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Abstract—Significance: A number of movement intent de-
coders exist in the literature that typically differ in the algo-
rithms used and the nature of the outputs generated. Each
approach comes with its own advantages and disadvantages.
Combining the estimates of multiple algorithms may have better
performance than any of the individual methods.

Objective: This paper presents and evaluates a shared con-
troller framework for prosthetic limbs based on multiple de-
coders of volitional movement intent.

Methods: An algorithm to combine multiple estimates to
control the prosthesis is developed in this paper. The capabilities
of the approach are validated using a system that combines
a Kalman filter-based decoder with a multilayer perceptron
classifier-based decoder. The shared controller’s performance
is validated in online experiments where a virtual limb is
controlled in real-time by amputee and intact-arm subjects.
During the testing phase subjects controlled a virtual hand in
real time to move digits to instructed positions using either a
Kalman filter decoder, a multilayer perceptron decoder, or a
linear combination of the two.

Results: The shared controller results in statistically signifi-
cant improvements over the component decoders. Specifically,
certain degrees of shared control result in increases in the time-
in-target metric and decreases in unintended movements.

Conclusion: The shared controller of this paper combines
the good qualities of component decoders tested in this paper.
Herein, combining a Kalman filter decoder with a classifier-
based decoder inherits the flexibility of the Kalman filter de-
coder and the limited unwanted movements from the classifier-
based decoder, resulting in a system that may be able to perform
the tasks of everyday life more naturally and reliably.

Index Terms—Kalman Filter, Movement Intent Decoders,
Shared controllers, Neural Networks, Multilayer Perceptron

I. INTRODUCTION

Interpreting movement intent from biological signals is
a key component of limb neuroprostheses. Such pros-
theses are controlled by interpreting motor intent using
biological signals including electromyograms (EMG), elec-
troencephalograms (EEG), neuronal signals acquired via
implanted electrode arrays in the cerebral cortex, and
neuronal signals obtained via electrode arrays implanted
in peripheral nerves.

* These authors contributed equally to this paper.
H. Dantas was with the School of Electrical Engineering and Computer

Science, Oregon State University, Corvallis, OR 97331 USA. He is now with
Microsoft, Redmond, WA 98052 USA. (e-mail:hedantas@microsoft.com).

T. C. Hansen and D. J. Warren are with the Department of Biomedical
Engineering, University of Utah, Salt Lake City, UT 84112 USA (e-mail:
taylor.c.hansen@utah.edu; david.warren@utah.edu).

V J. Mathews is with the School of Electrical Engineering and Computer
Science, Oregon State University, Corvallis, OR 97331 USA
(e-mail:mathews@oregonstate.edu).

A number of different movement intent decoders have
been presented in the literature. These include Wiener
filters [1], [2], probabilistic methods [3], [4], and recursive
Bayesian decoders such as Kalman filters (KF) [5]–[15] to
estimate kinematic intent. Many KF-based decoders try to
incorporate nonlinear aspects of the neuromuscular system
in the decoders [6], [9], [11], [12], [16]. Modern machine
learning algorithms, such as extreme machine learning [17],
radial basis networks [18], recurrent neural networks [19],
and deep and reinforcement learning algorithms [20]–[25]
have also been used to infer the relationship between
kinematic movements and biological signals. All the de-
coders presented above are capable of estimating move-
ments simultaneously and continuously in all the degrees
of freedom (DoFs) of the limb, making them members
of the class of continuous decoders. As the number of
DoFs increases, these methods have a tendency to present
unwanted movements in some DoFs, which we refer to as
cross-movement artifacts. In addition, we may also see jitter
in the movements.

A second approach to interpreting movement intent
from biological signals is to use classifier-based decoders.
Classifier-based algorithms first identify the movement type
as one of a finite number of predetermined movement
types and then generate a controller trajectory that moves
the prosthetic along the path prescribed by the movement
type. These methods allow only a limited set of prosthetic
movements, but tend to produce less crosstalk and jitter
than the class of continuous decoders [26]. Classifier-based
algorithms that employ linear classifiers [27], support vec-
tor machines [28], Gaussian mixture models [29], naïve
Bayes decoders [30] and multilayer perceptron (MLP) neural
networks [31] have been described in the literature. Re-
cently, deep learning neural network-based decoders have
shown improvements over traditional machine learning
approaches to classify hand positions [32]–[35].

A third class of decoders estimates the movement goal
from biological and/or other types of sensor signals. Mul-
liken et al. [8] incorporated a goal estimate into the KF
framework. Hotson et al. [10] proposed a KF-based frame-
work that incorporated a camera-based goal estimate in the
decoding system. These decoders exhibited a performance
improvement over continuous decoding methods, but they
may also require large training datasets with a diverse set
of movements in different scenarios.

Each decoder algorithm possesses its own unique ad-
vantages. In this paper we present an approach that com-
bines multiple decoders to create a single movement in-



2 IEEE TRANS. ON BIOMEDICAL ENGINEERING, VOL. XX, NO. Y, DECEMBER 2020

tent decoder and consequently a prosthetic controller that
shares the positive characteristics of each of the component
decoders employed by the system. We validated the algo-
rithm’s capabilities in amputee and non-amputee human
subjects performing online movement tasks in a virtual
environment, where the subjects controlled a virtual hand
in real time. The shared controller approach used in the
experimental validation decoded EMG signals with a linear
combination of an MLP classifier-based decoder and a KF-
based decoder.

A preliminary version of this work was presented at a
conference, but the content of this paper differs substan-
tively from the conference proceeding paper [36]. First,
this paper generalizes the approach in [36] to combine
arbitrary decoders to produce a shared controller. Unlike
our preliminary work in [36] that presented a shared con-
troller combining a simulated goal estimator with a Kalman
filter-based decoder, this paper presents a complete shared
controller implementation involving a Kalman filter and a
classifier-based controller. Finally, this paper includes the
results of an extensive set of experiments involving amputee
and intact-arm subjects.

The rest of this paper is organized as follows: Section
II develops the shared controller framework for decod-
ing signals and also how to train the system. Section III
describes the experiments and the decoding algorithms
employed in this work. Experimental results are provided
in Section IV. A discussion of the experimental results and
the evaluated algorithms are presented in Section V. Finally,
the concluding remarks are made in Section VI.

II. METHODS

Broadly, the function of any prosthesis controller is
to interpret the desired action from biological and other
auxiliary signals related to movements. The objective of a
shared controller is to combine the estimates of B different
decoders based on their input signals and the current state
of the system to produce the desired limb trajectory. For
example, a shared controller could inherit the flexibility of
a continuous decoder that can replicate the broad range of
movements possible with a native hand and a classification-
based decoder that generates small amounts of cross move-
ment artifacts and jitter.

We define the state, sk , of the system at the time sample
k as the union of the most recent H1 instances of the
measured biological signals Zk = [z1,k , ..., zN ,k ]T and the
most recent H2 instances of the position of the prosthetic
limb Xk = [x1,k , ..., xM ,k ]T . Here zi ,k is the feature datum
from the i th measurement channel at time k, N is the
number of measurement channels, x j ,k is the limb position
along the j th DoF at time k, and M is the number of DoFs
of the limb. That is,

sk = [Zk , ..., Zk−H1+1, Xk , ..., Xk−H2+1] (1)

and the control signal of the bth decoder is

ub
k = X̂ b

k+1 = fb(sk ,θb) (2)

where fb(·) is the bth decoder fully described by the param-
eters θb and its output is interpreted as the bth prediction
of the next position of the system. The kinematic position
of the prosthetic limb, Xk+1, is a combination of the output
of all the component decoders. Herein, we use the notation
(̂·) to refer to an estimation of (·); for example, in (2), X̂ b

k+1
is the estimate of X b

k+1 predicted as fb(sk ,θb).

We assume that the system evolves according to the
Markov assumption, where the next state of the limb,
sk+1, only depends on the current state, sk . That is,
p(sk+1|sk , ..., s1) = p(sk+1|sk ). Let τa given by

τa =
La−1⋃
i=1

(
sa

i ,Fc (ua,1
i , ...,ua,B

i )
)⋃

sa
La

(3)

be a trajectory in the training set acquired in response
to a commanded movement X a

k . Here, Fc (·) is a mixing
function responsible for combining the different decoder
outputs into the estimate of the next kinematic state X̂k+1,
La is the number of samples in the desired trajectory, and
sa

i and ua,b
i represent the state and bth decoder output

in the i th time step, respectively, in the a-th trajectory.
Let τ = ⋃A

a=1 τa represent the training set consisting of A
independent trajectories.

During the training phase, the prosthetic positions are
determined by the commanded movement, that is sa

k =
[Z a

k , ..., Z a
k−H1+1, X a

k , ..., X a
k−H2+1]. In this stage, the objective

is to learn the set of parameters θb associated with the
bth decoder for 1 ≤ b ≤ B . As the number of possible
decoders increases, the number of ways in which they
can be combined also increases. Consequently, it is not
practical to train all decoders at once, especially when
training involves data collected from a single human user of
the prosthetic. Instead, we follow ideas similar to ensemble
learning [37], where the decoders are trained separately
and their outputs are combined during the testing and
operational phase. The decoder parameters θb are fitted to
minimize the following objective function for each choice
of b:

J (θb) = 1

A

A∑
a=1

1

La −1

La−1∑
i=1

||X a
i+1 − fb(sa

i ,θb)||2 (4)

where || · || represents the L2-norm.

We used a gradient descent approach given by

θb = θb −αb∇θb
J (θb) (5)

to minimize the above cost function. Here, αb is a positive
non-zero number interpreted as the learning rate and ∇θb

J
is the gradient of J with respect to θb . The gradient of the
objective function is given by

∇θb
J (θb) =− 1

A

A∑
a=1

1

La −1
La−1∑
i=1

[
[X a

i+1 − fb(sa
i ,θb)][∇θb

fb(sa
i ,θb)]T ]T

(6)

The parameters are updated until a maximum number of L
iterations are reached. In our implementation, we employed
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a dropout strategy to mitigate problems with over-fitting
[38]. We may also terminate the updating process before
reaching L iterations if the decoding error is less than a
predetermined threshold T corresponding to an acceptable
level of performance of the decoder; however, we did not
employ an early termination criterion in our analysis.

Once the systems are trained, the parameters θb are kept
static while operating the prosthetic system. During the op-
erational phase, the prosthetic positions are a collection of
past estimates, that is sk = [Zk , ..., Zk−H1+1, X̂k , ..., X̂k−H2+1].

The derivation provided above is very general. This
framework is capable of mixing multiple decoders with dif-
ferent advantages into a single and potentially more effec-
tive decoder. There are no restrictions placed on component
decoders in this framework, and therefore they can belong
to any of the types discussed in the introduction including
neural networks and Kalman filters. The shared controller
framework derived above is summarized in Algorithm 1.

Training phase
Collect training data
while Stop Criteria Not Match do

Train all B decoders using (5) and (6)
end
Online Phase
foreach time instant, k do

foreach Decoder, b do
Estimate the decoder output, ub

k , using (2)
end
Calculate X̂k+1 as X̂k+1 = Fc (u1

k , ...,uB
k )

Update the system state, sk+1, based on the
estimated hand position X̂k+1

end
Algorithm 1: The shared prosthetic control algorithm.

III. EXPERIMENTAL PERFORMANCE EVALUATION

A. Shared Controller Architecture

We evaluated the performance of the shared-controller
of Section II using an implementation that estimated the
next kinematic state of the prosthesis, X̂k+1 as a linear
combination of the estimates of the individual decoders,
i.e.,

X̂k+1 = Fc (u1
k , ...,uB

k ) =
B∑

b=1
βbub

k (7)

where βb ’s are the mixing parameters for the different
decoders with

∑B
b=1 βb = 1 and all βb are non-negative.

We selected the mixing function, Fc (·), as a weighted linear
combination for simplicity, but the methodology does not
require this.

In this study, two component decoders were employed,
i.e., B = 2. Given that only two decoders were combined,
β2 = 1−β1. Herein, we refer to β2 as the mixing parameter.

The shared control architecture was a linear combina-
tion of two EMG-based decoders: a KF-based continuous
decoder and an MLP classifier-based decoder. As discussed

earlier, continuous decoders like KFs can control multiple
DoFs simultaneously but may suffer from jitter and cross-
movement errors. Combining such a decoder with another
decoder that has low jitter and cross-movement errors,
such as an MLP-based classifier, may result in a prosthetic
controller that inherits the good qualities of the component
decoders.

To validate this conjecture, we used the KF decoder
reported previously in [39]. This KF employed a state vector
containing M elements, and the observation vector con-
sisted of N observations. This implies that the KF predicted
the kinematic state based on the current state only, and no
memory was added to the model. The MLP-based classifier
consisted of two hidden layers with 128 hidden nodes in
each layer and a rectifier linear unit (ReLU) as the activation
function. The input of the classifier is a vector of dimension
N ×H1. We used H1 = 6 in the experiments. Our parameter
choices in the experiments presented the best performance
in pilot experiments not included here.

The classifier assumed 13 possible classes: the 12 flex-
ion/extension positions described in Section III-B and one
class for all DoFs in rest position. During online testing,
the MLP classifier’s output was the current DoF positions
plus some δT in the direction of the intended movement as
classified by the MLP. In the experiments described here, we
used δT = 0.1. This value presented the best performance
in pilot experiments not included here. In this work, the
maximum number of training iterations was set to 100
(L = 100). The dropout rate was set to 0.5 as commonly
done in practice.

To explore the effectiveness of sharing control, a range of
mixing parameter values was tested. The values used were
β2 = [0, 0.15, 0.25, 0.4, 0.5, 0.6, 0.75, 1.0] with a value of 0
representing full KF control, a value of 1.0 representing full
MLP control, and intermediate values representing shared
control. This range of values was chosen as a result of pilot
data not included in this paper.

B. Experimental Setup

The results presented here are from three transradial
amputee subjects and six intact-arm subjects (Table 1).
All human studies were approved by the University of
Utah’s Institutional Review Board under IRB Protocol 98851
on Feb. 28, 2017. Informed written consent was obtained
from all subjects prior to the studies. Three of the intact-
arm participants had previous experience with myoelectric
prostheses, and one of these is a co-author. All subjects used
their dominant arm; in the case of the amputee subjects,
this was the arm they used most often with a prosthesis.

Surface EMG (sEMG) signals from the forearm of the
intact-arm subjects and the residual limb of the three
amputee subjects were acquired using 32 surface elec-
trodes spaced 2 - 4 cm from each other across the full
circumference and length of the forearm to record from
extrinsic flexors and extensors [40]. Feature acquisition is
similar to prior reports [41]. The 32 single-ended sEMG
signals were acquired at 1 kHz sampling rate by a Grapevine
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TABLE I
SUBJECT DEMOGRAPHICS

Subject Gender Age Time Since Amputation Description Arm used for Prior Myoelectric
(yr) Amputation (yr) Experiments Prosthesis Experience?

AS-1 F 50 4 Left transhumeral, Right No
right transradial
due to trauma

AS-2 F 69 4 Left transradial and Right No
all but two digits on
right due to trauma

AS-3 M 64 2 Bilateral transradial Right No
due to trauma

IS-1 M 23 N/A N/A Right Some
IS-2 M 27 N/A N/A Right No
IS-3 M 24 N/A N/A Right No
IS-4 M 24 N/A N/A Left No
IS-5 M 27 N/A N/A Left Extensive
IS-6 M 25 N/A N/A Right Extensive

Neural Interface Processor system (Ripple, Salt Lake City,
UT) using a proprietary front-end amplifier. These signals
were filtered with a 6th-order Butterworth high-pass filter
with corner frequency at 15 Hz, a 2nd-order Butterworth
low pass filter with corner frequency at 375 Hz, and 60, 120,
and 180 Hz notch filters. Differential EMG signals for all 496
possible combinations of the 32 single-ended channels were
calculated in software. For each of the 528 single-ended
and differential EMG channels, the mean absolute value
(MAV) was calculated over a 33.3 ms window of time and
subsequently smoothed with a 300 ms rectangular window.
In our previous work [22], different features described by
Hudgins et al. [42] were considered. However, decoders
trained with only the MAV features provided the best
performance for sEMG decoding. Consequently, the results
described here are based on MAV of EMG signals. To reduce
the dimensionality and the computational complexity of the
decoders, a forward selection operation, including Gram-
Schmidt orthogonalization after every iteration of selecting
a channel, was performed on the features in the training
data [16]. The best 48 features were used as input features
for the decoders in the experiments, following Nieveen et
al. [16].

The sEMG data were recorded while the subject followed
a set of predetermined movements of a virtual hand (Mus-
culoskeletal Modeling Software [43]) with their phantom or
real hand (Fig. 1). The virtual environment modeled a hand
with the following 12 movements: flexion and extension of
each of the five digits in isolation and simultaneous flexion
and extension of all five digits. Each DoF’s range of motion
was normalized to the [−1, 1] range, where the relaxed
position corresponded to zero value, maximum extension
corresponded to -1, and maximum flexion corresponded
to 1. If the participant had not previously worked with
the virtual hand, they were given a brief freeform practice
run of training and testing that was not included in the
data analysis. This was to minimize errors associated with
unfamiliarity with the testing environment.

After any initial practice, data from a period of time

Fig. 1. Experimental setup used in this work. The volunteer had sEMG
electrodes attached on his skin and was asked to follow the movements
shown on the screen using his phantom hand. The screen was used to
show the movements during the training phase. During the testing phase,
the screen showed the targets for each digit (as circles) and the decoded
position of the hand. The target was colored green if the decoded position
placed its digit in the target region, and red if it did not.

with no activity of the limb was recorded for calculating
the baseline noise of the incoming data channels. The per-
feature MAV value from this baseline period was subtracted
from each feature prior to use in training and testing of
algorithms.

During training, the subjects were instructed to mimic
movements of a hand displayed in the virtual reality en-
vironment with their phantom or intact hand simultane-
ously with recording of the sEMG signals. Each of the 12
movement types described above was repeated six times,
with small variations in the movement extent, velocity, and
hold time for each repetition. The instructed movements
followed a semi-sinusoidal path at velocities deemed com-
fortable by the subject and included target positions at ±0.8
or ±1.0 of the normalized range for each DoF. Using these
data, both the KF and MLP were trained, and the subject
was then given real-time control of the virtual hand.

Testing consisted of a target-touching task with the virtual
prosthetic hand. Participants were asked to move all DoFs
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of the hand to indicated target regions, representing one
of the 12 movement types, and hold all DoFs in the target
region for as long as possible during each 7 s long trial.
The target regions were newly-indicated positions for each
DoF with a tolerance of ±10% of the full range of the
DoF. All stationary DoFs were instructed to be at the rest
position. Participants had color-coded visual feedback to
know if the virtual hand was in the indicated target region.
As in training, testing trials were sequential in nature, with
all trials of one movement type being completed before
moving to the next. Although the 12 test movements were
nominally the same as those during training, the targets
were at 50% of full flexion/extension.

During the testing period, participants completed three
sessions with several minutes of resting between sessions. A
session consisted of completing all eight trials (one for each
value in β2 described in Section III-A) for all 12 movement
types (96 trials per session). Each of the eight trials within
a movement type had a different mixing value applied in a
shuffled order such that no values were repeated. The ex-
periment was double-blinded, preventing even participants
familiar with the experimental setup (and the experimenter)
from knowing the mixing parameters for a given trial. One
of the intact-arm subjects (IS-3) completed just two sessions
due to complications with electrode placement before his
third session (for a total of 192 trials).

C. Performance Analyses

In order to perform comprehensive data analysis for
the experiments, we used three performance metrics: time
in the target region, root-mean-squared error (RMSE) be-
tween the target region and DoFs performing intended
movements, and RMSE between the target region and
DoFs instructed to be stationary. In order to define these
metrics, we first define the target region associated with
each commanded movement. If xDM

j is a single number
that represents the desired goal for the j th DoF, the target
region is defined by the interval [xDM

j −∆R, xDM
j +∆R], with

∆R = 0.1 for all analyses presented in this paper. Then, the
RMSE for intended movements is calculated as

DM =
√√√√ 1

H Mm

H∑
k=1

Mm∑
j=1

(max(|xM
j ,k −xDM

j |−∆R,0))2 (8)

where xM
j ,k is the decoded position of the j th DoF that

was instructed to move at the kth time bin, and Mm DoFs
were instructed to move. This metric covers the complete
duration of each commanded movement. The RMSE for un-
intended movements (also called cross-movements herein)
is calculated as

DS =
√√√√ 1

H Ms

H∑
k=1

Ms∑
j=1

(xS
j ,k )2 (9)

where xS
j ,k is the position of the j -th stationary DoF for the

k-th time bin and Ms represents the number of stationary
DoFs. Finally, the time in the target region is the total

amount of time all DoFs, both stationary and moving, spent
in the target region in a trial.

D. Statistical Analyses

The data for each metric were examined for outliers; this
was done separately for each subject and mixing parameter
value using the upper quartile (UQ), lower quartile (LQ),
and interquartile range (IQR). If a data point for a met-
ric was outside the interval [LQ-1.5∗IQR, UQ+1.5∗IQR], it
was considered an outlier and removed from the analysis.
Removal of a data point for one metric and subject does
not imply removal of the same data point for all metrics
and subjects. To accommodate for one subject having
fewer sessions than the other subjects, the mean value
across all sessions for each subject was then taken for
each performance metric at each mixing parameter value.
For each subject type (amputee and intact-arm), the mean
performance metric values derived above were grouped by
mixing parameter value across all datasets. Normality was
verified with a Shapiro-Wilk test for data within each group.
In all cases, there was no evidence that normality should
not be assumed. This was followed by a one-way ANOVA for
each of the three performance metrics, where the mixing
parameter (β2) was the factor. If the ANOVA indicated that
the mean value of at least one level of the mixing parameter
differed from the others, pairwise comparisons were made
using a Dunn-Šidák correction for multiple comparisons.
Whenever data are presented in the text as X X ±Y Y , X X
is the arithmetic mean and Y Y is the standard error of
the mean (SEM). In all graphics, error bars represent the
SEM of the particular configuration, and the symbol or the
horizontal line represent the arithmetic mean.

IV. RESULTS

The enhanced performance afforded by sharing control
can be visualized by representative time traces of the kine-
matic output of each DoF for a representative set of mixing
parameters, β2 = [0, 0.15, 1.0] (Fig. 2). It is notable that
the cases of KF-only (β2 = 0) and shared control (β2 = 0.15)
exhibited similar performance for the moving DoF, while
using the classifier-only decoder (β2 = 1) resulted in large
oscillations around the target region of the moving DoF.
Consequently, the classifier-only decoder (β2 = 1) would
result in smaller values of time in target and larger values
of the RMSE of intended movements than the other two
cases shown. The shared controller employing β2 = 0.15
exhibited less unintended movements in the static DoFs
than the KF-only decoder, as indicated by the predictions
of the stationary digits remaining nearer the origin. When
the classifier-based decoder was employed, no unintended
movement in the stationary digits was observed (indicated
by all stationary digit predictions being at the origin) in this
example because the classifier made the correct decision.

The performance of eight different controller conditions
corresponding to β2 = [0, 0.15, 0.25, 0.4, 0.5, 0.6, 0.75, 1.0]
were statistically analyzed according to the three perfor-
mance metrics defined in Section III-C. For each metric
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Fig. 2. Representative examples of the kinematic output of three different mixing parameters with an intact-arm subject. All cases were reproduced here
from the testing phase, where IS-5’s sEMG signals were used to derive the movement action via a previously trained KF and the MLP classifier-based
decoder. For each condition, the dashed line represents the target position, the dot-dashed line represents the target region, and the solid line represents
the controller’s real-time prediction of the subject’s decoded movement. The color of each line represents a particular DoF.
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Fig. 3. Shared control improved the time in the target region for both amputee (a) and intact-arm (b) subjects compared to the KF-only and MLP-only
cases. In this and similar figures, the colored symbols represent the mean individual performance of each participant over the three sessions, while
the black bars represent the aggregated mean of the performances across all participants’ datasets. Vertical bars indicate SEM. Statistical tests were
performed on aggregated means. * p-value < 0.05; ** p-value < 0.01; *** p-value < 0.001 (after Dunn-Šidák correction for multiple comparisons). Not
all significant comparisons are shown.

and each subject type, one-way ANOVA revealed that the
performance of at least one β2 value differed from the rest
(p < 0.05 for all six cases), allowing for subsequent post-hoc
pairwise comparisons.

For both the amputee subjects (Fig. 3a) and the intact-
arm subjects (Fig. 3b), the amount of time in the target
region was best when sharing control, particularly those
with strong representation of the KF decoder, and poor
for both the KF-only and MLP-only controllers. The KF-
only controller maintained the virtual hand in the target

region for 0.00±0.00 s and 0.95±0.52 s, for amputee and
intact-arm subjects, respectively. On the other end of the
mixing parameter range, the MLP classifier-based controller
alone maintained the virtual hand in the target region for
0.35±0.03 s and 0.97±0.10 s, for amputee and intact-arm
subjects, respectively. The best performance was for the
shared controller with β2 = 0.15 and yielded 1.00± 0.03 s
and 3.34 ± 0.50 s in the target region, for amputee and
intact-arm subjects, respectively. Subsequent pairwise com-
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parisons revealed that the time in the target region of the
shared controller with β2 = 0.15 was significantly higher
than either the KF-only or MLP-only cases, for both subject
types (p < 0.001 for all comparisons).

The RMSE for intended movements was best (lowest val-
ues) for the KF-only controller and tended to become worse
as more of the MLP classifier-based decoder’s output was
added to the shared controller for both amputee subjects
(Fig. 4a) and intact-arm subjects (Fig. 4b). The KF-only
controller had RMSE values of 0.22±0.01 and 0.14±0.01, for
amputee and intact-arm subjects, respectively. When con-
sidering the MLP classifier-based decoder alone, the RMSE
values were much higher at 0.34 ± 0.003 and 0.24 ± 0.02,
for amputee and intact-arm subjects, respectively. For both
subject types, when control was shared, the lowest mean
RMSE was for β2 = 0.15. For this case, RMSE values for
intended movements were 0.25± 0.01 and 0.15± 0.01, for
amputee and intact-arm subjects, respectively. Subsequent
pairwise comparisons revealed that the RMSE of the shared
controller with β2 = 0.15 was not significantly different from
the KF-only case, for both amputee and intact-arm subjects
(p = 0.8 and p = 1, respectively). It was also found that
this same shared controller had significantly lower RMSE
than the MLP-only case, for both amputee and intact-arm
subjects (p < 0.001 and p < 0.01, respectively).

As compared to a KF-only controller, the inclusion of the
MLP classifier-based decoder into the controller drastically
improved performance (reduced the RMSE) of unintended
movements for both amputee subjects (Fig. 5a) and intact-
arm subjects (Fig. 5b). The KF-only controller had RMSE
values of 0.09 ± 0.01 and 0.03 ± 0.01, for amputee and
intact-arm subjects, respectively. The MLP-only controller
had RMSE values of 0.02 ± 0.01 and 0.006 ± 0.004, for
amputee and intact-arm subjects, respectively. For both
subject types, when control was shared, the lowest mean
RMSE was for β2 = 0.25, which resulted in RMSE values of
0.01±0.006 and 0.002±0.001, for amputee and intact-arm
subjects, respectively. Subsequent pairwise comparisons re-
vealed that no shared controller differed significantly from
the MLP-only case (p ≥ 0.05). For the amputee subjects, the
shared controllers with β2 = [0.25, 0.4] had RMSE values
significantly lower than the KF-only case (p < 0.05). For the
intact-arm subjects, all shared controller configurations had
significantly lower RMSE than the KF-only case (p < 0.001
for all comparisons).

V. DISCUSSION

Broadly, linearly sharing control between a Kalman fil-
ter decoder and a multilayer perceptron network-based
classifier performed better than the constituent parts, par-
ticularly when the controller was more heavily weighted
towards the KF predictions. The performance improvement
afforded by sharing control between both decoders was
perhaps most intuitively exhibited by the amount of time
in the target region. For both amputee and intact-arm
subjects alike, the best performance was attained when
the shared controller consisted of an 85% KF-based and
15% MLP classifier-based decoder (i.e., β2 = 0.15). With

amputee subjects, the mean performance at this level of
sharing, 1 second, was significantly better than with a KF-
only approach (effective zero mean value) or classifier-only
approach (0.35 seconds). Equally, with intact-arm subjects,
the mean performance (3.3 seconds) was significantly better
than with a KF-only approach (1 second) or classifier-only
approach (1 second). Observationally, the larger intact-arm
subject performance was influenced by two subjects, IS-5
and IS-6, who had substantial prior experience with the
experimental setup. Nevertheless, these two experienced
subjects also demonstrated that sharing control increased
their performance (e.g., mean performance of 5 seconds
with β2 = 0.15 over a KF-only controller (2.7 seconds) or
classifier-only controller (1.3 seconds). To assure ourselves
that the statistical comparisons were not unduly influenced
by these two subjects, we repeated the intact-arm subject
analysis without these subjects for all metrics and we found
similar, and in some cases, stronger results.

For this metric (and the other metrics), the amputee
subjects generally had lower performance than intact-arm
subjects, which is a finding we often observe in studies with
both amputee and intact-arm subjects performing similar
movement trials. At best, we can only speculate as to the
reasons why, but the differences in ages and in recency of
usage of the pertinent muscles between the two types of
subjects may be possible factors.

Other benefits of combining control are seen when
considering the RMSE of both intended and unintended
movements. The classifier strongly reduced the RMSE of
unintended movements, and this effect was also observed
when sharing control. Compared to the KF-only decoder,
any amount of sharing in intact-arm subjects significantly
reduced the unintended movement RMSE whereas this was
only true for a subset of βb values with amputee subjects.
In contrast, when compared to the KF-only decoder, in-
creasing participation of the classifier appeared to increase
the intended movement RMSE, significantly for amputee
subjects but not so for intact-arm subjects. For the degree of
sharing that benefited the time in target metric (β2 = 0.15)
the increase in intended movement RMSE was modest and
not significant, and the decrease in unintended movement
was substantive and significant (only for the intact-arm
subjects). From the results presented herein, we conclude
that sharing control meaningfully boosted the time in
the target region while reducing cross-movements without
introducing significant errors in intended movements, as
compared to either of its constituent parts.

Although the results we present clearly demonstrate the
value of sharing control, the information presented herein
provides only a limited view of what is possible with sharing
control. The two decoding methods used are among the
most common encountered moment-by-moment decoding
methods utilizing sensorimotor-derived features, albeit with
the two methods often described as two competing ap-
proaches to performing decoding. Jointly, the sum of the
two was found to be better than the parts. However, there
is nothing in its design that restricts sharing to be limited
to only these two methods or to only two methods. The
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Fig. 4. Increasing amounts of the MLP classifier-based decoder’s output in the shared controller produced higher RMSE for intended movements for
both amputee (a) and intact-arm (b) subjects. Although the KF-only decoder had the lowest RMSE for both subject types, the difference between the
KF-only decoder and the β2 = 0.15 case was not statistically significant. In both subject types, the MLP-only case had significantly-higher RMSE than
the KF-only decoder as well as the shared controllers with β2 = [0.15,0.25]. Not all significant comparisons are shown.
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Fig. 5. Any inclusion of the output from the MLP classifier-based decoder drastically reduced cross-movements for both amputee (a) and intact-arm (b)
subjects. For the amputee subjects, the shared controllers with β2 = [0.25,0.4] had significantly-lower RMSE than the KF-only decoder. For the intact-arm
subjects, all shared controllers had lower RMSE than the KF-only decoder. The shared controllers did not have statistically different performance from
the MLP-only case for both subject types. Not all significant comparisons are shown.

design could easily handle the addition of, for example, a
convolutional neural network moment-by-moment position
estimator that uses the same features, resulting in a com-
bination of three approaches. Of course, with the addition
of a third component, finding the best degree of sharing
would be more difficult than the evaluation done herein.
A possible approach for designing such shared controllers
is to choose a metric that represents user satisfaction and
select the parameters that results in the best metric using
online learning to find the best decoder combination. In the
present study, the time-in-target is the metric that reflected
the user satisfaction the most.

Further, there is no requirement in the design that
restricts the combination of the parts to be linear. For

example, an alternative approach with the two decoders
would be to use the classifier output to gate the KF’s
estimates. That is, if the classifier indicated that a finger
was not moving from rest, the KF’s estimate for that digit
would be zeroed out. A possible approach to designing
such a system is to parameterize the combining function
Fc (·) and estimate parameters of this function using cross-
validation. The combining function could also be updated
in real time using an online learning or a reinforcement
learning algorithm [44].

Similarly, there is no requirement that only moment-by-
moment estimators can be used. In the work that initiated
this research [36], we found the combination of a KF and a
simulated end-point goal estimator significantly improved
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performance over the KF alone. In that work, we did not
define the nature of the end-point estimator but one could
easily imagine it being a classifier of a finite set of grip
states based on EMG features. Alternatively, it could have
been a system that uses non-biologically sourced features,
such as an image detection system with a camera or a
prosthesis with built-in proximity sensors [45]–[47]. In these
applications, the same shared control algorithm developed
in the present work would control the prosthesis, with
control shared between a movement-intent decoder (e.g.
KF) under human control, and autonomous control from
a non-biological sensor(s). One could ultimately imagine a
shared control system that combines its constituent parts in
a non-linear, time-varying manner that uses an end-point
estimator to move a prosthetic hand close to a target (e.g.,
a coffee cup), proximity sensors in the prosthesis to shape
the fingers around the cup, and the user’s biological signals
to control whether the cup is firmly grasped in order to lift
it to the user’s mouth or lightly gripped to allow sliding the
cup across the table.

We do not claim optimality for the shared controller
based on the results and methodology shown in this paper.
It may be possible to model the combination process as
a diffusion process [48], [49]. It has been shown, using
diffusion process models in other fields such as network
optimization, that combining multiple system outputs as
a weighted sum can achieve optimal results [49]. Similar
analyses may be possible in our application also, but
such an analysis will require analytical models of human
performance of the task.

The concept of sharing control between multiple move-
ment intent decoders for upper-limb prostheses has been
previously explored to some degree for individuals with
amputations [50]–[54]. There have been multiple efforts to
endow a prosthetic hand with automatic slip detection in
order to stabilize gripping of grasped objects [50], [51]. One
of these has even enjoyed commercial success [52]. A shared
control system was recently implemented to toggle con-
trol between an EMG-based MLP decoder (under human
control) and a computer controller [54]. Once the human-
operated prosthesis made contact with a desired object,
control switched to the computer controller, which auto-
matically increased contact area between the object and
the prosthesis. It remains to be seen if such an approach
will scale to a real-world prosthesis given the size of the
sensors implemented in that work. Importantly, the term
"shared control" in that work is loosely used and perhaps
is better termed "traded control" given the toggling nature
between control modes, as has been proposed elsewhere
[55].

Shared control has also been implemented in various
forms for the spinal cord injury population. Early work
with non-human primates demonstrated the advantage of
sharing control between a computer reflex controller and
brain-derived commands [55]. Subsequent clinical work
has similarly suggested advantages for hybridizing tradi-
tional brain-computer interface (BCI) systems with other
movement intent decoders [56]. Utilizing computer vision

predictions in tandem with BCI systems has also been
explored [57], [58]. Recently, there has been much interest
in sharing control between EEG decoders and neuronal
information provided by BCI systems [58], [59]. Finally, a
non-invasive system has been introduced to share control
between EEG- and EMG-based decoders, although it has
yet to be tested in amputee or spinal cord injured subjects
[60]. Certainly, the shared control system described in our
present work would adapt well to the spinal cord injury
population as well.

VI. CONCLUSION

This paper presented a framework capable of combining
multiple methods for interpreting volitional movement in-
tent from biological and non-biological sensor signals. The
performance enhancement possible by a shared controller
architecture to control a high-degree-of-freedom prosthetic
hand using sEMG signals obtained from amputee and
intact-arm subjects was demonstrated through experimen-
tal results presented in the paper. The shared controller
that combined a KF-based decoder and a classifier-based
decoder significantly outperformed the KF-only and MLP-
only decoders in the time-in-the-target-region metric. The
classifier-based decoder was able to estimate which DoF
or combination of DoFs the user intends to move with
high precision but did not estimate the precise amount
of movement accurately. On the other hand, the KF-based
decoder was able to estimate the amount of movement in
a given DoF more accurately but was prone to more cross-
movement errors. The combination of these two decoders
shared the better qualities of each component decoder.

The framework of this paper can easily incorporate de-
coders based on input signals acquired via external sensors
such as cameras and pressure sensors. External sensor
signals may be used to interpret the user’s environment and
movement goals. In our preliminary work [36], we presented
the concept of such a shared controller that combined a
controller based on a simulated goal estimator and a KF-
based decoder. Additional work that employs real-time goal
estimators and the shared control framework is currently
underway in our labs.

In the configuration reported herein, the parameters of
the decoding algorithms were set by training prior to regular
use and kept frozen during testing and normal operation.
The authors are currently working on extending the de-
coder capabilities by updating their parameters online. It
is also desirable to update the mixing parameters of the
shared controller online rather than use pre-selected values
throughout their use.

The results presented in the paper suggest that the shared
controller strategy has the potential to help individuals with
upper-limb amputation achieve more precise prosthesis
control than currently possible with any single movement
intent decoder. As a result, the presented approach has
the potential to substantially improve the quality of life of
people with upper-limb loss.
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