Check for
updates

Received: 3 November 2020 Revised: 7 December 2020 Accepted: 7 December 2020

DOI: 10.1002/eng2.12352

RESEARCH ARTICLE WILEY

A distributed system for supporting smart irrigation using
Internet of Things technology

Ahmed Abdelmoamen Ahmed!

| Suhib Al Omari! | Ripendra Awal® |

Ali Fares? | Mohamed Chouikha3

!Department of Computer Science, Prairie
View A&M University, Prairie View,
Texas, USA

2College of Agriculture and Human
Sciences (CAHS), Prairie View A&M
University, Prairie View, Texas, USA

3SECURE Center of Cybersecurity, Prairie
View A&M University, Prairie View,
Texas, USA

Correspondence

Ahmed Abdelmoamen Ahmed,
Department of Computer Science, Prairie
View A&M University, 100 University Dr,
Prairie View, TX 77446.

Email: amahmed@pvamu.edu

Abstract

In this paper, we present the design and implementation of a smart irrigation sys-
tem using Internet of Things (IoT) technology, which can be used for automating
the irrigation process in agricultural fields. It is expected that this system would
create a better opportunity for farmers to irrigate their fields efficiently, as well as
eliminating the field’s under-watering, which could stress the plants. The devel-
oped system is organized into three parts: sensing side, cloud side, and user side.
We used Microsoft Azure IoT Hub as an underlying infrastructure to coordinate
the interaction between the three sides. The sensing side uses a Raspberry Pi
3 device, which is a low-cost, credit-card sized computer device that is used to
monitor in near real-time soil moisture, air temperature and relative humidity,
and other weather parameters of the field of interest. Sensors readings are logged

and transmitted to the cloud side. At the cloud side, the received sensing data
is used by the irrigation scheduling model to determine when and for how long
the water pump should be turned on based on a user-predefined threshold. The
user side is developed as an Android mobile app, which is used to control the
operations of the water pump with voice recognition capabilities. Finally, this
system was evaluated using various performance metrics, such as latency and
scalability.

KEYWORDS

Android, Azure, 10T, Irrigation, Sensors, Soil Moisture

1 | INTRODUCTION

In the United States, landscape irrigation consumes around 34 million m? of freshwater each day.! A significant percent-
age of that water use is wasted due to overwatering caused by inefficiencies in traditional irrigation methods and systems.
To reduce the wasted water, it is becoming increasingly important to optimize the agricultural irrigation methods using
advanced technologies such as Cloud Computing,?> Remote Sensing,® and Internet of Things (IoT),* which are used to
gather data from various sources in the field for enhancing predictive decisions. In the agriculture field, sensing capa-
bilities for quickly and inexpensively generating agriculture and food cyberinformatics have improved immensely in the
past few years.’

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the
original work is properly cited.
© 2020 The Authors. Engineering Reports published by John Wiley & Sons Ltd.

Engineering Reports. 2020;e12352.
https://doi.org/10.1002/eng2.12352

wileyonlinelibrary.com/journal/eng2 10f13

https://orcid.org/0000-0001-9736-5353
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1002%2Feng2.12352&domain=pdf&date_stamp=2020-12-20

20f13 ABDELMOAMEN AHMED ET AL.
WILEY

Imagine a smart IoT system which measures the spatial variability of soil properties in agricultural fields, monitors
farm conditions, and plans irrigation. Such applications would tackle production costs and operational challenges for
both small- and large-scale farmers. These applications rely on the state of the context in which sensing devices are
located, such as geographical location, proximity, temperature, wind speed and direction, solar radiation and humidity.®
Increasingly, sensed data could also inform decisions to activate actuators to carry out tasks automatically.” A growing
number of smart farming technologies offer good examples of such capability.

The objective of this work is to develop an IoT smart irrigation system based on a near real-time monitor of soil mois-
ture in the plant root zone?*. We developed a distributed system which is organized with parts executing on IoT sensing
devices, on the cloud, as well as on the user devices. The communication between the three sides is coordinated through
Azure IoT Hub,? which is a cloud-based platform that enables a tremendous number of IoT devices to communicate
between themselves in a scalable and reliable manner.

At the sensing side, we used soil moisture, air temperature, and relative humidity sensors to monitor the current mois-
ture in the soil, air temperature, and relative humidity in the field, respectively. We developed a sensing-side application,
hosted on a Raspberry Pi 3 device, which receives the sensed data from these sensors, preprocess it, and send the pro-
cessed feeds to the cloud side. Also, the Raspberry application enables farmers to manually control the irrigation process
by turning on/off a water pump based on the current moisture level of the soil, which is also displayed on the Raspberry
application.

At the cloud side, the Microsoft Azure platform has been used as a central bidirectional communication IoT hub
among the system components. The hub supports multiple forms of messages to keep track of the current state of the
IoT end-devices such as cloud-to-device telemetry messages for controlling the devices remotely. These telemetry mes-
sages are sent durably to accommodate intermittently connected devices. All IoT devices at the sensing side—including
the moisture sensor, temperature sensor, LED, and Raspberry Pi—must be registered as end-devices at IoT Hub Device
Provisioning Service in order to send/receive telemetry messages.

At the user side, we developed a desktop application which enables users to remotely control the farm irrigation and
lighting devices, customize the automatic irrigation process, and communicate with the Raspberry Pi application. It also
gives users the ability to set predefined thresholds for the soil dryness alert property, which warns the user if the moisture
level drops to a certain degree. We also developed an Android mobile app for increasing the user experience while using
the system. The app has an option to control the irrigation and lighting devices using voice recognized-commands.

The contributions of this paper are threefold. First, we propose a distributed platform that is organized with three parts
executing on the IoT end-devices at the agricultural field, mobile phones at the user side, as well as high-performance
servers hosted in the Cloud. Second, the proposed system is capable of generating, processing, and visualizing large sensor
datasets. Third, the system is designed to be generic, making it applicable to different fields requiring real-time processing
and using sensors such as in the agricultural field.

The rest of the paper is organized as follows: Section 2 presents related work. Sections 3 and 4 present the design and
prototype implementation of the irrigation system, respectively. Section 5 experimentally establishes the performance
cost of using the system. Finally, Section 6 summarizes the results of this work.

2 | RELATED WORK

Conventional agriculture is slowly changing toward precision agriculture,’ which is a farming management concept based
on observing, measuring, and responding to the spatiotemporal variability in weather, soil, irrigation/water, and agricul-
tural production. The use of intelligent agricultural IoT applications,!%!> through a large number of end-devices in the
target areas—such as farmland, greenhouses, forest gardens, pastures—which can collect data about agricultural breeding
or planting in real-time is becoming increasingly important in modern agriculture. This section focuses on existing work
that supports smart farming practices using IoT technology.

Since landscape irrigation consumes billions of gallons of fresh water daily worldwide, tremendous research efforts
have been done to make the irrigation process and water usage more efficient. For instance, in Reference 12, the authors
used low-cost sensors to implement an automated system for crop field monitoring. Arduino was used to sending the
sensed data to a web server, which stores the current values of moisture, humidity, temperature, and light intensity in a
database. An Android mobile app was built to enable users to monitor the status of their crop fields.

2 Available online: https://github.com/ahmed-pvamu/Smart-IoT-Irrigation-System

ABDELMOAMEN AHMED ET AL. Wl LEY 30f13

Campos et al.!> proposed an 10T framework for smart irrigation, which gathers data from several sources in the agri-
cultural field such as weather stations and moisture sensors. The framework contains a dedicated component for data
monitoring, preprocessing and storage, and irrigation management. Also, the framework allows users to select the crop
type and the nearest weather station.

Another water management platform is proposed in Reference 16 for supporting precision irrigation based on IoT
technologies. The IoT platform can be configured and deployed in different configurations, allowing the deployment in
different geographical regions with various settings such as climate, soils, and crops. The authors performed four pilot
studies in Brazil, Italy, and Spain. The performance evaluation showed that the IoT platform is scalable and flexible to be
applied in different agricultural contexts.

An IoT-based irrigation monitoring system is proposed in Reference 17, which uses a wireless sensor network and
Arduino technology for sensing soil moisture level, temperature and relative humidity values in the agricultural field. The
system monitors the water level of the irrigation tank via a water-level sensor so that if the water level is below a certain
threshold, then irrigation will not start. The sensed data are preprocessed using two Arduino nodes; then the processed
data is sent to a cloud server via a ZigBee transceiver and relay switching unit. The cloud server is responsible for making
the irrigation decisions based on a set of predefined thresholds. An android application was also developed to notify the
user with any change that needs immediate actions such as a sudden rise in temperature, new watering requirements for
some species of plants, etc.

Sales et al.'® proposed a Wireless Sensors Actuators Network (WSAN) system for monitoring and assessing plants
water needs. The system consists of three main components: a WSAN, cloud platform, and web application. The
WSAN is deployed in the agricultural field to collect soil moisture data. The WSAN has several nodes connected
using cluster-tree topology for improving the system scalability. Each node is equipped with a soil moisture sensor.
Sensor feeds are collected by a central Access Point (AP) which sends the aggregated data to the cloud server. The
Cloud Platform is responsible for validating, processing, and storing the received sensor feeds from the sensing side.
Besides, the authors developed an algorithm for controlling the irrigation process based on the collected soil mois-
ture from the WSAN nodes, as well as weather forecasted data from Weather Underground service®. This service
gets the predicted weather data for the closest available weather station to the location of the field where the sen-
sor nodes are deployed. The algorithm uses the Probability of Precipitation value of the target region within 6 h to
decide when the irrigation should start and for how long. When it is the time to spray the field, sensor nodes are
instructed by the cloud platform to increase the soil moisture sampling frequency, which allows optimizing the irri-
gation process because more information is collected. The default sampling rate is restored after watering the field.
Finally, a web application is used to show the location of each sensor node, the connected battery status, and data
history.

Another platform for managing the components of a precision irrigation system is presented in Reference 9. The
proposed distributed system includes a server node which hosts a decision support system, a mobile application for user
interaction, and IoT devices that operate linear irrigation machines. The decision support system creates an irrigation
map, which represents the amount of water to be supplied in each cell of the field based on several factors such as the
integrating geographic, meteorological, and soil data. An Unmanned Aerial Vehicle—equipped with a vision sensor—was
deployed to perform an aerial survey over the field to provide a high-resolution measurement of the current state of the
field.

An IoT-based smart irrigation system based on machine learning is proposed in Reference 13. The proposed system
aims to achieve optimum water-resource utilization in the field by using a machine learning model, which can predict the
irrigation requirements of a field using the sensing of several parameters such as soil moisture and the weather forecast
data. The machine learning model uses the sensors’ feeds of the recent past few days, and the weather forecasted data for
predicting the soil moisture for the upcoming days. However, the proposed system depends entirely on the accuracy of
the predicted soil moisture, which is affected by numerous environmental variables such as air temperature, air humidity,
soil temperature, etc.

In summary, most of the existing work focuses on narrow application areas or specific concerns, making it difficult
to utilize them for a broader class of functionalities. Furthermore, none of these systems implemented a fully functional
ecosystem for agricultural applications starting from collecting data at the sensing side all the way to visualizing processed
information at the cloud side. In this paper, we present a complete IoT system which can be used to monitor and control
the agricultural field operations.

bWeather Underground is a third-party online weather service.

40f13 ABDELMOAMEN AHMED ET AL.
—I—W ILEY

3 | SYSTEM DESIGN

As illustrated in Figure 1, the distributed run-time system for the irrigation system is organized with parts executing on
sensing IoT devices, Azure cloud platform, as well as user devices. In the rest of this section, we discuss these three parts
separately.

3.1 | Sensing side

At the sensing side, data can be collected from a variety of IoT end-devices including soil moisture, temperature, rainfall,
wind speed and direction, solar radiation, humidity, leaks monitoring, accelerometer, GPS, proximity, motion, and dew
point sensors. A Raspberry Pi device—which acts as an IoT gateway—is used to aggregate these data and coordinate the
connectivity of the end-devices to each other and to the cloud side. Accurately, the gateway keeps aggregating the received
sensor data until a sufficient number of them have been received to detect an interesting event such as a change in the
level of soil moisture in an agricultural field. Gateways either send updates periodically or when they observe a new event,
to the IoT hub at the cloud side through the device provisioning service. The IoT hub sends a set of parameters to the
gateway advising it on how to detect events, construct their messages, and how often to send them (once or periodically,
how frequently, etc.).

The IoT Hub Device Provisioning Service is a helper service for the IoT Hub that enables zero-touch real-time provi-
sioning of IoT end-devices. All IoT end-devices must be enrolled with a Device Provisioning Service instance by sending a
registration request to the service. Once the device has been provisioned, it can boot up, and call the provisioning service
to be recognized and assigned to an IoT hub.

3.2 | Cloud side

At the cloud side, the IoT Event Hub'? is used to receive and aggregate the events sent from the gateway at the sensing side.
The Event Hub is a streaming service that is capable of collecting and processing millions of events contained in telemetry
messages produced by IoT end-devices. The Event Hub also implements some security mechanisms to ensure that the
incoming telemetry messages are legitimate. Event Hubs enqueue the received messages in a partitioned consumer model
in which each consumer application only reads a partition of the message stream. This model enables horizontal scale
for event processing that can be easily integrated into the big data and analytics services of Azure, including Databricks,
Azure Stream Analytics, etc.

Stream Analytics is a serverless event processing engine that can be used to analyze data streams generated from IoT
end-devices in real time. The Stream Analytics is employed to implement our automatic irrigation algorithm by detecting

Sensing Side Cloud Side
Ha i
i IoT End-Devices
1
Position / Presence / Proximity L Stream
7 3 IoT Gateway PrOV.lSIOIllng IoT Hub Analytics
Fy o~y ., Service =] ’
Y o () Y i
i ! S Q— A
{7 Acceleration /Tilt O o L &
ﬁ Leaks / Levels f
Humidity / Moisture -
V bdoask H
-
H Temperature

User Side

Mobile App Cloud-based Application

® i

Farmers

FIGURE 1 System
architecture

ABDELMOAMEN AHMED ET AL. Wl LEY 50f13

the pattern of the soil dryness. Specifically, the analytics service collects aggregated events until a sufficient number of
them have been received (as determined by a sufficiency condition) and then triggers actions such as creating alerts,
feeding information to a reporting tool, or storing transformed data for later use.

An Azure Stream Analytics job consists of an input, a transformation query, and an output. The events sent from
the sensing devices are considered the input source for a job. The transformation query, which is based on SQL query
language, is used to aggregate the streaming sensor data to produce the actions which are considered the output of
the job.

To control our sensing devices connected to the IoT hub remotely, we used a cloud-to-device interaction model by
invoking the direct methods on the IoT end-devices. Direct methods represent a synchronous request-reply interaction
with an IoT hub and a sensing device. For instance, direct methods can be used to send an action message to control a
water pump in the agriculture field. The users can send the sensed data to the cloud using both the CoAP and MQTT
protocols.

3.3 | Userside

Nontechnical users (e.g., farmers) can easily monitor and control the agricultural field conditions from anywhere with
the help of various sensors and actuators (e.g., light, humidity, temperature, soil moisture, etc.). We developed a Graphical
User Interface (GUI) which can be accessed from personal computing devices such as PCs and smartphones. The GUI will
help users to access the deployed IoT system remotely, which will eliminate the need for constant manual monitoring.
This design provides cost-effective and optimal solutions for farmers with minimal manual intervention. Furthermore,
the GUI can be used to extract real-time insights and actionable information using the Azure Stream Analytics, which
would aid the decision-making of both small- and large-scale farmers. This would improve management and crop yields
significantly.

4 | SYSTEMIMPLEMENTATION

Figure 2 shows the prototype implementation of the smart irrigation system. Next, we describe the system components
at the sensing, cloud, and user side.

41 | Sensingside

For controlling the environment in an agricultural field, different sensors that measure the environmental parameters

according to the plant requirement have to be deployed in the field. In this project, we tried to remotely control the farm
irrigation and lighting devices by using the following hardware components:

FIGURE 2 The physical
implementation of the smart
irrigation system

60f13 ABDELMOAMEN AHMED ET AL.
WILEY

Resistance [Q)

Raspberry Pi 3 Model B+ is used as an IoT gateway at the sensing side for aggregating the sensing data collected from
sensors. The Raspberry Pi is equipped with a 64-bit quad core processor running at 1.4GHz, dual-band 2.4GHz, and
5GHz wireless LAN. We installed Windows 10 IoT core on the Raspberry Pi, which can host and run .NET applications.
We connected a soil moisture, temperature, and humidity sensor to the Raspberry Pi via the General Purpose I/O
(GPIO) pins.

Water pump equipped with a 12 V-DC battery is used to circulate the water on an irrigation pot. The pump has two
water channels: input and output. The flow of water is absorbed by the input channel and pushed into the bowl through
the output channel. We also used a transistor which controls the flow of the electrical current through the circuit.
When the transistor receives a signal from the Raspberry Pi to turn the pump on, it allows the electrical current to
move through the circuit which turns the pump on, and vice versa.

Soil moisture sensor is used to measure the current moisture level in the soil. The value measured by the sensor is
the electrical resistance of the soil to the flow of electricity between two electrodes. Figure 3 shows an example of the
relationship between resistance and water content of the soil moisture sensor.

The measured value must be calibrated according to the type of soil before converting it to volumetric water content
of soil. Precisely, we have calibrated the relationship between resistance and water content of the soil moisture sensor.
For our experiments, we assumed the following calibration equation:

_L023-3
= 16.575

s

where 6 is the volumetric water content of soil (%) and § is the soil moisture sensor reading (£2).

There are three methods of irrigation scheduling: soil-, weather-, and plant-based or combined irrigation schedul-
ing. The latter two methods may need to consider evapotranspiration. In this paper, we measure soil moisture using
an in situ sensor; therefore, there is no need for considering the evapotranspiration in our calculations.

We used the following equation to calculate the amount of irrigation water needed for the field (Dose) using several
parameters, including soil moisture sensors readings, thickness of soil, field capacity, and the efficiency of the irrigation
hardware used in the field.

(af — Q) *y

Dose = —— |
p

where oy is the field capacity at a depth y, Q. represents the current soil moisture reading, and p is the efficiency of the
irrigation hardware used in the field.

DH11 Temperature and humidity sensors are used to measure the temperature in Celsius and the humidity in
percentage in the field, respectively.

Light-emitting diode (LED) is used to represent the actual farm lighting, which can be controlled by our system.
MCP3002 Analog to Digital converter is used to convert the moisture sensor analog reading to a digital value.

Resistors are used to limit the amount of electrical current moving through the circuit. Particularly, we used one resistor
for the LED and another one for the transistor in case one or both of them draw more current than the Raspberry Pi

1200

1000 @
800
e @
600 o
. 0 y =4775.1x% - 3370.8x +927.2
400 | e
. ‘
200

0
0% 5% 10% 15% 20% 25% 30% 35% 40% 45% FIGURE 3 The relationship between resistance and

Water Content water content of the soil moisture sensor

ABDELMOAMEN AHMED ET AL.

WILEY—L7ots

can supply (i.e., around 60mA). In this case, the resistors will ensure that only 60 mA will flow through the circuit to
protect the connected Raspberry Pi and sensors from damage.

« Jumper wires with two ends connectors are used to connect the Raspberry Pi with all other hardware
parts.

« Display screen is connected to the Raspberry Pi via its HDMI port to display the sensing side application.
« Keyboard and mouse are connected to the Raspberry Pi via its USB ports as input devices.

« Breadboard is used to interconnect all hardware components by inserting their terminals or connected jumper wires
into the holes of the board.

4.2 | Cloud side

At the cloud side, we used the Azure portal to create an IoT hub instance and two virtual devices connected to the estab-
lished hub. The first virtual device represents the physical LED, while the second virtual device represents the physical
water pump at the sensing side.

As shown in Figure 4, we developed a cloud-based windows application for managing the IoT-end devices at the
sensing side. The app uses the IoT hub direct methods to control the devices remotely. On the right-hand side, we display
the device-to-cloud telemetry messages sent from the IoT gateway to the Event Hub, and vice versa. On the left-hand
side, we build a simple control panel to enable the user to control the end-device at sensing side remotely. The user can
perform the following functionalities: (i) turn on/off the LED (e.g., farm lighting); (ii) turn on/off the water pump (e.g.,
control irrigation); (iii) set the maximum number of telemetry messages which can be sent from any end-device to the
Event Hub; and (iv) set the threshold values for the soil moisture, temperature and humidity sensors which are used to
fire the dryness alert if immediate attention from the user is needed.

FIGURE 4 Thecloud-based
Windows application for managing
Internet of Things end-devices

Smart Farm |OT Hub

Devices Controlling

Water Pump
@D o
Farm Lighting

@D off

Devices Data Monitoring

Receiving Sensors Data
@D or
Sending Sensors Data
® On
Max. Sent Messages Count
100

Number Of Devices

Set Numbers from 1 to 1000 (Default=30%)

Set Numbers from 1to 5 (Default=1%)

Sensors Threshold Setting

Moisture Threshold

| % Numbers from 0 to 42 (Required*)

Temperature Threshold

Humidity Threshold

C Numbers from -60 to 100 (Optional*)

i % Numbers from 0 to 100 (Optional*)

Set Thresholds

3 - 4/18/2019 7:17:29 AM, Partition (0). Sensors Data

4 - 4/18/2019 71730 AM,

- 4/18/2019 7:17:31 AM

- 4/18/2019 7:17:32 AM .

-4/18/2019 717.33 AM,

- 4/18/2019 7:17:34 AM

- 4/18/2019 7:17:35 AM ,

- 4/18/2019 7:17:36 AM

- 4/18/2019 7:17:37 AM,

- 4/18/2019 717:38 AM ,

- 4/18/2019 717:39 AM,

- 4/18/2019 7:17:40 AM ,

- 4/18/2019 717:41 AM ,

- 4/18/2019 717:42 AM ,

- 4/18/2019 717:43 AM,

- 4/18/2019 7:17:44 AM ,

- 4/18/2019 7.17:45 AM

Partition (0), Sensors Data

. Partition (0), Sensors Data

Partition (0), Sensors Data

. Partition (0), Sensors Data
Partition (0), Sensors Data

. Partition (0), Sensors Data

Partition (0), Sensors Data :

Partition (0), Sensors Data

Partition (0). Sensors Data

Partition (0). Sensors Data

» Partition (0), Sensors Data

Partition (0), Sensors Data :

Partition (0), Sensors Data :

Partition (0), Sensors Data :

Partition (0), Sensors Data :

[{"Moisture’ fma
: [{"Moisture™0.2,"Temperat
[{"Moisture":0.1,"Temperatt
[{"Moisture™:0.1,"Temperat]
[{"Moisture",0.2,"Temperal
[{"Moisture™0.1,"Temperat]
[{"Moisture™:0.1,"Temperat]
[{"Moisture™0.1,"Temperat]
[{"Moisture™:0.0,"Temperat]
[{"Moisture™0.1,"Temperat]
[{"Moisture™:0.1,"Temperat]
[{"Moisture™0.0,"Temperai

[{"Moisture":0.1,"Temperat:

Partition (0), Sensors Data :

[{"Moisture™0.1,"Temperaf]

: [{"Moisture™

019 7:17:46 AM , Partition (0), Sensors Data : [{"Moisture”:0.1,"Temperg

(100) Readings were recieved successfully, Receiving Elapsed Time : 103775 (ms)

80f13 ABDELMOAMEN AHMED ET AL.
WILEY

FIGURE 5 Screenshot of the

2
S ensors D at a Universal Windows Platform Application
Running on the Raspberry Pi

Moisture Temperature Humidity
0.2% 242 C 46.0 %

Sending Data (1 Device) Thresholds Max. Msgs Count

True (100), (5621 ms) Moisture: 70 100 / Device

Farm Lighting is Off Water Pump Stopped _

4.3 | User side

At the user side, we developed a Universal Windows Platform (UWP) application that runs on the Raspberry Pi to display
the real-time sensing data from the field (see Figure 5). This application’s GUI is designed and developed using XAMLE®
and C#, respectively. The application displays the following information:

« The current readings of the soil moisture (in percentage), temperature (in Celsius), and humidity (in percentage)
Sensors.

« The number of devices which are currently sending sensors readings to the cloud side. It can be remotely adjusted in
the cloud-based windows application. We also show the total elapsed time for both collecting and sensing sensor data
to the cloud side in milliseconds.

« The current threshold value of the soil moisture is used to control the water pump at the sensing side. Also, this
threshold can be set in the cloud-based windows application.

« Two interactive images are used for illustrating the current status of the farm lighting and the water pump.

Each telemetry message sent from the cloud side contains three sensed readings (i.e., the current moisture, temper-
ature, and humidity reading), in addition to one extra value for the dryness alert property. If a dryness alert message is
received, the application turns on the water pump immediately by invoking a cloud preregistered direct method call on
the IoT gateway. The water pump keeps irrigating the field until the sensed moisture level exceeds the moisture threshold.

We also developed an Android mobile app for enabling the user to manually control both the irrigation pump and
the farm lighting using (shown in Figure 6). The app includes a voice assistant which uses voice recognition and speech
synthesis to translate the voice commands of the user to actions. For example, if the user says, estart irrigation,e then the
water pump will be turned on. Additionally, the user can turn on/off the farm lighting and the water pump by taping the
corresponding icons on the app.

The mobile app was developed using the Xamarin platform,?° which is a development platform for creating native
mobile apps across different platforms (e.g. Android, iOS, etc.). Particularly, we used the Xamarin.Android library which
exposes the complete Android SDK for .NET developers to build fully native Android apps using C# in MS Visual Studio
Development Environment.

¢XAML is a declarative language that is used to create the GUI of UWP applications.

ABDELMOAMEN AHMED ET AL. Wl LEY 90f13

FIGURE 6 The android mobile App = .al & 1:56 PM

Start Irrigation

Turn On Light

Welcome to your Smart Farm!

Our system can control the end-devices using voice recognition in the Android app. To do so, we first convert the
recorded speech to text. Then, we match the generated command to one of the existing direct method actions. If a matching
action is found, we call the appropriate direct method, which sends a direct method call to the device to take action.

5 | EVALUATION

We experimentally evaluated our prototype regarding performance and scalability. We installed instrumentation in both
the cloud-based application and the UWP application running on the Raspberry Pi to measure the processor time that
was taken to perform various tasks. Instrumentation was also added to the sensing side to measure the processor time
of sensing data. Each experiment presented in this section is carried out for ten trials, then we took the average of these
trials’ results.

5.1 | The effect of changing the number messages on the response time

We ran a set of experiments to determine the impact of changing the number of messages exchanged between the sensing
and cloud sides on the processing time of these messages at the UWP application running on the Raspberry Pi. This
application was developed to asynchronously send one sensor feed to the IoT Event Hub per second. In these experiments,
we used one IoT end-device to send/receive all messages to/from the cloud side.

Figure 7 shows the results of these experiments. As shown in the figure, as the number of messages increases, the
total processing time increases until reaching 500 messages. At this point, we could not observe noticeable significant
differences in the response time. The overall average latency was measured to be 0.027 s per message, which is considered
an acceptable latency that makes our system a near-real-time irrigation system. This means when the dryness alert is
fired, the irrigation process can start within 1 s considering the network delay as well. Furthermore, we assumed that a
sensor feed is collected every second, and consequently, a message is sent to the cloud side every second, which may be
not very reasonable in reality as farmers need to check the moisture level in the soil every couple of hours, for instance.

10 0of 13 WI LEY ABDELMOAMEN AHMED ET AL.

20 A FIGURE 7 The effect of changing the number messages on the
18 - response time
16
14 4
12 4

10 A

Response Time (seconds)

8
6
4 €
2
0

100 200 300 400 500 600 700 800 900 1000

Number of Messages

5.2 | The effect of changing the number of IoT end-devices on the response time

We ran another set of experiments to determine the impact of changing the number of IoT end-devices on the response
time of the system. In the first experiment, we used one IoT end-device to perform all computations. Then, we gradually
increased the number of devices in the following experiments. In these experiments, we used the physical pump in addi-
tion to other four virtual devices, which are all connected to the IoT hub. We instructed each device to send 100 feeds per
second to the cloud side during the time of the experiment.

Figure 8 shows the results of these experiments. As shown in the figure, as the number of devices increases, the latency
time slightly increases. This demonstrates that our system is scalable and can support a high number of IoT-end devices
without significantly affecting the responsiveness of the system.

5.3 | The effect of changing the number of IoT end-devices on the processing time

Finally, we ran a set of experiments to determine the impact of changing the number of IoT end-devices on the ongoing
per-event processing time. The main objective of these experiments is to assess the scalability of the system to accommo-
date an enormous number of sensing devices. The ongoing processing time measured was per sensor feed: every time a

piece of raw data was received from a sensor, its average the total processing cost amounted to that per-event processing
time.

3.00
]

2.00 -

1.00 -

Response Time (seconds)

0.00 T T T 1
1 2 3 4 5 FIGURE 8 The effect of changing the number Internet of Things
Number of loT Sensing Devices end-devices on the response time

ABDELMOAMEN AHMED ET AL. 110f13
WILEY

FIGURE 9 The effect of changing the number Internet of Things 30 -
end-devices on the ongoing per-event processing time

20

Processing Time Per Event (MS)
o

0 T T T T 1
0 2,000 4,000 6,000 8,000 10,000

Number of loT Sensing Devices

In the first experiment, we used one virtual end-device to perform all computations. Then, we gradually doubled the
number of virtual devices in the following experiments. Figure 9 shows the results of these experiments. As shown in the
figure, as the number of devices increases, the average processing time per event slightly increases. These experiments
show that our system can include a large number of IoT-end devices without having a significant effect on the ongoing
processing time of sensor feeds.

6 | CONCLUSIONS AND FUTURE WORK

This paper presented a distributed IoT system which can better inform and engage farmers with the automated irriga-
tion process in agriculture fields. The developed system would create a better opportunity for farmers to irrigate more
efficiently, remotely, as well as reducing the field’s overwatering based on actual soil watering needs. We developed three
different types of applications as part of the IoT system executing on sensing IoT devices, Azure cloud platform, as well
as on users’ mobile devices. These applications give the ability to users to set various irrigation parameters such as the
thresholds for the moisture, temperature and humidity sensors, which makes the system widely useable for a different
type of crops and soils considering they have their suitable soil moisture threshold values. We also carried out several sets
of experiments for evaluating the performance and scalability of our system, paying particular attention to establishing
the relationship between the number of IoT end-devices connect to the IoT hub and the response time of the system. The
results showed that the response time depends on various granularity characteristics of the systems, most notably the
number of messages exchanged between the IoT end-devices and the IoT Event Hub. Also, the experimental evaluation
showed that the system is highly responsive and scalable despite the number of messages exchanged as well as the num-
ber of contributing IoT end-devices. We expect that this research would increase the open source knowledge base in the
area of IoT-based distributed and mobile systems by publishing the source codes to the public domain.

In ongoing work, we are looking into opportunities for generalizing our approach to be used for other smart farming
practices such as automatic seeding, fire detection, lighting, and climate control. This would lessen the need for human
interaction and ultimately improve agriculture productivity. We also plan to check the forecasted rainfall in the next few
hours before starting the irrigation process. Also, we will test the developed prototype in the Research Farm at Prairie
View A&M University, as a pilot site.

We plan to develop an approach for sharing sensor data between IoT devices with multimodal sensing requirements.
Specifically, we will compose ModeSens?!?? with ShareSens?32* to support such capability. ModeSens allows multimodal
sensing requirements of an application to be programmed separately from its function. Programmers can specify differ-
ent modes in which an application can be, the sensing needs of each mode, and the sensed events which trigger mode
transition. ModeSens monitors for mode transition events, and dynamically adjusts the sensing frequencies to match the
current mode’s requirements. ShareSens is a mechanism that opportunistically economizes on a collection of sensor data

d Available online: https://github.com/ahmed-pvamu/Smart-IoT-Irrigation-System

12 0f 13 WI LEY ABDELMOAMEN AHMED ET AL.

by merging sensing requirements of multiple applications, thereby achieving significant power and energy savings. The
composition of ModeSens and ShareSens will be useful for supporting the sensing needs of a wide range of researches?>-3!
and applications.?>32-37

Furthermore, we are also looking at the opportunity of using deep learning to predict more accurate plant watering
requirements. Finally, experiments with more massive datasets are needed to study the robustness of our solution further.

ACKNOWLEDGEMENTS

This research work is supported in part by the National Science Foundation (NSF) under grant number 2011330. Any
opinions, findings, and conclusions expressed in this paper are those of the authors and do not necessarily reflect NSF’s
views.

PEER REVIEW INFORMATION
Engineering Reports thanks the anonymous reviewers for their contribution to the peer review of this work.

PEER REVIEW
The peer review history for this article is available at https://publons.com/publon/10.1002/eng2.12352.

DATA AVAILABILITY STATEMENT
The data that support the findings of this study are openly available at: https://github.com/ahmed-pvamu/Smart-IoT-
Irrigation-System.

CONFLICT OF INTEREST
Authors have no conflict of interest relevant to this article.

AUTHOR CONTRIBUTIONS

Ahmed Abdelmoamen Ahmed: Funding acquisition-Lead, Investigation-Lead, Project administration-Lead. Suhib
Al Omari: Data curation-Lead, Software-Lead. Ripendra Awal: Formal analysis-Equal, Investigation-Equal. Ali Fares:
Resources-Equal, Supervision-Equal. Mohamed Chouikha: Supervision-Equal.

ORCID
Ahmed Abdelmoamen Ahmed © https://orcid.org/0000-0001-9736-5353

REFERENCES

1. EPA: statistics and facts. https://www.epa.gov/watersense/statistics-and-facts. Accessed December 06, 2020.

2. Hashem I, Yaqoob I, Anuar N, Mokhtar S, Gani A, Ullah Khan S. The rise of big data on cloud computing: review and open research
issues. Inf Syst. 2015;47:98-115.

3. Bastiaanssen W, Molden DJ, Makin IW. Remote sensing for irrigated agriculture: examples from research and possible applications. Agric
Water Manag. 2000;46(2):137-155.

4. Tzounis A, Katsoulas N, Bartzanas T, Kittas C. Internet of Things in agriculture recent advances and future challenges. Biosyst Eng.
2017;164:31-48. https://doi.org/10.1016/j.biosystemseng.2017.09.007.

5. Nawandar NK, Satpute VR. IoT based low cost and intelligent module for smart irrigation system. Comput Electron Agric. 2019;162:979-990.
https://doi.org/10.1016/j.compag.2019.05.027.

6. Moamen AA, Jamali N. Coordinating crowd-sourced services. Paper presented at: Proceedings of the IEEE International Conference on
Mobile Services; 2014:92-99; Alaska.

7. Moamen AA, Jamali N. An actor-based middleware for crowd-sourced services. EAI Trans Mob Commun Appl. 2017;17:1-15.

8. Azure IoT Hub. https://azure.microsoft.com/en-us/services/iot-hub/. Accessed December 06, 2020.

9. Aleotti J, Amoretti M, Nicoli A, Caselli S A smart precision-agriculture platform for linear irrigation systems. Paper presented at:
Proceedings of the International Conference on Software, Telecommunications and Computer Networks (SoftCOM); 2018:1-6.

10. Rajendrakumar S, Parvati VK, Rajashekarappa, DPB. Automation of irrigation system through embedded computing technology.
Paper presented at: Proceedings of the 3rd International Conference on Cryptography, Security and Privacy, Kuala Lumpur, Malaysia;
2019:289-293.

11. KwokJ, SunY. A Smart IoT-based irrigation system with automated plant recognition using deep learning. Paper presented at: Proceedings
of the 10th International Conference on Computer Modeling and Simulation, Sydney, Australia; 2018:87-91.

12. Rao RN, Sridhar B. IoT based smart crop-field monitoring and automation irrigation system. Paper presented at: Proceedings of the
International Conference on Inventive Systems and Control (ICISC), Coimbatore, India; 2018:478-483.

https://publons.com/publon/10.1002/10.1002/eng2.12352
https://github.com/ahmed-pvamu/Smart-IoT-Irrigation-System
https://github.com/ahmed-pvamu/Smart-IoT-Irrigation-System
https://orcid.org/0000-0001-9736-5353
https://orcid.org/0000-0001-9736-5353
https://www.epa.gov/watersense/statistics-and-facts
https://doi.org/10.1016/j.biosystemseng.2017.09.007
https://doi.org/10.1016/j.compag.2019.05.027
https://azure.microsoft.com/en-us/services/iot-hub/

ABDELMOAMEN AHMED ET AL. 130f13
WILEY

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.
26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

Goap A, Sharma D, Shukla A, Krishna CR. An IoT based smart irrigation management system using machine learning and open source
technologies. Comput Electron Agric. 2018;155:41-49. https://doi.org/10.1016/j.compag.2018.09.040.

Muangprathub J, Boonnam N, Kajornkasirat S, Lekbangpong N, Wanichsombat A, Nillaor P. IoT and agriculture data analysis for smart
farm. Comput Electron Agric. 2019;156:467-474. https://doi.org/10.1016/J.Compag.2018.12.011.

Campos GS, Rocha A, Gondim R, de Silva C, Gomes D. Smart and green: an internet-of-things framework for smart irrigation. Sensors.
2020;20:1-25.

Kamienski C, Soininen JP, Taumberger M, et al. Smart and green: an Internet-of-Things framework for smart irrigation. Sensors.
2019;19:1-20.

Saraf SB, Gawali DH. IoT based smart irrigation monitoring and controlling system. Paper presented at: Proceedings of the IEEE Interna-
tional Conference on Recent Trends in Electronics, Information Communication Technology (RTEICT), Bangalore, India; 2017:815-819.
Sales N, Remédios O, Arsenio A. Wireless sensor and actuator system for smart irrigation on the cloud. Paper presented at: Proceedings
of the IEEE 2nd World Forum on Internet of Things (WF-IoT), Milan, Italy; 2015:693-698.

Azure IoT Event Hub. https://docs.microsoft.com/en-us/azure/event-hubs/event-hubs-about. Accessed December 06, 2020.

Visual Studio Tools for Xamarin. https://visualstudio.microsoft.com/xamarin/. Accessed December 06, 2020.

Moamen AA, Nadeem J. ModeSens: an approach for multi-modal mobile sensing. Paper presented at: Proceedings of the Companion
Proceedings of the 2015 ACM SIGPLAN International Conference on Systems, Programming, Languages and Applications: Software for
Humanity; 2015:40-41; Pittsburgh, PA.

Abdelmoamen A. a modular approach to programming multi-modal sensing applications. Paper presented at: Proceedings of the IEEE
International Conference on Cognitive Computing; 2018:91-98; San Francisco.

Moamen AA, Jamali N. ShareSens: an approach to optimizing energy consumption of continuous mobile sensing workloads. Paper
presented at: Proceedings of the 2015 IEEE International Conference on Mobile Services (MS ’15), New York, NY; 2015:89-96.

Moamen AA, Jamali N. Opportunistic sharing of continuous mobile sensing data for energy and power conservation. IEEE Trans Serv
Comput. 2017;13(3):503-514. https://doi.org/10.1109/TSC.2017.2705685.

Moamen AA, Jamali N. An actor-based approach to coordinating crowd-sourced services. Int J Serv Comput (IJSC). 2014;2(3):43-55.
Moamen AA, Jamali N. CSSWare: a middleware for scalable mobile crowd-sourced services. Paper presented: Proceedings of the EAI
MOobiCASE; 2015:181-199; Berlin, Germany.

Moamen AA, Jamali N. Supporting resource bounded multitenancy in Akka. Paper presented at: Proceedings of the ACM SIGPLAN
International Conference on Systems, Programming, Languages and Applications: Software for Humanity (SPLASH Companion 2016),
Amsterdam, Netherlands; 2016:33-34.

Moamen AA, Wang D, Jamali N. Supporting resource control for actor systems in Akka. Paper presented at: Proceedings of the
International Conference on Distributed Computing Systems (ICDCS 2017), Atlanta, GA; 2017:1-4.

Abdelmoamen A, Wang D, Jamali N. Approaching actor-level resource control for Akka. Paper presented at: Proceedings of the IEEE
Workshop on Job Scheduling Strategies for Parallel Processing; 2018:1-15; Vancouver, Canada.

Ahmed AA, Olumide A, Akinwa A, Chouikha M. A robotic scout UAV for mapping dynamic environments at Bechtel corporation. Paper
presented at: Proceedings of the Conference for Industry and Education Collaboration (CIEC); 2020:1-11; Orlando.

Moamen AMA, Hamza HS. On securing atomic operations in multicast AODV. Ad-Hoc and Sens Wirel Netw. 2015;28:137-159.

Moamen AA, Jamali N. CSSWare: an actor-based middleware for mobile crowd-sourced services. Paper presented at: Proceedings of
the 2015 EAI International Conference on Mobile and Ubiquitous Systems: Computing, Networking and Services (Mobiquitous ’15);
2015:287-288; Coimbra, Portugal.

Ahmed AA, Olumide A, Akinwa A, Chouikha M. Constructing 3D maps for dynamic environments using autonomous UAVs. Paper
presented at: Proceedings of the 2019 EAI International Conference on Mobile and Ubiquitous Systems: Computing, Networking and
Services (Mobiquitous '19); 2019:504-513; Houston.

Abdelmoamen A, Jamali N. A model for representing mobile distributed sensing-based services. Paper presented at: Proceedings of the
IEEE International Conference on Services Computing; 2018:282-286; San Francisco.

Ahmed AA. A model and middleware for composable IoT services. Paper presented at: Proceedings of the International Conference on
Internet Computing & IoT; 2019:108-114; Las Vegas.

Ahmed AA, Eze T. An actor-based runtime environment for heterogeneous distributed computing. Paper presented at: Proceedings of the
International Conference on Parallel & Distributed Processing; 2019:37-43; Las Vegas.

Moamen AA, Hamza HS, Saroit IA. Secure multicast routing protocols in mobile ad-hoc networks. Int J Commun Syst.
2014;27(11):2808-2831. https://doi.org/10.1002/dac.2508.

How to cite this article: Abdelmoamen Ahmed A, Al Omari S, Awal R, Fares A, Chouikha M. A distributed
system for supporting smart irrigation using Internet of Things technology. Engineering Reports. 2020;e12352.
https://doi.org/10.1002/eng2.12352

https://doi.org/10.1016/j.compag.2018.09.040
https://doi.org/10.1016/J.Compag.2018.12.011
https://docs.microsoft.com/en-us/azure/event-hubs/event-hubs-about
https://visualstudio.microsoft.com/xamarin/
https://doi.org/10.1109/TSC.2017.2705685
https://doi.org/10.1002/dac.2508
https://doi.org/10.1002/eng2.12352
https://doi.org/10.1002/eng2.12352
https://doi.org/10.1002/eng2.12352

