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A Nonlinear Latching Filter to Remove Jitter from
Movement Estimates For Prostheses
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Abstract—Continuous movement intent decoders are critical
for precise control of hand and wrist prostheses. Noise in
biological signals (e.g., myoelectric or neural signals) can lead
to undesirable jitter in the output of these types of decoders.
A low-pass filter (LPF) at the output of the decoder effectively
reduces jitter, but also substantially slows intended movements.
This paper introduces an alternative, the latching filter (LF),
a recursive, nonlinear filter that provides smoothing of small-
amplitude jitter but allows quick changes to its output in response
to large input changes. The performance of a Kalman filter
(KF) decoder smoothed with an LF is compared with that
of both an KF decoder without an additional smoother and
a KF decoder smoothed with a LPF. These three algorithms
were tested in real-time on target holding and target reaching
tasks using surface electromyographic signals recorded from 5
non-amputee subjects, and intramuscular electromyographic and
peripheral neural signals recorded from an amputee subject.
When compared with the LPF, the LF provided a statistically
significant improvement in amputee and non-amputee subjects’
ability to hold the hand steady at requested positions and achieve
movement goals faster. The KF decoder with LF provided a
statistically significant improvement in all subjects’ ability to hold
the prosthetic hand steady, with only slightly lower speeds, when
compared to the unsmoothed KF.

I. INTRODUCTION

Loss of a hand can be devastating to a person’s ability
to interact with objects and perform many daily tasks. Many
individuals with amputation use prosthetic devices to recapture
some of the abilities lost as a result of amputation.

Highly-enabled prostheses require accurate movement in-
tent decoders in order to provide a level of dexterity that
approaches the native hand. Such decoders typically process
biological control signals such as neural signals (recorded,
for example, from the motor cortices or peripheral nerves)
[1] or electromyograms (EMG) recorded from muscles in the
forearm of transradial amputees [2].

Noise in these signals adversely affects movement intent
decoding methods. Sources of noise include recording de-
vices, electrodes in partial contact with biological sources,
cable movement, and AC power sources [3]. There are also
biological sources of noise, such as involuntary neural or
muscle activity [4], incomplete sampling of all motor encoding
signals, or recording of signals extraneous to a particular
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decode. It has also been demonstrated that noise in the neural
signals themselves is signal dependent, e.g., the variance of
neural signals increases as the mean amplitude of the signals
themselves increase [5]. Because the biological control signals
used to inform prosthetic movement often originate with action
potentials containing sharp impulses of electrical activity,
features derived from these signals can also have substantial
noise.

Many methods have been proposed to reduce jitter from
movement intent estimates. One approach is to reduce noise
in features. Wavelet denoising [6], [7], [8] and Wiener filtering
[4], [9] have been used to reduce noise in raw biological
signals, but these approaches may not improve the inherent
variability of the extracted features. Spectral whitening has
been reported effective in decreasing the variance of EMG
signals [10], and in improving classification accuracy for
a classifier-based movement intent decoder [11]. Bayesian
filtering is a valuable tool in providing reduced-noise EMG
amplitude estimates [12]. When used with a regression-based
decoder, Bayesian filtering based features outperformed mean
absolute value features in target reaching tasks [13], [14].

An alternative to using noise-removal techniques directly
on the biological signals is to use a decoder that inherently
provides smoothing. Examples include the Kalman filter (KF)
[1], [15], [16], [17], [18], [19], Gaussian process autoregres-
sion [20], and recurrent neural networks [21], [22], [23]. The
KF is effective at reducing jitter compared to linear regression,
but, as this paper shows, this reduction can be improved
further. Gaussian process autoregressions and recurrent neural
networks require substantial computational resources during
training, and may require specialized hardware such as a
graphics processing unit.

A third option is to use a smoother on the movement
decoder output. For example, Zhang, et al. [24], used a
system that locks onto a movement class when a constant
muscle contraction is detected, preventing rapid fluctuation
between decoded classes. A traditional LPF can be used with
continuous decoding systems, where features are mapped to a
continuous range of possible outputs [25]. However, this will
introduce a delay in the decoder output. To reduce the effect
of these delays, Downey, et al. [26] used an LPF only when a
grasp is detected by a camera system. Ma [27] created a jitter
removal post-processing step that moves the current position
by a discrete step, only when the amplitude of the difference
between its current state and current input is large. Because
the step size does not change from one time sample to the
next, this method is an approximation to a continuous decoder,
discretized at the level of the step size. The fastest velocity
of this decoder is the step size times the sampling frequency.
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TABLE I
FREQUENTLY USED MATHEMATICAL SYMBOLS

M Number of features
N Number of samples
P Number of Degrees of Freedom (DoFs)
X Commanded movement Data
Z EMG feature data
xp,n Position of DoF p at time n
x̂p,n Estimated position of DoF p at time n

x̂smoothp,n Smoothed estimated position of DoF p at time n
x̂threshp,n Thresholded x̂smoothp,n

zm,n Feature amplitude of feature m at time n
xp,∗ Vector of DoF p at all times
zm,∗ Vector of feature m at all times
x∗,n Vector of all DoFs at time n
z∗,n Vector of all features at time n

X∗,[1,n] Matrix of all DoFs at times 1 to n
Z∗,[1,n] Matrix of all features at times 1 to n

The step size selection is a trade-off between precision and
speed. If the step size is large, the velocity will be fast, but
the decoder may lack the ability to decode precise positions.
If the step size is small, the velocity will be slower, and the
decoder will have more precise positional control.

This paper presents the latching filter (LF), a recursive,
nonlinear and signal-dependent smoothing algorithm that can
be used with any continuous decoder as a post-processing
step. The LF uses the difference between its current state and
current input to determine, on a continuous scale, how much
to move in the direction of the current input. We demonstrate
that the LF provides significant smoothing compared with an
unsmoothed KF, without any computational cost in training
and little additional cost during decoding. The LF also intro-
duces a much smaller delay in movement than an LPF.

The rest of this paper is organized into five sections. Meth-
ods and algorithms for decoding and analysis are described
in Section II. Data collection and experimental designs are
described in Section III. Experimental results are detailed in
Section IV. This is followed by a discussion in Section V and
concluding remarks in Section VI. Table I provides a list of
mathematical symbols used throughout the paper.

II. METHODS

The movement intent decoding system used in this paper
consists of several processing stages. First, features are created
from input signals and used to create movement estimates.
Next, estimates are smoothed, processed with a thresholding
procedure that removes small amplitude position estimates,
(as estimates are frequently inaccurate near rest positions,) and
limited to each DoF range. The limited position estimate serves
as the control input to the prosthesis.

A. Smoothing Methods

1) Single-Pole Low-Pass Filter: We use single-pole LPFs
as a baseline for comparison. They are described by

x̂smoothp,n = ax̂smoothp,n−1 + (1− a)x̂p,n, (1)

where a ∈ [0, 1] is a parameter that controls the level of
smoothing. The larger the value of a, the higher the level of
smoothing, with a = 1 preventing any change in x̂smoothp,n , and
a = 0 resulting in no smoothing. We refer to a single-pole
low-pass filter with a = c as LPFc throughout this paper.

2) Latching Filter: Low-pass filters are effective smoothers,
but they repress intended quick changes in positional estimates
as much as they do jitter. To increase the speed of the
decoder while still reducing jitter, a time-varying and nonlinear
modification can be made to (1) as follows:

x̂smoothp,n = γp,nx̂
smooth
p,n−1 + (1− γp,n)x̂p,n. (2)

The function γp,n ∈ [0, 1] controls the amount the output
of the latching filter (LF), x̂smoothp,n , is able to vary from one
sample to the next. Because each degree of freedom (DoF)
of the hand is controlled independently, a different γp,n is
used for each DoF. The value of γp,n is designed to vary in
such a way that jitter is smoothed while intended movement
is not smoothed. We make the simplifying assumption that
small differences between x̂smoothp,n−1 and x̂p,n are more likely
to be due to jitter than large differences, which are more likely
due to intended movement. This is a reasonable assumption
because jitter amplitude is usually small relative to the move-
ment range and occurs more frequently than intended small
movements. Using this assumption, γp,n should be close to 1
if |x̂smoothp,n−1 − x̂p,n| is small and close to 0 if |x̂smoothp,n−1 − x̂p,n|
is large. A thresholded quadratic function given by

γp,n = max(1− C[x̂smoothp,n−1 − x̂p,n]2, 0), (3)

where C ∈ [0,∞) is a user-defined tuning parameter, meets
these requirements. Small values of C provide high levels of
smoothness, but make quick movements more difficult, while
large values of C provide less smoothing but allow for quicker
movements. Similar nonlinear filters have been used in image
processing [28]. Akin to our notation for lowpass filters, we
will refer to a latching filter with C = c as LFc.

Theorem 1. The LF is bounded-input, bounded-output stable.

Proof. First we note that |x̂smoothp,n | ≤ max(|x̂smoothp,n−1 |, |x̂p,n|).
If |x̂smoothp,n−1 | is finite and greater than |x̂p,n|, |x̂smoothp,n | ≤
|x̂smoothp,n−1 |. That is, x̂smoothp,n can increase in magnitude
only when |x̂p,n| is larger than |x̂smoothp,n−1 |. It follows
immediately that if |x̂smoothp,0 | > |x̂p,0|, |x̂smoothp,n | ≤
max

{
|x̂smoothp,0 |, |x̂p,k|; k = 1, 2, · · · , n

}
. If |x̂smoothp,0 | ≤

|x̂p,0|, |x̂smoothp,n | ≤ max {|x̂p,k|; k = 1, 2, · · · , n}. Together,
these statements imply that the LF is bounded-input, bounded-
output stable as long as it is initialized using finite values.

As the output of the LF approaches its input, γp,n ap-
proaches 1, leading to a slowing of the convergence behavior.
Because of this, the user of a prosthetic device needs to “push”
the input to the LF past a target position to achieve that target
position quickly. Users tend to use this strategy intuitively
when given visual feedback of the prosthetic position.
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TABLE II
KALMAN FILTER UPDATE EQUATIONS

P−
n = AP+

(n−1)A
T
n + Qn

Sn = R + HP−
nH

T

Kn = P−
nH

TS−1
n

P+
n = (I−KnH)P−

n (I−KnH)T +KnRKTn

TABLE III
KALMAN FILTER TRAINING EQUATIONS

H = ZXT (XXT )−1

R = 1
N (Z−HX)(Z−HX)T

A = X∗,[2,N ]X
T
∗,[1,N−1](X∗,[1,N−1]X

T
∗,[1,N−1])

−1

Q = 1
N−1 (X∗,[2,N ] −A)(X∗,[2,N ] −A)T

B. Kalman Filter

The Kalman Filter is a recursive estimation technique [29]
that updates the current position estimates based on state and
observation models. Each new state, x̂n, is related to the
previous state x̂n−1 as

x̂n = Ax̂n−1 +Kn(zn −HAx̂n−1). (4)

The various matrices in (4) are defined in Tables II and III.
As a simplifying feature, each state is normalized to the range
of motion for the DoF.

The computational complexity of the KF can be reduced
by using the steady-state Kalman gain, K, in place of Kn
[30]. The steady-state Kalman gain is found during training by
iterating the KF update equations in Table II, until the Kalman
gain converges. Convergence occurs when the absolute value
of all elements of Kn−Kn−1 are smaller than some tolerance
(10−6 in this paper). In our experimental work, the standard
KF converged to a steady-state KF after a few iterations.

The amplitude of x̂p,n can be limited to prevent large
excursions outside the range usable by the prosthesis. As
explained in Section II-A2, we found it valuable to allow the
KF outputs to exceed the prostheses’ range of motion by a
small amount.

C. Temporal Alignment of Movement to Features

When performing training trials, most subjects naturally
introduce a delay between the movement command and their
movement. Alternatively, subjects may anticipate a new com-
mand and begin moving before the movement command starts.
These offsets can be corrected for in training by aligning
the movements with the commanded movements. For all
time shifts from − 2

3 s to 2
3 s, a least-squares regression was

performed for each DoF over the entire window of training
data. The shift that provided the least root-mean-square error
(RMSE) across all DoFs was chosen as the optimal shift.

D. Feature Selection

Forward Selection (FS) with a Gram-Schmidt orthogonal-
ization step was used to select features (adapted to continuous
decoders from [31]). Table IV contains the equations and

algorithm used for FS. To perform FS, a set of P movement
residual vectors are initialized to the commanded movement,
after removing the per-movement mean, and a set of M feature
residual vectors are initialized to recorded feature vectors,
after removing the per-feature mean. The residual vectors
are centered as the FS algorithm assumes that the feature
and movement vectors have zero-mean values. During each
iteration of FS, correlation coefficients are found between
movement residuals from each DoF and feature residuals of
each feature. The feature residual that is most correlated with
any single DoF is found. The feature corresponding to this
feature residual is added to the set of selected features. This
feature residual is used to estimate the movement residual of
each DoF, and the estimate is subtracted from the movement
residual. Features are then orthogonalized in a similar fash-
ion: each feature residual is estimated using the best feature
residual, and that estimate is subtracted from each residual.
The process is iterated until a prescribed number of features
is selected. Specific information about the number of features
used in this study can be found in Section III.

TABLE IV
FS-ALL ALGORITHM

r0p = xp,∗, ∀p ∈ [1, P ] Initialize DoF residuals
s0m = zm,∗, ∀m ∈ [1,M ] Initialize feature residuals

ρm,p =
zm,∗r

T
p,∗√

zm,∗zTm,∗rp,∗r
T
p,∗

Find correlation coefficient

ζi = argmaxm ρ Find index of “best” feature

ri+1
p,∗ = rip,∗ −

rip,∗s
iT
ζi

si
ζi

siT
ζi

rip,∗ Update movement residuals

si+1
m,∗ = sim,∗ −

sim,∗s
iT
ζi

si
ζi

siT
ζi

siζi Orthogonalize features

E. Thresholding

It is common for movement decoders to induce cross-
movement while estimating intended movement of one or
more DoFs from their rest positions, i. e., to produce non-zero
movement estimates in DoFs that were meant to be stationary.
Further, noise can cause movement when no movement was
intended. To reduce these effects, position estimates are mod-
ified by a dead zone algorithm that set all estimates with an
amplitude less than T to 0 (rest). The threshold T takes a value
between 0 and 1, and has the same normalized units as position
estimates. Estimates are then shifted (using the numerator in
the equation below) and scaled (using the denominator in the
equation below) to fill the entire movement range as

x̂threshp,n = sign(x̂smoothp,n )
max(0, |x̂smoothp,n | − T )

1− T
(5)

where x̂threshn is the output sent to the prosthetic hand, and
sign(x̂smoothp,n ) is the sign of x̂smoothp,n . If x̂threshn exceeds 1 in
magnitude, it should be limited to the usable range of [-1,1]
before being sent to the prosthetic. See II-A2 for a discussion
of why the magnitude may exceed the usable range. The value
used for T in our experiments is described in Section III.
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III. EXPERIMENTAL BACKGROUND

A. Data Collection

The collection of data for this study from consenting
human volunteers was approved by the University of Utah
Institutional Review Board, the Salt Lake City Veterans Affairs
Hospital Research and Development Service Center, and the
Department of the Navy Human Research Protection Program
as IRB 55621 that expires 27-April-2021.

A transradial amputee, subject HS3 was implanted with a
32-channel intramuscular EMG array (iEMGs; Ripple LLC,
Salt Lake City, UT, USA), arranged as eight data leads with
four electrodes per lead and a ninth lead with ground and
reference electrodes. HS3 was also implanted with three Utah
slanted electrode arrays (USEAs, Blackrock Microsystems,
Salt Lake City, UT, USA) [32], two in the ulnar and one in the
median nerve. Each USEA has 100 electrodes arranged as a
10×10 grid, 96 of which provided recordings. One of the ulnar
arrays was not used because hardware limitations prevented
recording from more than 2 arrays simultaneously. Each array
(iEMG or USEA) were wired to an external Gator Connector
Board (Ripple LLC) via a percutaneous incision. All possible
combinations of the 32 iEMG electrodes were used to create
differential pairs, yielding 496 pairs. These pairs, in conjunc-
tion with the 32 original single-ended electrodes formed 528
raw EMG data channels. Each raw data channel was recorded
(single-ended channels) or calculated (differential pairs) at 1
kHz, filtered with a 4th-order Butterworth bandpass filter with
passband in the range 15 to 350 Hz, rectified, and the mean of
the preceeding 300 ms of rectified data was calculated every
33 ms, yielding the Mean Absolute Value (MAV) feature. Data
from two of the USEA devices implanted in HS3 was recorded
at 30 kHz. These data were bandpass filtered from 250 to
7500 Hz, using a Butterworth high-pass filter (4th-order) and
a lowpass filter (3rd-order). Spike events were detected in
these filtered data when voltage exceeded a channel-specific
threshold. To calculate the threshold, the standard deviation of
every 33 ms of data was computed. A running average of 33
s of these standard deviations, multiplied by 5, was used as
the threshold. Spikes were detected in each 33 ms of data
by finding negative voltage excursions from the mean that
exceeded the spike detection threshold in amplitude. Every
33 ms, a 300 ms running average of these spike rates was
computed for each neural channel and used as a feature in
conjunction with the EMG features. This resulted in 192 neural
features, 96 from each USEA.

HS3 is a male, and was 48 years old at the time of the study.
He elected for amputation due to long-term chronic regional
pain syndrome (CRPS), which inhibited use of his hand. He
was implanted with the EMG electrodes and USEAs during
the amputation surgery. The implant duration for HS3 was 17
months, and he was explanted at his discretion.

We also collected surface EMG data from five male non-
amputee (NA) subjects, NA1-NA4 and NA6, aged 25-41 years.
Data was collected using a 32 surface electrode sleeve made
of neoprene with 1.5 cm-diameter circular metal electrodes
intended to lie on the surface of the forearm. These electrodes
were distributed across the various muscle groups of the

forearm. Processing of the signals was the same for surface
and intramuscular EMG signals.

In the experiments, the volunteers were shown an animated
virtual hand [33]. During the training period, the virtual hand
performed movements that the volunteers were asked to follow
with their phantom limb (HS3) or native hand and wrist (NAs).
Each movement trial consisted of moving one or more DoFs
from rest to a maximum (e.g. fully flexed) or minimum (e.g.
fully extended) position and back to rest. Data corresponding
to these movements and target positions (with 0 as the rest
position, and 1 as the position of maximal deviation) were
recorded. For each of the NA subjects, 4 or 5 trials of
anatomically defined movements in the flexion and extension
plane were performed individually on each of 6 DoFs (thumb,
index finger, middle finger, ring finger, little finger, and wrist).
Similar training sets were acquired for HS3, but only the DoFs
corresponding to the 5 digits were used.

Forward selection, described in Section II-D, was used to
select 48 features (48 was determined an effective number
of feature in previous experiments). A decoder was trained
using the training data collected per the description above and
calculated by the equations in Section II-B. Each subject was
given control of a virtual hand, and asked to perform two
different tasks. In each of these tasks, a transparent virtual
hand was used to give the subject a target, while a solid
hand indicated the subject’s decoded position. The steady-state
Kalman filter outputs were limited to a maximum amplitude of
1.1 (as described in Section II-B). The threshold, T (described
in Section II-E) was set to 0.2. These methods and settings are
consistent with our practice of many years [19].

In the “hold task,” subjects were asked to move from rest
position and hold a target position on one DoF, while holding
other DoFs at rest. The target was placed midway between
a rest position and the maximum deviation from rest. Each
trial was 10 seconds long. Trials were performed for each of
the movement types used in training. The subjects were asked
to maintain all DoFs in target zones for as long as possible
during each trial. The purpose of the hold task was to provide
insight into the ability of a smoothing algorithm to maintain
a steady estimate of a position with low jitter.

In the “speed task,” the targets were placed in the same
locations as the hold task, with a single DoF away from rest
at a time. The subjects were requested to reach the targets as
fast as possible, disregarding any overshoot of the targets that
occurred. Subjects were also informed that movement of DoFs
other than the single DoF being tested would not be penalized.
The purpose of this test was to determine how quickly a
decoder could transition from one position to another. This
test was intended to approximate a practical use case in which
precise control of DoFs is not required, but speed is beneficial.
An example of such a use is quickly grabbing sturdy objects.

While movement positions were recorded in a range from
−1 to 1, this information was transformed into degrees before
being sent to the virtual hand. The normalized range from
−1 to 1 varies from DoF to DoF in the range of degrees it
represented, because different joints have different ranges of
motion in degrees. Furthermore, within a single DoF, the range
of motion of the flexion movement and extension movement
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TABLE V
RANGE, TARGET WIDTHS, AND THE RATIO OF TARGET WIDTH TO

RANGE OF THE VARIOUS DOFS IN DEGREES

DoF Range (◦) Target Width (◦) Width / Range
Thumb 70 2.8 0.040
Index 90 3.2 0.035
Middle 90 2.8 0.031
Ring 90 2.8 0.031
Pinky 90 2.0 0.022
Wrist 110 1.5 0.014

can differ in terms of degrees. The normalized range for a
movement type was always the same, 0 to ±1.

The transparent hand was slightly larger than the solid hand,
so a certain range of values for each DoF could be considered
“in the target.” Target widths were estimated for each DoF
by visual inspection. The offsets between the transparent and
solid hands for which the solid hand visibly extruded from
the transparent hand varied from DoF to DoF in terms of
normalized range and degrees. In order to account for subject
difficulty in seeing the solid hand emerging near the edge of
the target zone, an extra 0.2 degrees was padded on each
side of each target zone when calculating metrics based on
the target zone. Exact values for the width, in degrees and
normalized range, of each target on each DoF are shown in
Table V. The range of motion for each DoF and the ratio of
the target width to this range of motion are also shown.

Three types of smoothing algorithms were used to smooth
the Kalman decoder output: the LPF, LF, and no smoothing.
For NA subjects, the filters used were LPF0.93, LPF0.97, LF0.5,
LF1, LF6.25 and no smoothing. For HS3, the filters used were
LPF0.97, an LF1 and no smoothing. Weakened muscles from
CRPS and arm disuse as well as residual pain deterred HS3’s
performance in prosthetic control. For this reason, fewer filters
were tested with HS3 than the NA subjects. The C values for
the LF were chosen to allow different levels of smoothing and
speed by online experimentation in a pilot study. The values
of a for the LPF were chosen experimentally as well, but with
some theoretical considerations. A single-pole low-pass filter
is equivalent to a moving average filter with an exponentially
decaying window. The time constant of this exponentially
decaying window is 1/(Fs(1− a)), where Fs is the sampling
rate. For the Fs=30 Hz MAV or spike rate signal (see Section
III for signal processing details) used in our experiments, the
time constant of the LPF0.93 is approximately 1/2 s and that
of the LPF0.97 is approximately 1 s.

During each of three data recording sessions for the NA
subjects, a series of six trials was performed sequentially for
each movement type for each of the two tasks, one trial for
each smoothing type, i.e., 72 trials per session. For each of
HS3’s two data recording sessions, six trials of each movement
type were conducted for each of the tasks, two trials using each
smoother, equivalent to 60 trials per data set. Two trials were
conducted for each movement type and smoothing method for
HS3 because his performance was more inconsistent than that
of the NA subjects, and acquiring more data improved the
likelihood of the results accurately representing his overall

performance. The order in which the smoothing filters were
used in the data recording sessions was randomized, and the
subject was blind to which method was used at each trial.

B. Performance Metrics

Two metrics were calculated for each trial of the hold task.
The first, the hold time, is the maximum amount of time a
subject was able to continuously hold all DoFs within the
target range. The maximum hold time was the length of the
trial, 10 s. The second metric measures the smoothness of the
moving DoF by calculating the log mean absolute jerk (LMAJ)
[34]. defined as follows: Let

∆yT = [y1 − y0, y2 − y1, ..., yN − yN−1]T . (6)

where N is the number of time samples. The jerk vector j of
a smoothed, thresholded movement estimate vector x̂threshp,∗ is
defined as

jp,∗ = F 3
s ∆∆∆x̂threshp,∗ . (7)

where Fs is the sampling rate. The LMAJ is calculated as

LMAJ = 3 log(Fs) + log(
1

N − 3

N−3∑
n=1

|jp,n|), (8)

where jp,n is the nth element of the jerk vector for the pth DoF.
The LMAJ was calculated over the window beginning with
the first incidence where all DoFs were inside target ranges
and ending with the end of the trial. The LMAJ was only
calculated for the DoF with a target position not at rest. This
avoided penalizing a subject attempting to move other DoFs
to a rest position should cross-movement occur.

A single metric was calculated for each trial of the speed
task, the time to target (TTT). This is the amount of time
required to move the requested DoF from rest into the target
region. This metric is used to measure the relative delays
introduced by the smoothing filters in the speed test.

During each experimental session, HS3 performed two trials
of each movement with each smoothing filter. The mean value
for each movement type and smoothing filter is reported in
place of trial-wise metrics, due to our conservative view that
trials from the same movement type and experimental session
are not independent. The NA subjects performed one trial of
each movement type using each smoother for each dataset, so
trial-wise metrics are reported for NA subjects.

C. Statistical Analyses

The relative performance of the smoothing algorithms was
compared by performing statistical analyses on the three
metrics just introduced. A separate test was performed for each
metric. Individual, univariate statistical tests were performed
on NA subjects’ and HS3 subject’s data separately.

For each of the three metrics, the data were partitioned into
six groups for the NA subjects and into three groups for HS3,
with each group corresponded to a single smoothing filter
tested. Each group of NA data included 12 movement types
from 15 experimental sessions, or 180 observations in total.
Each group of the HS3 data involved 10 movement types and
2 data collection sessions, or 20 observations in total.
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One-way analysis of variance (ANOVA) was performed to
determine if differences existed between groups. If ANOVA
resulted in a p-value of 0.05 or smaller, a post-hoc test using
Tukey’s honest significant difference was performed on all
possible pairings to determine which groups differed. Here, we
consider a p-value of 0.05 to be significant. These tests were
performed using anova1 and multcompare in MATLAB.

Occasionally, subjects were unable to perform a task in the
alloted time. In the case of the hold time metric, we simply
considered the hold time for that trial to be 0 seconds. In the
case of the other metrics, the value was considered missing.
Missing values were represented as “NaN” in MATLAB.

IV. RESULTS

The hold task and the speed task were designed to test the
smoothing ability and responsiveness of the various smoothing
filters. Hold time and LMAJ were used to measure smoothness
of trials of the hold task, whereas TTT was used to determine
the ability to move quickly during the speed task. Represen-
tative data from one subject (NA1) demonstrates many of the
good and bad aspects of the smoothing algorithms (Fig. 1).

The hold task trials illustrate the function of the smoothing
filters (Fig. 1a and 2). The LF smooths by sharply reducing
changes to decoded position when in the target range, effec-
tively “latching” onto a position (and a value of γ). The LF0.5
appears to latch most strongly, followed by the LF1. The LF6.25
does not appear to latch as well as the other LFs, although
brief periods of latching are seen in the sample trial. The LF
appears to need a larger change in input to break away from
a latched value when using smaller values of C (Fig. 2). The
LPFs do not latch but instead slow changes to their output. The
LPF0.97 appears to slow and smooth more than the LPF0.93. The
unsmoothed KF appears more choppy than any LF or LPF.

The speed task trials reveals the delay associated with the
smoothing filters (Fig. 1b). As expected, the “no smoothing”
filter was faster than all other filters. In general, the amount
of delay within a filter type appears to scale with the level
of smoothing. Across all the filters, the LF1 provided a high
level of smoothing with modest increase in delay.

To validate these initial observations, all metrics were
extracted for all trials within a class of subjects.

The summary data for hold time show clear differences in
performance between the types of filters for the NA subjects
(Fig. 3), and this result was found significant (ANOVA,
p < 0.001). The LF0.5 and LF1 yielded the best hold times.
Post-hoc tests found no significant differences between these
two filters (p = 0.74), but significant differences were found
between either of these two and all other filters (p < 0.001).
The LPF0.97, had hold times similar to those of the LF6.25,
(as indicated by a non-significant difference, p = 0.25). In
other words, of the smoothing filters tested, the LPF with
strongest smoothing abilities had similar performance as the
LF with weakest smoothing abilities. The hold time for the
unsmoothed KF was significantly less than that by any of the
smoothed filters (p < 0.001, except in comparison to LPF0.93
where p = 0.03). That is, even the worst performing smoother,
LPF0.93, yielded longer hold times than the unsmoothed KF.

These results indicate that the LF methods, especially those
with small C values, give users improved ability to latch onto
position ranges within the target zone. In contrast, the LPF
methods give users lesser latching abilities, although they still
provide smoothing which increases hold times compared to an
unsmoothed KF. This type of behavior was expected, since the
LFs are designed to strongly resist small changes in estimated
position, but allow larger changes.

Similarly, the hold time summary data show differences in
performance between the types of filters for HS3 (Fig. 4),
and this result was found significant (ANOVA, p = 0.012).
For the LF1, a significant difference was found in comparison
to the unsmoothed KF (p = 0.01), while for the LPF0.97 the
difference was not significant (p = 0.48). There appears to be a
trend for slightly longer hold times with the LF than the LPF,
but this difference was not significant (p = 0.15). Perhaps,
given more data, this difference might become significant,
however, collection of additional data is not possible as HS3
selected to be explanted.

The LMAJ metric directly quantifies the “smoothness” of
a filter, and differences in performance with this metric were
observed between the filter types for both the NA subjects
(Fig. 5) and HS3 (Fig. 6). For NA subjects, the differences
were found to be significant (ANOVA, (p < 0.001). Post-hoc
tests found significant differences between all possible pairs
of smoothing filters (p < 0.001), with the exception of the
comparison between LPF0.93 and the LF6.25 (p = 0.98). The
LF0.5 had the lowest LMAJ, due to its strong position latching
capabilities. The LF1 also produced a low LMAJ, but its LMAJ
was significantly higher than LF0.5. This contrasts with the
hold time metrics for these two smoothers, which were not
found to be significantly different. This suggests that the LF0.5
reduces movement jitter compared to the LF1, but doesn’t
necessarily improve the ability to maintain positions inside
target ranges. This result might not hold with smaller target
sizes, as higher jitter in LF1 implies more movement, albeit
inside the target range. Another example where a lower LMAJ
doesn’t necessarily imply a higher hold time is the comparison
between LPF0.97 and LF6.25. The LPF0.97 has a significantly
lower mean LMAJ than the LF6.25, but the hold times were
not found to be significantly different. On the other hand, the
LFP0.93 was not found to be significantly different from LF6.25
in terms of LMAJ, but the LF6.25 had significantly longer hold
times. These inconsistencies between hold times and LMAJ
are due to the ability of the LF to latch to a certain position,
causing long hold times, but create fast movements when not
in a latched position, creating higher LMAJ. The unsmoothed
KF exhibited larger LMAJ than the other methods.

For HS3 LMAJ data, significant differences among the
smoothing methods were found (ANOVA, p < 0.001). Post-
hoc tests found that the LPF0.97 and LF1 were both signifi-
cantly different from the unsmoothed KF (p < 0.001), but not
from each other (p = 0.59). These results contrast with those
of the NA subjects, as the LPF0.97 and LF1 were found to be
significantly different with NA data. Due to challenges asso-
ciated with his recent amputation, the HS3 subject had more
difficulty maintaining low jitter estimates than any of the NA
subjects. This led to temporally shorter latches for HS3 than
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(a) Representative trials of the Hold Task
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Fig. 1. Sample thumb flexion testing trials for (a) the hold test and (b) the speed test. The example trials were taken from NA3. All of the smoothing
algorithms appear to reduce “chatter” in the unsmoothed estimate but result in a delay in rapidly reaching a target. For each test, the thumb started at a neutral
position and the subject attempted to move towards and hold it in the target range (hold test) or move into the range as quickly as possible (speed test).

Fig. 2. Sample γ values for the LF traces shown in Fig. 1a. The solid lines
show the values for γ and the dashed lines show the output of the LFs. The
target range is shown as a shaded box.

the NA subjects. There is also less HS3 data from which to
draw statistical conclusions. Because the LF supplies different
amounts of smoothing when latched than when moving, the
decrease in latching drove the mean LMAJ for LF1 higher
for HS3, resulting in LMAJ values more similar to those of
LPF0.97. Unlike with NA data, the LMAJ and hold time results
were not contradictory. Differences between LPF0.97 and LF1
were not found to be significant, but differences between either
method and the unsmoothed KF were.

The TTT metric indicated that all degrees of smoothing
tested led to slower movements (Fig. 7 and Fig. 8). For
NA subjects, significant differences were found among the
various smoothing filters (ANOVA, p < 0.001). Post-hoc
tests, however, found no significant differences between the
fastest method, the unsmoothed KF, and the LF6.25 (p = 0.1).
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Fig. 3. Mean and standard deviation of hold times for NA subjects.
Both smoothing approaches (LPF and LF) improved (increased) hold time,
and modifying parameters to increase smoothing (larger a and smaller C)
increased hold time. In this figure and all others, significant differences
between groups are shown using * for p ≤ 0.05, ** for p ≤ 0.01, and
*** for p ≤ 0.001.
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Fig. 4. Mean and standard deviation of hold times for HS3. As with NA
subjects, the smoothing filters increased hold time, but only the difference
between the unsmoothed KF and the LF1 was found significant here.
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Fig. 5. Mean and standard deviation of LMAJ for non-amputee subjects. Both
smoothing approaches (LPF and LF) improved (reduced) LMAJ, and modi-
fying parameters to increase smoothing (larger a and smaller C) decreased
LMAJ. Across all comparisons, only the comparison between LPF0.93 and
LF6.25 was not significantly different. See Fig. 3 for legend.
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Fig. 6. Mean and standard deviation of LMAJ for amputee subject. Similar
to NA subjects, smoothing filters reduced LMAJ. See Fig. 3 for legend.

Noting this and the previously reported hold times, it can be
seen that the LF6.25 provides the same target “holding” ability
as LPF0.97, the smoothest LPF tested, without a significant
increase in TTT compared to the unsmoothed KF. When speed
is very important, LF6.25 is a good option to provide some
smoothing without greatly reducing movement speed. Both
the unsmoothed KF and LF6.25 were found to be significantly
different than all other methods (p ≤ 0.0036).

The other LFs, LF0.5 and LF1, added a delay compared to
the unsmoothed KF, but were not found to be significantly
different from each other (p = 0.09). These filters produced
significantly smaller TTT values than either LPF (p < 0.01).
When considering this in conjunction with target hold times,
either LF0.5 or LF1 provided high hold times for relatively
small increases in TTT. When hold times are a primary con-
sideration and movement speed is a secondary consideration
LF0.5 or LF1 are both good options.

For HS3, significant differences were found among the
TTT metrics of the smoothing filters (ANOVA, p < 0.001).
The unsmoothed KF and LF1 were the fastest methods, but
were not significantly different (p = 0.48). Both were found
significantly different from LPF0.97 (p < 0.001). For HS3, LF1
provided the same level of smoothing as LPF0.97, both in terms
of LMAJ and hold times, but without a significant impact on
TTT metrics compared to the unsmoothed KF.
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Fig. 7. Mean and standard deviation of time to target values for NA subjects.
As expected, application of a smoothing filter degraded (increased) time to
target, and modifying parameters to increase smoothing (larger a and smaller
C) degraded performance. See Fig. 3 for legend.
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Fig. 8. Mean and standard deviation of time to target values for HS3. TTT
increased with any smoothing filter but the change was not significant between
the unsmoothed KF and LF1. See Fig. 3 for legend.

V. DISCUSSION

The latching filter is an important step in allowing quick
movements, while reducing jitter in movement estimates. The
hold and speed tests together demonstrated that the LF could
simultaneously provide improved levels of smoothness and
quicker movement transitions, in comparison to a LPF. Com-
pared to the unsmoothed case, the LF significantly improved
hold times with minimal and, and for some parameterizations,
statistically insignificant impact on decoder speed. The latch-
ing filter with C = 1 provided a high-level of smoothing,
as measured by both hold times and LMAJ, with a minor
increase in time to target (around 0.2 seconds) compared to the
unsmoothed KF, and is our recommended smoothing method.

The delay in performing the speed task was appreciable
for all smoothing algorithms, including the unsmoothed KF
(Fig. 7 and 8). This delay comes from three sources: de-
tection response task (DRT) delay, movement initiation, and
movement performance delay. In daily activities, the DRT
delay is negligible as the user knows the task. In this study,
subjects had substantive DRT delay because they had to
recognize the movement commands. DRT studies have shown
that delays around 0.5 s are common [35]. On average, this
delay and the movement initiation delay are the same for all
smoothers examined herein. Only the movement performance
delay will differ when smoothing is applied, and this increase
maybe statistically significant. The amount of delay which is
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considered acceptable likely depends on the subject and the
task at hand, and users of prosthetic devices may be given the
option of choosing what level of smoothing they prefer.

We speculate that the LF provides relative ease in main-
taining a desired position compared to the unsmoothed KF.
For example, once a desired position is reached, a user can
relax somewhat and that position will be maintained due to
its “latching” ability. In contrast, when using an unsmoothed
decoder or an LPF, continuous effort is required to maintain
a position, which may lead to user fatigue. The LF requires a
user to “push” past a target to reach that target in a reasonable
amount of time, but in our experience, users quickly learn and
adapt to that need. To reach its target position quickly, the LF
relies on its user having feedback, to know when to correct
slow transitions in real-time by “pushing” past a target position
and when the user can relax, while the LF output maintains
the DoF in the desired range. In addition, the outputs used to
drive the LF must allow estimation of positions outside the
constraints of a prosthetic device’s range of motion, enabling
a user to expediently reach full range of motion. Interestingly,
the latching filter’s characteristics actually make it easier for a
user to maintain maximal positions. Without the latching filter,
users trying to reach a extreme value tend to aggressively push
the decoder past its “stops” to avoid the occasional transition
from the extremum. This leads to unnecessary fatigue. With
the latching filter, the user can actually relax a bit at the
extremes and not be worried about maintaining that position.

The nature of the LF, where it pushes to a position and
then slightly relaxes, is similar to the characteristics of the
biological data recorded during training sessions. When
moving a DoF from a neutral position and then holding it
in place at another location, the maximum amplitude of the
EMG signals during the transition is frequently larger than the
maximum amplitude during the hold period (Fig. 9). Here,
NA1 was asked to move his index finger from a neutral
position to a position of maximal deviation, hold that position
for three seconds, and then relax. The EMG amplitude reached
a maximum around the end of the transition period, then
rapidly dropped to a lower value and slowly decreased during
the hold. When using a KF or regression-based decoders, this
behavior may cause a movement estimate to overshoot a target,
and has lead to our investigating performance improvements
by increasing the hold time during training [36].

The LF employing a quadratic nonlinearity showed signifi-
cant gains over LPFs in our work. Given constraints of subject
availability, we were not able to test other nonlinear functions.
Although our selection of the quadratic nonlinearity is based
upon previous practice [28], a different nonlinear function may
provide additional performance improvement.

Due to time and experimental limitations, we were only able
to test three parameterizations of the LF in intact subjects and
only one parameterization in an amputee subject. It is possible
that other parameterizations could provide better performance.
It is also likely that the “optimal” value may differ between
subjects and that different DoFs may have different “optimal”
values of C. Given that examination of alternative values of
the hyper-parameter (or use of different hyper-parameters per
DoF) can only be done online, subject access limited our abil-
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Fig. 9. The normalized commanded position (Cmd Mvmt) of a training
trial, the corresponding EMG response and the unsmoothed KF estimate for
subject NA1. The maximum-normalized mean MAV across all EMG channels
(Norm. MAV EMG) and the KF estimate show rapid rise associated with
the commanded movement and slow decrease when the command becomes
constant. An LF accommodates this biological characteristic by letting rapid
movements occur and reducing the effect of the slow drop off.

ity to fully investigate the space. Nevertheless, we anticipate
providing the user some ability to adjust the latching filter’s
hyper-parameter in future studies with amputee subjects, and
let the user investigate their own parameter space.

The tasks and metrics used to characterize jitter and speed
gave valuable insights on the LF. However, additional exper-
iments that measure performance in activities of daily living
such as the Southampton hand assessment procedure (SHAP)
[37] or the activities measure for upper limb amputees (AM-
ULA) test [38] may provide additional insight into the usabil-
ity of the LF, including effect of delays. Such functionality
testing will be part of future studies with amputee subjects,
while they use an arm prosthesis in their home environment.

The LF can be used in conjunction with any continuous
decoder and perhaps with a biophysics-based feed forward
decoder. Given it only acts upon the decoded estimates as
they are sent to the arm prosthesis, it does not interact with
any recursion that occurs with many continuous decoders
(e.g., the Kalman filter and recurrent neural networks). It even
allows one to switch between multiple decoders, as long at
the meaning of the output signal remains unchanged. Its use
with a low cross-movement decoder has the potential to bring
functionality of prosthetic hands closer that of native hands.

VI. CONCLUSIONS

This paper presented the latching filter, a computationally
simple method for smoothing intended movement estimates
for use with prosthetic devices. The LF is so-named because
it gives users the ability to “latch” onto a position and
achieve a high level of smoothness, while also allowing for
quick movements away from that position. In contrast, an
LPF provides the same level of smoothing regardless of user
intent, forcing a trade-off between unsatisfactory jitter and
unsatisfactory movement speed. The LF provides high levels
of smoothing, comparable to that provided by an LPF, while
substantially increasing movement speed. The LF can be used
to improve the reliability of prostheses, and may be able to
help amputees perform difficult tasks more easily.
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