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Abstract—Multivariate time series (MTS) analysis is an
increasingly popular research topic in recent years due to the
vast amount of MTS data that are being generated in numerous
fields such as genomics research, health informatics, finance
and abnormal detection. The particularity of the data makes
it a challenging task, e.g., missing data, different sampling fre-
quencies, and random noise. Moreover, each instance depends
not only on its past values but also has some dependency on
other instances, and there exist discriminatory order-dependent
characteristics. To address these challenges, in this paper,
we introduce an order-preserving metric learning framework
for multivariate time series prediction. Specifically, we adopt
quadruplet-wise constraints which can encompass pair-wise
and triplet-wise constraints to model similarity from complex
label relations. To preserve the inherent temporal relationships
of the instances in MTS, order-preserving Wasserstein distance
is integrated to the framework to measure dissimilarity between
MTS data, where the inverse difference moment regularization
enforces flow-network with local homogeneous structures and
the KL-divergence with a prior distribution regularization
prevents flow-network between instances with faraway tempo-
ral locations. Besides the regularizations on flow-network, the
ground measurement of the Wasserstein distance is replaced by
Mahalanobis distance to increase its discrimination capability.
An alternating iteration strategy is proposed to jointly optimize
the Mahalanobis distance matrix in the ground measurement
and the flow-network of Wasserstein distance. Extensive ex-
periments on real-world clinical data from critical care are
provided to demonstrate the effectiveness of the proposed
method on sepsis prediction task.

Keywords-metric learning; Wasserstein distance; order-
preserving; sepsis;

I. INTRODUCTION

Nowadays temporal data are being generated from almost

every application domain at an unprecedented rate, e.g., daily

fluctuations of stock market, network monitoring, sensor

readings, patient data captured from medical device, etc. The

analysis of such time series data has increasingly become to

a critical task in applications including stock trend analysis,

mechanical structure reliability assessment, air quality pre-

diction, clinical risk prediction and other practical projects,

etc [1]–[4].

Time series are discrete or continuous sequences of real-

valued elements collected over a period of time. The data

capturing entity (e.g., a mobile device or a computer) is

Figure 1: An example of a patient’s ICU data.

continuously sampled at fixed or varying temporal resolu-

tions. Usually these time series data are multivariate, i.e.,
the sampled readings are originated from multiple sensors,

which are not necessarily synchronized in any fashion [5]–

[7]. Figure 1 is an example of a patients’ ICU data. Multiple

variables (e.g., heart rate (HR), temperature (Temp)) were

recorded at different time points. The phenomena of missing

data, different sampling frequencies and random noise exist.

Predictive modeling with such asynchronous MTS data is a

challenging task.

Existing time series classification methods can be roughly

divided into three large categories, i.e., feature based, model

based and sequence distance based methods [8]–[10]. Fea-

ture based methods usually transform the sequence into a

feature vector through feature engineering and then apply

conventional classification methods such as a decision tree

or a neural network [11], [12]. Model based methods assume

sequences in a class are generated by an underlying model

such as naive Bayes sequence classifier [13] and hidden

Markov model [14]. Sequence distance based methods define

a distance function to measure the similarity between a pair

of sequences, where the nearest neighbor (NN) algorithm

is typically coupled with such a distance function. In this

paper, we focus on the sequence distance based methods.

Among all distance measures, Euclidean distance is a

widely adopted option because of its simplicity and good

interpretability. However, it requires two sequences to have

the same length and is sensitive to the misalignment on

temporal locations. To address this problem, Berndt et
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al. [15] proposed dynamic time wrapping (DTW), which

allowed one time series to be “stretched” to provide a

better match with another time series [16]. However, the

alignments determined by DTW remain strictly sequential,

i.e., instances (sampled points) in one sequence are not

allowed to be aligned with instances in another sequence

unless all points before them in both sequences have already

been aligned [17]. By viewing the instances in a sequence as

variable-size descriptions of distributions, Wasserstein dis-

tance provides another flexible way to measure the dissim-

ilarity between two sequences [18]. It is a powerful metric

based on the theory of optimal transport and defined between

probability distributions on a ground distance matrix. Al-

though Wasserstein distance can solve the problem of local

rank inversion and different starting points, it completely

ignores the temporal dependencies of instances. Therefore,

Su et al. [19] proposed the order-preserving Wasserstein

distance which incorporates the advantages of flexibility

of optimal transport and order preserving alignments. Two

regularization terms including the inverse difference moment

regularization and KL-divergence with a prior distribution

regularization were imposed on the flow-network to preserve

the inherent temporal relationships.

Besides the flow-network, the ground distance matrix

between two sequences in the Wasserstein definition also

plays an important role in the flow optimization procedure.

A well-designed ground distance matrix can generate better

flow-network and thus lead to better Wasserstein distance

measurements. For this reason, researchers have proposed to

adopt the metric learning framework [20] to further improve

the flexibility of Wasserstein distance. Xu et al. [21] pro-

posed a multi-level metric learning method using a smoothed

Wasserstein distance to characterize the errors between any

sample pairs, where the ground distance is considered as a

Mahalanobis distance. Su et al. [22] unified a wide range of

distance measures for sequences into a unified framework as

a function of the ground metric for elements in sequences.

The final distances are meta-distances built upon the ground

metric by inferring the temporal alignments among the

element pairs.

In this paper, we propose an order-preserving metric

learning framework for multivariate time series prediction.

We model similarity from label relations with quadruplet-

wise constraint since it can encompass pair-wise and triplet-

wise constraint. Order-preserving Wasserstein distance is

then integrated into the framework to preserve the inherent

temporal relationships of the instances in sequences. Two

temporal regularizations are imposed to penalize the flow-

network between instances with distant temporal positions.

Besides the regularizations on flow-network, the ground

measurement of the Wasserstein distance is set to Maha-

lanobis distance to increase its discrimination capability. An

alternating iteration strategy is proposed to jointly optimize

the Mahalanobis distance matrix in the ground distance and

Wasserstein distance flow-network. Results on predicting the

risk of sepsis in critical care demonstrate the effectiveness

of the proposed method.

The rest of this paper is organized as follows. Section

II detailedly introduces the most related work including

smoothed Wasserstein distance and order-preserving Wasser-

stein distance. In Section III, we first formulate the general

metric learning framework and then propose our order-

preserving metric learning model. Then, we introduce an al-

ternating iteration strategy to optimize the proposed model in

section IV. Experimental results are presented and discussed

in section V. Section VI concludes the paper.

Notations Let boldface lowercase letters like z ∈ R
d be

vectors with dimension d and boldface uppercase letters like

Z ∈ R
d×c be matrices with size d × c. The transpose of

Z is denoted as Z� and the real numbers are denoted as

uppercase letters like Z ∈ R.

II. RELATED WORK

We start this section by first describing the smoothed

Wasserstein distance, and then revisiting the order-

preserving Wasserstein distance [19].

A. Smoothed Wasserstein Distance

Wasserstein distance is essentially the optimal solution

for transportation problems in linear programming. It can be

thought of as a minimum amount of work required to move

the entire earth from source to destination [23]. Given two

sequences P = {(p1, wp1
), (p2, wp2

), · · · , (pm, wpm
)} and

Q = {(q1, wq1), (q2, wq2), · · · , (qn, wqn), the Wasserstein

distance between them is defined as:

W (P,Q) = min
F∈F(P,Q)

Tr(D�F) (1)

where D = {d(i, j)}, i = 1, · · · ,m, j = 1, · · · , n is

the ground distance matrix, and d(i, j) defines the cost of

moving one unit of earth from the source pi to the target

qj . F = {f(i, j)}, i = 1, · · · ,m, j = 1, · · · , n is a flow-

network matrix, and f(i, j) denotes the amount of earth

moved from the source pi to the target qj .

Let wp = [wp1
, wp2

, · · · , wpm
] ∈ R

m, wq =
[wq1 , wq2 , · · · , wqn ] ∈ R

n, then F(P,Q) can be written as:

F(P,Q) = {F ∈ R
m×n
+ |F�1m = wq,F1n = wp}. (2)

Optimizing the Wasserstein distance problem is actually

solving several expensive optimal transportation problems.

In addition, due to the minimum value of affine function,

Wasserstein itself is not a smooth function of its parameters,

which limits the application of Wasserstein distance. In order

to overcome the above problems, some researchers have

proposed the smoothed optimal transport problem under

entropy constraint [24]:

Wγ(P,Q) = min
F∈F(P,Q)

Tr(DTF)− γh(F), (3)
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where h is the (strictly concave) entropy function

h(F) = −〈F, logF〉, (4)

and γ > 0 is a balance parameter. In this paper, we call

Eq. (3) as smoothed Wasserstein distance [21]. The flow-

network F∗ solution of the problem in Eq. (3) is unique and

can be found by computing two vectors κ1 ∈ R
m
+ , κ2 ∈ R

n
+

such that diag(κ1)e
−D/γdiag(κ2) ∈ F(P,Q). The optimal

solution is then

F∗ = diag(κ1)e
−D/γdiag(κ2). (5)

Typically, κ1 and κ2 can be solved using Sinkhorn’s al-

gorithm [25]. This algorithm has linear convergence, and

requires O(mn) operations at each iteration. However, if

two sequences differ only in the order of elements, then the

Wasserstein distance is incapable of distinguishing them.

B. Order-Preserving Wasserstein Distance

To preserve the inherent temporal relationships of the

instances in sequences, Su et al. [19] proposed the order-

preserving Wasserstein distance. Specifically, two novel

temporal regularizations are imposed to punish the flow-

network between instances with distant temporal positions,

so that the learned optimal flow can maintain the temporal

dependencies of instances in sequences.

To encourage temporally approached elements to match,

the first regularization favors F with large inverse difference

moment which is calculated as

I(F) =
m∑

i=1

n∑

j=1

fij(
i
m − j

n

)2
+ 1

. (6)

If the large values of F are distributed mainly along the

diagonal, then the value of I(F) will be large.

To encourage the flow-network to be smooth and reason-

able, the second regularization favors the distribution of F
to be similar to a prior distribution P:

pij = P(i, j) =
1

σ
√
2π

e−
l2(i,j)

2σ2 , (7)

where l(i, j) = |i/m−j/n|
1/m2+1/n2 is the distance from the position

(i, j) to the diagonal line.

By imposing two regularizations to the feasible set

F(P,Q), we have

Fλ1,λ2(P,Q) = {F ∈ R
m×n
+ |F�1m = wq,F1n = wp,

I(F) ≥ λ1,KL(F‖P) ≤ λ2},
(8)

where KL(F‖P) =
∑m

i=1

∑n
j=1 fij log

fij
pij

is the Kullback-

Leibler (KL) divergence between two matrices. Then, order-

preserving Wasserstein (OPW) distance between two se-

quences P and Q can be defined as:

Wλ1,λ2(P,Q) = min
F∈Fλ1,λ2

(P,Q)
Tr(DTF). (9)

Similar to the smoothed Wasserstein distance, the additional

constraints greatly reduce the computational complexity of

calculating the optimal flow-network [19].
The ground distance in Eq. (9) is usually Euclidean,

cosine or sparse L1-norm distances. However, these dis-

tances cannot allow arbitrary linear scaling and rotation

of the feature space, nor can they take advantage of the

discriminative information that exists in the data space.

Therefore, in this paper, we use the Mahalanobis distance

as the ground measurement to improve the discrimination

capability of Wλ1,λ2 .

III. ORDER-PRESERVING METRIC LEARNING MODEL

In this section, we first describe the general metric

learning formulation and then propose our order-preserving

metric learning model for multivariate time series analysis.

A. General Metric Learning Formulation
Metric learning targets at learning an adaptive distance,

such as widely used Mahalanobis distance dM(xi,xj) =√
(xi − xj)�M(xi − xj), to effectively reflect the simi-

larity between data. Generally, it can be formulated as an

optimization problem of the form [26]–[28],

min
M

Loss(M,A) + λReg(M), (10)

where Reg(M) is a regularization term on the metric matrix

M, and λ > 0 is the regularization parameter. Loss(M,A)
is a loss function that penalizes constraints that are not

satisfied. It usually measures the ability of the matrix M
to satisfy some distance constraints given in the training set.

Commonly used constraints include pairwise constraint [29]

and triplet constraint [30].
The pairwise constraint contains information whether two

objects in a pair are similar or dissimilar, sometimes positive

pairs or negative pairs. It can be represented by D and S as

S = {(xi,xj),xi and xj are similar},
D = {(xi,xj),xi and xj are dissimilar}. (11)

The information-Theoretic Metric Learning (ITML) is one of

many methods using pairwise constraint training examples

in metric learning field [29], which is formulated as follows

min
M∈Sd+

γ
∑

i,j

ξij +Dld(M,M0)

s.t. d2M(xi,xj) ≤ u+ ξij , ∀(xi,xj) ∈ S,
d2M(xi,xj) ≥ l − ξij , ∀(xi,xj) ∈ D,

(12)

where u and l are upper bound and lower bound for

similar samples and dissimilar samples respectively. ξij is a

safety margin distance for each pair. Dld(M,M0) is LogDet

divergence.
Triplet constraint is also widely used in metric learning,

and it is denoted by R as

R = {(xi,xj ,xk) : xi is more similar to xj than to xk}.
(13)
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Figure 2: Overview of multivariate time series prediction with order-preserving metric learning model.

Large Margin Nearest Neighbor (LMNN) [30] is one of the

most widely used metric learning methods which uses triplet

constraint on training examples. LMNN is to solve

min
M∈Sd+

(1− μ)
∑

(xi,xj)∈S
d2M(xi,xj) + μ

∑

(i,j,k)∈R
ξijk

s.t. d2M(xi,xk)− d2M(xi,xj) ≥ 1− ξijk,

∀(xi,xj ,xi) ∈ R,
(14)

where μ ∈ [0, 1] controls relative weight between two

terms. Suppose yi is the label of xi, then S = {(xi,xj) :
yi = yj and xj belongs to the k-neighborhood of xi},
R = {(xi,xj ,xk) : (xi,xj) ∈ S, yi 
= yk}. It is

proved to be very effective to learn Mahalanobis distance in

practice, which is extended to many methods for different

applications.

B. Order-preserving Metric Learning Model

In this paper, we focus on quadruplet constraint since it

can encompass pairwise and triplet constraints. Quadruplet

constraint [31] was proposed to model similarity from com-

plex semantic label relations, for example, the degree of

presence of smile, from least smiling to most smiling. The

scheme of quadruplet constraint is

A = {(xi,xj ,xk,xl) : d
2
M(xk,xl) ≥ d2M(xi,xj) + ξq},

(15)

where ξq is a soft margin. Thus, quadruplet constraint based

metric learning model can be easily written as

min
M∈Sd+

∑

q∈A
[ξq + d2M(xi,xj)− d2M(xk,xl)]+ (16)

where [·] = max(0, ·). Note that pairwise constraint can

be represented as (xi,xi,xi,xj), and set ξq = l, so

d2M(xi,xj) ≥ l and xi,xj are from dissimilar set; or

(xi,xj ,xi,xi), and set ξq = −u, then d2M(xi,xj) ≤ u,

xi,xj are from similar set. Similarly, triple constraint can

also be represented as (xi,xj ,xi,xk).

This paper is to deal with multivariate time series data.

Considering the inherent temporal relationships of the in-

stances in MTS data, we replace the Mahalanobis distance

with order-preserving Wasserstein distance, and use Ma-

halanobis distance as the ground measurement of OPW

distance. That is, the squared Mahalanobis distance between

the i-th bin of P and the j-th bin of Q can be expressed as

dM(i, j) = (pi − qj)
�M(pi − qj), (17)

where M is a global linear transformation of the underlying

space, and DM = {dM(i, j)} is the ground distance.

On the basis of Eq. (17), we can construct a Maha-

lanobis OPW distance (Wλ,M for short). Let the OPW

distance between signatures P and Q be Wλ,M(P,Q) and

the quadruplet be (P,Q,R, S) ∈ A. Then, we replace
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d2M(xi,xj) with Wλ,M(P,Q) in Eq. (16) and obtain:

min
M∈Sd+

∑

q∈A
[ξq+Wγ,M(P,Q)−Wγ,M(R,S)]+−

∑

q∈A
Lorder,

(18)

where Lorder = λ1 (I(FPQ) + I(FRS)) −
λ2(KL(FPQ‖P) + KL(FRS‖P)) and FPQ ∈ F(P,Q),
FRS ∈ F(R,S).

Mode (18) inherits the advantages of OPW distance,

i.e., imposes two regularization terms to the flow-network

to preserve the global temporal information. Mahalanobis

distance is as the ground measurement of OPW to improve

the discriminative capability. Once such a distance function

is obtained, a simple k-nearest neighbor classifier (KNN) is

used to finish the prediction task.

Figure 2 illustrates the overview of multivariate time

series prediction with our order-preserving metric learning

model. Specifically, first, we impute missing values in mul-

tivariate time series data (e.g., cubic interpolation). Second,

quadruplet constraints are constructed from complex label

relations. Third, An alternating iteration strategy is used

to jointly optimize the Mahalanobis distance matrix and

the flow-network of Wasserstein distance. After we obtain

the optimal ground distance metric, 1NN is used to do

classification.

IV. OPTIMIZATION ALGORITHM

There are two groups of variables that need to be learned

in model (18), i.e., flow-network F and metric matrix M.

When flow-network F is fixed, model (18) turns into the

Mahalanobis-like metric learning problem, i.e.,

min
M∈Sd+

∑

q∈A
[ξq +Wγ,M(P,Q)−Wγ,M(R,S)]+, (19)

The subgradient of problem (19) with respect to M is:

∇M =
∑

q∈A+

(GP,Q −GR,S),

GP,Q = Pdiag(FPQe)P
� +Qdiag(e�FPQ)Q

�

− (PFPQQ
� +QF�PQP

�),

GR,S = Rdiag(FRSe)R
� + Sdiag(e�FRS)S

�

− (RFRSS
� + SF�RSR

�),

(20)

where A+ denotes the subset of constraints in A that is

larger than 0 in function (15). Then, we can update M using

subgradient method, i.e.,

M⇐ PS+(M− η∇M), (21)

where PS+(·) denotes the projection operator and η > 0 is

a step size.

When fixing M in Eq. (18), problem can be split-

ted into several order-preserving Wasserstein distance sub-

problems [19]. We take the pair (P,Q) in the quadruplet

(P,Q,R, S) ∈ A as an example, then we have

min
F∈Rm×n

+

Wγ,M(P,Q)− λ1I(F) + λ2KL(F‖P)

s.t. F�1m = wq,F1n = wp,
(22)

To obtain the optimal F, we start from the Lagrangian

function of Eq. (22)

L(F,α,β) =Wγ,M(P,Q)− λ2

m∑

i=1

n∑

j=1

fij(
i
m − j

n

)2
+ 1

+λ3KL(F‖P) +α�(F�1m −wq) + β�(F1n −wp),
(23)

where α and β are the dual variables for the two equality

constraints. The derivative of L(F,α,β) with respect to fij
is:

∂L(F,α,β)

∂fij
=dM(i, j)− λ2/((i/m− j/n)

2
+ 1)

+ λ3 (log(fij/pij) + 1) + αi + βj .

(24)

Setting
∂L(F,α,β)

∂fij
to zero, we get:

fij = pije
− 1

λ3
(dM(i,j)−λ2/((i/m−j/n)2+1)+αi+βj)−1

(25)

We denote kij = pije
− 1

λ3
(dM(i,j)−λ2/((i/m−j/n)2+1))

, then

fij = e−1/2−αi/λ3kije
−1/2−βi/λ3 . Thus, we have

F = ediag(− 1
2− α

λ3
)Kediag(− 1

2− β
λ3

). (26)

Lemma 1: According to [25], for any N ×M matrix A
with all positive elements, there exist diagonal matrices B1

and B2 such that B1AB2 belongs to F(P,Q). B1 and B2

have strictly positive diagonal values, and are unique up to

a positive scalar factor.

Via Lemma 1 and follow [19], we know the optimal F
in Eq. (26) has the same form with Eq. (5), and hence is

exactly the unique matrix in F(P,Q) which is a rescaled

version of K. The flow-network of each pair (i.e., (P,Q) or

(R,S)) in the quadruplet (P,Q,R, S) ∈ A can be similarly

solved using the above process. The specific procedures are

summarized in Algorithm 1.

Algorithm 1 Algorithm to solve Eq. (18)

1: Input: A, X ∈ R
d×n

2: Output: M ∈ S
d
+

3: Initialization: M, L
4: repeat
5: Calculate each FPQ and FRS in the quadruplet

(P,Q,R, S) ∈ A using Eq. (25) ∼ Eq. (26);

6: Calculate GP,Q and GR,S using Eq. (20);

7: Calculate ∇M =
∑

q∈A+(GP,Q −GR,S);
8: Update M⇐ PS+(M− η∇M);
9: until Converge

715

Authorized licensed use limited to: Cornell University Library. Downloaded on June 02,2021 at 12:23:49 UTC from IEEE Xplore.  Restrictions apply. 



V. EXPERIMENTS

In this section, we evaluate the proposed model on a real-

world clinical data set from critical care.

A. Datasets

We evaluate the proposed model over electronic health

record (EHR) data acquired from Medical Information Mart

for Intensive Care III (MIMIC-III) [32]. MIMIC-III is a

freely and publicly-available database which encompasses

a diverse and very large population of Intensive Care Unit

(ICU) patients. Of 15309 ICU hospitalized patients aged 18

years and older, 1221 patients who met the criteria of sepsis

were case patients [33]. The remaining stays were controls.

All patients diagnosed with sepsis at admission or within

7 hours of admission were excluded from the analysis. In

addition, we also excluded some patients with insufficient

records. Table I shows the final dataset summary statistics.

Table I: Dataset summary statistics

Observation Window # Case # Control
6 hours 586 6408

12 hours 586 6408

24 hours 509 5899

B. Experimental Setup

1) Setting: Our experiments are designed to identify

sepsis patients at the time of onset and 3, 6, 12 and 24

hours prior to onset. The prediction window setting is shown

in Fig. 3. The patients without sepsis (i.e., controls) were

randomly assigned “onset time” according to a continuous

and uniform probability distribution as a negative sample.

The observation window is the sequence of values that is

used to predict if there will occur a sepsis onset or not. In

this paper, we examined three observation windows, i.e., 6,

12 and 24 hours.

Figure 3: Prediction window setting.

2) Preprocessing: We extracted variables hourly [33] and

kept those variables that more than 95% patients have,

including age, gender, heart rate, potassium, temperature,

pH, PaCO2 (partial pressure of carbon dioxide from arte-

rial blood), systolic blood pressure, blood urea nitrogen,

mean arterial pressure, chloride, creatinine, glucose, diastolic

blood pressure, respiration rate, white blood cells count,

platelet count [34], [35]. These values, as well as the hourly

differences in each value (except for age and gender) were

concatenated into a feature vector. If a patient does not have

at least one new measurement per hour prior to the onset

time, the missing value is determined by cubic interpolation

with the patient’s existing recorded value.
3) Compared Methods: We compared our method with

most commonly used distances for time series data and most

related work, including DTW [15], OPW [19], RVSML-

DTW [22], RVSML-OPW [22]. DTW and OPW are two

baseline methods. RVSML-DTW and RVSML-OPW are

metric learning methods, where RVSML-OPW is based on

Wasserstein distance. Since we want to evaluate the ability

of using a specific distance of time series in the classification

process rather than the classifier itself, all methods are

coupled with 1NN to do the final prediction task.
4) Evaluation Criteria: We use mean accuracy with

standard deviation as our main evaluation criterion, and the

method with the highest mean accuracy is the most accurate

one. The dataset is splitted into 5 folds based on sample

proportion, where 4 folds are used for training and 1 fold

for testing.

C. Experimental Results
Recall that we use quadruplet constraints and our metric

learning model (18) is:

min
M∈Sd+

∑

q∈A
[ξq+Wγ,M(P,Q)−Wγ,M(R,S)]+−

∑

q∈A
Lorder.

where Lorder = λ1 (I(FPQ) + I(FRS)) −
λ2(KL(FPQ‖P) + KL(FRS‖P)) and FPQ ∈ F(P,Q),
FRS ∈ F(R,S). Because of the setting of the experiments,

instead of quadruplet constraints, we only construct the

triplet constraints according to whether two samples are

from same class or not. The core idea is that samples from

same class are more similar than samples from different

classes. Let R denote the triplet constraints, then the above

model degenerates to

min
M∈Sd+

∑

(P,Q,R)∈R
[ξq +Wγ,M(P,Q)−Wγ,M(P,R)]+

−
∑

(P,Q,R)∈R
Lorder,

(27)

where Lorder = λ1 (I(FPQ) + I(FPR)) −
λ2(KL(FPQ‖P) + KL(FPR‖P)) and FPQ ∈ F(P,Q),
FPR ∈ F(P,R). In our setting, (P,Q) ∈ S and (P,R) ∈ D.

S and D denote similar pair set and dissimilar pair set.
1) Sepsis Prediction: At the time of sepsis onset, our

method demonstrated a relatively higher mean accuracy us-

ing different lengths of sequences, i.e., 84.42%, 83.39% and

85.18% using 6, 12 and 24 hours data, respectively. Another

metric learning method RVSML-DTW also achieved com-

parable performance using 12 and 24 hours data. Both our

method and RVSML-OPW were based on OPW distance,

but we got a relatively better results than RVSML-OPW.
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Table II: Classification accuracy (%) of different methods on sepsis prediction task using 6 hours data.

Prediction Window
Onset 3 hours 6 hours 9 hours 12 hours

Methods Mean Std Mean Std Mean Std Mean Std Mean Std

DTW [15] 80.36 0.796 78.74 1.700 76.70 1.388 75.14 0.817 75.44 1.505

OPW [19] 80.46 0.499 78.70 1.396 76.71 1.274 75.14 0.823 75.58 1.399

RVSML-DTW [22] 78.28 1.971 76.71 1.960 75.11 1.712 75.85 1.131 72.27 0.894

RVSML-OPW [22] 80.47 5.089 71.04 7.073 77.77 8.129 74.99 4.784 65.19 6.723

Our 84.42 1.690 81.72 1.760 79.33 0.760 78.07 1.550 76.87 1.470

Table III: Classification accuracy (%) of different methods on sepsis prediction task using 12 hours data.

Prediction Window
Onset 3 hours 6 hours 9 hours 12 hours

Methods Mean Std Mean Std Mean Std Mean Std Mean Std

DTW [15] 80.77 1.269 79.08 0.625 78.23 1.162 77.80 1.162 76.01 1.007

OPW [19] 81.00 1.107 79.18 1.008 78.45 1.126 77.37 1.126 76.22 0.741

RVSML-DTW [22] 78.88 1.671 76.44 1.741 75.14 1.476 71.77 1.476 69.41 1.987

RVSML-OPW [22] 80.01 2.427 82.27 0.926 75.49 3.112 75.51 3.112 64.66 2.563

Our 83.39 1.350 80.90 1.340 79.54 1.390 78.51 1.390 77.63 1.350

Table IV: Classification accuracy (%) of different methods on sepsis prediction task using 24 hours data.

Prediction Window
Onset 3 hours 6 hours 9 hours 12 hours

Methods Mean Std Mean Std Mean Std Mean Std Mean Std

DTW [15] 80.54 1.945 79.08 1.898 80.42 1.457 79.40 1.652 78.26 2.647

OPW [19] 80.83 2.261 78.30 2.186 80.16 1.850 78.97 1.900 77.47 2.546

RVSML-DTW [22] 80.58 2.159 80.65 1.657 78.61 1.555 79.10 2.537 76.87 3.607

RVSML-OPW [22] 84.47 1.379 80.16 2.300 83.38 1.340 77.95 3.773 75.42 1.804

Our 85.18 0.630 82.30 1.850 81.81 1.370 80.78 1.920 79.48 1.060
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Figure 4: Objective function value vs iterations.

Tables II, III and IV show the performance measures

before sepsis onset upon different observation windows. At

3, 6, 9 and 12 hours before onset, our method achieved better

results at most of times.

2) Effect of Sequence Length: We examined the effect

of the sequence length (i.e., observation window) on the

predictive performance at different time points before sepsis

onset, as shown in Table, II, III and IV. In most cases,

longer observation window corresponds to better perfor-

mance. Because the data are usually with problems of miss-

ing variables, different sampling frequencies and sampling

frequencies, longer observation window is sometimes benefit
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Figure 6: Accuracy vs λ1 and λ2.

for extracting more useful information.

3) Effect of Constraints: As we stated before, LMNN is

one of the most widely used metric learning methods which

uses triplet constraint [30]. It combines two terms into a

single loss function, i.e., one is to attract target neighbors

and the other one is to repel impostors. If we also construct

the loss function as LMNN, we will have

min
M∈Sd+

μ
∑

(P,Q,R)∈R
[ξq +Wγ,M(P,Q)−Wγ,M(P,R)]+

+ (1− μ)
∑

(P,Q)∈S
Wγ,M(P,Q)−

∑

(P,Q,R)∈R
Lorder,

(28)

where μ balances the first two terms. The first term is to

repel impostors, and the second term to attract neighbors.

In this experiment, we tested whether the additional term

improved the results compared to (27). We fixed λ1, λ2 to 1

and δ to 5. Both observation window and prediction window

are set to 12 hours. The performance with respect to different

μ are shown in Fig. 5(a). From the figure, we can find that

except for μ = 0, other results did not depend sensitively

on the value of μ. In practice, the value μ = 1 worked well.

That is, instead of having an addition term as in Eq (28),

model (27) is good enough in our experiments.

4) Convergence Analysis: To illustrate the convergence

of our method, we set prediction window as 12 hours and

conduct several experiments on MIMIC-III dataset. The

objective function values versus number of iterations are

shown in Fig. 4. From the figure we can see that the objective

values reduce reasonably well. Especially at first several

iterations, the objective value is drastically reduced. That

is, we can obtain a relatively good metric matrix with very

few iterations.

D. Influence of Parameters

The proposed metric learning model has three hyper-

parameters due to the introduction of order-preserving

Wasserstein distance: λ1, λ2 and standard deviation δ of

the prior distribution. λ1 controls the weight of the inverse
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difference moment regularization, λ2 controls the balance

of the regularization in terms of the KL-divergence with

prior distribution and δ controls the expected bandwidth of

warping [19]. In this experiment, we test the influences of

the three parameters.

1) Effect of δ: We fix λ1, λ2 to 1, and evaluate the

performances with respect to different δ. The results are

shown in Fig. 5(b). We can find that results are not sensitive

to δ. We set δ to 5 in other experiments.

2) Effect of λ1 and λ2: We fix δ to 5 and evaluate the per-

formances with different λ1 and λ2. We set λ1 to 10−2, 10−1

and 1 and tuned λ2 from range {10−2, 10−1, 1, 10, 102}.
The results are shown in Fig. 6. Our method is not sensitive

to λ1 when λ2 >= 1. We set λ1 = 1 and λ2 = 1 in

other experiments. Both observation window and prediction

window are set to 12 hours for all the influence of parameters

experiments.

VI. CONCLUSION

In this paper, we introduce an order-preserving metric

learning framework for multivariate time series prediction.

Quadruplet constraints are used to model similarity be-

tween sequences. Besides, we integrate the order-preserving

Wasserstein distance into the framework where two temporal

regularization terms including inverse difference moment

regularization and KL-divergence are enforced to the flow-

network to preserve the inherent temporal relationships of

the variables in MTS. In addition, Mahalanobis distance is

used as the ground measurement of Wasserstein distance

to increase its flexibility. Finally, extensive experiments on

a real-world clinical data set demonstrate the effectiveness

and convergence of the proposed method.
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