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ABSTRACT

Hybridization may often be an important source of adaptive variation, but the extent
and long-term impacts of introgression have seldom been evaluated in the phylogenetic
context of a radiation. Hares (Lepus) represent a widespread mammalian radiation of 32
extant species characterized by striking ecological adaptations and recurrent admixture. To
understand the relevance of introgressive hybridization during the diversification of Lepus, we
analyzed whole exome sequences (61.7 Mb) from 15 species of hares (1- 4 individuals per
species), spanning the global distribution of the genus, and two outgroups. We used a
coalescent framework to infer species relationships and divergence times, despite extensive
genealogical discordance. We found high levels of allele sharing among species and show that
this reflects extensive incomplete lineage sorting and temporally layered hybridization. Our
results revealed recurrent introgression at all stages along the Lepus radiation, including
recent gene flow between extant species since the last glacial maximum, but also pervasive
ancient introgression occurring since near the origin of the hare lineages. We show that
ancient hybridization between northern hemisphere species has resulted in shared variation of
potential adaptive relevance to highly seasonal environments, including genes involved in
circadian rhythm regulation, pigmentation, and thermoregulation. Our results illustrate how
the genetic legacy of ancestral hybridization may persist across a radiation, leaving a long-

lasting signature of shared genetic variation that may contribute to adaptation.
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Species radiations are often accompanied by extensive gene flow between nascent
lineages (e.g., Lamichhaney et al. 2015; Arnason et al. 2018; Malinsky et al. 2018; Li et al.
2019; Barth et al. 2020). Genetic signatures of hybridization between several closely related
species could either represent recent or ongoing introgressive hybridization (Eaton et al.
2015), or the remnants of hybridization among ancestral populations that remain shared
among contemporary species (Malinsky et al. 2018; Li et al. 2019). Although these
alternatives can be difficult to differentiate in large radiations (Eaton et al. 2015; Malinsky et
al. 2018; Vanderpool et al. 2020), both ancient and contemporary introgression has been
linked to local adaptation in several systems (e.g., Liu et al. 2015; Gittelman et al. 2016;
Meier et al. 2017; Barlow et al. 2018; Giska et al. 2019; Svardal et al. 2020). Thus, unraveling
the tempo and contribution of introgression to standing genetic variation within and among
species remains a critical step in understanding the overall importance of introgression to
evolution.

Reconstructing the history of hybridization between several closely related species
requires inferring evolutionary relationships among species while considering the two
primary processes — incomplete lineage sorting and gene flow — that may cause sharing of
genetic variation among populations (Malinsky et al. 2018). The network multispecies
coalescent (NMSC) model (Than et al. 2011; Solis-Lemus et al. 2017; Degnan 2018) offers
one promising framework that appears to resolve species relationships in the face of multiple
reticulation events and rapid speciation (Kozak et al. 2018; Edelman et al. 2019). However,
the NMSC is still prohibitive for large datasets and relies on the user to choose the number of
migration events based on a priori hypotheses (Yu and Nakhleh 2015). Alternatively, site-

based summary statistics based on tree asymmetries (e.g., Green et al. 2010; Pease and Hahn
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2015), or admixture proportions (e.g., Reich et al. 2009; Martin et al. 2015; Malinsky et al.
2018) are simpler to implement, but offer less power for localizing the timing and number of
introgression events when recurrent hybridization is layered across a phylogeny (Malinsky et
al. 2018). A combination of methods is thus most appropriate to infer a species tree that may
have layered events of hybridization throughout time (e.g., Kozak et al. 2018; Malinsky et al.
2018; Edelman et al. 2019; Li et al. 2019).

Hares and jackrabbits comprise a group of 32 currently classified species (genus
Lepus; Smith et al. 2018) whose common ancestor likely originated in North America and
spread throughout most of the Northern Hemisphere and Africa presumably in the last 4-6
million years (Yamada et al. 2002; Matthee et al. 2004; Melo-Ferreira et al. 2012). Hares are
primarily associated with open grasslands, but can be found across a broad range of biomes
(e.g., desert, forest, or arctic) and elevations (e.g., from sea level to the Himalayan or
Ethiopian plateau; Smith et al., 2018). The Lepus radiation also provides multiple case studies
of hybridization and introgression, with admixture detected among several extant pairs of
species (e.g., Liu et al. 2011; Melo-Ferreira et al. 2012; Tolesa et al. 2017; Jones et al. 2018;
Seixas et al. 2018; Lado et al. 2019; Kinoshita et al. 2019). Selection on introgressed variation
has been hypothesized to have aided the range expansion of the Iberian hare (Seixas et al.
2018), and has been directly linked to convergent adaptive evolution of non-white winter
coats in populations of two species that change the color of their pelage seasonally (Jones et
al. 2018, 2020a; Giska et al. 2019). These studies suggest that the relatively recent exchange
of genetic variation among extant Lepus species has provided an important source of adaptive
variation. However, the phylogenetic relationships among Lepus species remain poorly
resolved (Halanych et al. 1999; Matthee et al. 2004; Melo-Ferreira et al. 2012; Melo-Ferreira
and Alves 2018), and the contribution of ancient gene flow to the Lepus evolutionary history

remains unknown.
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Here, we use exome-wide data to infer the evolutionary history of 15 Lepus species
and show that hybridization between lineages has likely occurred since the origin of the
radiation. The combination of incomplete lineage sorting and these temporally layered events
of hybridization have resulted in extremely high levels of shared genetic variation among
extant species, including species that currently occur on different continents. We then use the
case of ancient admixture among northern latitude species that occupy highly seasonal
environments to investigate the gene content and possible functional relevance of introgressed
genomic regions. Our work demonstrates that recurrent introgression throughout evolutionary
history has made a substantial contribution to genetic variation within and among species of

this widespread mammalian radiation.

MATERIALS AND METHODS
Taxon Sampling and Exome Sequencing

We generated new genome-wide resequencing data targeting 207,691 exonic and non-
coding regions [totaling 61.7 Megabases (Mb) total] from 14 hare species (30 individuals)
and the outgroup pygmy rabbit (Brachylagus idahoensis; 2 individuals). We combined these
data with published whole exomes from four snowshoe hares [Lepus americanus; NCBI
Sequence Read Archive BioProject PRINA420081 from Jones et al. (2018, 2020b)] and
extracted data from the reference genome of the European rabbit (Oryctolagus cuniculus;
OryCun2.0; Carneiro ef al., 2014) to use as a second outgroup. Our total sample of 15 hare
species (34 individuals, 1 to 4 individuals per species) and 2 outgroup species (3 individuals)
included species from all major regions of the Lepus native distribution: Africa (3 species),
Africa and Eurasia (1 species), Eurasia (6 species) and North America (5 species, see Fig. 1

and Supplementary Table S1 available on Dryad; doi:10.5061/dryad.bzkh18967).
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Exome capture experiments were performed following the procedures outlined in
Jones et al. (2018) and in the Supplementary Material and Methods. Briefly, we obtained
samples as tissue or extracted DNA including samples from previous studies or through loans
from collaborators (Supplementary Table S1). Depending on the sample, genomic DNA was
isolated using a saline extraction method (Sambrook et al. 1989) or DNeasy Blood & Tissue
Kit (Qiagen) (Supplementary Table S1 and Supplementary Materials and Methods). We
prepared Illumina sequencing libraries for each sample following Meyer and Kircher (2010)
with minor modifications [see Supplementary Material and Methods and Jones et al. (2018)].
Sequencing libraries were then enriched using NimbleGen SeqCap EZ v.4.3 protocol and a
custom capture design consisting of 213,164 probes targeting ~25 Mb of protein-coding
exons, ~28 Mb of untranslated regions, and ~9 Mb of intron/intergenic regions (Jones et al.
2018). Hybridization reactions were performed in two separate equimolar pools of indexed
libraries (31 and 29 libraries, Supplementary Table S1), together with samples used for other
studies. The target enriched pools were each sequenced across two lanes of an Illumina
HiSeq1500 sequencer (125 bp paired-end reads) at CIBIO-InBIO’s New-Gen sequencing

platform, Portugal.

Read Processing and Genotyping

We trimmed adapters, low-quality bases, merged overlapping reads, and removed
PCR duplicates from raw reads using the expHTS pipeline (v.0.Mar112016;
https://github.com/msettles/expHTS). We then used pseudo-it (v1; Sarver et al. 2017) to
generate pseudo-reference exomes for each species by iteratively mapping (four iterations and
allowing ambiguity codes) cleaned single and paired-end reads from one individual per
species (Supplementary Table S1) to the European rabbit reference genome (OryCun2.0)

(Carneiro et al. 2014). For snowshoe hares and black-tailed jackrabbits (L. californicus), we
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used pseudo-references generated by Jones et al. (2018). The genomes of hares and European
rabbits are broadly syntenic despite two known large scale fusions/fissions (Robinson et al.
2002) and sufficiently closely related that iterative mapping to the rabbit reference is not
expected to bias genotyping (Sarver et al. 2017; Marques et al. 2020).

We then mapped data from all individuals to each species-specific pseudo-reference
using bwa-mem (v.0.7.12-r1039; Li 2013) with default options. Mapped reads were sorted

with samtools (v1.4; Li et al. 2009), assigned to read groups, filtered for duplicates (Picard

v1.140; http://broadinstitute.github.io/picard/), and realigned for insertion-deletion length
variation using GATK (v3.4.46; Van der Auwera et al. 2013). We calculated coverage
statistics and capture efficiency using CalculateHSMetrics from Picard. For each individual,
we called and filtered genotypes using the bcftools (v1.4; Li 2011) mpileup, call and filter
pipeline. We excluded indels and filtered single nucleotide variant genotypes with low
mapping (MQ < 20) or phred-scaled quality (QUAL < 20), low sequencing depth (DP < 6),
excess sequencing depth (3x individual coverage, see Supplementary Table S2), sites less
than 10 bases from an indel (--SnpGap 10), and low quality non-reference homozygous or
heterozygous genotypes (GQ <= 20). We used the filtered genotypes to construct consensus

exome fasta sequences in the OryCun2.0 coordinate system.

Species Tree Inference

We used a concatenated alignment without missing data to estimate a single
bifurcating phylogeny using a maximum likelihood (ML) search and rapid bootstrapping run
under the GTR+T" model of sequence evolution (autoMRE option) in RAxML (v8.2.10;
Stamatakis 2018). We then used two complementary methods to infer multispecies-coalescent
trees while accounting for local variation in phylogenetic histories along the genome. First,

we extracted 50 kilobase (kb) alignments from the exome capture targeted regions plus 200
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base pairs (bp) of flanking sequences using msa_split (phast (1.4;

http://compgen.cshl.edu/phast/) and bedtools (1.9; Quinlan and Hall 2010), considering a

balance between the expected extent of linkage disequilibrium in hares (10-20 kb; Jones et al.
2018) and the retention of information for phylogenetic analysis (alignment length > 1 kb).
For each window, we filtered positions with missing data for > 30% of individuals using

TriSeq (TriFusion 1.0.0; http://odiogosilva.github.io/TriFusion/), excluded windows smaller

than 1 kb, and used RAxML to estimate local maximum likelihood gene trees (GTR+I", 100
bootstraps). For each gene tree, we used the corresponding bootstraps to calculate a tree
certainty score based on the sum of certainty scores for all internodes of a tree (- MRE
option in RAxML; Salichos and Rokas 2013; Salichos et al. 2014; Kobert et al. 2016). The
internode certainty score weighs the support of the bipartition represented by a given
internode in the gene tree against the support of the second most prevalent conflicting
bipartition (Salichos et al. 2014) present in the bootstrap trees. In our case, the maximum
theoretical value of the tree certainty score is 31, or k — 3 with k equal to the number of taxa
(Salichos et al. 2014). Only trees with certainty score above 5 were used in the species tree
inference. We unrooted the gene trees using R package ape (Paradis et al. 2004) and
estimated a consensus species tree using ASTRAL-III (5.6.3; Zhang et al. 2018).

We also estimated coalescent species trees using only variable sites with SVDquartets
(Chifman and Kubatko 2014) implemented in PAUP* (4al163; Swofford 2003). For the
analyses based on variable sites, we recovered single nucleotide variants (SNVs) distanced 10
kb along the genome (within targeted regions and 200 bp flanking regions) using snp-sites
(v2.3.3; Page et al. 2016), a custom script and bedtools intersect, and excluded sites with
missing information for >30% of the individuals using a custom script (available at
https://github.com/evochange). For both SVDquartets and ASTRAL analyses, species trees

were estimated with and without assigning species identities and using sites/intervals genome-
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wide or only from the X chromosome. The European and/or pygmy rabbits were included for
all analyses requiring outgroups. Additional details on the phylogenetic analyses are provided

in the Supplementary Materials and Methods.

Bayesian Divergence Time Inference

We performed Bayesian inference of divergence times in the inferred species tree
using an approximate maximum likelihood method and assuming an autocorrelated relaxed
molecular clock, implemented in MCMCtree (PAML v.4.9; Yang 2007) and described in dos
Reis and Yang (2011, 2019). For one individual per species (Supplementary Table S1), we
extracted the coding sequence for all genes included in our capture design (18,798 genes in
the OryCun2.0 ENSEMBLE 94 database) with bedtools getfasta, after selecting the longest
transcript per gene using R package biomaR¢ (v2.34.2; Durinck et al. 2005, 2009). We
excluded alignments with more than 20% missing data using AMAS (Borowiec 2016) (see
Supplementary Materials and Methods available on Dryad for details). With these, we
constructed a concatenated alignment with three partitions, corresponding to the three codon
positions. We assumed GTR+I" for the model of sequence evolution and we used the prior of
3.33 for the average substitution rate per site per 100 million years, following Matthee et al.
(2004). Lepus is poorly represented in the fossil record. The earliest hare record dates to the
early Pleistocene [2.5 million years ago (Ma); White 1991; Lopez-Martinez 2008], which is
much more recent than molecular estimates for the genus extrapolated from deeper fossil
calibrations (4-6 Ma; Yamada et al. 2002). Therefore, we used two different calibrations for
the species tree. We either (1) used molecular estimates of 4-6 million years (myr) for the
most recent common ancestor (TMRCA) of Lepus extrapolated from deep fossil record
calibrations of the order Lagomorpha (Yamada et al. 2002) and 9.7-14.5 myr for the TMRCA

of Oryctolagus-Lepus divergence (Matthee et al. 2004) or (2) used fossil estimates of 2.5 myr
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for the lower bound of Lepus diversification and constrained the root to be no older than 4.8
myr, which is when the fossil record suggests that the common ancestor of rabbits and hares
existed (Hibbard 1963; White 1991). We discarded the first 1,000,000 samples as burn-in and
ran the program until we gathered 1,000,000 samples from the posterior, sampling every 10
iterations, and repeated the analysis twice to ensure convergence. We checked for lack of
convergence between the two runs by confirming a linear correlation between posterior times,
trendless trace plots, and high effective sample size values (ESS > 200) following dos Reis
and Yang (2019). Finally, we also checked for a linear relationship between posterior times

and confidence interval widths in infinite sites plots (Inoue et al. 2010).

Ancestral Range Reconstruction

We used the R package BioGeoBEARS (Matzke 2013, 2014a, 2014b) to estimate
ancestral ranges for the species in our dated phylogenies. For this analysis, we assigned each
species to North America, Eurasia or Africa. Note that the Cape hare sensu lato is distributed
in Africa and Eurasia, but Lado et al. (2019) showed deep divergence and non-monophyly of
African and Eurasian lineages. Because our Cape hare samples represent the African lineages,
we assigned the Cape hare distribution to Africa. In BioGeoBEARS, we implemented a
maximum likelihood framework to estimate ancestral ranges under three biogeographical
models: DEC (dispersal-extinction-cladogenesis; Ree and Smith 2008), DIVA (dispersal-
vicariance analysis; Ronquist 1997) and BayArea (Bayesian Inference of Historical
Biogeography for Discrete Areas; Landis et al. 2013). For each method, we tested each model
with and without founder-event speciation (j parameter; Matzke 2014b), resulting in six
models in total: DEC, DEC+J, DIVALIKE, DIVALIKE+J, BAYAREALIKE and
BAYAREALIKE+]. The best fitting model was assessed with the likelihood ratio test (LRT),

the Akaike Information criterion (AIC) and corrected AIC (AICc).

10
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Gene Tree Discordance and Phylogenetic Networks

We performed a series of analyses to explore the amount and effect of gene tree
discordance in our dataset. To minimize misinterpreting poor phylogenetic resolution as
discordance, we retained only the filtered gene trees used as input for ASTRAL. These trees
were used to estimate a SplitsTree4 network (v4.14.6; Huson and Bryant 2006) with the
option “Consensus Network with distances as means” and a 5% weight threshold to draw a
split, and a majority rule consensus tree with RAxML (-L MRE option), including internode
certainty scores (Salichos et al. 2014). We then used DiscoVista (Sayyari et al. 2018) to plot
ASTRAL quartet frequencies around nodes of interest. Finally, we calculated Robinson-Foulds
normalized distances between gene trees and the ASTRAL species tree where individuals are
not assigned to species, and among gene trees using the function RF.dist() from the R package
phangorn (2.4.0; Schliep 2011). This metric varies between 0 (no discordance between trees)
and 1 (complete discordance).

We used PhyloNet (v3.6.6; Yu and Nakhleh 2015) to model species relationships
under the network multispecies coalescent model, using all local genealogies (tree certainty
scores > 5). Given our extensive dataset, we applied the pseudo-maximum likelihood
inference of species networks (Yu and Nakhleh 2015). We ran InferNetwork MPL (Yu and
Nakhleh 2015) with 0 up to 4 migration events (due to computational limitations), associating
individuals to species (option -a), and optimizing branch lengths and inheritance probabilities
to compute likelihoods for each proposed network (option -0). We used the best likelihoods
per run to calculate BIC and AICc following Yu et al. (2012, 2014) to compare the resulting
networks. Networks were visualized with IcyTree (https://icytree.org; last accessed July

2019).

11
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Given that the pseudo-maximum likelihood network inference is computationally
intensive (Yu and Nakhleh 2015), network support could not be inferred with bootstraps.
Therefore, we additionally used Treemix and ‘f-branch’ statistics (see below) to determine if
ancestral reticulations were consistently inferred across methods. We reconstructed ancestral
population graphs with TreeMix (v1.13, options -global, -noss and -se; Pickrell and Pritchard
2012) following the steps used to generate an SNV dataset for SVDQuartets but only

including Lepus species. We randomly phased the SNV alignments with a custom script

(available at https://github.com/evochange) and created the TreeMix input using the script

TreeMix_from_nex.py (https://github.com/mgharvey). We allowed 0 to 9 migration events

and used the white-sided jackrabbit (L. callotis) as the outgroup relative to all other Lepus

species (see Results).

Genetic Diversity, Divergence, and Admixture

We used the genomics general toolkit (https://github.com/simonhmartin/; last accessed

January 14, 2019) to estimate pairwise genetic distances (dxy) between species and nucleotide

diversity (m) within species, and a custom script (available at https://github.com/evochange)
to calculate the number of heterozygous sites per individual and the subset shared between at
least one individual of each pair of species (used as proxy for shared variation). All diversity
estimates were based on a genome-wide concatenated alignment, where we excluded sites
with missing information for > 30% of the individuals.

We then used genomics general and custom scripts (available at

https://github.com/evochange) to calculate several variants of the D-statistics (Green et al.

2010) from the informative sites in the same filtered alignment, treating the European rabbit
sequence as the ancestral state (additional details are provided in the Supplementary Materials

and Methods). Briefly, we calculated the minimum absolute value of D (Dmin) (Malinsky et al.

12
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2018) for all possible species trios. We calculated z-scores for each D value using a 1 Mb
block jackknife approach. After finding the minimum D per trio, D values with Bonferroni-
corrected P < 0.05 were considered significantly different from zero. We then calculated the
‘f-branch’ statistic (f»(C)) (Malinsky et al. 2018). The ‘f-branch’ statistic measures admixture
proportion between species C and branch b by calculating admixture proportion among all
possible f{A,B,C,0) combinations where 4 are all descendants of branch a (sister to b), B are
all descendants of branch b, and C is the donor taxa. f»(C) is the minimum fvalue across all
possible B and the median across all possible 4. A significant f»(C) value means that all
descendants B of branch b share alleles with C, which is more parsimoniously explained by
an event of ancestral introgression from C to b (Malinsky et al. 2018). Using the inferred
species tree, we determined all conformations (A,B;C,0) needed to calculate f»(C) for all pairs
of C species and b branches following Malinsky et al. (2018) with custom scripts (available at

https://github.com/evochange) and R package treeman (1.1.3; Bennett et al. 2017). For each

conformation, we calculated ‘admixture proportion’ (fc) as defined in Martin et al. (2015) and
Malinsky et al. (2018) and z-scores with 1 Mb block jackknife approach following Malinsky
et al. (2018). ‘f-branch’ values with Bonferroni-corrected P < 0.05 were considered
significantly different from zero. We also calculated fiom (Martin et al. 2015) between black-
tailed jackrabbits (P3) and several snowshoe hare populations (as P1 and P2) to evaluate
levels of admixture estimated with f5(C) for this species pair (see Results and Discussion).

We also used ABBABABAwindows.py from genomics general to estimate the fraction
of admixture (fz) (Martin et al. 2015) across 50 kb genomic sliding windows (> 100 sites, 5 kb
steps), to localize tracts of introgression in the genomes of northern latitude species. We
performed three scans testing introgression between snowshoe hares (L. americanus) as P3
and Alaskan hares (L. othus), mountain hares (L. timidus) or white-tailed jackrabbits (L.

townsendii) as alternative P2, using the Iberian hare (L. granatensis) as P1. Windows of top

13
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0.5% fa were considered significant. Following Liu et al. (2015), we considered that
significant windows in all three tests reflected introgression between snowshoe hares and the
ancestral lineage of white-tailed jackrabbits/mountain hares/Alaskan hares, while significant
windows in only one test result from recent introgression between the focal extant species.
We obtained the annotation of genes in these windows from the European rabbit reference
using biomaRt and used unique annotations to perform an enrichment analysis in g:Profiler
(accessed September 2019; Raudvere et al. 2019) using default parameters. We also
calculated dxy for f7outlier windows and the exome-wide dxy distribution between the focal
pair of P2-P3 species using popgenWindows.py from genomics general to calculate dxy in

windows of 50 kb (> 2000 sites, 5 kb steps).

RESULTS
Whole Exome Sequencing Data

Custom DNA captures showed high efficiency (32.3 average fold-enrichment) and
specificity (average 10% of sequenced bases off-target; Supplementary Table S2). Mapping
cleaned reads onto species-specific pseudo-references resulted in an average target
sequencing coverage of 16x (5-35x on average per sample; Supplementary Table S2) with
57.8 million genotyped sites per individual (Supplementary Table S2). Two lower coverage
individuals (one hare individual and one pygmy rabbit individual) and one locality duplicate
(one hare) were removed from the final dataset to maximize data quality and avoid
geographic redundancy (Supplementary Table S1). Combining new and published data, all
analyses were performed on a dataset of 15 hare species (32 individuals), one pygmy rabbit,
and the European rabbit reference genome, unless otherwise noted (see Supplementary Table

S1).
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Phylogenetic Relationships among Hares

The overall topologies of the concatenated ML phylogeny (11,949,529 positions with
no missing data) and the multispecies-coalescent species trees of ASTRAL (8,889 gene trees
estimated from 50 kb genomic intervals; alignment lengths between 1 kb and 29 kb) and
SVDquartets (45,779 unlinked SNPs) were largely concordant (Supplementary Figs. S1, S2
and S3). Most branching relationships were highly supported in general (4STRAL posterior
probabilities = 1, SVDquartets bootstraps > 90; Fig. 1 and Supplementary Figs. S1, S2, S3
and S4) with most species recovered as monophyletic (Supplementary Figs. S1, S2a and S3a).
The only exceptions involved very closely related species with disputed taxonomy, such as
paraphyly of the mountain hare with the Alaskan hare, the broom hare (L. castroviejoi) with
the Corsican hare (L. corsicanus) (Alves et al. 2008; Melo-Ferreira et al. 2012), or paraphyly
among a lineage showing deep intraspecific divergence, the Cape hare (L. capensis), with the
Ethiopian hare (L. fagani) (Lado et al. 2019) (Supplementary Figs. S1, S2 and S3 and
Supplementary Tables S3 and S4).

Our two calibration strategies recovered overlapping 95% high posterior density
(HPD) intervals of divergence times for relatively recent splits (e.g., diversification of
Eurasian and African species; Supplementary Table S5), but the Lepus-based fossil
calibrations suggested more recent ages for deeper nodes (Supplementary Table S5 and Fig.
S5). For instance, the hare radiation was estimated at ~5.83 million year ago (95% HPD 6.17-
5.34 Ma) using fossil calibrations outside Lepus, while Lepus fossil calibration sets it at ~4.05
Ma (95% HPD 5.00-3.18 Ma). All species tree analyses were consistent in showing that the
deepest branching events involved North American species: white-sided jackrabbit, black-
tailed jackrabbit, and snowshoe hare (Fig. 1b). In accordance, ancestral reconstruction of
biogeographic distributions based on the best fitting DIVALIKE+J model supported a North

America origin, with subsequent colonization of Eurasia (2.85 and 1.99 Ma for deeper and
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Lepus-fossil calibration, respectively) and Africa (1.85 and 1.33 Ma) (Fig. 1c and
Supplementary Table S6). We also found support for one or more re-colonization events of
North America from Eurasia, represented by white-tailed jackrabbits and Alaskan hares (Fig.

1 and Supplementary Fig. S6 and Table S7).

Incomplete Lineage Sorting and Introgression

We recovered a highly supported species tree across phylogenetic methods, albeit with
considerable phylogenetic discordance among sequenced regions [average Robinson-Foulds
(RF) pairwise distance between local trees was 0.73]. No local tree completely recovered the
species tree topology (minimum RF distance between gene and species tree was 0.13)
(Supplementary Fig. S7) and the majority rule consensus tree showed low internode certainty
(Supplementary Fig. S8). Phylogenetic discordance was also apparent in the ASTRAL species
tree with all but five branches showing quartet scores below 0.6 (Fig. 1b, Supplementary Figs.
S2, S4 and Tables S8 and S9). The inference of a concordant species tree across ASTRAL and
SVDquartets suggests that the low quartet scores are not highly impacted by gene tree
estimation error (Molloy and Warnow 2018). Splits network analysis of individual gene trees
also supported many alternative relationships (represented by cuboid structures connecting
alternative topologies) particularly involving deeper branches (Fig. 2). We estimated similar
levels of discordance between X-linked and autosomal genealogies and the inferred species
trees (Supplementary Fig. S7). Furthermore, a species tree inferred with X-linked data
differed from the genome-wide species tree and showed lower overall branch support
(Supplementary Fig. S9 and Table S10). Nucleotide diversity was relatively low within
species (0.13-0.63%) and overlapped with estimates of absolute genetic divergence between
species (dxy 0.17-1.11%; Supplementary Tables S3 and S4). However, these ranges reflect

some taxonomic uncertainties. For example, some instances of low interspecific divergence
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concern species with debated species-level status (e.g., the Corsican-broom hare and
mountain-Alaskan hare complexes; Alves et al. 2008; Melo-Ferreira et al. 2012), while high
diversity may reflect intraspecific cryptic divergence (e.g., snowshoe hares, Melo-Ferreira et
al. 2014; Cape hares, Lado et al. 2019).

On average, 49% of heterozygous sites where shared between species (Supplementary
Table S11). Considerable phylogenetic discordance among gene trees combined with such
high levels of shared polymorphism between species could be explained by incomplete
lineage sorting, secondary introgression, or a combination of both processes. We found that
88% of the minimum absolute D-statistics (Dmin) (Malinsky et al. 2018) for all trios of species
in our dataset were significantly different from zero (Bonferroni-corrected P < 0.05;
Supplementary Fig. S10), providing overwhelming support for gene flow either between
extant species pairs or between ancestral lineages (Malinsky et al. 2018). Our inferences of
the multispecies network coalescent implemented (Supplementary Fig. S11), ancestral
population graph reconstruction (based on 30,709 biallelic SNVs; Supplementary Figs. S12
and S13), and estimates of admixture proportions among species based on the ‘f-branch’
metric (fo(C)) (Fig. 3) were all consistent with recurrent gene flow between species layered
across the diversification of Lepus. With fb(C) (Fig. 3) and network analysis (Supplementary
Figs. S11 and S12), we detected introgression among extant species pairs within all of the
major geographic regions that are currently sympatric, suggesting ongoing or recent
hybridization. For example, strong gene flow was found between black-tailed jackrabbits and
snowshoe hares in North America (f»(C) = 19%; P = 2.04E-169), or between European brown
hares and mountain hares from Eurasia (f»(C) = 18%; P = 1.73E-233; Fig. 3 and
Supplementary Table S12). In general, we found decreased admixture proportions with
increased genetic divergence between species, although this correlation was only significant

when considering species with non-overlapping distributions (Fig. 4). Several species pairs
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with current contact zones showed admixture even when genetic divergence was relatively
high, such as snowshoe hares and black-tailed jackrabbits (dxy = 0.97%; TMRCA ~ 4.8 Ma,
Supplementary Fig. S5 and Tables S4 and S5).

We also found evidence for introgression between ancestral populations, which has
likely affected deeper branches of the species tree. These ancestral events were detected as
network reticulations, as significant fb(C) values among ancestral branches (y-axis in Fig. 3)
or similar admixture levels shared among species within clades (x-axis in Fig. 3). We detect
ancestral events of introgression connecting major clades within Eurasia (e.g., European hares
and the ancestor of the mountain hare/Alaskan hare/white-tailed jackrabbit clade), African
and Eurasian lineages (e.g., ancestral of all African species and the Corsican and broom hare
ancestral), and Eurasian and North American lineages (e.g., snowshoe hares and the ancestral
lineage of the mountain hare/Alaskan hare/white-tailed jackrabbit; Fig. 3, 4, Supplementary
Figs. S11 and S12, and Table S12). Finally, we found significant introgression among species
from different continents, such as North American hares and species from Africa and Western
Europe (Fig. 3 and 4), which was also suggested by a network with two reticulations and by
ancestral population graph reconstruction (Supplementary Figs. S11c and S12). These results
suggest that introgression affected the very early branches of the Lepus radiation, and that the
genetic legacy of these gene flow events persists in the gene pool of descendant species today

(Fig. 3 and 4).

Genes affected by Ancestral Introgression

We consistently detected ancestral introgression between the ancestors of coat color
changing species in our dataset: white-tailed jackrabbits, mountain hares, Alaskan hares, and
snowshoe hares (Fig. 3 and Supplementary Fig. S11). Motivated by recent work showing that

introgressive hybridization has shaped local adaptation in seasonal coat color changing
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species (Jones et al. 2018, 2020a; Giska et al. 2019), we examined the contribution of gene
flow to standing variation and local adaptation in these species. We detected 119 putative
windows of ancient introgression across all major chromosomes, highlighting the genome-
wide contribution of ancestral introgression (Fig. 5; Supplementary Table S13). The fa outlier
windows of ancestral introgression contained 54 annotated genes (Supplementary Table S14).
This set of genes was enriched for the gene ontology term “E-Box binding” (3 of the 54
genes; Supplementary Table S15), a DNA motif found in the promoters of many genes,
suggesting that genomic regions affected by ancient introgression may be enriched for
transcription factors involved in trans-regulation of gene expression. Among these
transcription factors we found the circadian clock related gene ARNTL?2 (Sasaki et al. 2009)
and pigmentation related gene TCF4 (Furumura et al. 2001; Le Pape et al. 2009) (Fig. 5). In
addition, the list of 54 genes includes a gene involved in brown fat differentiation (EBF2,

Rajakumari et al. 2013), and a photoreceptor-related gene (PDEG6H; Kohl et al. 2012).

DISCUSSION

We used phylogenetic analyses of whole exome data to tease apart signatures of
stochastic lineage sorting and admixture across the evolutionary history of the Lepus
radiation. By accounting for these sources of phylogenetic discordance, we were able to
detect pervasive introgression across the evolution of this recent and rapid mammalian
radiation. Below we discuss the biogeographic and evolutionary implications of our analyses,
focusing on the long-term impacts of temporally layered hybridization in shaping patterns of

shared genetic variation within and among extant species.

The Effect of Persistent Gene Flow on Phylogenetic Inference
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We present a resolved genome-wide phylogeny for the genus Lepus despite extensive
incomplete lineage sorting and pervasive gene flow. Our genome-wide analysis covered all
major lineages across the worldwide range of hares, substantially extending previous analyses
based on more limited genetic sampling (Halanych et al. 1999; Melo-Ferreira et al. 2012; Ge et
al. 2013; Tolesa et al. 2017). A systematic evaluation of species limits and hare taxonomy is
beyond the scope of our work, as it would require genome-wide data from an expanded inter
and intraspecific sample. However, our sampling should not bias the estimated phylogenetic
relationships and may even underestimate species diversity. Thus our inferences of shared
variation across species are likely to be conservative.

To estimate species relationships, we combined species tree inferences that do not
account for gene flow with network-based inferences that explicitly consider introgression. The
resulting topologies were generally consistent between methods when considering up to three
reticulations (Fig. 1 and Supplementary Fig. S11). However, there were limits to this approach.
For example, the alternative placement of European, Corsican, and broom hares, as closer to
the Eurasian or African Lepus clades depended on the number of reticulations considered
(Supplementary Fig. S11). This uncertainty likely reflects long-term admixture among Eurasian
and African lineages, including the European hare (Fig. 3 and Supplementary Fig. S11) whose
range overlaps with species from both continents (Fig. 1a). Another example is the alternative
sister relationship of snowshoe hares and black-tailed jackrabbits in the network with no
reticulation (Supplementary Fig. S11), which could result from ancestral introgression between
these species (see below). While an increased number of reticulation events could better
represent the widespread gene flow uncovered in our work, allowing for more than three
reticulations resulted in increased branch compression and therefore did not help resolve gene-

to-gene incongruences (Supplementary Fig. S11; Yu and Nakhleh 2015; Wen et al. 2016).

20



497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

Introgression in Hares

We found that gene trees constructed from X-linked loci or autosome-linked loci
showed similar levels of discordance with the exome-wide species tree (Supplementary Fig.
S7). In general, the X chromosome could be expected to show less phylogenetic discordance
due to its smaller effective population size and faster lineage sorting, and a tendency to
accumulate hybrid incompatibilities (i.e., the large X-effect; Fontaine et al. 2015; Edelman et
al. 2019; Li et al. 2019). Although there is evidence for reduced X-linked gene flow between
some hybridizing European lineages (Seixas et al. 2018), very little is known about the
genetic architecture of reproductive isolation between hare species. Moreover, less
phylogenetic discordance of loci involved in reproductive isolation may not be always
expected, particularly when speciation events are clustered in time (Wang and Hahn 2018) as

is the case in Lepus (Supplementary Fig. S5).

The Timing and Biogeography of the Lepus Radiation

Our results suggest that the Lepus diversification followed major climatic shifts that
occurred during the late Miocene, Pliocene and Pleistocene, similar to other terrestrial
mammals (Simpson 1947; Ge et al. 2013). We inferred a North American origin between 5.83
Ma and 4.05 Ma [deeper or Lepus fossil calibrations, respectively, in agreement with Hibbard
(1963), Halanych et al. (1999), Melo-Ferreira et al. (2012) and Ge et al. (2013)], coinciding
with a global cold and dry period of the late Miocene that favored the expansion of grasslands
worldwide (Osborne and Beerling 2006; Ge et al. 2013). The establishment of the Bering land
bridges during late Pliocene and Pleistocene glacial periods (Simpson 1947; Hopkins 1959;
Cook et al. 2016) may have allowed the subsequent colonization of Eurasia (~2.77-1.99 Ma).
Finally, we inferred secondary colonization of North America from Eurasia within the last 1

million years (Fig. 1 and Supplementary Figs. S5 and S6; Halanych et al. 1999), in agreement
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with the Eurasia-North America exchange of cold-adapted fauna during Pleistocene glacial
periods (Simpson 1947; Hoberg et al. 2012).

We note that our finding of pervasive introgression may distort aspects of these
biogeographic inferences (Leaché et al. 2014; Solis-Lemus et al. 2016; Long and Kubatko
2018; Liet al. 2019; Jiao et al. 2020). If the inferred topology of the Lepus phylogeny is
correct, as discussed above, then the general biogeographic reconstructions are probably
robust. However, the timing of these events remains tentative given potential estimation bias
caused by ancestral gene flow (Leaché et al. 2014; Li et al. 2019) and a lack of varied,

independent, and reliable calibration points.

The Legacy of Introgression during the Rapid Radiation of Hares

Our inferences indicate that lineages often hybridized when they came into contact
during the worldwide expansion of Lepus. Some of the inferred reticulation events overlap
with known recent introgression, such as between mountain hares and European hares
(Levénen et al. 2018) or between snowshoe hares and black-tailed jackrabbits (Jones et al.
2018, 2020a). However, our analysis also revealed prevailing signatures of deeper
hybridization between ancestral populations, suggesting a persistent contribution of secondary
introgression during the diversification of hares. These past hybridization events have resulted
in extensive shared polymorphism among extant species (Fig. 3 and Supplementary Tables
S11, S12 and Figs. S10, S11 and S12), with significant admixture still detected among species
with non-overlapping distributions, even from different continents (Fig. 3 and Fig. 4).

Our analyses highlight how ancient gene flow can obscure accurate detection of
contemporary hybridization. Similar to other systems (Malinsky et al. 2018; Edelman et al.
2019; Li et al. 2019), we estimated high levels of introgression based on D-statistics (e.g.,

88% of Dmin values across all possible species trios were significant), but less reticulation
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after taking phylogeny into account (e.g., 33% of ‘f-branch’ statistics were significant). These
findings suggest that phylogenetic correlation causes non-independence of summary-statistics
and can thus lead to false pairwise inferences of gene flow between species (Eaton et al. 2015;
Malinsky et al. 2018; Li et al. 2019). Given these results, signatures of hybridization among
closely related species should be interpreted in the context of broader phylogenetic
relationships whenever possible.

We also detected some discrepancies between the magnitude of gene flow inferred
here and in previous works, which underscores the challenges of quantifying introgression
across a reticulating radiation. For instance, we inferred substantial admixture proportions
between black-tailed jackrabbits and snowshoe hares (f»(C) = 19%, Fig. 3 and Supplementary
Table S12). These estimates are one order of magnitude higher than recent studies suggesting
that ~2-3% of genomic variation in the Pacific Northwest snowshoe hare populations
descends from hybridization with black-tailed jackrabbits in the last ~10,000 generations
(Jones et al. 2018, 2020a). Ancient introgression persisting in all snowshoe hare populations
could reconcile this discrepancy. Indeed, we recovered consistent results (fnom ~3%) when we
infer admixture proportions among black-tailed jackrabbits and different snowshoe hare
populations (Supplementary Table S16), which likely reflects recent and geographically
localized introgression. However, our estimates of overall admixture proportions between
these species should be taken with caution as they depend on the accurate reconstruction of a
short internal branch not fully supported across methods, and a species (snowshoe hare) that
has been involved in multiple instances of introgression with different hare lineages (Fig. 3, 5
and Supplementary Table S12 and Fig. S11).

Introgression between species is often limited by purifying selection against hybrid
incompatibilities (Schumer et al. 2018; Edelman et al. 2019), which agrees with the

predominantly negative consequences of hybridization (Mayr 1963). Nonetheless,
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hybridization is also expected to produce novel allelic combinations that increase phenotypic
variation (Grant and Grant 2019; Marques et al. 2019). If coincident with ecological
opportunity, introgressed variation could broadly facilitate adaptation (Grant and Grant 2019;
Taylor and Larson 2019). Recent work has shown at least two instances where introgression
between Lepus species has driven local adaptation (Jones et al. 2018; Giska et al. 2019), and
standing introgressed variation may have contributed even more generally to adaptation
during the radiation. We found that genetic variation introduced by ancient hybridization can
persist through several speciation events (Fig. 3 and 4).

While much of large reservoir of shared variation may reflect stochastic sorting of
neutral variation, some may have been maintained by selection (Guerrero and Hahn 2017,
Jamie and Meier 2020) and helped facilitate colonization of the diverse habitats currently
inhabited by hare species, from desert to arctic environments (Ge et al. 2013; Smith et al.
2018). In this respect, introgression between the ancestor of mountain hares/Alaskan
hares/white-tailed jackrabbits and snowshoe hares (or an ancestral lineage) is particularly
intriguing. These four species have adapted to highly seasonal environments through striking
forms of phenotypic plasticity (e.g., seasonal coat color change; Mills et al. 2013; Zimova et
al. 2018) that have been at least partially shaped by adaptive introgression at the Agouti
pigmentation gene from non-color changing species (4SIP; Jones et al. 2018; Giska et al.
2019). Here we estimated that a pulse of ancient introgression occurred at least 0.71 Ma
(Lepus fossil calibration; Supplementary Fig. S5 available on Dryad) and affected genomic
regions containing genes associated with circadian rhythm regulation (ARNTL2; Sasaki et al.
2009), pigmentation (7CF4; Furumura et al. 2001; Le Pape et al. 2009), thermoregulation
(EBF2; Rajakumari et al. 2013) and visual perception (PDE6H; Kohl et al. 2012). While 4SIP

would also be a likely candidate for adaptive introgression between these lineages (Jones et
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al. 2018), our exome sequencing coverage of this region was too sparse for detailed window-
based analysis.

The functions of these introgressed genes overlap with common physiological
adaptations of northern latitude animals to seasonal conditions, such as higher metabolic
rates, regulation of body temperature and non-shivering thermogenesis (Hart et al. 1965; Feist
and Rosenmann 1975; Rogowitz 1990; Pydrnila et al. 2008; Sheriff et al. 2009), seasonal
camouflage (Grange 1932; Hewson 1958; Hansen and Bear 1963; Mills et al. 2018; Zimova
et al. 2018), and visual acuity in response to dim winter light in northern latitudes (Stokkan et
al. 2013). Furthermore, the functions of two of these genes, pigmentation and circadian
rhythms, are linked to pathways activated during seasonal coat color changing molts (Ferreira
et al. 2017, 2020). The functional relevance of these candidates to local adaptation must await
further testing. Nonetheless, substantial introgression along the rapid diversification of a
group of organisms, as we describe here, may bolster genetic variation within species and
have a greater role in local adaptation than previously anticipated (Grant and Grant 2019;
Taylor and Larson 2019). However, we also cannot exclude that some of these shared variants
have been maintained by long-term balancing selection rather than secondary introgression
(Supplementary Fig. S14; Smith and Kronforst 2013; Liu et al. 2015; Guerrero and Hahn
2017). Regardless of origin, the Lepus radiation provides an intriguing system by which to
test the long-term evolutionary importance of shared genetic variation across a rapid

radiation.

SUPPLEMENTARY MATERIAL

Raw sequence reads used in this article are available in the National Center for
Biotechnology Information (NCBI) Sequence Read Archive (SRA) under accession numbers

SRR 12020579 to SRR12020510 and BioProject number PRINA639005. Supplementary
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materials, including data files and/or online-only appendices, can be found in the Dryad
Digital Repository (doi:10.5061/dryad.bzkh18967). The pipeline and custom scripts used for

this study are available at https://github.com/evochange.
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FIGURE LEGENDS

Fig. 1 - Hare (Lepus spp.) evolutionary history and biogeography. (a) The distribution of
the 15 hare species studied in this work obtained from the IUCN database
(http://www.tucnredlist.org); (b) Coalescent species tree estimated with ASTRAL assigning
individuals to species groups (n > 1 except for the white-sided jackrabbit); (¢) Ancestral range
reconstruction under the DIVALIKE+]J model implemented in BioGeoBEARS on the
divergence time tree estimated with MCMCtree and calibrated with deep fossil calibration
points. Pie charts represent the probability of each potential range, and squares represent the
current range of extant taxa. Node labels represent estimated divergence times in millions of
years. Confident intervals, an alternative biogeographic reconstruction based on Lepus fossil
calibrations and ancestral ranges for the shoulders of the tree are provided in Supplementary

Material.

Fig. 2 - The hare (Lepus spp.) species tree is underlined by extensive gene tree
incongruence. Split network constructed from 8889 gene trees (5% threshold) shows
discordance among the gene tree topologies (cuboid structures represent alternative
topologies) in deeper nodes of the species tree. Species are marked in accordance with the

continents where they are distributed.

Fig. 3 — Admixture events are distributed across the hare (Lepus spp.) species tree. The
‘f-branch’ statistic f»(C) represents excess allele sharing between branches b (y-axis) and C
(x-axis) of the species tree in Figure 1b. The gradient represents the f»(C) score, dark gray
represents tests not consistent with the species tree (for each branch b, having itself or a sister

taxon as donor C) and asterisks denote block jackknifing significance at P < 0.05 (after
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Bonferroni correction). Tips of the tree are marked according to their current distribution, and
ancestral tips (dashed lines and labeled with letters) are marked according to the ancestral
range reconstruction in Figure 1c (two colors represent the inference of two ranges with
equivalent (~0.5) probability). Ancestral tips are labeled from A to L corresponding to labels

in Supplementary Table S11 available on Dryad.

Fig. 4 — Admixture proportions decrease with genetic divergence between allopatric
species. We plot the “f-branch’ (f»(C)) values against exome-wide divergence (dxy) for extant
species pairs, differentiating species with overlapping (sympatric/parapatric) or non-
overlapping (allopatric) distributions. The tendency line represents a linear regression relating

dxy and all (significant and non-significant) f»(C) values calculated with function /m() in R.

Fig. 5 — The impact of ancestral introgression on extant northern latitude species. (a)
Events of past and recent admixture inferred in this study involving snowshoe, Alaskan hares,
mountain hares and white-tailed jackrabbits. The arrow indicates the direction of ancestral
introgression inferred by PhyloNet and ‘f-branch’ and dashed lines indicate recent
introgression inferred with ‘f-branch’. Values above the lines represent admixture proportion
(f) estimated with ‘f-branch’ or inheritance probability (IP) estimated with PhyloNet; (b)
Genomic distribution of ancestral blocks of introgression (circles) inferred as shared outlier
windows among fraction of admixture (fz) analysis testing for admixture among snowshoe
hares and each one of the three other northern latitude species. Tests were run in 50 kb

genomic sliding windows, and outlier windows are in the top 0.5% of the fzdistribution.
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