be as follows: the magnetic field B ‖ ẑ, and E0 ‖210

ŷ. Applying these approximations and conventions to equation (7) yields:211

v⊥e = − kTeνen
meΩ2

ene
∇⊥ne −

νene

meΩ2
e

δE − νene

meΩ2
e

E0 + V0 +
1

B2
δE ×B, (8)

where V0 = E0 × B/B2. In order to combine the momentum equation (8) with the212

electron continuity equation, the expression for ∇⊥·(nev⊥e) has to be calculated. Af-213

ter some algebra, equation (5) can be written in the form of a diffusion-advection-reaction214

partial differential equation:215

∂ne
∂t

+De∇2
⊥ne + Ae · ∇⊥ne +Rene = 0, (9)

where216

De = − Te
eκB

(10)

Aex = − 1

κB
δEx +

1

B
δEy + V0 (11)

Aey = − 1

κB
δEy −

1

B
δEx −

1

κB
E0 (12)

Re = − 1

κB
∇⊥ · δE, (13)

and κ = Ωe/νen denotes the magnetization of electrons. Equation (9) is a second or-217

der linear partial differential equation. The reaction term Re is proportional to (ne−218

ni) and so is expected to be small. Because of the isothermal assumption, the diffusion219

term De will be constant. The advection term Ae will dominate equation (9). Further-220

more, δE will increase due to the difference in mobility between electrons and ions in221

the x̂ direction. Moreover, we can see how δEx contributes to the advection perpendic-222

ular to the direction of the primary wave, setting the stage for secondary instabilities as223

expected from radar experiments.224

2.3 Ion kinetic model225

In order to resolve ion Landau damping, ions will have to evolve following the ki-226

netic equation. If fi = fi(x,v, t) is the ion distribution function in the phase–space,227

then:228

∂fi
∂t

+ vi · ∇fi + ai · ∇vfi = J(fi) (14)

The acceleration ai will be completely determined by the electric field because ions are229

not magnetized in the E–region. The operator ∇v represents the gradient in velocity co-230

ordinates. The term on the right hand side corresponds to a general collision operator.231

Following the rationale established at the beginning of this section, we want to build a232

kinetic equation in the plane perpendicular to B. This can be achieved by neglecting ẑ233
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direction in configuration space. Assuming that the ion distribution in the v̂z direction234

will be independent to the other directions, fi = nif̂vx,vy f̂vz , where the hat indicates235

a multivariate normal distribution. After replacing
∫
fidvz → fi and writing the ac-236

celeration explicitly we get:237

∂fi
∂t

+ v⊥i · ∇⊥fi +
e

mi
(E0 + δE) · ∇v⊥fi = J(fi) (15)

On the right hand side of (15), J(fi) is a general form collision operator that depends238

just on fi.239

The plasma in these regions is considered weakly ionized, and collisions are pre-240

dominantly with neutral particles. Furthermore, according to (Dimant, Y.S. & Oppen-241

heim, 2004), the time scale for the evolution of Farley–Buneman irregularities is given242

by 1/νin. This suggests that in order to reproduce a realistic time evolution, the kinetic243

collision operator should be adequate. Because of its complexity, the full Boltzmann col-244

lision operator will not be used in the present work. Instead, we will use the BGK (“Bhatnagar–245

Gross–Krook”) operator to model ion–neutral collisions. This operator has the follow-246

ing form:247

J(fi) = −νin(fi −M [fi]) (16)

Here, M [fi] represents a drifting Maxwellian distribution defined by the velocity mo-248

ments of fi. It can be proven that this operator satisfies (Cercignani, C., 2012):249 ∫
αkJ(fi)d

3v = 0 (17)∫
log fiJ(fi)d

3v ≤ 0, (18)

where αk represents the different velocity moments αk = (1,mivi,miv
2
i /2). Equation250

(17) shows that the BGK operator conserves the first three moments locally by construc-251

tion. The expression (18) is the Boltzmann inequality for the BGK operator, and it ex-252

presses the tendency of the plasma towards a Maxwellian distribution. Notice that the253

collision frequency is taken to be velocity independent. This approximation is appropri-254

ate for non–resonant ion–neutral collisions in the ionosphere (Schunk, R. & Nagy, 2009).255

The final form of the ion kinetic equation is then:256

∂fi
∂t

+ v⊥i · ∇⊥fi +
e

mi
(E0 + δE) · ∇v⊥fi = −νin(fi −M [fi]) (19)

It is worth noting that equation (19) is strongly nonlinear, even more than for the case257

with the full Boltzmann collision operator. The main advantage of the chosen collision258

operator is that it is much easier to compute numerically (by estimating the velocity mo-259

ments at each point in phase–space and constructing the corresponding Maxwellian dis-260

tribution M [fi]).261

3 Hybrid Plasma Model: Numerics262

In this section, the numerical algorithms to implement equations (4), (9), and (19)263

will be presented. Before going into the details of the solver, additional comments will264

be made about some numerically relevant physical features of Farley–Buneman insta-265

bilities. First, given the relatively small amplitude of these irregularities (δne ≈ 0.1n0),266

we will assume that no significant shocks are going to be present. Furthermore, it can267

be argued that the quasi–linear structure of equation (9) does not indicate the presence268

of shocks in the electron density. Given that the electrons are dominated by advection,269

the characteristic curves will not intersect. The absence of shocks supports the use of270

spectral methods. Secondly, as mentioned before, the simulation size will be taken to be271
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on the order of 10 meters at maximum. Because no boundary effects are expected at these272

dimensions, we will assume periodic boundary conditions.273

It is often convenient to decompose equations like (9) and (19) using the technique274

called operator splitting (Hundsdorfer, W. & Verwer, 2013). If an equation can be ex-275

pressed as276

∂u

∂t
= (S1 + S2)u (20)

then the analytical solution for a time ∆t will be u(t+∆t) = e∆t(S1+S2)u(t). By con-277

structing the corresponding series of the exponential operator, we can see that if the op-278

erators S1 and S2 commute, the solution can be written as u(t+∆t) = e∆tS1e∆tS2u(t),279

which would be equivalent as solving the system280

∂u

∂t
= S1u (21)

∂u

∂t
= S2u (22)

and using the solution of (21) as the initial condition of (22) instead of solving the more281

complicated (20) without any numerical error caused by the splitting. If the operators282

do not commute, the global numerical error will be of the order of O(∆t). In this case,283

the error can be diminished using Strang splitting (Strang, G., 1968) instead, in which284

case the solution would be expressed as u(t+∆t) = e
∆t
2 S1e∆tS2e

∆t
2 S1u(t). Using Strang285

splitting, the global error will be of the order of O(∆t2). Furthermore, this approach can286

be extended for an arbitrary number of operators, such that if287

∂u

∂t
= (S1 + . . .+ Sn)u (23)

then,288

u(t+ ∆t) = e
∆t
2 S1 . . . e

∆t
2 Sn−1e∆tSne

∆t
2 Sn−1 . . . e

∆t
2 S1u(t) (24)

keeping the global error at O(∆t2). This means that equation (23) can be solved with289

second order precision in time by solving for each operator Si and using as the initial290

condition the solution of the equation corresponding to the operator Si−1. Higher or-291

der splitting methods have been developed, but they are significantly more expensive to292

implement. We will use this second order splitting because it provides a good balance293

between complexity and precision (Glowinski, R. et al., 2017).294

3.1 Electric field solver295

As mentioned at the beginning of this section, given that shocks are not expected296

and periodic boundary conditions are imposed, a spectral collocation method for the elec-297

tric field solver is justified. Writing (4) in terms of the electric potential φ and δn and298

taking the Fourier transform at both sides:299

∇2φ =
e

ε0
δn→ −|k|2φ̃ =

e

ε0
δñ (25)

⇒ δẼ = −i eδñ
|k|2

k, (26)

where δẼ = −ikφ and the tilde indicates the Fourier transformed function. The elec-301

tric field can be recovered by applying the inverse Fourier transform to (26). The peri-302

odic bounds cause each wave component to be zero when integrated over the whole do-303

main. The exception is the component corresponding to the zero wave–number which304

will be a constant. Consequently, to enforce periodic bounds, we will make φ̃(0, 0) = 0305

in equation (25). The full calculation of the perturbed electric field can be described with306
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the algorithm EFieldSolve described in Figure 1. Notice that F , and F−1 denote the307

Fourier transform and its inverse, respectively. However, given that this procedure does308

not include de–aliasing, the solver precision will be affected when higher wavenumbers309

components start increasing.

Algorithm Ion Kinetic Solver

1: procedure IonSolve(ne, fi,∆ti)

2: (ni, niui, Ei)←
∑vmax

−vmax

(
1,vi,

|vi|2
2

)
fi∆v

2
i

3: Ti ← 1
k ( 2Ei

ni
− |ui|2)

4: Map M [fi] with (ni,ui, Ti)
5: fi ← fie

−νin∆t/2 +M [fi](1− e−νin∆t/2)
6: for (vxα , vyβ ) where (α, β) ∈ [1, Nv]× [1, Nv] do
7: (x∗, y∗)← (x− vxα∆ti/2, y − vyβ∆ti/2)
8: fi(x, y)← fi(x

∗, y∗)

9: ni ←
∑vmax

−vmax
fi∆v

2

10: δE ← EFieldSolve(ne, ni)
11: for (xα, yβ) where (α, β) ∈ [1, Nr]× [1, Nr] do
12: (v∗x, v

∗
y)← (vx − e

mi
δEx∆ti, vy − e

mi
(E0 + δEy)∆ti)

13: fi(vx, vy)← fi(v
∗
x, v
∗
y)

14: for (vxα , vyβ ) where (α, β) ∈ [1, Nv]× [1, Nv] do
15: (x∗, y∗)← (x− vxα∆ti/2, y − vyβ∆ti/2)
16: fi(x, y)← fi(x

∗, y∗)

17: (ni, niui, Ei)←
∑vmax

−vmax

(
1,vi,

|vi|2
2

)
fi∆v

2
i

18: Ti ← 1
k ( 2Ei

ni
− |ui|2)

19: Map M [fi] with (ni,ui, Ti)
20: fi ← fie

−νin∆t/2 +M [fi](1− e−νin∆t/2)
21: return fi

Algorithm Electric Field Solver

1: procedure EFieldSolve(ne, ni)
2: φ̃(kx, ky) = − e

ε0|k|2F{ne − ni}
3: φ̃(0, 0) = 0
4: δE = F−1{−ikφ̃} . Keeping just real part
5: return δE

Algorithm Hybrid Solver

1: Pink noise δn
2: ne, ni ← n0(1 + δn)
3: fi initialized as Maxwellian
4: for i = 1 : Nsteps do
5: ne ← ElectronSolve(ne, ni,∆te, rt)
6: fi ← IonSolve(ne, fi,∆ti)
7: if (i mod Nsample) = 0 then . Perform diagnosis
8: Collect Erms, < δn2 >
9: Collect ñe(k, ω)

10: Calculate spectral moments vp and δvp

11: Write to file

2

Figure 1. Numerical algorithm for the solution of Poisson equation.300

310

3.2 Electron fluid solver311

There are two fundamental reasons to split equation (9). First, we see that the dif-312

fusion term has a constant diffusion coefficient which means that it can be solved effi-313

ciently with a Fourier spectral collocation method (Hesthaven, J.S., 2017), and the re-314

action term is simple enough to be solved analytically. Secondly, by isolating the advec-315

tion term, we can use a characteristic–based method. Even though it is possible to ex-316

tend the diffusion equation to include the reaction term as a heat source in order to have317

just one splitting, this will not be a significant advantage because the algorithm would318

still be of second order. Moreover, the computational cost of adding an extra step for319

the reaction term is minimal as will be shown.320

We can rewrite the electron evolution equation as321

∂ne
∂t

= (SD + SA + SR)ne (27)

where SD, SA,and SR correspond to the diffusion, advection, and reaction operators, re-322

spectively. In order to define the decomposition of equation (9), we first have to verify323

whether the operators commute. As proven by (Lanser, D. & Verwer, 1999), [SD, SA] =324

0 when De and Ae are position independent, [SA, SR] = 0 when ∇·Ae = 0 and Re is325

position independent, and [SD, SR] = 0 when Re is linear in ne and position indepen-326

dent. As we can see from the definitions of De, Ae, and Re, none of the commutation327

conditions are satisfied. Consequently, the time evolution of equation (9) in terms of Strang328

splitting will be:329

ne(x, y, t+ ∆t) = e
∆t
2 SDe

∆t
2 SRe∆tSAe

∆t
2 SRe

∆t
2 SDne(x, y, t) (28)

An intuitive way to understand equations (9) and (28) is the following: the electron den-330

sity wave modes are damped at a rate De, the density perturbations are amplified by331

the charge separation, and constant parcels of density are transported along Ae.332

The diffusion step333

∂ne
∂t

= SDne = −De∇2ne (29)

can be solved with a spectral collocation method using the Fourier basis, as indicated334

before. Taking the spatial Fourier transform at both sides of (29) gives335

∂ñe
∂t

= iDe|k|2ñe, (30)
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where ñe(k, t) is the spatial Fourier transform of the electron density. Integrating (30)336

over a time step ∆t and applying the inverse Fourier transform to go back to physical337

space will results in the solution of (29).We can write the full solution of the diffusion338

step as339

ne(t+ ∆t) = F−1{eiDe|k|2∆tF{ne(t)}} (31)

Because there is no interaction between modes, and we are using periodic boundary con-340

ditions, no further corrections need to be made to this approximation. Furthermore, the341

precision and speed of this estimate will be determined by the precision and speed of the342

fast Fourier transform function used. The reaction step343

∂ne
∂t

= SRne = −Rene (32)

can be solved by directly integrating over a time step ∆t because although Re depends344

on the time evolution of the electric field, at each split term, the electric field can be con-345

sidered constant in time. Therefor, the reaction step can be written as346

ne(t+ ∆t) = e−Re∆tne(t) (33)

Even though −Re > 0, because is very small, the amplification caused by this term is347

almost negligible even if there is a significant charge separation. Finally, the advection348

step349

∂ne
∂t

= SAne = Ae · ∇ne (34)

can be solved using the method of characteristics (Hesthaven, J.S., 2017). Therefor, if350

(x∗, y∗) is a point in the characteristics of (34) corresponding to a time step backwards351

in time, then the density can be expressed as ne(x, y, t) = ne(x
∗, y∗, t−∆t). Defining352

sx = x− x∗ and sy = y − y∗, we can use the recursion proposed be (Robert, 1981) to353

estimate (x∗, y∗):354

s(k+1) = ∆tAe(r − s(k)∆t) (35)

Notice that this is only necessary because the advection field is position dependent. Once355

s is calculated for each grid point, we can integrate (34) a time ∆t:356

ne(x, y, t+ ∆t) = ne(x− sx(x, y), y − sy(x, y), t) (36)

Clearly, the points (x−sx(x, y), y−sy(x, y)) will not in general be defined on the grid357

points, but the values of ne on these coordinates can be estimated with interpolation meth-358

ods. This approach is called semi–Lagrangian because it solves the equation along the359

characteristics but in an eulerian reference frame. We use a cubic spline interpolation360

because it has been shown to perform better than high order polynomial interpolation361

and it preserves the continuity of the first and second derivatives by construction. If g362

is a one dimensional function and s3 is its cubic spline representation, it can be shown363

(Quarteroni, A. & Valli, 2008) that364

|g − s3| ≤
5

384
h4 max{g(4)} (37)

, where g(4) denotes the fourth derivative of g and h the width of the domain’s partition,366

which implies that the spline error is O(h4). In Figure 2 we see explicitly the numeri-367

cal algorithm proposed to solve (9). It is important to notice that Re and Ae are cal-368

culated with the density values at each split step. As we will see in section 3.4, the elec-369

tron solver runs several iterations before the ion step. By recognizing that [SD, SD] =370

0 and using equation (28), we can group together adjacent diffusion steps from consec-371

utive iterations. For instance, with just two electron evolution steps:372

ne(x, y, t+ 2∆t) = e
∆t
2 SDe

∆t
2 SRe∆tSAe

∆t
2 SRe

∆t
2 SDe

∆t
2 SDe

∆t
2 SRe∆tSAe

∆t
2 SRe

∆t
2 SDne(x, y, t)

= e
∆t
2 SDe

∆t
2 SRe∆tSAe

∆t
2 SRe∆tSDe

∆t
2 SRe∆tSAe

∆t
2 SRe

∆t
2 SDne(x, y, t) (38)
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ElectronSolve.pdf

Figure 2. Numerical algorithm for the evolution of electrons a time rt∆te.365

The inner loop starting at line 3 makes the electron evolve a number rt of times. If ∆te373

and ∆ti are the electron and ion time steps, respectively, then rt = ∆ti/∆te. The con-374

ditional of line 13 activates only at the last iteration, which corresponds to the last dif-375

fusion half step as seen in equation (38). Following (Robert, 1981) approach, the recur-376

sion of line 9 iterates three times. The fluid model was split to avoid nonlinearities, so377

each fractional step is approximately linear and periodic. Although the splitting is sec-378

ond order, because the electric field is not being calculated at fractional time steps but379

is assumed constant, the fluid time step will be affected. As the electric deviates from380

constant, the second order accuracy will move to first order.381

3.3 Ion kinetic solver382

The kinetic equation (19) has the form of a advection–reaction equation in a 5D383

phase–space. We will solve (19) using the semi–Lagrangian approach as described by (Cheng,384

C. & Knorr, 1976) and (Filbet, F. et al., 2001). There is a vast literature on semi–Lagrangian385

methods for the electrostatic and the electromagnetic Vlasov equation. Various numer-386

ical experiments have shown that semi–Lagrangian methods outperform spectral, finite387

diference, and finite volume methods in reproducing streaming instabilities and Landau388

damping (Sonnendrücker, E. et al., 1999). Furthermore, these tests suggested that the389

results obtained with spline interpolation are comparable to ninth–order polyniomial in-390

terpolation. However, general spline interpolation does not have any positivity constraints391

which are needed for the distribution function. Moreover, spurious diffusive oscillations392

are known to occur under polynomial interpolation. Some strategies to overcome these393

difficulties have been proposed, for instance, WENO (“Weighted essentially non–oscillatory”)394

–11–



manuscript submitted to JGR-Space Physics

interpolation methods (Qiu, J. & Christlieb, 2010). These new strategies are subjects395

of future work.396

Following the approach of the previous section, we can express the ion evolution397

equation as:398

∂fi
∂t

= (SAr
+ SAv

+ SBGK)fi, (39)

where SAr
and SAv

correspond to the advection in the (x, y) plane and the (vx, vy) plane,399

respectively. Operator SBGK represents the reaction term corresponding to the BGK op-400

erator. Note that the splitting in this case is different from the electron case. For instance,401

the advection term is split by dimension and not by operator type. Furthermore, the BGK402

operator is significantly more complex than the electron reaction term because it con-403

tains several integrals over velocity space for the calculation of moments. This makes equa-404

tion (39) very nonlinear but significantly easier to solve numerically than the full Boltz-405

mann equation. As for the electron case, in order to determine the appropriate opera-406

tor decomposition, the commuting properties of the operators in equation (39) have to407

be evaluated. The commutators to calculate are [SAr
, SAv

], [SAv
, SBGK], and [SBGK, SAr

].408

The two advection operators do not commute because of the electric field dependence409

on position, and the BGK operator term does not commute with any of the advection410

terms because it also depends on position. Therefor, Strang splitting is required to pre-411

serve the second order precision in time:412

fi(x, y, vx, vy, t+ ∆t) = e
∆t
2 SBGKe

∆t
2 SAr e∆tSAv e

∆t
2 SAr e

∆t
2 SBGKfi(x, y, vx, vy, t) (40)

This splitting, without taking into account the collision term, was proposed first by (Cheng,413

C. & Knorr, 1976). An intuitive way to understand equations (19) and (40) is as follows:414

the BGK operator changes the local distribution to a Maxwellian at a rate νin, constant415

parcels of fi are transported along lines of constant velocity and constant acceleration.416

The collision step417

∂fi
∂t

= SBGKfi = −νin(fi −M [fi]) (41)

can be solved analytically, because the maxwellian M [fi] is determined by the ion mo-418

ments (ni,ui, Ti) at each instant of time for each point in phase space. All the moments419

can be obtained from the following relations:420

(ni, niui, Ei)
T

=

∫ (
1,vi,

|vi|2

2

)T
fid

3vi

Ei =
niu

2
i

2
+
nikTi

2
, (42)

where Ei is the ion kinetic energy per unit mass, and the ⊥ symbol has been dropped421

from the ion velocity. After defining the corresponding maxwellian, equation (41) can422

be integrated a time ∆t (Liboff, R.L., 2003):423

fi(ri,vi, t+ ∆t) = fi(ri,vi, t)e
−νin∆t +M [fi(ri,vi, t)](1− e−νin∆t) (43)

The advection steps in the (x, y) and (vx, vy) planes:424

∂fi
∂t

= SAr
fi = −vi · ∇fi (44)

∂fi
∂t

= SAv
fi = − e

mi
(E0 + δE) · ∇vfi (45)

can be solved using the semi–Lagrangian method presented before. In this case, we see425

that the interpolations can used in the (x, y) and (vx, vy) planes assuming that the ve-426

locity and position are constant, respectively for each fractional step. Equations (44) and427
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(45) can then be integrated a time ∆t by:428

fi(ri,vi, t+ ∆t) = fi(ri − vi∆t,vi, t) (46)

fi(ri,vi, t+ ∆t) = fi(ri,vi −
e

mi
(E0 + δE)∆t, t), (47)

respectively. Notice that in (46), the shifting of the grid will not change as the system429

evolves because vi are the grid values in the vx, vy plane and will be defined when the430

system is initialized. On the other hand, to interpolate (47), δE will have to be calcu-431

lated at each new time iteration, which involves the calculation of the zeroth moment.432

Equations (46) and (47) are by far the most computationally demanding of this simu-433

lation. For instance, if the velocity grid has a size of Nv ×Nv and the position grid a434

size of Nr × Nr, equation (46) will involve N2
v interpolations on a N2

r grid and equa-435

tion (47) N2
r interpolations on a N2

v grid. This step is analogous to the particle push in436

PIC simulations.437

Algorithm Ion Kinetic Solver

1: procedure IonSolve(ne, fi,∆ti)

2: (ni, niui, Ei)←
∑vmax

−vmax

(
1,vi,

|vi|2
2

)
fi∆v

2
i

3: Ti ← 1
k ( 2Ei

ni
− |ui|2)

4: Map M [fi] with (ni,ui, Ti)
5: fi ← fie

−νin∆t/2 +M [fi](1− e−νin∆t/2)
6: for (vxα , vyβ ) where (α, β) ∈ [1, Nv]× [1, Nv] do
7: (x∗, y∗)← (x− vxα∆ti/2, y − vyβ∆ti/2)
8: fi(x, y)← fi(x

∗, y∗)

9: ni ←
∑vmax

−vmax
fi∆v

2

10: δE ← EFieldSolve(ne, ni)
11: for (xα, yβ) where (α, β) ∈ [1, Nr]× [1, Nr] do
12: (v∗x, v

∗
y)← (vx − e

mi
δEx∆ti, vy − e

mi
(E0 + δEy)∆ti)

13: fi(vx, vy)← fi(v
∗
x, v
∗
y)

14: for (vxα , vyβ ) where (α, β) ∈ [1, Nv]× [1, Nv] do
15: (x∗, y∗)← (x− vxα∆ti/2, y − vyβ∆ti/2)
16: fi(x, y)← fi(x

∗, y∗)

17: (ni, niui, Ei)←
∑vmax

−vmax

(
1,vi,

|vi|2
2

)
fi∆v

2
i

18: Ti ← 1
k ( 2Ei

ni
− |ui|2)

19: Map M [fi] with (ni,ui, Ti)
20: fi ← fie

−νin∆t/2 +M [fi](1− e−νin∆t/2)
21: return fi

Algorithm Electric Field Solver

1: procedure EFieldSolve(ne, ni)
2: φ̃(kx, ky) = − e

ε0|k|2F{ne − ni}
3: φ̃(0, 0) = 0
4: δE = F−1{−ikφ̃} . Keeping just real part
5: return δE

Algorithm Hybrid Solver

1: Pink noise δn
2: ne, ni ← n0(1 + δn)
3: fi initialized as Maxwellian
4: for i = 1 : Nsteps do
5: ne ← ElectronSolve(ne, ni,∆te, rt)
6: fi ← IonSolve(ne, fi,∆ti)
7: if (i mod Nsample) = 0 then . Perform diagnosis
8: Collect Erms, < δn2 >
9: Collect ñe(k, ω)

10: Calculate spectral moments vp and δvp

11: Write to file

2

Figure 3. Numerical algorithm for the evolution of ions a time ∆ti438

Figure 3 shows the numerical algorithm for the evolution of ions. Lines 2-5 and 17-439

20 correspond to the collision steps, the rest are for the advection in configuration and440

velocity space. Note that in line 10 the perturbed electric field has to be recalculated with441

the updated values of fi. In contrast to the electron case, here the characteristic curves442

can be taken as constant on each fractional step, which obviates the need to use the re-443

cursion (35).444

3.4 Building the hybrid solver and diagnostics445

Now that each solver has been described, we can construct the final form of the hy-451

brid solver. Given that charge mobility is inversely proportional to the mass, we see that452

for the E region context, electron mobility is much higher than ion mobility. This dif-453

ference in mobility allows the solver to have ∆ti > ∆te. Consequently, rt can have rel-454

atively high values. We can construct the hybrid solver using the previously described455
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algorithms as shown in Figure (4). The present method differs from the one used in (Kovalev,456

D.V. et al., 2008) in two fundamental ways. First, they used an alternate-direction im-457

plicit method for the fluid electrons, and second, they solved the kinetic system by a mod-458

ified semi-Lagrangian interpolation that includes the collision term. The electron den-

Algorithm Ion Kinetic Solver

1: procedure IonSolve(ne, fi,∆ti)

2: (ni, niui, Ei)←
∑vmax

−vmax

(
1,vi,

|vi|2
2

)
fi∆v

2
i

3: Ti ← 1
k ( 2Ei

ni
− |ui|2)

4: Map M [fi] with (ni,ui, Ti)
5: fi ← fie

−νin∆t/2 +M [fi](1− e−νin∆t/2)
6: for (vxα , vyβ ) where (α, β) ∈ [1, Nv]× [1, Nv] do
7: (x∗, y∗)← (x− vxα∆ti/2, y − vyβ∆ti/2)
8: fi(x, y)← fi(x

∗, y∗)

9: ni ←
∑vmax

−vmax
fi∆v

2

10: δE ← EFieldSolve(ne, ni)
11: for (xα, yβ) where (α, β) ∈ [1, Nr]× [1, Nr] do
12: (v∗x, v

∗
y)← (vx − e

mi
δEx∆ti, vy − e

mi
(E0 + δEy)∆ti)

13: fi(vx, vy)← fi(v
∗
x, v
∗
y)

14: for (vxα , vyβ ) where (α, β) ∈ [1, Nv]× [1, Nv] do
15: (x∗, y∗)← (x− vxα∆ti/2, y − vyβ∆ti/2)
16: fi(x, y)← fi(x

∗, y∗)

17: (ni, niui, Ei)←
∑vmax

−vmax

(
1,vi,

|vi|2
2

)
fi∆v

2
i

18: Ti ← 1
k ( 2Ei

ni
− |ui|2)

19: Map M [fi] with (ni,ui, Ti)
20: fi ← fie

−νin∆t/2 +M [fi](1− e−νin∆t/2)
21: return fi

Algorithm Electric Field Solver

1: procedure EFieldSolve(ne, ni)
2: φ̃(kx, ky) = − e

ε0|k|2F{ne − ni}
3: φ̃(0, 0) = 0
4: δE = F−1{−ikφ̃} . Keeping just real part
5: return δE

Algorithm Hybrid Solver

1: Pink noise δn
2: ne, ni ← n0(1 + δn)
3: fi initialized as Maxwellian
4: for i = 1 : Nsteps do
5: ne ← ElectronSolve(ne, ni,∆te, rt)
6: fi ← IonSolve(ne, fi,∆ti)
7: if (i mod Nsample) = 0 then . Perform diagnosis
8: Collect Erms, < δn2 >
9: Collect ñe(k, ω)

10: Write to file

2
Figure 4. Numerical algorithm for the Hybrid Solver proposed in this work to study Farley–

Buneman instabilities.

446

447

459

sity was initialized by simulating a pink noise distributed perturbation (δn) of the back-460

ground plasma density (n0), such that ne(x, y, t = 0) = n0(1 + δn) (Figure 5). The461

amplitude of the perturbation was chosen to be on the order of 0.1% of the background462

density. The ion distribution function was initialized by using the same charge distri-463

bution of the electrons (ni(x, y, t = 0) = ne(x, y, t = 0)) and a Maxwellian velocity464

distribution centered at the origin (Figure 5). The chosen coordinate system is illustrated465

in Figure 5, with earth’s magnetic field B in the direction perpendicular to the plane,466

the background electric field E0 ‖ ŷ and V0 ‖ E0×B ‖ x̂. Given that two consecutive467

electron ∆t/2 time steps commute, using a second order splitting to evolve both species468

will be equivalent to do consecutive ∆t steps as long as the first step is ∆t/2. These ap-469

proximations will be tested in future work through scaling studies.
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Figure 5. Left: Initial δn/n0 distribution generated with attenuated noise (∝ 1/|k|1/2).Right:

Integrated initial ion distribution function over all configuration space and selecting a sub inter-

val of the full velocity domain.

448

449

450

470

As we can see in Figure 4, the diagnostic block will retrieve from the solver sev-471

eral important variables every Nsteps iterations. These time series will be constructed472
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in the same way as has been presented in most of the literature. The root mean square473

(rms) electric field ERMS estimate will be calculated from just the perturbed electric field,474

in other words, using δE without considering E0. For measuring the nonlinear wave growth,475

we will calculate the standard deviation of the perturbed component of the density δn =476

ne/n0−1. The other component of the diagnostic section is the spectral analysis of the477

density perturbations, which will focus on the monitoring of the relative power and the478

phase speed of different wave k-modes. By calculating the spatial Fourier transform ñe(k, t) =479

F{ne(r, t)}, we can visualize how the wave modes are distributed by plotting the nor-480

malized power spectral density.481

It is worth noting that Nsteps has to be large enough to sample at times that are482

on the order of magnitude of the period of the density irregularities.483

4 Simulation Runs and Discussion484

In this section, we will use the numerical algorithms designed in section 3 to solve485

equations (9), (19), and (4). These equations capture the relevant physics of Farley–Buneman486

instabilities. The coefficients for this system of equations will be calculated using the pa-487

rameters from Table (1). The simulation will be initialized as described in section 3.4.488

The background electric field E0 is well above the threshold for instability (≈ 20 mV/m),489

according linear theory. Notice that the coarse discretization of the velocity space will490

affect how well Landau damping is resolved. The impact of the velocity resolution on491

the simulation results will be a topic of future work. All the tests presented in this work492

were done on a laptop (Intel core i5 and 4GB of RAM) and took between 2 a 4 hours493

to run.494

Table 1. Simulation parameters495

Name Symbol Value

Background Electric field E0 50 mV/m
Background Magnetic field B0 5× 10−5T

Ion–neutral collision frequency νin 2.5× 103Hz
Electron and Ion temperatures Te = Ti 300K

Plasma density N0 1010m−3

Ion time step ∆ti 5× 10−6s
Number of grid points in each dimension Nx, Nv 256,32

Lateral size of simulation box L 3m
Ion Velocity range [−6vth, 6vth] [−1.75, 1.75]km/s

Ratio ∆ti/∆te rt 10

Figure (6) illustrates the early stages of wave growth. Each row corresponds to a496

different time iteration. The first column shows the perturbed electron density δne =497

ne/n0−1. The second column shows the root mean square values of δE and of δne rel-498

ative to the background n0. These two metrics are widely used in the literature because499

they capture important signatures of nonlinear dynamics. The dashed black line indi-500

cates the value of the background electric field. In the third column, we show the nor-501

malized power spectra |ñe(kx, ky)| for the corresponding density distribution which pro-502

vide information about the dominant wave modes.503

The first row of Figure (6) represents the system a few iterations after initializa-504

tion. We see that |δne| < 0.01 and is not yet resolvable with the scale used. This also505

can be seen in the adjacent plot, where the perturbations in the electric field are still very506

small. Likewise, the power spectra shows a broad energy distribution across many wave507
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modes which are the remnants of the white noise used for initialization. Its vertical and508

horizontal axis correspond to the the λy and λx waves modes. In the second, row we show509

the system after 7,000 ion time steps. The density perturbations are now δne < 0.05510

and show a well defined wave–like structure. As expected from linear theory, we see that511

the root mean square of δne follows an exponential increase. The power spectra is now512

concentrated in a few oblique modes and shows a clear deviation from the E0 × B0 ‖513

x direction. Moreover, large wavelength modes perpendicular to E0×B0 started to form514

around the origin which corresponds to the perpendicular secondary waves driven by the515

y component of δE.516

Figure 6. Evolution of δne and δE. Right: Density perturbations. Middle: Root mean square

of time series of δne and δE. Left: Normalized |ñ(kx, ky)|. Top: 300 ion time steps. Bottom:

7000 ion time steps.

517

518

519

Figure (7) represents the system close to and after the amplitude saturates. In the520

first row, we see the system after 8500 ion time steps. The density irregularities are clearly521

propagating at an angle different to the x direction, and their amplitude is δne < 0.1.522

Furthermore, we can clearly see irregularities forming in the vertical direction. The am-523

plitude of the density irregularities is still increasing exponentially. The root mean square524

electric field has increased to be much larger than E0, which contradicts the results from525

PIC simulations and rocket in–situ measurements. These runs were stopped when Erms ≈526

10E0. The power spectra show that the wave modes surrounding the origin in the pre-527

vious plot have now coupled together with the primary waves. Furthermore, we see that528

the wave modes have clustered between the axis, which suggest a tilt in the main modes529

of wave propagation with respect to the E × B direction. This wave turning effect is530

consistent with previous PIC simulations and radar experiments. The system presented531

in the second row has evolved for 9,700 ion time steps. The rms peak of δne indicates532
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saturation which means that the system is now dominated by the strongly nonlinear δE.533

Both the power spectra and the density plots show that formation of small scale wave534

modes after saturation.535

Figure 7. Evolution of δne and δE. Top: 8500 ion time steps. Bottom: 9700 ion time steps.536

A second run was made using almost the same simulation parameters from Table537

(1), using new values for ∆ti = 2 × 10−5s, E0 = 80mV/m, and rt = 20. The rest of538

features of this second run are the same as the first one.539

Figures (8) and (9) correspond to the second run, and show the density perturba-540

tions at three different times and the temporal evolution of δERMS and the root mean541

square of the irregularities, respectively. Notice that each density plot is label with a let-542

ter that is located at its corresponding location in the time series of Figure (9).543

The first density plot (A) was taken after 1400 ion time steps when the exponen-544

tial wave growth is occurring. Because the background electric field used for this run is545

larger than the one used in the previous run but the threshold for instability is the same,546

wave growth starts sooner. The second density plot (B) was taken after 1800 ion time547

steps, just before the system saturates. After saturation, we see that the irregularities548

fluctuate around 0.7n0, consistent with rocket measurements (Sahr, J.D. & Fejer, 1996).549

In this run, we see that the electric field saturates at values much closer to E0, a behav-550

ior better aligned with the experimental evidence (Sahr, J.D. & Fejer, 1996; Bahcivan,551

H. et al., 2006). The last plot (C) illustrates the density irregularities after 3600 ion steps.552

Although the temporal evolution of the irregularities is more stable in this run, we see553

that small scale structures emerged after saturation that were not present in the previ-554

ous run. These small scale structures are not present in PIC simulations of Farley–Buneman555

instabilities (Oppenheim, M. et al., 1996, 2008).556
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Figure 8. Evolution of δne. A: 1400 ion time steps. B: 1800 ion time steps. C: 3600 ion time

steps

557

558

In both runs, we found that the system started deviating from number density con-559

servation as it approached saturation. At the exponential growth phase, the difference560

between the total number density and the total number density at initialization was ap-561

proximately 10−7n0. Close to saturation, this number increased to approximately 10−5n0.562

This ratio keeps increasing after saturation until the simulation becomes unstable. This563

is an expected behavior because our numerical approach was not built to be conserva-564

tive. The lack of number density conservation may be related to numerical artifacts that565

create charge imbalances, producing electric fields that could be related to the small scale566

structures we see after saturation. Furthermore, we see that in both cases, δE increased567

past E0, which is not supported by the experimental data.568

5 Conclusions and Future Work570

Since their discovery more than fifty years ago, we have answered numerous ques-571

tions about the dynamics of Farley–Buneman instabilities. Linear theory, although lim-572

ited, has produced some important verified predictions. Particle in cell simulations were573

able to reproduce some of the essential nonlinear local phenomena seen with rockets and574

radars. Using these tools together, empirical models have been constructed to improve575

our understanding of the Doppler signatures of these instabilities. Nevertheless, current576

models are unable to simulate large systems that are needed to explore non–local phe-577
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Figure 9. Evolution of δne and δE for 10000 ion time steps.569

nomena. Understanding this large–scale processes are fundamental to answer some of578

the remaining open questions, for instance, how does density gradients affect these pro-579

cesses? What are the dominant wavelengths involved in Farley–Buneman turbulence?580

What are their Doppler signatures at off–perpendicular angles? What is the physics in-581

volved in the wave–heating processes?582

In order to address these questions systematically, we need approaches that go be-583

yond the limitations of current models and experimental techniques. Large scale spec-584

tral features, as well as the local plasma state parameters, have to be coupled by phys-585

ical models. This will only be achieved with more scalable modeling and new ways to586

assess our empirical models.587

Ion kinetic effects are needed to avoid numerical artifacts in the simulation of Farley–588

Buneman instabilities. However, because we are interested in non–local behavior, the589

high dimensionality of the kinetic equations becomes a big hurdle. Although PIC meth-590

ods have been used to model kinetic behavior with great success, some of its limitations591

make them unsuitable for large–scale problems. For instance, due to numerical noise, is592

extremely difficult to resolve structures close to the amplitude of statistical noise and593

high energetic populations. Moreover, ionospheric plasmas require expensive Monte Carlo–594

simulated collisions. These limitations makes the PIC approach prohibitively expensive595

for non–local investigations. The goal of the present work is to build and test a small596

continuous hybrid simulation of Farley–Buneman instabilities to overcome some of these597

shortcomings.598

We used a fluid isothermal model for the magnetized electrons, an electrostatic ap-599

proximation for the fields, and a BGK kinetic equation for unmagnetized ions. The fluid600

solver was implemented by solving the corresponding diffusion–advection–reaction equa-601

tion. The diffusion and reaction parts could be solved with direct integration and a Fourier602

spectral solver, respectively. Because of the high speed electron flows, the advective part603

required a characteristic based method, and for this work we used the semi–Lagrangian604

approach. The ion equations were split into a configuration and velocity space terms.605

Each of the kinetic terms were also solved using the semi–Lagrangian formalism.606

Using this hybrid continuous method, we were able to resolve some of the most im-607

portant features of Farley–Buneman instabilities: wave modes growing from white noise,608

exponential wave growth, wave turning due to thermal effects, saturation of the electric609

field and the density irregularities, and the primary/secondary wave dynamics. Further-610

more, the simulated electric fields and density irregularities were roughly consistent with611

the experimental measurements from radars and rockets.612
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Our results are just the first steps in the direction to solve the problems related to613

non–local Farley–Buneman instabilities in the auroral region. Nevertheless, the tools de-614

veloped here have potential for future developments. Before extending the proposed method,615

further analysis is needed to assess and rectify the overestimation of the perturbation616

electric field. Then, we need to implement thermal equations for the fluid electrons which617

are specially needed in the auroral region where heating can have a significant effect. Also,618

conservative forms of the semi–Lagrangian approach can be tested along with less os-619

cillatory forms of interpolation. Moreover, a de–aliasing technique is required to resolve620

small scale structures and intermediate solutions of the electrostatic potential within each621

fractional step will preserve the second order accuracy of the time splitting. A more am-622

bitious improvement would be to implement a tensor train methodology to express the623

phase space as tensor multiplications, reducing the effective dimensionality of the prob-624

lem.625

A Numerical Tests626

In order to assess the numerical algorithms proposed, some tests will be presented.627

We will assume that the electron reaction and the diffusion steps will not require addi-628

tional analysis because they are based in a direct computation and a Fourier transform,629

respectively. In the following numerical tests, unless explicitly mentioned, we will use the630

physical parameters described in Table A.1 that are representative of conditions in the631

auroral E–region.632

Table A.1. Numerical tests: Physical parameters633

Name Symbol Value

Background Electric field E0 50 mV/m
Background Magnetic field B0 5× 10−5T

Ion–neutral collision frequency νin 2.5× 103Hz
Electron and Ion temperatures Te = Ti 300K

Plasma density N0 1010m−3

Furthermore, we will define a set of simulation parameters for the baseline case.635

These parameters are shown in Table A.2.

Table A.2. Numerical tests: Baseline simulation parameters634

Name Symbol Value

Time step dtb 2.5× 10−7s
Number of grid points in each dimension Nb 128

Lateral size of simulation box Lb 3m

636

A.1 Testing ElectronSolve637

The tests for the electron solver will assess the expected precision of the operator638

splitting approach and the advection step. Because both the physical and simulation pa-639

rameters give a CFL number greater than one and periodic boundary conditions are as-640

sumed, the grid had to be extended to interpolate values outside the grid in every iter-641
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ation. For these tests, we will ignore ion dynamics. Therefore, contributions from δE642

will be neglected.643

For the first test, we will solve 9 with constant coefficients, ignoring ion coupling.644

An analytical solution can be obtained by assuming a plane wave solution of the form645

n = n0e
(Re−De|kw|2)t cos(Ae · kwt− r), where kw is an arbitrary wave vector, and the646

terms Ae, De, and Re can be calculated using just the linear terms of equations (9) and647

the values of Table A.1. With this approach, we can explore how relevant is each term648

in the system and whether the numerical error bound (37) holds.649

The advective CFL number is given by:650

CFL = max (Ax, Ay)
∆t

∆x
= max (Ax, Ay)

N∆t

L
, (A.1)

where Ax,y, L, ∆t, and N are the velocity components, length of grid, time step, and651

number of grid cells, respectively. For our purposes, Ax,y is determined by the physical652

parameters of Table A.1. Consequently, to investigate the relation between simulation653

parameters, CFL number, and numerical precision we will focus on L, ∆t, and N .654

We compared the numerical solver for different simulation parameters, keeping the655

CFL number equal to the baseline CFLb. Next, we modify each baseline simulation pa-656

rameter so CFL = 2CFLb and compared the errors.657

Figure (A.1) shows the results of the first set of tests. The colored texts indicate660

the simulation parameters in terms of the baseline parameters. Both error bounds in the661

top plot where calculated using equation (37). The quantity δnRMS corresponds to the662

root mean square of the difference between the estimated and the theoretical densities.663

The black dots and the black line represent the errors obtained with the baseline param-664

eters in the top and bottom plots, respectively.665

The two curves of the top plot from Figure (A.1) correspond to runs with the same666

CFL number (CFLb = 3.75). We see that both errors are well bounded by the theo-667

retical error bounds. Because the error bound for cubic splines is inversely proportional668

to the number of grid points, smaller errors were obtained when N = 2Nb. These er-669

ror estimates are not significantly affected by the diffusion and reaction term, were the670

latter is several order of magnitude smaller than the former. As splitting theory shows,671

the error due to time splitting is negligible because the operators commute when their672

coefficients are constant. Furthermore, we see that the case when the time step and the673

length are doubled match almost exactly with the baseline case.674

In the bottom plot from Figure (A.1) we compare the baseline case (black lines)675

against runs having twice the CFL number. Notice how the case were the CFL number676

is doubled by halving the box length shows the same errors as the case where the CFL677

number is doubled by doubling the time step. Doubling the number of grid points (blue678

line) reduces the error even if the CFL number is doubled.679

The second test assess the precision of the semi–Lagrangian solver when the ad-680

vection velocity is position–dependent. A 1D equation with a x dependent advection ve-681

locity will be used. The equation and its analytical solution are:682

∂n

∂t
+A(1 + f sin(kx))

∂n

∂x
= 0 (A.2)

n(x, t) = n

(
A
√

1− f2t− 2 arctan

(
f + tan(kx/2)√

1− f2

))
, (A.3)

where A, f , and k were chosen to have magnitudes representative of auroral environments.683

The magnitude of the advection was taken to be A = E0/B0, where the sinusoidal term684

emulates the perturbations caused by δE with f to modulate its amplitude. Notice that685
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Figure A.1. Assessing precision of electron solver with constant coefficients (Top:) with the

same CFL=CFLb number and (Bottom:) between CFLb and 2CFLb cases.

658

659

the solution (A.3) reduces to the constant advection case when f = 0. We compare the686

theoretical solution with two different numerical implementations of the semi–Lagrangian687

step: one estimating the bottom of the characteristics with the second order method out-688

lined in section 4.3.2, and other that assumes the characteristics are position indepen-689

dent.690

Each row of Figure (A.2) correspond to runs with different values of f . In the first695

column, we can see the initial density plotted in red and the distribution evaluated at696

subsequent times plotted in blue. In the second column, we show the errors associated697

with the first order (blue) and the second order (green) semi–Lagrangian steps for the698

iteration 5000. Finally, the last column shows the root mean square error of both im-699

plementations for 10,000 iterations.700

We can see that even when f = 0.1, the second order method gains two orders701

of magnitude of precision. Furthermore, the precision of these estimates can be signif-702

icantly improved by increasing the number of grid points or taking smaller time steps.703
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Figure A.2. Assessing precision of electron solver for 1D position–dependent advection. First,

second and third column correspond to the solution at different times, errors at iteration 5000,

and root mean square of the errors for 10000 iterations, respectively. Top: f = 0.1. Middle:

f = 0.75. Bottom: f = 0.9.

691

692

693

694

A.2 Testing IonSolve704

In order to assess the kinetic ion solver, we will use two different tests. First, we705

will solve the 2D×2V Vlasov equation for constant acceleration a, for which the solu-706

tion can be obtained analytically:707

f(r,v, 0) = g(r,v) = sin(2πkxx) cos(2πkyy) exp

(
−

(v2
x + v2

y)

2

)
(A.4)

∂f

∂t
+ v · ∇f + a · ∇vf = 0 (A.5)

f (teo)(r,v, t) = g

(
r − a

t2

2
− vt,v − at

)
(A.6)

Equation (A.4) represents the initial distribution function in terms of g, equation708

(A.5) is the Vlasov equation with constant acceleration, and expression (A.6) is the an-709

alytical solution of (A.5). The velocity range was chosen to be [−6vth, 6vth], the accel-710

eration magnitude |a| ≈ eE0/mi, and the time step dt = 10−4. This scenario emu-711

lates the evolution of the unmagnetized ion distribution function in the auroral region712

if electron coupling is neglected. We used a large time step to decrease the computational713

cost of the analysis.714
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Figure A.3. Errors between theoretical and numerical solutions for constant advection in the

4D phase space and for different grid sizes.

715

716

Figure (A.3) shows the root mean square error between the theoretical and numer-717

ical estimates for different configuration and velocity grid discretizations. Notice that718

the errors are only slightly decreased when Nv = 64. Although the numerical precision719

will increase with smaller time steps, the computational cost of increasing the number720

of time steps of the kinetic solver is considerable.721

For the second test, we will assess the behavior of the BGK operator qualitatively.722

We applied the kinetic solver to a 1D×1D collisional two–stream instability. The sys-723

tem was initialized with two counter–streaming electrons with Maxwellian distributions724

in a background of constant opposite charges and a small sinusoidal density perturba-725

tion. The electric field was calculated using a 1D Poisson spectral solver.726

Figure A.4. 1D×1D two–stream instability simulation using the BGK-Semilagrangian

scheme. Left: ν = 0. Middle: ν = 0.1 Right: ν = 0.2.

727

728

Figure (A.4) shows the normalized distribution functions for different collision fre-729

quencies at the same iteration step. We can see that increasing the collision frequency730

thermalizes the system, raising the population of particles with zero velocity and damp-731

ing the instability.732
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