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Abstract

We introduce The Benchmark of Linguistic
Minimal Pairs (BLiMP),! a challenge set for
evaluating the linguistic knowledge of lan-
guage models (LMs) on major grammatical
phenomena in English. BLiMP consists of
67 individual datasets, each containing 1,000
minimal pairs—that is, pairs of minimally dif-
ferent sentences that contrast in grammatical
acceptability and isolate specific phenomenon
in syntax, morphology, or semantics. We gen-
erate the data according to linguist-crafted
grammar templates, and human aggregate
agreement with the labels is 96.4%. We
evaluate n-gram, LSTM, and Transformer
(GPT-2 and Transformer-XL) LMs by observ-
ing whether they assign a higher probability to
the acceptable sentence in each minimal pair.
We find that state-of-the-art models identify
morphological contrasts related to agreement
reliably, but they struggle with some subtle
semantic and syntactic phenomena, such as
negative polarity items and extraction islands.

1 Introduction

Current neural networks for sentence processing
rely on unsupervised pretraining tasks like lan-
guage modeling. Still, it is an open question
how the linguistic knowledge of state-of-the-art
language models (LMs) varies across the lin-
guistic phenomena of English. Recent studies
(e.g., Linzen et al., 2016; Marvin and Linzen,
2018; Wilcox et al., 2018) have explored this
question by evaluating LMs’ preferences between
minimal pairs of sentences differing in gramma-
tical acceptability, as in Example 1. However, each

'"https://github.com/alexwarstadt/blimp.
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of these studies uses a different set of metrics,
and focuses on a small set of linguistic
paradigms, severely limiting any possible big-
picture conclusions.

ey

a. The cats annoy Tim. (grammatical)

b. *The cats annoys Tim. (ungrammatical)

We introduce the Benchmark of Linguistic
Minimal Pairs (shortened to BLiMP), a linguis-
tically motivated benchmark for assessing the
sensitivity of LMs to acceptability contrasts across
a wide range of English phenomena, covering both
previously studied and novel contrasts. BLiIMP
consists of 67 datasets automatically generated
from linguist-crafted grammar templates, each
containing 1,000 minimal pairs and organized
by phenomenon into 12 categories. Validation
with crowdworkers shows that BLiMP faithfully
represents human preferences.

We use BLiMP to study several pretrained LMs:
Transformer-based LMs GPT-2 (Radford et al.,
2019) and Transformer-XL (Dai et al., 2019), an
LSTM LM trained by Gulordava et al. (2019), and
an n-gram LM. We evaluate whether the LM
assigns a higher probability to the acceptable
sentence in each minimal pair to determine which
grammatical distinctions LMs are sensitive to.
This gives us indirect evidence about each model’s
linguistic knowledge and allows us to compare
models in a fine-grained way. We conclude that
current neural LMs appear to acquire robust
knowledge of morphological agreement and some
syntactic phenomena such as ellipsis and control/
raising. They show weaker evidence of knowledge
about argument structure, negative polarity item
licensing, and the semantic properties of quan-
tifiers. All models perform at or near chance
on extraction islands. Overall, every model we
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evaluate falls short of human performance by a
wide margin. GPT-2, which performs the best,
performs 8 points below humans overall, though
it does match or exceed human performance on
specific phenomena.

In §6.3 we conduct additional experiments to
investigate the effect of training size on the
LSTM LM and Transformer-XL’s performance
on BLiMP. Although we see steady improvements
in overall performance, we find that LMs learn
phenomenon-specific distinctions at different
rates. In §6.4 we consider alternative well-
motivated evaluation metrics on BLiMP, but find
that they do not differ drastically from our method
of comparing LM probabilities for full sentences.

We conclude that whereas models like GPT-2
appear to have significant linguistic knowledge,
this knowledge is concentrated in some specific
domains of English grammar. We use BLiMP
to uncover several linguistic phenomena where
even state-of-the-art language models clearly
lack human-like knowledge, and to bring into
focus those areas of grammar that future studies
evaluating LMs should investigate in greater
depth.

2 Background and Related Work

2.1 Language Models

The objective of a language model is to give
a probability distribution over the strings of a
language. Both neural network and non-neural
network architectures are used to build LMs, and
neural models can be trained in a self-supervised
setting without the need for labeled data. Recently,
variants of neural language modeling have been
shown to be a strong pretraining task for natural
language processing tasks (Howard and Ruder,
2018; Peters et al., 2018; Radford et al., 2018;
Devlin et al., 2019).

The last decade has seen two major paradigm
shifts in the state of the art for language modeling.
First, there was a movement from models based on
local n-gram statistics (see Chen and Goodman,
1999) to neural sequence models such as LSTMs
(Mikolov et al., 2010), which optimize on the
task of predicting the next token. Subsequently,
Transformer-based architectures employing self-
attention (Vaswani et al., 2017) have outperformed
LSTMs (e.g., Dai et al., 2019). Although these
shifts have resulted in stronger LMs, perplexity
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on large benchmark datasets like WikiText-103
(Merity et al., 2016) has remained the primary
performance metric, which cannot give detailed
insight into these models’ knowledge of grammar.
Evaluation on benchmarks like GLUE (Wang
etal., 2018, 2019a), which heavily adapt language
models to perform downstream tasks, is more
informative, but doesn’t offer broad coverage
of linguistic phenomena, and doesn’t necessary
reflect knowledge that is already present in the
LMs.

2.2 Linguistic Knowledge of NNs

Many recent studies have searched for evidence
that neural networks (NNs) learn representations
that implicitly encode grammatical concepts. We
refer to the ability to encode these concepts
as linguistic knowledge. Some studies evaluate
NNs’ linguistic knowledge using probing tasks
in which a classifier is trained to directly
predict grammatical properties of a sentence
(e.g., syntactic tree depth) or part of a sentence
(e.g., part-of-speech) using only the NNs’ learned
representation as input (Shi et al., 2016; Adi et al.,
2017; Conneau et al., 2018; Ettinger et al., 2018;
Tenney et al., 2019). We follow a complementary
approach that uses acceptability judgments to
address the same question without the need for
training data labeled with grammatical concepts.
Acceptability judgments are the main form of
behavioral data used in generative linguistics to
measure human linguistic competence (Chomsky,
1965; Schiitze, 1996).

One branch of this literature uses minimal pairs
to infer whether LMs detect specific grammatical
contrasts. Table 1 summarizes linguistic pheno-
mena studied in this work. For instance, Linzen
etal. (2016) look closely at minimal pairs contrast-
ing subject-verb agreement. Marvin and Linzen
(2018) expand the investigation to negative
polarity item and reflexive licensing. However,
these and related studies cover a limited set of
phenomena, to the exclusion of well-studied
phenomena in linguistics such as control and
raising, ellipsis, quantification, and countless
others. This is likely due to the labor-intensive
nature of collecting such targeted minimal pairs.

A related line of work evaluates neural networks
on acceptability judgments in a more domain-
general way. Corpora of sentences and their
grammaticality are collected for this purpose in a



Phenomenon Relevant work

Anaphora/binding
Subj.-verb agreement

Marvin and Linzen (2018), Futrell et al. (2018), Warstadt et al. (2019b)
Linzen et al. (2016), Futrell et al. (2018), Gulordava et al. (2019), Marvin and

Linzen (2018), An et al. (2019), Warstadt et al. (2019b)

Neg. polarity items

Marvin and Linzen (2018), Futrell et al. (2018), Jumelet and Hupkes (2018),

Wilcox et al. (2019), Warstadt et al. (2019a)

Filler-gap/Islands

Wilcox et al. (2018), Warstadt et al. (2019b), Chowdhury and Zamparelli

(2018, 2019), Chaves (2020), Da Costa and Chaves (2020)

Argument structure

Kann et al. (2019), Warstadt et al. (2019b), Chowdhury and Zamparelli (2019)

Table 1: Summary of related work organized by linguistic phenomena tested. All studies analyze neural
networks using acceptability judgments on minimal pairs mainly in English. Some studies appear

multiple times.

number of studies (Heilman et al., 2014; Lau et al.,
2017; Warstadt et al., 2019b). The most recent
and comprehensive corpus is CoLA (Warstadt
et al., 2019b), containing 10k sentences covering
a wide variety of linguistic phenomena provided as
examples in linguistics papers and books. CoLLA,
which is included in the GLUE benchmark (Wang
et al.,, 2018), has been used to track advances
in the sensitivity of reusable sentence encoding
models to acceptability. Current models like
BERT (Devlin et al., 2019) and T5 (Raffel et al.,
2019) now learn to give acceptability judgments
that approach or even exceed individual human
agreement with CoLA.

Although CoLA can provide evidence about
phenomenon-specific knowledge of models, this
method is limited by the need to train a super-
vised classifier on CoL A data prior to evaluation.
This is because CoLA is designed for binary
acceptability classification, and there is no gen-
erally accepted method for obtaining binary
acceptability predictions from unsupervised
models like LMs.? Warstadt and Bowman (2019)
measure phenomenon-specific performance on
CoLA for several pretrained sentence encoding
models: an LSTM, GPT (Radford et al., 2018),
and BERT. However, the use of supervision
prevents making strong conclusions about the
sentence encoding component, since it iS not
possible to distinguish what the encoder knows
from what is learned through supervised training
on acceptability data.

Evaluating LMs on minimal pairs avoids this
problem, with the caveat that the LM probability

2Though see Lau et al. (2017) for some promising

proposals for normalizing LM probabilities to correlate with
gradient acceptability.
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of a sentence can only serve as a proxy for
acceptability if confounding factors impacting
a sentence’s probability such as length and
lexical content are controlled for. It is with these
considerations in mind that we design BLiMP.

3 Data

BLiMP consists of 67 minimal pair paradigms,
each with 1,000 sentence pairs in mainstream
American English grouped into 12 categories.’
We refer to minimal pair types as paradigms
and categories as phenomena. Each paradigm is
annotated for the unique contrast it isolates and the
broader phenomena it is part of. We automatically
generate the data from linguist-crafted grammar
templates, and our automatic labels are validated
with crowd-sourced human judgments.

Although each minimal pair type corresponds
to exactly one paradigm, a particular fact about
English grammar may be illustrated by multiple
paradigms. For instance, the fact that certain
determiners and nouns agree can be illustrated
by keeping the determiner the same and changing
the number marking of the noun as in the example
in Table 2, or by keeping the noun the same
and changing the determiner (e.g., Rachelle had
bought those chair.). With completeness in mind,
we include such complementary paradigms in
BLiMP whenever possible.

3We choose English because it is the native language of
the linguists who built the grammar templates, though in the
long run, creating versions of BLiMP in additional languages
would allow for coverage of more phenomena and expand
BLiMP’s range of usefulness. We assume 1,000 pairs is
sufficient to limit random noise resulting from small sample
sizes.



Phenomenon N Acceptable Example Unacceptable Example

ANAPHOR AGR. 2 Many girls insulted themselves. Many girls insulted herself.

ARG. STRUCTURE 9 Rose wasn’t disturbing Mark. Rose wasn’t boasting Mark.

BmnpiNG 7 Carlos said that Lori helped him. Carlos said that Lori helped himself.

CONTROL/RAISING 5 There was bound to be a fish escaping. There was unable to be a fish escaping.

DET.-NOUN AGR. 8 Rachelle had bought that chair. Rachelle had bought that chairs.

ELLIPSIS 2 Anne’s doctor cleans one important ~ Anne’s doctor cleans one book and
book and Stacey cleans a few. Stacey cleans a few important.

FILLER-GAP Brett knew what many waiters find.  Brett knew that many waiters find.

IRREGULAR FORMS
ISLAND EFFECTS
NPI LICENSING
QUANTIFIERS
SUBJECT-VERB AGR.

Aaron broke the unicycle.

AN B Q00N

Whose hat should Tonya wear?
The truck has clearly tipped over.
No boy knew fewer than six guys.
These casseroles disgust Kayla.

Aaron broken the unicycle.
Whose should Tonya wear hat?
The truck has ever tipped over.
No boy knew at most six guys.
These casseroles disgusts Kayla.

Table 2: Minimal pairs from each of the twelve linguistic phenomenon categories covered by BLiMP.
Differences are underlined. N is the number of 1,000-example minimal pair paradigms within each

broad category.

3.1 Data Generation Procedure

To create minimal pairs exemplifying a wide array
of linguistic contrasts, we found it necessary to
artificially generate all datasets. This ensures both
that we have sufficient unacceptable examples,
and that the data is fully controlled, allowing for
repeated isolation of a single linguistic pheno-
menon (Ettinger et al., 2018). For each paradigm,
we use a generation script to sample lexical items
from a vocabulary of over 3,000 items according
to a template specifying linear order of the phrases
in the acceptable and unacceptable sentences in
each minimal pair. Our data generation scripts are
publicly available.* We annotate these lexical
items with the morphological, syntactic, and
semantic features needed to enforce selectional
restrictions and create grammatical and seman-
tically felicitous sentences.

All examples in a paradigm are structurally
analogous up to the point required for the relevant
contrast but may vary in some ways. For instance,
the template for NPI LICENSING, illustrated in
Table 2, specifies that an arbitrary verb phrase
needs to be generated. Accordingly, the generation
script samples from the entire set of verbs and
generates the required arguments on-the-fly. Thus,
the structure of the sentence then depends on
whether the sampled verb is transitive, clause-
embedding, raising, and so forth, but that same

*https://github.com/alexwarstadt/data.
generation.
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verb phrase and its arguments are used in both
pairs in the paradigm.

This generation procedure is not without
limitations, and despite the very detailed voca-
bulary we use, implausible sentences are occa-
sionally generated (e.g., Sam ran around some
glaciers). In these cases, though, both the
acceptable and unacceptable sentences will be
equally implausible given world knowledge, so
any difference in the probability assigned to them
is still attributable to the intended grammatical
contrast.

3.2 Coverage

The paradigms covered by BLiMP represent
well-established contrasts in English morphology,
syntax, and semantics. Each paradigm is grouped
into one of 12 phenomena, shown in Table 2.
Examples of all 67 paradigms appear in Table 4
of the Appendix. The paradigms are selected with
the constraints that they can be characterized using
templates as described above and illustrated with
minimal pairs of sentences equal in length’ that
differ in at most one vocabulary item.

Although this dataset has broad coverage, it is
not exhaustive. It is not possible to include every

SWe define length as the number of entries from our
lexicon. Some sentences in a pair contain different numbers
of words because visit and drop by are each one lexical entry.
Where discrepancies in number of words occur, they are
generally randomly distributed across the grammatical and
ungrammatical sentences in a paradigm.
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grammatical phenomenon of English, and there is
no agreed-upon set of core phenomena. However,
we consider frequent inclusion of a phenomenon in
a syntax/semantics textbook as an informal proxy
for what linguists consider to be core phenomena.
We survey several syntax textbooks (e.g., Sag
et al., 2003; Adger, 2003; Sportiche et al., 2013),
and find that nearly all of the phenomena in
BLiMP are discussed in some source. Most of
the topics that repeatedly appear in textbooks
and can be represented with minimal pairs (e.g.,
agreement, control/raising, wh-extraction/islands,
binding) are present in BLiMP.°

We characterize the 12 phenomena in BLiIMP
as follows’:

o ANAPHOR AGREEMENT: the requirement that
reflexive pronouns like himself (a.k.a.
anaphora) agree with their antecedents in
person, number, gender, and animacy.

e ARGUMENT STRUCTURE: the ability of different
verbs to appear with different types of
arguments. For instance, different verbs can
appear with a direct object, participate in the
causative alternation, or take an inanimate
argument.

e BinDING: the structural relationship between
a pronoun and its antecedent. All paradigms
illustrate aspects of Chomsky’s (1981)
Principle A. Because coindexation cannot
be annotated in BLiMP, Principles B and C
are not illustrated.

o CONTROL/RAISING: syntactic and semantic
differences between various types of
predicates that embed an infinitival VP.
This includes control, raising, and tough-
movement predicates.

e DETERMINER-NOUN AGREEMENT: number agree-
ment between demonstrative determiners
(e.g., this/these) and the associated noun.

e Erupsis:  the possibility of omitting
expressions from a sentence. Because this is
difficult to illustrate with sentences of equal

In line with these textbooks, we rely on stereotyped
gender-name pairings and contrasts not present in all English
dialects (more detail provided in the Appendix).

7Our implementation of these phenomena is often
narrower than the linguistic definition because of the
particular constraints described above.
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length, our paradigms cover only special
cases of noun phrase ellipsis that meet this
constraint.

e FILLER-GAP: dependencies arising from
phrasal movement in, for example, wh-
questions.

e [RREGULAR FORMS: irregular morphology on
English past participles (e.g., broken). We
are unable to evaluate models on nonexistent
forms like *breaked because such forms are
out of the vocabulary for some LMs.

e [SLAND EFFECTS: restrictions on syntactic
environments where the gap in a filler-gap
dependency may occur.

o NPI LICENSING: restrictions on the distribution
of negative polarity items like any and ever
limited to, for example, the scope of negation
and only.

e QUANTIFIERS: restrictions on the distribution
of quantifiers. We cover two such
restrictions: superlative quantifiers (e.g., at
least) cannot embed under negation, and
definite quantifiers and determiners cannot
be subjects in existential-there constructions.

e SUBJECT-VERB AGREEMENT: subjects and
present tense verbs must agree in number.

3.3 Comparison to Related Resources

With a vocabulary of over 3,000 words, BLIMP
has by far the most lexical variation of any
related generated dataset. It includes verbs with
11 different subcategorization frames, including
verbs that select for PPs, infinitival VPs, and
embedded clauses. By comparison, datasets by
Ettinger et al. (2018) and Marvin and Linzen
(2018) use vocabularies of under 200 items. Other
datasets of minimal pairs that achieve more lexical
and syntactic variety use data-creation methods
that limit empirical scope and control. Linzen
et al. (2016) construct a dataset of minimal
pairs for subject-verb agreement by changing
verbs’ number marking in a subset of English
Wikipedia, but this approach does not generalize
beyond agreement phenomena. Lau et al. (2017)
construct minimal pairs by taking sentences from
the BNC through round-trip machine translation.
The resulting sentences contain a wider variety of
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Table 3: Percentage accuracy of four baseline models and raw human performance on BLiMP using a forced-choice
task. A random guessing baseline would achieve an accuracy of 50%.

grammatical violations, but it is not possible to 4 Models
control the nature or quantity of violations in the

. GPT-2 GPT-2 (Radford et al., 2019) is a large-
resulting sentences.

scale language model using the Transformer
architecture (Vaswani et al., 2017). Our main
3.4 Data Validation experiments use GPT-2-large with 36 layers and

. 774M parameters.'? The model is pretrained on
To verify that the generated sentences represent a Radford et al.’s WebText dataset, which contains
real contrast in acceptability, we conduct human 40GB of English text extracted from Web pages
validation via Amazon Mechanical Turk.® Twenty and filtered for quality. To our knowledge,

separate validators rated five pairs from each of  yopText is not publicly available, so assuming
the 67 paradigms, for a total of 6,700 judgments. an average of 5-6 bytes/chars per word, we
We restricted validators to individuals currently .o WebText contains about 8B tokens. We
located in the [_JS who  self-reported as .nat1ve use jiant, acodebase for training and evaluating
speakers of English. To assure that our validators (. oo 1 qarstandin ¢ models (Wang et al

made a genuine e.:ffort on ﬂ_le task, each. HIT 2019b), to implement code for evaluating GPT-2
included an attention check item and a hidden on BLiMP.!!

field question to catch bot-assisted humans.
Validators were paid $0.25 for completing five ~ Transformer-XL Transformer-XL (Dai et al.,
judgments, which we estimate took 1-2 minutes.  2019) is another multilayer Transformer-based
For each minimal pair, 20 individuals completed  neural language model. We test the pretrained
a forced-choice task mirroring the LMs’ task;  Transformer-XL Large model with 18 layers of
the human-determined acceptable sentence was  Transformer decoders and 16 attention heads for
calculated via majority vote of annotators. By this ~ each layer. The model is trained on WikiText-
metric, we estimate aggregate human agreement 103 (Merity et al., 2016), a corpus of 103M
with our annotations to be 96.4% overall. As a  tokens from English Wikipedia. Code for testing
threshold of inclusion in BLiMP, the majority of =~ Transformer-XL on BLIMP is also implemented
validators needed to agree with BLIMP on at least ~ in jiant.

4/5 examples from each paradigm. Thus, all 67
paradigms in the public version of BLiMP passed
this validation; only two additional paradigms
were rejected on this criterion. We also estimate
individual human agreement to be 88.6% overall
using the approximately 100 annotations from
each paradigm.’® Table 3 reports individual human
results (and model results) as a conservative
measure of human agreement.

LSTM We include a long-short term memory
(LSTM, Hochreiter and Schmidhuber, 1997)
LM in our experiments. Specifically, we test
a pretrained LSTM LM from Gulordava et al.
(2019) on BLiMP. The model is trained on a 83M-
token corpus extracted from English Wikipedia.
To investigate the effect of training size on
model performance (§6.3), we retrain a series
of LSTM and Transformer-XL models with the
same hyperparameters and the following training

8The full set of human judgments and a summary of the 10GPT-2-XL performs slightly worse on BLIMP; see §6.3.
results for all 67 paradigms is in Table 4 in the Appendix. Uhttps://github.com/nyu-mll/jiant/tree/
A few had to be excluded due to ineligible annotators. blimp-and-npi/scripts/blimp.
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sizes: 64M, 32M, 16M, 8M, 4M, 2M, 1M, 1/2M,
1/4M, and 1/8M tokens. For each size, we train
the model on five different random samples of the
original training data, which has a size of 83M
tokens.!?

S-gram We build a 5-gram LM on the English
Gigaword corpus (Graff et al., 2003), which
consists of 3.1B tokens. To efficiently query
n-grams we use an implementation'® based on
Heafield et al. (2013).'4

5 Results and Discussion

An LM’s overall accuracy on BLiMP is simply
the proportion of the 67,000 minimal pairs in
which the model assigns a higher probability to
the acceptable sentence. We report the results for
all models and human evaluation in Table 3. GPT-
2 achieves the highest accuracy and the 5-gram
model the lowest. All models perform well below
estimated human accuracy (as described in § 3.4).
The 5-gram model’s poor performance—overall
and on every individual category—indicates
that BLiMP is likely not solvable from local
co-occurrence statistics alone.

Because we evaluate pretrained models that
differ in architecture and training data, we can
only speculate about what drives these differences
(though see § 6.3 for a controlled ablation study
on the LSTM LM). The results seem to indicate
that access to training data is the main driver of
performance on BLiMP for the neural models we
evaluate. This may explain why Transformer-XL
and the LSTM LM perform similarly in spite of
differences in architecture, as both are trained on
approximately 100M tokens of Wikipedia text.
Relatedly, GPT-2’s advantage may come from
the fact that it is trained on roughly two orders of
magnitude more data. Possibly, LSTMs trained on
larger datasets could perform comparably to GPT-
2, but such experiments are impractical because of
the inefficiency of training LSTMs at this scale.

5.1 Results and Discussion by Phenomenon

The results also give insight into how LM’s
linguistic knowledge varies by domain. Models

2nhttps://github.com/sheng-fu/colorless
greenRNNs.
Bhttps://github.com/kpu/kenlm.

Yhttps://github.com/anhadl3/blimp_ngram.
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generally perform best and closest to human
level on morphological phenomena. For instance,
GPT-2 performs within 2.1 points of humans
ONn ANAPHOR AGR., DET.-NOUN AGR., and SUBJ.-VERB
AGR.. The set of challenging phenomena is more
diverse. IsLanps are the hardest phenomenon by
a wide margin. Only GPT-2 performs well above
chance, and it remains 14 points below humans.
Some semantic phenomena, specifically those
involving NPI LICENSING and QUANTIFIERS, are also
challenging overall. All models perform relatively
poorly on ARG. STRUCTURE.

From these results we conclude that current
SotA LMs robustly encode basic facts of English
agreement. This does not mean that LMs will
come close to human performance for all
agreement phenomena. §6.1 discusses evidence
that increased dependency length and the presence
of agreement attractors of the kind investigated by
Linzen et al. (2016) and Gulordava et al. (2019)
reduce performance on agreement phenomena.

We find, in accordance with Wilcox et al.
(2018), that LMs do represent long-distance
wh-dependencies, but we also conclude that
their representations differ fundamentally from
humans’. Although some models approach human
performance in ordinary filler-gap dependencies,
they are exceptionally poor at identifying island
violations overall. This finding suggests that they
reliably encode long-distance dependencies in
general, but not the syntactic domains in which
these dependencies are blocked, though GPT-2
does perform well above chance on some para-
digms of 1sLaND EFfFecTs. However, strong con-
clusions about how these models represent
wh-dependencies are not possible using the
forced-choice task compatible with BLiMP, and
a complete assessment of syntactic islands is best
addressed using a factorial design that manipulates
both the presence of an island and an attempt to
extract from it, as in Kush et al. (2018) or Wilcox
et al. (2018).

In the semantic phenomena where models
struggle (NPIs and QUANTIFIERS), violations are
often attributed in semantic theories to a presup-
position failure or contradiction arising from
semantic composition or pragmatic reasoning
(e.g., Chierchia, 2013; Ward and Birner, 1995;
Geurts and Nouwen, 2007). These abstract
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semantic and pragmatic factors may be difficult
for LMs to learn. Marvin and Linzen also find
that LSTMs largely fail to recognize NPI licensing
conditions. Warstadt et al. (2019a) find that BERT
(which is similar in scale to GPT-2) recognizes
these conditions inconsistently in an unsupervised
setting.

The weak performance on ARG. STRUCTURE is
somewhat surprising, since arguments and heads
are usually—though not always—adjacent (e.g.,
subjects and direct objects are adjacent to the
verb in default English word order). However,
argument structure is closely related to semantic
event structure (see Marantz, 2013), which may
be comparatively difficult for LMs to learn.
Also, judgments about argument structure are
complicated by the possibility of coercing a
frequently transitive verb to be intransitive and
vice versa as well as the existence of secondary
meanings of verbs with different argument
structures (e.g., normally intransitive boast has a
transitive use as in The spa boasts 10 pools), which
might make this domain somewhat more difficult
for LMs. Though even with these complications,
humans detect the intended contrast 90% of the
time. We note that the reported difficulty of these
phenomena contradicts Warstadt and Bowman’s
(2019) conclusion that argument structure is one of
the strongest domains for neural models. However,
Warstadt and Bowman evaluate classifiers with
supervision on CoLA, a large proportion of which
is sentences related to argument structure.

Finally, we caution against interpreting positive
results on a general phenomenon in BLiMP as
proof of human-like knowledge. Although it is
unlikely that GPT-2 could reach human perfor-
mance on the SUBJ.-VERB AGR. paradigms without
acquiring a concept of number marking that
abstracts away from specific lexical items, it
is difficult to rule out this possibility without
accumulating different forms of evidence, for
instance, by testing how it generalizes to nonce
words. We take the paradigms in FILLER-GAP as
a cautionary example (see Table 4). There are
four paradigms that assess a model’s sensitivity to
the syntactic requirements of complementizer that
versus a wh-word. We observe that all models
more or less succeed when the unacceptable
sentence lacks a necessary gap, but fail when
it contains an illicit gap. These results suggest the
models’ ability to accurately detect a contrast in
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Figure 1: Heatmap showing the correlation between
models’ accuracies in each of the 67 paradigms.

whether a gap is filled following a wh-word is
not clearly based on a generalization about the
relationship between that wh-word and its gap,
as such a generalization should extend to the
cases where the models currently fail to detect
the correct contrast. More generally, conclusions
about a model’s knowledge of a particular
grammatical concept can only be reached by
considering several paradigms.

5.2 Shallow Predictors of Performance

We also ask what factors besides linguistic
phenomena affect model accuracy. Figure 2 shows
how sentence length, perplexity (which does not
depend on length), the probability of the good
sentence (which does depend on length), and
confidence affect model performance. The effect
of perplexity is much weaker for GPT-2 than
for other models, which indicates that it is probably
more robust to sentences with non-stereotypical
syntax or describing unlikely scenarios. GPT-2
is the only model where accuracy increases
largely monotonically with confidence. A similar
relationship holds between confidence and
agreement in human acceptability judgments.

5.3 Correlation of Model and Human
Performance

We examine the extent to which models and
humans succeed at detecting contrasts for the same
linguistic phenomena. Figure 1 shows the Pearson
correlation between the four LMs and humans
of their accuracies on the 67 paradigms. The
neural models correlate moderately with humans,
with GPT-2 correlating most strongly. The n-gram
model’s performance correlates with humans rela-
tively weakly. Neural models correlate with each
other more strongly, suggesting neural networks
share some biases that are not human-like.
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Figure 2: Models’ performance on BLiMP as a function
of sentence length, perplexity, log probability of the
acceptable sentence, and model confidence (calculated
as |log P(S1) — log P(S2))).

Transformer-XL and LSTM’s high correlation of
0.9 possibly reflects their similar training data.

6 Analysis

6.1 Long-Distance Dependencies

The presence of intervening material can lower the
ability of humans to detect agreement depen-
dencies (Bock and Miller, 1991). We study how
intervening material affects the LMs’ sensitivity
to mismatches in agreement in BLiMP. First, we
test for sensitivity to determiner-noun agreement
with and without an intervening adjective, as in
Example (2). The results are plotted in Figure 3.
The n-gram model is the most heavily impacted,
performing on average 35 points worse. This is
unsurprising, since the bigram consisting of a
determiner and noun is far more likely to be
observed than the trigram of determiner, adjective,
and noun. For the neural models, we find a weak
but consistent effect, with all models performing
on average between 5 and 3 points worse when
there is an intervening adjective.

2)

a. Ron saw that man/*men.
b. Ron saw that nice man/*men.

Second, we test for sensitivity to mismatches
in subject-verb agreement when an attractor noun
of the opposite number intervenes. We compare
attractors in relative clauses (3-b) and as part of
a relational noun (3-c), following experiments
by Linzen et al. (2016) and others. Again, we
find that the n-gram model’s performance is
reduced significantly by this intervening material,
suggesting the model is consistently misled by the
presence of an attractor. All the neural models
perform above chance with an attractor present,
but GPT-2 and the LSTM perform 22 and 20 points
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Figure 3: The effect of the locality of determiner-noun
agreement (upper panel) and the type of agreement
attractor (lower panel) on model performance.

worse when an attractor is present than when
there is no attractor, while Transformer-XL’s
performance is reduced by only 5 points. Thus,
we reproduce Linzen et al.’s finding that attractors
significantly reduce LSTM LMs’ sensitivity to
mismatches in agreement and find evidence that
this holds true of some Transformer LMs as well.

(3) a. The sisters bake/*bakes.

b. The sisters who met Cheryl bake/*bakes.
c. The sisters of Cheryl bake/*bakes.

6.2 Regular vs. Irregular Agreement

In DET.-NOUN AGR. and SUBJ.-VERB AGR., We generate
separate datasets for nouns with regular and
irregular number marking, as in Example (4). All
else being equal, only models with access
to sub-word-level information should make
any distinction between regular and irregular
morphology.

“)

a. Ron saw that nice kid/*kids.
b. Ron saw that nice man/*men. (irregular)

(regular)

In fact, Figure 4 shows that the two sub-word-
level models GPT-2 and Transformer-XL show
little effect of irregular morphology: They perform
less than 1.3 points worse on irregulars than
regulars. Their high overall performance suggests
that they robustly encode number features without
relying on segmental cues. '

15The LSTM LM, which has word-level tokens, averages
5.2 points worse on the irregular paradigms. This effect is
not due to morphology, but rather to the higher proportion
of out-of-vocabulary items among the irregular nouns, which
include many loanwords such as theses and alumni.
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Figure 4: Models’ performance on agreement phe-
nomena between a determiner and noun and between
a subject and verb, broken down by whether the
noun/subject has a regular or irregular plural form

6.3 Training size and BLiMP performance

We use BLiMP to track how a model’s rep-
resentation of particular phenomena varies with
the quantity of training data. Using different
sized subsets of Gulordava et al.’s (2019) training
data, we retrain the LSTM and Transformer-XL
models and evaluate their performance on BLiMP.
Figure 5 shows that different phenomena have
notably different learning curves across different
training sizes even if the full model trained on 83M
tokens achieved equivalent accuracy scores. For
example, the LSTM model ultimately performs
well on both IRREGULAR and ANAPHOR AGR., but
requires more training to reach this level of
performance for ANAPHOR AGR. These learning
curve differences show how BLiMP performance
dissociates from perplexity on Wikipedia data, a
standard measure of LM performance: Although
perplexity decreases with more training data,'®
performance on different phenomena grows at
varying rates.

We conjecture that sigmoid
relationship between the logarithm of training
set size and BLiMP performance that appears
to be roughly linear at this scale. We conduct
linear regression analyses to estimate the rate
of increase in performance in relation to the
logarithm (base 2) of dataset size. For the LSTM
LM, best-fit lines for phenomena on which
the model had the highest accuracy have the
steepest slopes: ANAPHOR AGR. (0.0623), DET.-NOUN

there is a

16 Average perplexity on the Gulordava et al. (2019) test
set: 595 at 0.125M, 212 at 1M, 92.8 at 8M, and 53 at 64M.
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Figure 5: Transformer-XL (top) and LSTM LM
(bottom) performance as a function of training size
and phenomena in BLiMP. The gray line shows the
average across all phenomena.

AGR. (0.0426), and RReGULAR (0.039). We see
the shallowest slopes on phenomena with the
worst performance: NPIs (0.0078) and ISLANDS
(0.0036). For Transformer-XL, we observe a
similar pattern: The steepest learning curves
again belong to ANAPHOR AGR. (0.0545) and DET.-
NOUN AGR. (0.0405), and the shallowest to NPIs
(0.0055) and IsLanps (0.0039). Based on these
values, we estimate that if log-linear improvement
continues, the LSTM LM and Transformer-XL
should require well over 10? tokens of training
data to achieve human-like performance on these
hardest phenomena.

We also find that increasing model size (number
of parameters) is unlikely to improve performance:
We evaluate four pretrained versions of GPT-
2 with 117 M to 1,558 M parameters trained
on WebText. All models have overall BLiMP
accuracy of 0.84 £+ .01%, and standard deviation
among the models on each of the 12 phenomena
does not exceed 0.03. This finding bolsters
our earlier conclusion in §5 that amount of
training data has the biggest impact on BLiMP
performance.



6.4 Alternate Evaluation Methods

There are several other methods one can
use to measure an LM’s preference between
two minimally different sentences. So far, we
have considered only the full-sentence method,
advocated for by Marvin and Linzen (2018), which
compares LM likelihoods of full sentences. In a
followup experiment, we use two prefix methods,
each of which has appeared in related prior work,
that evaluate a model’s preferences by comparing
its prediction at a key point of divergence between
the sentences. Subsets of BLiMP data are designed
to be compatible with multiple methods, allowing
us to conduct the first direct comparison. We find
that all methods give broadly similar results when
aggregating over a set of paradigms. We see no
strong argument against evaluating solely using
the full-sentence method, though some results
diverge for specific paradigms.

One-Prefix Method In the one-prefix method,
used by Linzen et al. (2016), a pair of sentences
share the same initial portion of a sentence, but
differ in a critical word that make them differ in
grammaticality (e.g., The cat eats mice vs. The
cat eat mice). The model’s prediction is correct if
it assigns a higher probability to the grammatical
token given the shared prefix.

Two-Prefix Method In the rwo-prefix method,
used by Wilcox et al. (2019), a pair of sentences
differ in their initial string, and the grammaticality
difference is only revealed when a shared critical
word is included (e.g., The cat eats mice vs. The
cats eats mice). For these paradigms, we evaluate
whether the model assigns a higher probability to
the critical word conditioned on the grammatical
prefix than on the ungrammatical prefix.

The prefix methods differ from the full-
sentence method in two key ways: (i) they
require that the acceptability of the sentence be
unambiguously predictable from the critical word,
but not sooner, and (ii) they are not affected
by predictions made by the LM following the
critical word. These values do affect the full
sentence method. For example, assuming that
P(are numerous) > P(is numerous), a model
could predict that The cats are numerous is more
likely than The cats is numerous without correctly
predicting that P(are|the cats) > P(is|the cats).
Using prefix probabilities allows us to exclude
models’ use of this additional information and
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Figure 6: Comparison of models’ performance on the
simple LM method and the 1- and 2-prefix methods.
The upper panels show results from three phenomena
that are compatible with both 1-prefix and 2-prefix
methods. The lower panel shows the averages and
standard deviations across all phenomena.

evaluate how the models perform when they have
just enough information to judge grammaticality.

Figure 6 shows that models have generally
comparable accuracies across all three methods.
However, there are some cases where we observe
differences between these methods. For example,
Transformer-XL performs much worse at BINDING,
DET.-NOUN AGR., and SUBJ.-VERB AGR. in the simple
LM method, suggesting that the probabilities
Transformer-XL. assigns to the irrelevant part
at the end of the sentence very often overturn
the observed preference based on probability up
to the critical word. On the other hand, GPT-2
benefits from reading the whole sentence for
BINDING phenomena, as its performance is better in
the simple LM method than in the prefix method.

We conclude that with a sufficiently diverse
set of paradigms, the various metrics under
consideration will give similar results. Thus, it
is not problematic that BLiMP relies only on the
full-sentence method, and doing so allows BLiMP
to include many paradigms not compatible with
either prefix method. Nonetheless, prefix methods
are still valuable for detailed analysis or for studies
making direct comparison to psycholinguistic
theories (e.g., Wilcox et al., 2018).

7 Conclusion and Future Work

We have shown ways in which BLiMP can be used
as tool to gain evidence about both the overall
and fine-grained linguistic knowledge of language
models. Like the GLUE benchmark (Wang et al.,
2018), BLiMP assigns a single overall score
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to an LM that summarizes its general sensitivity to
minimal pair contrasts. It also provides a break-
down of LM performance by linguistic phenom-
enon, which can be used to draw more concrete
conclusions about the kinds of grammatical
features learned acquired by a given model. This
kind of information is a linguistically motivated
evaluation of LMs that can complement common
metrics like perplexity.

Furthermore, the extent to which humans
resemble data-driven learners like language
models is debated in linguistics and cognitive
science (see e.g., Chomsky, 1965; Reali and
Christiansen, 2005). In some domains, we may
require the aid of innate knowledge to acquire
phenomenon-specific knowledge resembling that
tested in BLiMP. By evaluating whether self-
supervised learners like LMs acquire human-like
grammatical acuity in a particular domain, we
gather indirect evidence as to whether this
phenomenon is a necessary component of humans’
innate knowledge.

Another aim of BLiMP is to serve as a guide for
future work on the linguistic evaluation of LMs.
It is particularly interesting to better understand
those empirical domains where current LMs
appear to acquire some relevant knowledge,
but still fall short of human performance. The
results from BLiMP suggest that—in addition
to relatively well-studied phenomena like filler-
gap dependencies, NPIs, and binding—argument
structure remains one area where there is much to
uncover about what LMs learn. More generally,
as language modeling techniques continue to
improve, it will be useful to have large-scale tools
like BLIMP to efficiently track changes in what
these models do and do not know about grammar.
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Appendix

The following contains examples from each of the
67 paradigms in BLiMP.

Caveats Some paradigms include non-transparent
factors that may influence interpretation. We list
here those factors that we are aware of:

e Several paradigms within ANAPHOR AGREE-
MENT and BINDING rely on stereotyped gender
assignment associated with names (e.g.,
Mary). A model has to have at least a weak
gender-name association in order to succeed
on some paradigms in BLiMP. For example,
we mark sentences like Mary hugged
themselves and Mary hugged himself as un-
acceptable, and we never include possibilities
like Mary hugged themself.

To isolate certain phenomena, we had to rely
on acceptability contrasts present in main-
stream US and UK English but absent in
many other dialects. For example, some
speakers would accept the sentence Suzy
don’t lie, but we would mark this un-
acceptable based on mainstream US English
judgments. BLiIMP assesses models’ know-
ledge of this specific dialect of English; in
some cases it could penalize models that
conform to a different dialect.

How to read this table:

e Phenomenon refers to the linguistic phenom-
enon as noted in Table 2. UID refers to the
unique identifier used in the released dataset.

Model and human performance are reported
as percent accuracy. ‘Human’ uses the
more conservative individual judgments (as
opposed to majority vote, for which each
paradigm would be either 100% or 80%).

Each pair is marked for whether it is usable
with a prefix method. All sentences are valid
for the simple LM method.

If a sentence has a checkmark (v) under
the Ipfx column, the sentence can be used
with the 1-prefix method in addition to the



S b SRR
Phenomenon  UID o \50 o W Acceptable Example Unacceptable Example Ipfx 2pfx
ANAPHOR anaphor_gender_agreement 44 |88 191 [1997 1967 Katherine can't help herself. Katherine can’t help himself. v
AGREEMENT anaphor number agréeniént 52095 1 97 | 100 99 | 'Many teeriagers were helping themiselves Maiy iéenagers were helping hersel v
animate.subject.passive 54 68 58 77 [7987  Amanda was respected by some waitresses. Amanda was respected by some picture. v
aniniate._subject.trans 727079 0 70 1 80 87 " Daniclic visited lrenc The cye visited Irene v
causaiive 51765 547 68 82 " Auron breaks ihe glass Karon appeared the glass.
Ja—— diop_argument 68 79 | 67 | 84 90 " The Lutherans couldn’t skate around The Luiherans couidn’t disagree Wwiih
mventnt fnchoative 89 72 1 81 90 | 95 Acréen was fading A Screen was cleaning.
fntransiiive 82 73 81 90 | 86 " 'Some glaciers aré vaporizing. Some glaciérs are scaring.
passive | 7165 76 | 89 | 99 " effrey's sons are insuited by Tina's supervisor. Jeffrey’s sons are smifed by Tina’s supervisor
passive 3 70 72 0 74 79 86 " Mosi cashiers are disliked Mot cashiers are flirted
transitive 91 87 | 89 49 | 87 Aot of aciresses’ nieces have ioured that art gaiiery A Tot of actresses” nieces have coped thil art gallery v
58 59 61 W00 86 A lotof actresses that thought about Alice healed themselves. tresses that thought about Alice healed hes v
100100 100779608 ‘thinks Vayr o e W - na
49787057306 =
BinoiNG 957|198 09199705 =
5668 70 73S =
52778560 8RS o
FUREAFT R I A
existential there_object.raising 84 66 76 [1927 [ 90|  William has declared there to be no guests getting fired. William has obliged there to be no guests getting fired. v
P existential thiere_Subject_raising 77 7 80 1 79 | 89 88 " There was bound to be a fish escaping: There was dnable to be a fish éscapin
P expletive it object raising 727 63 727 58 | 86 " 'Regina wanied it 0 be obvious thai Maria thought about Anina Regina forced it i0 be obvious fhat Maria thought abou Anna, v
ng-1 34045 0 7275 uliawasn't fun o talk o Julia wasn't unlikely o talk o
93186 [ 92 81 " Rachel was apt to ialk to Alicia Rachél waj exciting i6 tak to Alicia.
9292 | 100 9% v
927 RIT93T 05 o
DETER 82 RYTTI04T00 =
MINER- 868293 8S o
NoUN 867 7877790706 =
AGR 76 81 96 | 94 R
83 ' 777 88 ' 85 =
87 8 93 195 e
— ellipsis.n_bar.1 230 68 65 [ 88 192 Brad passed one big museum and Eva passed several Brad passed one museum and Eva passed several big.
50 67 189 | 86 78 " Curiis's boss discussed four sons and Andrew discussed five sick sons Cirtis's bioss discussed four happy sons and Andrew discisssed five sick
53 79 61 |84 |85 Joel discovered the vase that Patricia might take Joel discovered what Patricia might take the vase.
82 | 92 | 83 ' 05 | 08 " Cherylihon d p X i
Fuuse 8 96 8 88 85
ey 83 97 86 |97 97
81197 91 94 9
18 43 42 56 71
20 14 170 56 75
IRREGULAR irregular_past_participle.adjectives 79 [7937 |91 78 [U997  The forgotten newspaper article was bad. ‘The forgot newspaper article was bad. v
FoRMS frregular-past participlé verbs 80 85 66 | 90 | 95 " Edwardhid the cais Edward hiddén the cats. v
adjunct_island 48 67 65 [1917 [1947  Who has Colleen aggravated before kissing Judy? ‘Who has Colleen aggravated Judy before kissing?
50 47 58 72 80 " ‘Who hadn'tSome driver who Would fire Jennifer's colleague émbarrassed? " Wiio hiadn’t Jennifer's colléague embarrassed some driver whio would fire?
32030 36 42 | 90 " ‘Whailighis could Spain Sell and Andrea Wit could s, 11 Tights and"Andreal discover”
IsLaxp 597 LA UE8T TOL T Who will El ' } ¥ .
EFFECTS Y6 3263101
e land _Simple_question’ 57 36 36 8299 Whiose should Tonya wear hiat”
sentential subject island 617 743377735 61 'Who have many women's touring Spain embarrassed Whio have many Women's touring embarrassed Spain.
Whisland 5647 AN AT T3 What could Alan discover e has run around? What could Alan discover who has run around? v
‘matrix-questionnpi-licensor-present 0 2N I 67 7987 Should Monica ever grin? Monica should ever grin. v
npi-preseni_i 47 54 61 55 83 T 'Even ihese trucks have often siowed. Even thiese iricks have ever slowed. v
NPI npi_preseni 2 47 54 48 " 62 | 98 ' Many skateboards aiso roli Many skateboards ever roll v
LCENSING only_npi_iicensor_present 57 [1937 80 100 92 ' Only Bill would éver complain. Even Bill Would ever complain. v
only_npi_scope 30 36 45 85 72 " Only ihose dociors who Karla réspects ever conceal many snakes, Those dociors who only Karla réspects ever conceal many snakes v
Senténtial -negation _npiicensor_present 93 | 100 7997 89 | 93 ‘Those banks had not ever lied. Those banks had really ever lied. v
Senténtial negation npiScope 45 |23 53 7| 95 81 ' 'Those turtles that aré boring April could not ever break those couches. Those turtfes that are not boring April could ever break those couches v
91 | 9 94 |99 94
QuanTirErs o2 I . e | 7o . bog
457763 84 84 ol
170 17837 RS T8RS AN actor i
distractor agreement.relational_noun 24 76 | 77 | 83 | 81 A sketch of lights doesn’t appear. A sketch of lights don’t appear v
J— distracior agreement relative.clatise 2 63 60 68 8 " Boys that aren't disturbing Natalic suffer. Boys that aren’t disturbing Natalic Suffers v
e irregular-plural.subject_verb_agreement. 1 73 81 1 78 |95 | 95 " 'This goose isn’t bothering Edward, This goose weren’t bothering Edward v
oy 88 | 89 | 83 | 96 ' 94 " The woman cleans every pubiic park The women cléans every public park. v
fegular plural Subject verb agreement | 76 89 73 | 97 | 95 " leffiey hasn't criticized Donald. Jeffrey haven't criticized Donald v
fegular_plural Subjeci verb_agréemeni 3 81 83 | 85 96 | 95 " Thedress crumples. The dresses crumiples. v

Table 4: Examples of all 67 paradigms in BLiMP along with model performance and estimated human agreement.

simple LM method. The bolded word is the
critical word—the probability of the two
different critical words for the acceptable
and unacceptable sentences can be compared
based on the same ‘prefix’.

If a sentence has a checkmark (v') under the
2pfx column, the sentence can be used with
the 2-prefix method in addition to the simple
LM method. The bolded word is the critical
word—the probability of that particular word
can be compared based on the two different
acceptable and unacceptable ‘prefixes’.
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