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Abstract—Multivariate time series (MTS) analysis is an
increasingly popular research topic in recent years due to the
vast amount of MTS data that are being generated in numerous
fields such as genomics research, health informatics, finance
and abnormal detection. The particularity of the data makes
it a challenging task, e.g., missing data, different sampling fre-
quencies, and random noise. Moreover, each instance depends
not only on its past values but also has some dependency on
other instances, and there exist discriminatory order-dependent
characteristics. To address these challenges, in this paper,
we introduce an order-preserving metric learning framework
for multivariate time series prediction. Specifically, we adopt
quadruplet-wise constraints which can encompass pair-wise
and triplet-wise constraints to model similarity from complex
label relations. To preserve the inherent temporal relationships
of the instances in MTS, order-preserving Wasserstein distance
is integrated to the framework to measure dissimilarity between
MTS data, where the inverse difference moment regularization
enforces flow-network with local homogeneous structures and
the KL-divergence with a prior distribution regularization
prevents flow-network between instances with faraway tempo-
ral locations. Besides the regularizations on flow-network, the
ground measurement of the Wasserstein distance is replaced by
Mahalanobis distance to increase its discrimination capability.
An alternating iteration strategy is proposed to jointly optimize
the Mahalanobis distance matrix in the ground measurement
and the flow-network of Wasserstein distance. Extensive ex-
periments on real-world clinical data from critical care are
provided to demonstrate the effectiveness of the proposed
method on sepsis prediction task.
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I. INTRODUCTION

Nowadays temporal data are being generated from almost
every application domain at an unprecedented rate, e.g., daily
fluctuations of stock market, network monitoring, sensor
readings, patient data captured from medical device, efc. The
analysis of such time series data has increasingly become to
a critical task in applications including stock trend analysis,
mechanical structure reliability assessment, air quality pre-
diction, clinical risk prediction and other practical projects,
etc [1]-[4].

Time series are discrete or continuous sequences of real-
valued elements collected over a period of time. The data
capturing entity (e.g., a mobile device or a computer) is
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Figure 1: An example of a patient’s ICU data.

continuously sampled at fixed or varying temporal resolu-
tions. Usually these time series data are multivariate, i.e.,
the sampled readings are originated from multiple sensors,
which are not necessarily synchronized in any fashion [5]-
[7]. Figure 1 is an example of a patients’ ICU data. Multiple
variables (e.g., heart rate (HR), temperature (Temp)) were
recorded at different time points. The phenomena of missing
data, different sampling frequencies and random noise exist.
Predictive modeling with such asynchronous MTS data is a
challenging task.

Existing time series classification methods can be roughly
divided into three large categories, i.e., feature based, model
based and sequence distance based methods [8]-[10]. Fea-
ture based methods usually transform the sequence into a
feature vector through feature engineering and then apply
conventional classification methods such as a decision tree
or a neural network [11], [12]. Model based methods assume
sequences in a class are generated by an underlying model
such as naive Bayes sequence classifier [13] and hidden
Markov model [14]. Sequence distance based methods define
a distance function to measure the similarity between a pair
of sequences, where the nearest neighbor (NN) algorithm
is typically coupled with such a distance function. In this
paper, we focus on the sequence distance based methods.

Among all distance measures, Euclidean distance is a
widely adopted option because of its simplicity and good
interpretability. However, it requires two sequences to have
the same length and is sensitive to the misalignment on
temporal locations. To address this problem, Berndt et
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al. [15] proposed dynamic time wrapping (DTW), which
allowed one time series to be “stretched” to provide a
better match with another time series [16]. However, the
alignments determined by DTW remain strictly sequential,
i.e., instances (sampled points) in one sequence are not
allowed to be aligned with instances in another sequence
unless all points before them in both sequences have already
been aligned [17]. By viewing the instances in a sequence as
variable-size descriptions of distributions, Wasserstein dis-
tance provides another flexible way to measure the dissim-
ilarity between two sequences [18]. It is a powerful metric
based on the theory of optimal transport and defined between
probability distributions on a ground distance matrix. Al-
though Wasserstein distance can solve the problem of local
rank inversion and different starting points, it completely
ignores the temporal dependencies of instances. Therefore,
Su et al. [19] proposed the order-preserving Wasserstein
distance which incorporates the advantages of flexibility
of optimal transport and order preserving alignments. Two
regularization terms including the inverse difference moment
regularization and KL-divergence with a prior distribution
regularization were imposed on the flow-network to preserve
the inherent temporal relationships.

Besides the flow-network, the ground distance matrix
between two sequences in the Wasserstein definition also
plays an important role in the flow optimization procedure.
A well-designed ground distance matrix can generate better
flow-network and thus lead to better Wasserstein distance
measurements. For this reason, researchers have proposed to
adopt the metric learning framework [20] to further improve
the flexibility of Wasserstein distance. Xu et al. [21] pro-
posed a multi-level metric learning method using a smoothed
Wasserstein distance to characterize the errors between any
sample pairs, where the ground distance is considered as a
Mahalanobis distance. Su et al. [22] unified a wide range of
distance measures for sequences into a unified framework as
a function of the ground metric for elements in sequences.
The final distances are meta-distances built upon the ground
metric by inferring the temporal alignments among the
element pairs.

In this paper, we propose an order-preserving metric
learning framework for multivariate time series prediction.
We model similarity from label relations with quadruplet-
wise constraint since it can encompass pair-wise and triplet-
wise constraint. Order-preserving Wasserstein distance is
then integrated into the framework to preserve the inherent
temporal relationships of the instances in sequences. Two
temporal regularizations are imposed to penalize the flow-
network between instances with distant temporal positions.
Besides the regularizations on flow-network, the ground
measurement of the Wasserstein distance is set to Maha-
lanobis distance to increase its discrimination capability. An
alternating iteration strategy is proposed to jointly optimize
the Mahalanobis distance matrix in the ground distance and
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Wasserstein distance flow-network. Results on predicting the
risk of sepsis in critical care demonstrate the effectiveness
of the proposed method.

The rest of this paper is organized as follows. Section
I detailedly introduces the most related work including
smoothed Wasserstein distance and order-preserving Wasser-
stein distance. In Section III, we first formulate the general
metric learning framework and then propose our order-
preserving metric learning model. Then, we introduce an al-
ternating iteration strategy to optimize the proposed model in
section IV. Experimental results are presented and discussed
in section V. Section VI concludes the paper.

Notations Let boldface lowercase letters like z € R? be
vectors with dimension d and boldface uppercase letters like
Z € R?*¢ be matrices with size d x c. The transpose of
Z is denoted as Z ' and the real numbers are denoted as
uppercase letters like Z € R.

II. RELATED WORK

We start this section by first describing the smoothed
Wasserstein  distance, and then revisiting the order-
preserving Wasserstein distance [19].

A. Smoothed Wasserstein Distance

Wasserstein distance is essentially the optimal solution
for transportation problems in linear programming. It can be
thought of as a minimum amount of work required to move
the entire earth from source to destination [23]. Given two

sequences P = {(p1, wp, ), (P2, Wp,), - (Pm, wp,, )} and

Q = {(a1,wq, ), (d2,Wgy), -+, (An, Wy, ), the Wasserstein
distance between them is defined as:

W(P,Q)= min Tr(D'F 1

(P.Q)= min Tr(D'F) 1)

where D = {d(i,5)},i = 1,---,m,j = 1,--- ,n is

the ground distance matrix, and d(i,j) defines the cost of
moving one unit of earth from the source p; to the target
q;- F={f(t,))},i=1,--- ,m,j =1,--- ,nis a flow-
network matrix, and f(i,j) denotes the amount of earth
moved from the source p; to the target q;.

Let wp [Wpys Wpyy -y wp, ] € R™, wgy
[(Wqy, Wey, -+, Wgq, ] € R™, then F(P, Q) can be written as:

F(P,Q) ={F e RT""|F'1,, = wq,F1, = wp}. (2)

Optimizing the Wasserstein distance problem is actually
solving several expensive optimal transportation problems.
In addition, due to the minimum value of affine function,
Wasserstein itself is not a smooth function of its parameters,
which limits the application of Wasserstein distance. In order
to overcome the above problems, some researchers have
proposed the smoothed optimal transport problem under

entropy constraint [24]:
W,(P,Q) = min Tr(DTF)—~h(F),
J(P.Q) = min Tr(D"F) ~ yh(F)

3
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where h is the (strictly concave) entropy function

h(F) = 7<F7 10gF>: (4)

and v > 0 is a balance parameter. In this paper, we call
Eq. (3) as smoothed Wasserstein distance [21]. The flow-
network F* solution of the problem in Eq. (3) is unique and
can be found by computing two vectors k1 € R, ko € R}
such that diag(k,)e P/7diag(ks) € F(P,Q). The optimal
solution is then

®)

Typically, k1 and ko can be solved using Sinkhorn’s al-
gorithm [25]. This algorithm has linear convergence, and
requires O(mn) operations at each iteration. However, if
two sequences differ only in the order of elements, then the
Wasserstein distance is incapable of distinguishing them.

F* = diag(k)e P/ Vdiag(ks).

B. Order-Preserving Wasserstein Distance

To preserve the inherent temporal relationships of the
instances in sequences, Su et al. [19] proposed the order-
preserving Wasserstein distance. Specifically, two novel
temporal regularizations are imposed to punish the flow-
network between instances with distant temporal positions,
so that the learned optimal flow can maintain the temporal
dependencies of instances in sequences.

To encourage temporally approached elements to match,
the first regularization favors F with large inverse difference
moment which is calculated as

1®)=3-)

i=1 j=1

fij

— : (6)
% j)2+1

m
If the large values of F are distributed mainly along the
diagonal, then the value of I(F') will be large.

To encourage the flow-network to be smooth and reason-
able, the second regularization favors the distribution of F
to be similar to a prior distribution P:

1

oV 2m

pij = P(i,j) = )

where [(i,7) = %ﬁ%jl//zlz
(i,4) to the diagonal line.

By imposing two regularizations to the feasible set
F(P,Q), we have

is the distance from the position

Fa(PQ) = {F e RT"|[F'1,, = wq,F1, = wp,
I(F) >\, KL(F||P) < A},

where KL(F|[P) = 21", S0, fijlog i»% is the Kullback-
Leibler (KL) divergence between two matrices. Then, order-
preserving Wasserstein (OPW) distance between two se-
quences P and () can be defined as:

Wi, 2 (P,Q) = Tr(DTF). )

min
FeFa, x, (P,Q)
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Similar to the smoothed Wasserstein distance, the additional
constraints greatly reduce the computational complexity of
calculating the optimal flow-network [19].

The ground distance in Eq. (9) is usually Euclidean,
cosine or sparse L;-norm distances. However, these dis-
tances cannot allow arbitrary linear scaling and rotation
of the feature space, nor can they take advantage of the
discriminative information that exists in the data space.
Therefore, in this paper, we use the Mahalanobis distance
as the ground measurement to improve the discrimination
capability of Wy, x,.

III. ORDER-PRESERVING METRIC LEARNING MODEL

In this section, we first describe the general metric
learning formulation and then propose our order-preserving
metric learning model for multivariate time series analysis.

A. General Metric Learning Formulation

Metric learning targets at learning an adaptive distance,
such as widely used Mahalanobis distance dn(x;,%;) =
V(% —x;) TM(x; — x;), to effectively reflect the simi-
larity between data. Generally, it can be formulated as an
optimization problem of the form [26]-[28],

Hﬁ/i[n Loss(M, A) + AReg(M),

(10)

where Reg(M) is a regularization term on the metric matrix
M, and A > 0 is the regularization parameter. Loss(M, A)
is a loss function that penalizes constraints that are not
satisfied. It usually measures the ability of the matrix M
to satisfy some distance constraints given in the training set.
Commonly used constraints include pairwise constraint [29]
and triplet constraint [30].

The pairwise constraint contains information whether two
objects in a pair are similar or dissimilar, sometimes positive
pairs or negative pairs. It can be represented by D and S as

S = {(x4,%;),x%; and x; are similar}, "
D = {(x;,%;),x; and x; are dissimilar}. b
The information-Theoretic Metric Learning (ITML) is one of
many methods using pairwise constraint training examples
in metric learning field [29], which is formulated as follows

v D & + Dia(M, M)
iJ
st dig(xi,x;) <u+ &y, Y(xi,%,) €S,
di/[(xi,xj) >1— fij,V(Xi,Xj) €D,
where u and [ are upper bound and lower bound for
similar samples and dissimilar samples respectively. §;; is a
safety margin distance for each pair. D;4(M, M) is LogDet
divergence.
Triplet constraint is also widely used in metric learning,
and it is denoted by R as

min
MeSt
(12)

R = {(xi,x;,Xx) : X; is more similar to x; than to x;}.
13)
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Figure 2: Overview of multivariate time series prediction with order-preserving metric learning model.

Large Margin Nearest Neighbor (LMNN) [30] is one of the
most widely used metric learning methods which uses triplet
constraint on training examples. LMNN is to solve

mind
Mes?d

(L= D dialenxg)+p Y G
(xi,x;)€S (i,5,k)ER
s.t. di/I(Xi,Xk) — d%,[(xi,xj) >1- £ijk>
V(XZ‘7 X, Xi) c R,

(14)
where € [0,1] controls relative weight between two
terms. Suppose y; is the label of x;, then S = {(x;,x;) :
Yi y; and x; belongs to the k-neighborhood of x;},
R {(xixj,xk) @ (xi,%5) € S,y # ypt It is
proved to be very effective to learn Mahalanobis distance in
practice, which is extended to many methods for different
applications.

B. Order-preserving Metric Learning Model

In this paper, we focus on quadruplet constraint since it
can encompass pairwise and triplet constraints. Quadruplet
constraint [31] was proposed to model similarity from com-
plex semantic label relations, for example, the degree of
presence of smile, from least smiling to most smiling. The
scheme of quadruplet constraint is

A= {(thjvxkvxl) : d12vl(xk7xl) > d%/l(xiaxj) +£q}7
(15)
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where £, is a soft margin. Thus, quadruplet constraint based
metric learning model can be easily written as

min > [¢ + da(xi, X)) — Ra(xk, %)) (16)
Mest
geA
where [] = max(0,-). Note that pairwise constraint can

be represented as (xi,xi,xi,xj), and set § = [, so
d%,l(xi,xj) > | and x;,x; are from dissimilar set; or
(xi,Xj,%;,%;), and set & —u, then di;(x;,x;) < u,
xi,%; are from similar set. Similarly, triple constraint can
also be represented as (x;,X;, X;, Xg).

This paper is to deal with multivariate time series data.
Considering the inherent temporal relationships of the in-
stances in MTS data, we replace the Mahalanobis distance
with order-preserving Wasserstein distance, and use Ma-
halanobis distance as the ground measurement of OPW
distance. That is, the squared Mahalanobis distance between
the i-th bin of P and the j-th bin of () can be expressed as

dm(i, j) = (pi — q;) "M(p; — ), a7
where M is a global linear transformation of the underlying
space, and Dyy = {dm(4,7)} is the ground distance.

On the basis of Eq. (17), we can construct a Maha-
lanobis OPW distance (W) m for short). Let the OPW
distance between signatures P and @ be Wy m(P, @) and
the quadruplet be (P,Q,R,S) € .A. Then, we replace

Authorized licensed use limited to: Cornell University Library. Downloaded on June 02,2021 at 12:23:49 UTC from IEEE Xplore. Restrictions apply.



d3;(xi,x;) with Wy m(P, Q) in Eq. (16) and obtain:

l\flneléli [Sq + W'y M(P Q) 'y M R S Z Lordera
geA

(18)
where ﬁorder = )\1 (I(FPQ) + I(FRs)) —

X (KL(Fpg|P) + KL(Fgs||P)) and Fpg € F(P,Q),
Fprs € ]F(R, S )

Mode (18) inherits the advantages of OPW distance,
i.e., imposes two regularization terms to the flow-network
to preserve the global temporal information. Mahalanobis
distance is as the ground measurement of OPW to improve
the discriminative capability. Once such a distance function
is obtained, a simple k-nearest neighbor classifier (KNN) is
used to finish the prediction task.

Figure 2 illustrates the overview of multivariate time
series prediction with our order-preserving metric learning
model. Specifically, first, we impute missing values in mul-
tivariate time series data (e.g., cubic interpolation). Second,
quadruplet constraints are constructed from complex label
relations. Third, An alternating iteration strategy is used
to jointly optimize the Mahalanobis distance matrix and
the flow-network of Wasserstein distance. After we obtain
the optimal ground distance metric, INN is used to do
classification.

IV. OPTIMIZATION ALGORITHM

There are two groups of variables that need to be learned
in model (18), i.e., flow-network F and metric matrix M.
When flow-network F is fixed, model (18) turns into the
Mahalanobis-like metric learning problem, i.e.,

min > [6+ Wy m(P Q) — Wy m(R, S)]4,  (19)
Mt’:‘SJr =y

The subgradient of problem (19) with respect to M is:
VM = Z (GpvQ - GR,S)a
qeEAT
Gpo = Pdiag(Fpge)P" + Qdiag(e ' Fpg)Q"
— (PFpoQ" + QF o PT),
Gr.s = Rdiag(Frse)R" + Sdiag(e Frs)S "
— (RFpsST + SFRsR"),

(20)

where AT denotes the subset of constraints in A that is
larger than 0 in function (15). Then, we can update M using
subgradient method, i.e.,

M <= Ps, (M —nVm), (21

where Ps_ (-) denotes the projection operator and 1 > 0 is
a step size.

When fixing M in Eq. (18), problem can be split-
ted into several order-preserving Wasserstein distance sub-
problems [19]. We take the pair (P, Q) in the quadruplet

(P,Q,R,S) € A as an example, then we have

m}gnW%M(P, Q) — MI(F)+ MKL(F|P)
FeRY (22)
st. F'1, = wq, F1,, = wp,
To obtain the optimal F, we start from the Lagrangian
function of Eq. (22)

(F aaﬁ) ’YMPQ) )‘222
mjlﬁ—ﬂ'H
+XMKLF|P)+a' (F'1, —wq) + 8" (F1, — wp),
(23)

where o and 3 are the dual variables for the two equality
constraints. The derivative of L(F, o, 3) with respect to f;;
is:
IL(F, a, B) - : N2
—— =dm(i,j) — A i/m—j/n)" +1
o (o) = X/ (ifm =3/ +1)
+ A3 (log(fi5/pij) + 1) + i + ;.

aL(F o

Setting B) o zero, we get:
J

fii = pije—rs(dM(i.,j)—Az/((i/m—j/n)2+1)+a,i+,ej)—1 (25)
We denote k;; = pije_%s(dM(ivj)_/\2/((i/m—j/n)2+1))’ then
fij = e 127/ Xs ] e=1/2=Fi/As  Thus, we have

F — (-3 K elie(-3-13). (26)

Lemma 1: According to [25], for any N x M matrix A
with all positive elements, there exist diagonal matrices B,
and B such that B; AB belongs to F(P, Q). B; and Bs
have strictly positive diagonal values, and are unique up to
a positive scalar factor.

Via Lemma 1 and follow [19], we know the optimal F
in Eq. (26) has the same form with Eq. (5), and hence is
exactly the unique matrix in F(P, Q) which is a rescaled
version of K. The flow-network of each pair (i.e., (P, Q) or
(R, S)) in the quadruplet (P, Q, R, S) € A can be similarly
solved using the above process. The specific procedures are
summarized in Algorithm 1.

Algorithm 1 Algorithm to solve Eq. (18)

Input: 4, X € R¥*"
Output: M € S%
Initialization: M, L
repeat
Calculate each Fpgp and Fgrg in the quadruplet
(P,Q,R,S) € A using Eq. (25) ~ Eq. (26);
Calculate Gp,g and G s using Eq. (20);
Calculate Vy = Zq€A+(GP,Q —GRr,s);
Update M < Ps, (M —1nVm);
until Converge

AEE
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V. EXPERIMENTS

In this section, we evaluate the proposed model on a real-
world clinical data set from critical care.

A. Datasets

We evaluate the proposed model over electronic health
record (EHR) data acquired from Medical Information Mart
for Intensive Care III (MIMIC-III) [32]. MIMIC-III is a
freely and publicly-available database which encompasses
a diverse and very large population of Intensive Care Unit
(ICU) patients. Of 15309 ICU hospitalized patients aged 18
years and older, 1221 patients who met the criteria of sepsis
were case patients [33]. The remaining stays were controls.
All patients diagnosed with sepsis at admission or within
7 hours of admission were excluded from the analysis. In
addition, we also excluded some patients with insufficient
records. Table I shows the final dataset summary statistics.

Table I: Dataset summary statistics

Observation Window | # Case | # Control
6 hours 586 6408
12 hours 586 6408
24 hours 509 5899

B. Experimental Setup

1) Setting: Our experiments are designed to identify
sepsis patients at the time of onset and 3, 6, 12 and 24
hours prior to onset. The prediction window setting is shown
in Fig. 3. The patients without sepsis (i.e., controls) were
randomly assigned “onset time” according to a continuous
and uniform probability distribution as a negative sample.
The observation window is the sequence of values that is
used to predict if there will occur a sepsis onset or not. In
this paper, we examined three observation windows, i.e., 6,
12 and 24 hours.

Beginning of Onset of End of the
the ICU stay Sepsis  ICU stay
& X oo
| I
Observation Prediction
Window Window

Figure 3: Prediction window setting.

2) Preprocessing: We extracted variables hourly [33] and
kept those variables that more than 95% patients have,
including age, gender, heart rate, potassium, temperature,
pH, PaCO2 (partial pressure of carbon dioxide from arte-
rial blood), systolic blood pressure, blood urea nitrogen,
mean arterial pressure, chloride, creatinine, glucose, diastolic
blood pressure, respiration rate, white blood cells count,
platelet count [34], [35]. These values, as well as the hourly
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differences in each value (except for age and gender) were
concatenated into a feature vector. If a patient does not have
at least one new measurement per hour prior to the onset
time, the missing value is determined by cubic interpolation
with the patient’s existing recorded value.

3) Compared Methods: We compared our method with
most commonly used distances for time series data and most
related work, including DTW [15], OPW [19], RVSML-
DTW [22], RVSML-OPW [22]. DTW and OPW are two
baseline methods. RVSML-DTW and RVSML-OPW are
metric learning methods, where RVSML-OPW is based on
Wasserstein distance. Since we want to evaluate the ability
of using a specific distance of time series in the classification
process rather than the classifier itself, all methods are
coupled with INN to do the final prediction task.

4) Evaluation Criteria: We use mean accuracy with
standard deviation as our main evaluation criterion, and the
method with the highest mean accuracy is the most accurate
one. The dataset is splitted into 5 folds based on sample
proportion, where 4 folds are used for training and 1 fold
for testing.

C. Experimental Results

Recall that we use quadruplet constraints and our metric
learning model (18) is:

min > [&+ Wy m(P, Q) = Wam(R, S)s = D Lorder-
Mesq geA seA
where  Lorder = M (I(Fpg) +I(Frs)) —

X (KL(Fpg|P) + KL(Frg||P)) and Fpg € F(P,Q),
Frs € F(R,S). Because of the setting of the experiments,
instead of quadruplet constraints, we only construct the
triplet constraints according to whether two samples are
from same class or not. The core idea is that samples from
same class are more similar than samples from different
classes. Let R denote the triplet constraints, then the above
model degenerates to

mind Z [+ Wym(P, Q) — Wy m(P, R)]+
Mesd
(P,Q,R)ER (27)
- Z Lorde'm
(P,Q,R)ER
where  Lorder = MU (Fpg)+I1(Fpr)) -

X (KL(Fpg|P) + KL(Fpgr||P)) and Fpg € F(P,Q),
Fpr € F(P, R). In our setting, (P,Q) € S and (P, R) € D.
S and D denote similar pair set and dissimilar pair set.

1) Sepsis Prediction: At the time of sepsis onset, our
method demonstrated a relatively higher mean accuracy us-
ing different lengths of sequences, i.e., 84.42%, 83.39% and
85.18% using 6, 12 and 24 hours data, respectively. Another
metric learning method RVSML-DTW also achieved com-
parable performance using 12 and 24 hours data. Both our
method and RVSML-OPW were based on OPW distance,
but we got a relatively better results than RVSML-OPW.
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Table II: Classification accuracy (%) of different methods on sepsis prediction task using 6 hours data.

Prediction Window
Onset 3 hours 6 hours 9 hours 12 hours

Methods Mean Std Mean Std Mean Std Mean Std Mean Std
DTW [15] 80.36  0.796 | 78.74 1.700 | 76.70  1.388 | 75.14 0.817 | 7544  1.505
OPW [19] 80.46 0.499 | 7870 1.396 | 76.71 1274 | 75.14 0.823 | 75.58 1.399
RVSML-DTW [22] | 7828 1971 | 76.71 1960 | 75.11 1.712 | 75.85 1.131 | 7227 0.894
RVSML-OPW [22] | 80.47 5.089 | 71.04 7.073 | 77.77 8.129 | 7499 4784 | 65.19 6.723
Our 8442 1.690 | 81.72 1.760 | 79.33 0.760 | 78.07 1.550 | 76.87 1.470

Table III: Classification accuracy (%) of different methods on sepsis prediction task using 12 hours data.

Prediction Window
Onset 3 hours 6 hours 9 hours 12 hours

Methods Mean Std Mean Std Mean Std Mean Std Mean Std
DTW [15] 80.77 1.269 | 79.08 0.625 | 78.23 1.162 | 77.80 1.162 | 76.01 1.007
OPW [19] 81.00 1.107 | 79.18 1.008 | 7845 1.126 | 77.37 1.126 | 76.22 0.741
RVSML-DTW [22] | 78.88 1.671 | 76.44 1.741 | 75.14 1476 | 71.77 1476 | 69.41 1.987
RVSML-OPW [22] | 80.01 2427 | 8227 0.926 | 7549 3.112 | 7551 3.112 | 64.66 2.563
Our 83.39 1350 | 80.90 1.340 | 79.54 1390 | 7851 1.390 | 77.63 1.350

Table IV: Classification accuracy (%) of different methods on sepsis prediction task using 24 hours data.

Prediction Window
Onset 3 hours 6 hours 9 hours 12 hours

Methods Mean Std Mean Std Mean Std Mean Std Mean Std
DTW [15] 80.54 1945 | 79.08 1.898 | 80.42 1.457 | 79.40 1.652 | 7826 2.647
OPW [19] 80.83 2261 | 7830 2.186 | 80.16 1.850 | 78.97 1.900 | 7747 2.546
RVSML-DTW [22] | 80.58 2.159 | 80.65 1.657 | 78.61 1.555 | 79.10  2.537 | 76.87 3.607
RVSML-OPW [22] | 84.47 1.379 | 80.16 2300 | 83.38 1.340 | 77.95 3.773 | 7542 1.804
Our 85.18 0.630 | 8230 1.850 | 81.81 1.370 | 80.78 1.920 | 79.48 1.060
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Figure 4: Objective function value vs iterations.

Tables II, III and IV show the performance measures
before sepsis onset upon different observation windows. At
3, 6,9 and 12 hours before onset, our method achieved better
results at most of times.

2) Effect of Sequence Length: We examined the effect
of the sequence length (i.e., observation window) on the
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predictive performance at different time points before sepsis
onset, as shown in Table, II, III and IV. In most cases,
longer observation window corresponds to better perfor-
mance. Because the data are usually with problems of miss-
ing variables, different sampling frequencies and sampling
frequencies, longer observation window is sometimes benefit
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for extracting more useful information.

3) Effect of Constraints: As we stated before, LMNN is
one of the most widely used metric learning methods which
uses triplet constraint [30]. It combines two terms into a
single loss function, i.e., one is to attract target neighbors
and the other one is to repel impostors. If we also construct
the loss function as LMNN, we will have

min g > &+ Wom(PQ) - Wy m(P,R)|¢
MES‘*’ (P,Q,R)ER
+ (1 - N‘) Z W. ,M(Pv Q) - Z ‘Corder’

(P,Q)ES (P,Q,R)ER

(28)
where p balances the first two terms. The first term is to
repel impostors, and the second term to attract neighbors.
In this experiment, we tested whether the additional term
improved the results compared to (27). We fixed A1, A2 to 1
and § to 5. Both observation window and prediction window
are set to 12 hours. The performance with respect to different

w are shown in Fig. 5(a). From the figure, we can find that
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except for 1 = 0, other results did not depend sensitively
on the value of u. In practice, the value ;1 = 1 worked well.
That is, instead of having an addition term as in Eq (28),
model (27) is good enough in our experiments.

4) Convergence Analysis: To illustrate the convergence
of our method, we set prediction window as 12 hours and
conduct several experiments on MIMIC-III dataset. The
objective function values versus number of iterations are
shown in Fig. 4. From the figure we can see that the objective
values reduce reasonably well. Especially at first several
iterations, the objective value is drastically reduced. That
is, we can obtain a relatively good metric matrix with very
few iterations.

D. Influence of Parameters

The proposed metric learning model has three hyper-
parameters due to the introduction of order-preserving
Wasserstein distance: A\, Ao and standard deviation & of
the prior distribution. A; controls the weight of the inverse
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difference moment regularization, Ao controls the balance
of the regularization in terms of the KL-divergence with
prior distribution and § controls the expected bandwidth of
warping [19]. In this experiment, we test the influences of
the three parameters.

1) Effect of 6: We fix A, A2 to 1, and evaluate the
performances with respect to different §. The results are
shown in Fig. 5(b). We can find that results are not sensitive
to 0. We set § to 5 in other experiments.

2) Effect of A1 and Aa: We fix 6 to 5 and evaluate the per-
formances with different A\; and Ao. We set A; to 1072, 107!
and 1 and tuned )\p from range {1072,107,1,10,10%}.
The results are shown in Fig. 6. Our method is not sensitive
to A\; when \g >= 1. We set Ay = 1 and Ao = 1 in
other experiments. Both observation window and prediction
window are set to 12 hours for all the influence of parameters
experiments.

VI. CONCLUSION

In this paper, we introduce an order-preserving metric
learning framework for multivariate time series prediction.
Quadruplet constraints are used to model similarity be-
tween sequences. Besides, we integrate the order-preserving
Wasserstein distance into the framework where two temporal
regularization terms including inverse difference moment
regularization and KL-divergence are enforced to the flow-
network to preserve the inherent temporal relationships of
the variables in MTS. In addition, Mahalanobis distance is
used as the ground measurement of Wasserstein distance
to increase its flexibility. Finally, extensive experiments on
a real-world clinical data set demonstrate the effectiveness
and convergence of the proposed method.
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