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Abstract. In this paper, we investigate an inverse problem for the radiative transfer equation
that is coupled with a heat equation in a nonscattering medium in R™,n > 2. The two equations
are coupled through a nonlinear blackbody emission term that is proportional to the fourth power
of the temperature. By measuring the radiation intensity on the surface of the blackbody, we prove
that the emission property of the system can be uniquely reconstructed. In particular, we design a
reconstruction procedure that uses merely one set of experimental setup to fully recover the emission
parameter.
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1. Introduction.

1.1. Motivation. Radiative transfer is the physical phenomenon of energy trans-
fer in the form of electromagnetic radiation. The classical model equation for such
phenomena is termed the radiative transfer equation, that encodes absorption, emis-
sion, and scattering processes along the radiation. The equation is widely used in
optical imaging [2], atmospheric science [22], and remote sensing [26].

We study the problem for the radiative transfer equation, when it is combined with
blackbody heat conductance. In particular, the blackbody radiation is coupled with
the classical radiative transfer equation through the “source” term (or the emission
term in the radiative transfer equation). According to the classical theory for the
total blackbody emission power, this source term mainly depends on the blackbody
temperature, which further satisfies the classical heat equation [18, 19]. The resulting
coupled system reads as follows:

(1) Ou+0-Vou=—pu+ [o,, (0, 0)u(t,z,0") do" + up,
. atT: AxT—Ub‘i’Mﬁ fgn—l u(t,a:,@) dav
where u = u(t,x,0) describes the radiation intensity at time ¢ on the phase space
(7,0), with the position x € R™ and the direction § € S*~!, and T is the temperature.
Here S*! is the unit sphere in R™ and n > 2.

The first equation of (1.1) is the classical radiative transfer equation with p = p(z)
being the absorption coefficient, and [ ®(0',0)u(t,z,0")dd" reflecting the fact that
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some photons moving in direction 6’ get scattered into the 6 direction according to
the kernel ®(60',6). wu, is typically regarded as the source term that introduces new
energy into the system. For this particular case, it represents the blackbody emission
and is the term that is used to couple u and T. The temperature T satisfies the heat
equation with a heat sink u;, and a heat source that comes from absorbing the photons.
According to the classical theory from total a blackbody emission power argument,
the blackbody emission is proportional to the fourth power of the temperature:

ub:ch4,

where o, the emission coefficient, is ogk, with 0y known as the Stefan—Boltzmann
constant, and k characterizes the emissivity of the medium. This parameter is typi-
cally unknown for different materials, and it is the parameter that we would like to
reconstruct by taking measurements on the boundary. For more details, we refer the
interested reader to the book [19, for example, Chapter 10].

1.2. The setup and main results. As a start, we confine ourselves to a simpler
situation where the scattering is turned off, meaning ® = 0. We also only look at the
steady state solution with ¢ dependence eliminated. The absorption coefficient u is
assumed to be known, and we target at reconstructing the emission coefficient o.

Let €2 be an open bounded, connected, and strictly convex domain in R™, n > 2,
with smooth boundary 0€2. The coupled system now is presented as the following:

0 -Vou+pu=ocT* inQ xS,
AT —0oT* = —p(u) in Q,

1.2
(1.2) U =up onI'_,
T= TB on BQ,
where the notation .
(u)(x) := 1 Jors u(zx,0) do

is the normalized radiation intensity at location z € 2. The sets
Iy = {(2,0) €9Q xS"': 40 -n(x) > 0}

collect the boundary coordinates that are pointing out of/into the domain, where
the notation n(z) is the unit outer normal vector at z € 92 on the boundary. The
boundary condition up prescribes how many photons are injected at the boundary
into the domain.

The forward problem for (1.2) amounts to solving w and T' when boundary con-
ditions up and Tz are given, assuming o and p are known. In the inverse problem, it
is to reconstruct o from the outgoing measurement u|p, for the boundary condition
(uB, TB).

To make the statement rigorous, we first need to have a mathematical setup in
which the coupled system (1.2) makes sense. Throughout the paper we assume o and
u are compactly supported positive functions in C?(Q) with 0 < v < 1. Moreover,
there exist positive constants o, < op; < 00 and p, < pyr < 0o so that the following
bounds hold:

(1.3) 0 < oy, ;= mino, HJHCW@) <owm,
Q
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and
(1.4) 0< = minge, il < par-

We will show, in section 2, that under conditions (1.3) and (1.4), the problem
(1.2) is well-posed for suitable chosen boundary conditions. More specifically, there
exist properly defined sets X1 C C7(T'_) and Xy C C%7(99) so that when (up,T5) €
X = X; ® Xb, the problem (1.2) has a unique and positive solution (u,T) € C?(Q x
S"=1)x C?7(Q). The unique existence of the solution is stated in Theorem 2.2 and its
positivity property is presented in Theorem 2.3. In particular, the well-posedness of
the problem allows us to define the boundary map from (ug,T) € C?(I'~)x C%7(99)
to u|r, € C7(I'}), meaning

A, X CCVT) xC*7(00) — CV(Ty),

1.5
( ) (U|F7,T|ag) — u‘r+ .

This places us at the right footing for reconstructing o.
We now present the unique identification of o from the map A,. It is stated in
the following theorem.

THEOREM 1.1 (uniqueness). Let Q be an open bounded, connected, and strictly
convexr domain in R™, n > 2, with smooth boundary, and let A, be the bound-
ary operator defined in (1.5), where the system (1.2) is equipped with the media
o = o for j = 1,2. Suppose that o;, p € CV(Q), with 0 < v < 1, are com-
pactly supported and satisfy (1.3)—(1.4). Given any fized data (up,Tp) € X, if
Ao (up, Tg) = Ay, (up, TB), then o1 = oo pointwisely in Q.

This unique reconstruction result holds true for any dimension with n > 2. The
proof of Theorem 1.1 in section 3 relies on the fact that the attenuated X-ray transfor-
mation P, f can uniquely determine f in R™ so long as n > 2. This is to say, suppose
the attenuation coefficient p is known, then by measuring the integration on a line,
the source term f can be reconstructed. We note that the result is rather strong since
a single measurement A, (up,Tp) corresponding to fixed data (up,Tp) needs to be
known. In some sense, only one experiment is sufficient to fully reconstruct the media
.

Besides the unique reconstruction, we also have a stability estimate.

THEOREM 1.2 (stability estimate). Let Q be an open bounded, connected, and
strictly convex domain in R? with smooth boundary, and let Ag; be the boundary
operator defined in (1.5), where the system (1.2) is equipped with the media o = g
for 7 = 1,2. Suppose that o;, 1 € C7(Q), 0 < v < 1, are compactly supported and
satisfy (1.3)-(1.4). Given any fized data (up,Tg) € X, then we have the following
stability estimate:

o1 = o2llo@) < CllPi (Ao, (us, TB) — Asy (un, T8))llov @y »
where the operator P is defined in (3.5) and the constant C' depends on , o, t, 0, 9
for j =1.2.

As the proof of Theorem 1.1, the proof for obtaining the stability also heavily relies
on the two-dimensional reconstruction formula for the attenuated X-ray transform in
[20]. We can only derive the stability estimate for n = 2 in Theorem 1.2 due to this
dimensional restriction.
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The structure of the paper is organized as follows. We will devote section 2 to
addressing the well-posedness for the forward problem when boundary conditions are
properly chosen. It gives the definition of A,, as in (1.5), the right footing. We
further prove that the temperature 7' is strictly positive in the whole domain and this
positivity turns out to be a crucial factor in the reconstruction procedure. In section
3 we present the recipe, divided into a few substeps, to reconstruct the media ¢ and
show the validity of each substep. The stability of the reconstruction is finally shown
in section 4.

2. The forward problem. In this section, we show that for sufficiently small
boundary conditions, the boundary value problem (1.2) is well-posed, and thus A, is
a well-defined operator. This lays the basic groundwork for the further exploration of
the inverse problem.

Let @ C R™, n > 2, be a bounded open set with smooth boundary, then the
Holder space C*7(€2), 0 <y < 1, is the collection of functions so that

APu(z) — 9Pu
il = 3 0% ula) — 0%uly)

sup | |
T —
18] kz,yeﬂ,x;ﬁy Y

+ lall gy < -

Here k > 0 is an integer. When k = 0, we abbreviate C%7(Q2) = C7(Q).

Before presenting the theorem about the well-posedness of (1.2), we first discuss
the geometry setup. Since the domain €2 considered in this paper is connected and
strictly convex with C*° boundary, for such a domain, there exists a C°°-function
£ :R"! — R such that Q and its boundary can be described by

(2.1) Q={z:¢&x) <0} and 9N ={x:&(x)=0}.

Moreover, the strict convexity here means that there exists a constant Dy > 0 such
that

(22) Z 81']'5(13)(1,'&]‘ Z Do|a|2

ij=1

for all = such that £(x) < 0 and all a = (ai,...,a,) € R™. This gives V,&(x) # 0
for any = € 99). The construction of £ uses the distance function dist(z, 92) whose
regularity is the same as the regularity of 02. We refer the reader to section 14.6
in [8] for more details. The outward normal vector n(z) at x € Q is then given by

n(x)*m Vo € 0.

 Vag(2)]

For every (z,0) € Q x S"~!, we define the backward exit time 7_(x,0) > 0 and
the backward exit position on 0f) by

(2.3) T_(2,0) :=sup{{0}U{r>0: x —sh e Qforall0 <s<7}}
and
(2.4) x_(r,0) =z —7_(2,0)0 € 00.

There are some basic properties of the exit time and exit location.
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LEMMA 2.1 (see [9, Lemma 2]). Suppose @ C R™ is strictly conver and an open
bounded connected domain and has C* boundary. Suppose that there is a smooth
function & satisfying (2.1) and (2.2). For any (x,0) € Q x S*~1, let 7_ be the
backward exit time defined in (2.3) and x_ € O be the exit point defined in (2.4).
Then

(1) (1_(z,0),2_(x,0)) are uniquely determined for each (x,0) € Q x S*~1;

(2) if 0-n(x_(z,0)) #0, then 7_ and z_ are smooth functions in  x S*~1.

Noting that for a strictly convex domain , if (z,60) € © x S*~! the condition
0-n(x_(x,0)) # 0 always holds true.

We now present our well-posedness result in Theorem 2.2 and the positivity of
the solution in Theorem 2.3.

In Theorem 2.2, we utilize the contraction mapping principle to prove the unique
existence of the solution. Specifically, there exist sufficiently small parameters ¢; (with
j =1,2) such that when (up,Tg) € Xy defined by

(2.5)
Xo = {(UB,TB) S CV(F_) X 02’7(89) : HUB”C“/(F,) < 51, ||TB||C21’Y(OQ) < (52},

problem (1.2) has a unique solution (u,T) € C7(Q x S"~1) x C?7(Q).

In addition to the well-posedness, the positivity property of the solution is essen-
tial to the reconstruction of o. In Theorem 2.3, one requires additional constraints
on the lower bounds of the imposed boundary conditions to ensure that the solution
(u, T) is bounded away from zero. In particular, there exist sufficiently small param-
eters a; and ¢; (with j = 1,2) such that when (up,Tg) € X, the solution v and T
are strictly positive. Here the space X' is defined to be

X :Z{(’U,B,TB) S C'Y(F_) X 02’7(89) rup € Xl, Tp € Xg},
where X1 C C7(T'_) and Xy C C%7(99) are, respectively, defined by

Xy = {uB € C’Y(F_) t0<a; < ( Ié[;lenr UB(JJ,G), ||UB||C’Y(F7) < 51}

and

Xy = {TB S 02’7(89) t0<ag < Hellarsl2 TB(x), ||T3H02,—y(39) < 62} .
z

It poses a slightly higher restriction than X by imposing the lower bound «;.
We first state the well-posedness theorem.

THEOREM 2.2 (well-posedness).  Let Q be an open bounded, connected, and
strictly convex domain in R™, n > 2, with smooth boundary. Suppose that o; and
pin C(Q), 0 <~ < 1, satisfy (1.3) and (1.4). Then the problem (1.2) is well-posed
with small boundary data. In particular, one has that

(1) there exist constants 0; > 0, j = 1,2, sufficiently small, such that for any

(up,Tp) € Xy (defined in (2.5)), the problem (1.2) has a unique solution
(u, T) € C7(Q x S*~1) x C27(Q);

(2) Moreover, there exists a constant C' depending on Q,n,on, 1,05, j = 1,2, so

that (u,T) satisfies the estimates

(2.6) [Tl ¢z @) < CliTBllc2v00) + Cllusllcrvr_)
and
(2.7) ull o gixgn-1y < Cllusllorey + ClIT o g,
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Proof. Step 1: Perform linearization. Let (ug,Tp) solve the following problem:

(2.8) {9 “Vaug +pug =0 in @ xS*1,

ATy = —puo) in €2

with the same boundary data
wolp_ =up and Tologa=T5.

If (u,T) solves (1.2), then we take the difference and call
u:=u—ug and f::T—TO.

Then it is easy to see that these remainder terms satisfy

29) {o Veitpi = 0Ty + T)' in Q8"

AT =0(Ty+T)* — p{a) inQ
with trivial boundary conditions
ip. =0 and Tlpg=0.

The (ug,Tp) system (2.8) is well-posed. Indeed, since ug satisfies the transport
equation in (2.8) with boundary datum wup, it is straightforward to write down the
explicit solution:

T_(x,0)
(2.10) u(z,0) = e Jo wa=sO)dsy o (x — 1_(x,0)0) .
Considering up € C7(I'_), p € C?(Q) and 7_ smooth, we have

max{|[uoll s @xsn-1) » [{uo)llcv @y} < Cllusllevar_y < Cor.
The unique existence of Ty of the elliptic equation is also straightforward. Note that
from Theorem 6.8 in [8], we have the following estimate:

1Tollc2 @) < CliTBllc200) + Cll(wo)lov @y
(2.11) < ClTslc2~00) + Cllusllevr_) < C(01 +62)

where the constant C' is independent of Ts and up.

These boil the well-posedness theory for (u,T') system (1.2) down to showing that
of (@, T) system (2.9), and is what we will prove below. To that end, we will employ
the contracting map argument.

Step 2: Design a contraction map. We consider the following problem:

(2.12) Ayp=¢g inQ2, ¢=0 ond.

According to [8], for any g € C7(Q), we can define the solution operator of (2.12) by
L7, Then £71(g) is the unique solution of (2.12). Moreover, one has that

(2.13) I£7 Dl 2@y < Cllgllen )

for a constant C' > 0, independent of g.
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We define the subset S in C?7(€) by
(2.14) S={peC*(Q): ¢loa =0, [l¢llcea <&}

where the constant € > 0 will be determined later. We are now ready to define the
operator F' on S by

F(p)(x) := Lo (To + ¢)* — nity))

for any ¢ € &, where %, is the solution to the boundary value problem for the
transport equation

(2.15) 0 - Vi, + pi, = o(To + ¢)* with @, =0.

In fact, for any ¢ € S, one has o(Tp + ¢)* — pu(i,) € C7(2). Then based on the
definition of L1, F(¢) is the solution of A, F(p) = o(Ty + ¢)* — pli,) with trivial
boundary condition. As a result, solving (2.9) is reduced to finding a fixed point of
FinS.

Toward this goal, we will show that F' is a contracting map which maps from the
set S into itself. Specifically, we will first show for all ¢ € S, F(p) € S, and then
prove that there is a constant C'r < 1 so that for all 1,99 € S,

(2.16) 1F(p1) = Flp2)ll 2@y < Crller = w2llcza@) -

To show F(S) C S, we first explicitly write down the solution to the equa-
tion (2.15):

(2.17)
7—(x,0) . .
iy (x,0) = / e~ Jo we=nmdng (T 4+ Sz — s0)ds,  (z,0) € A x ST,
0
This leads to the following estimates,
maX{H@@ch(ﬁ) ] ||aga|‘cv(ﬁxsn—1)} < Cllo(To + 90)4||cw(§)

< C(O'MHTO + @Hé@,w(ﬁ)
(2.18) < Com(|1Toll g2 @y + \|<PHo2w(§))47

where we used the fact that u € CY(Q), Ty, ¢ € C?7(Q), 7— is smooth, and
lollcr@) < om as in (1.3). Hereafter, we denote by C' any positive constant which
may vary from line to line.

Combining (2.11), (2.13), (2.14), and (2.18), we derive

IF@) g2y = 1€ o (To + ©)* = wlip)) o2
< Cllo(Ty + 9" — i) oy
< CTollczn @) + ||<P||c2-,w(§))4
< C(6; + 09 +e)t.

With §; and € small enough, one has

C(1+d+e) <e,
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meaning F'(¢) € §. To show (2.16), we note

I1F(p1) = Fpa)llczmvmy < Clo(To + ¢1)* = i, ) = (0(To + p2)* = ulip,) | o ey
< Con(e+61+62)° o1 — ‘P2||CQ’“’(§) ’

where we used (2.11), (2.13), (2.14) again, and the estimate
1d@py) = 11ty @y < Cllo(To + ¢1)* = o(To + ¢2) [l oy

due to (2.17). Thus, we further choose ¢, 01, and dy sufficiently small so that they
also satisfy

CUM(8+51 —|—52)3 <1,

which finally leads to (2.16).

Step 3: Summarize the well-posedness result. Since F(S) C S and F is a contrac-
tion map on S, by the contraction mapping principle, there exists a unique fixed point
of F on §. We term this fixed point T' € §, and term the function u the corresponding
Gz as defined in (2.17). This fixed point satisfies

F(T)=T

and thus (@, T') is the solution of (2.9). Furthermore, (u,T) € C7(QxS"~1) x C%7(Q)
of the form
u=ug+u and T =To+T

is then the solution of (1.2).
Step 4: Prove the boundedness of solutions. To show the boundedness of u and
T, we recall that (i = @4 ,T) is the solution of (2.9) and then we obtain

1Ty < Cllo@ + 1) — itz lon
< Com(1Tollzn @y + ||f||C2ﬁ(ﬁ))4
< ComllTolita @ + CortlTlon @y (1T W gy + 1T 2 ) 1T 20 o
ol gy + ol 1 T )
< Cong(61+ 62| Toll g gy + Conr (53 +&(81 + 62)°

(2.19) (01 + 82) + €201 + 82) ) Tl

Now we let €,01,02 be small enough such that the second term is controlled by
31Tl 2 ) which eventually leads to

Tl g2 ety < Coma (61 + 82)* (| Toll 2. ey
< C|Tslc2~00) + Cllullev )y -

This concludes (2.6). Moreover, the estimate (2.7) follows by combining (2.10) with
(2.18). O

Furthermore we have the positivity result.
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THEOREM 2.3 (positivity). Under the same conditions as in Theorem 2.2, let
aq, ao satisfy

—dpm
« e .
0 < o <65, aggilum , j=1,2.

Then we have the positivity of the solution, namely,

(2.20) 0<e gy <y inQxS"!
and
(2.21) 0<ax<T in Q,

where d := diam(Q?) is the diameter of Q and pps is defined in (1.4).

Proof. To show (2.20) and (2.21), that is, the boundedness from below, we utilize
the contradiction argument. We define a new function P by

P(z) :=T(z) — as.
Since ap is a constant, P € C27(1) satisfies

(2.22) { AP = o(T" — ad) + ool — () in ©,

P=Tg — ay on 0N).

To show T > s, it amounts to showing P > 0 in the entire domain ). By the
contradiction argument, suppose that it is not true, then the subdomain

Q" ={xe: T—ay <0}

is not empty. Since P is continuous, one has that 2~ is an open set. From (2.10), we
can deduce that

u(xa 0) = UO(Iv 0) + ﬂ($7 0) > UO(Iv 9) > eid'uMuB(x - T- (l‘, 0)9) > 67d#MO[1 )

where we used the fact that @ > 0 according to (2.17), and d = diam(Q) is the
diameter of 2. It immediately leads to

em MMy < (u)(z) .

Since we choose the constant ag to satisfy
0<as<dy and aégmi,
we can derive that

o(w)ay < oaray < arpme” MM < pe)(u)(z)

for every € Q. Combining it with 7% < a3 in Q~, the right-hand side of the equation
(2.22) actually satisfies

o(T* — a3) + oay — plu) < 0 in Q7
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which gives that
AP <0 in Q™.

When 0Q~ N 9N = (), the function P = 0 on 92, and when 9Q~ N Q) # 0, since
Tp—as > 0on 09, the minimum value of P on 90~ is nonnegative. Thus, P|sq- > 0.
By the maximum principle [8], the solution P satisfies that

min P=minP >0,
o o0~
which implies that

P=T—-ay>0 in Q™.

This contradicts the definition of 27, suggesting that Q~ is indeed empty. Then we
obtain P > 0 and T > «y for all z € Q. 0

Remark 2.1. Based on Theorems 2.2 and 2.3, we have showed that there exist
constants «;, d;, j = 1, 2, sufficiently small such that when (up,Tg) € X, the problem
(1.2) has a unique and positive solution (u,T) € C7 (2 x S"~1) x C?7(Q) satisfying
the lower bounds (2.20) and (2.21). Moreover, the solution also satisfies the estimates
(2.6) and (2.7).

Remark 2.2. 1t is worth emphasizing that the well-posedness result holds in gen-
eral for any sufficiently small boundary data (ug,Tg) in C7(I'_) x C?7(dQ). In this
paper we crucially need the strict positivity of T' as stated in (2.21) and thus more
constraints, such as the lower bounds of (up,Tg), are added in order to derive this.
Using the contraction mapping to show the well-posedness is a fairly standard tech-
nique and has been applied for nonlinear Boltzmann equations [12, 15, 17] and for
nonlinear elliptic equations [3, 5, 11, 13, 14, 16].

An immediate corollary is the following result.

COROLLARY 2.4. Suppose that o and p in CY(Q) satisfy (1.3)—(1.4). The bound-
ary map A, defined in (1.5), is a well-defined map from X C CV(I'_) x C*7(9R) to
Cc7(Ty).

Proof. From (2.6) and (2.7), one has

A

l[ullov gy < lullgr@xsn-1y < Cllusller @)y + CUITBllc2a00) + llusllerr_))* < oo.

Since u|p, = As(ulr_,T|sq), we complete the proof. d

3. The inverse problem. We are now ready to show that the information of
A, uniquely determines the coefficient o. The process is divided into three steps.

For one set of boundary condition (up,Tg) € X, the solution w and T over the
domain are completely preset. We then ran the following reconstruction procedure
for recovering the coefficient o:

o In the first step, we first view o7 as the source term in the transport equation
in (1.2), and write u as an integral of T. For this particular set of (ug,Tr),
with the measured data of u|r, , we have the attenuated X-ray transform of
oT* in every direction. We then use a reconstruction formula in Theorem 3.1
to reconstruct the term o7%.

e For the remainder of the first step, since the term ¢7* in the transport
equation is now recovered, the well-posedness of the problem for the transport
equation leads to the unique determination of the solution wu.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 06/02/21 to 128.104.46.206. Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

NONLINEAR RTE 101

e The second step is to substitute the recovered ¢7* and w into the elliptic
equation in (1.2). One can then uniquely identify the solution T' due to the
well-posedness of the elliptic problem.

e In the third step, since both ¢T* (from the first step) and T' (from the second
step) are now known, it is straightforward to reconstruct o by recalling the
positivity of T'.

We note that the entire reconstruction process only requires one set of up,T5,
meaning so long as one experiment is performed, the media information is completely
recovered.

The first step relies on the attenuated X-ray transform result and is the core of
our proof. It is summarized in Lemma 3.2. The second step, stated in Lemma 3.3, is
mainly on solving the boundary value problem for the elliptic equation. Finally, the
last step is presented in the proof of Theorem 1.1.

Let (uj,Tj) € C7(Q x S"71) x C*7(Q) be the solution to the problem for two
different media o, j = 1,2:

(3.1) { 0 Vou;+ puj = o T in QxS

ATy — U]-T;1 = —p(u;) inQ
with boundary conditions
ulp. =up and Tlog=Ts,

where (up,TB) € X.
To motivate the reconstruction process for o, we regard S; = ;T 4 as a source
term. Then the transport equation reads

(3.2) 0-Vau; + pu; =S;.

This source term S; can then be recovered using the attenuated X-ray transform.
More specifically, let the attenuated X-ray transform P, f be defined to be

(33)  Puf(r.6) = / o= J5T netstn0dn £(0 4 0V s (2,0) € R™ x "L
R

It is an easy exercise to see that this is a line integral and the value for all coordinates
in a line is unchanged, meaning that

P,f(x,0) = P,f(x +1t6,0) forallt € R.

Since o, p are compactly supported, S; = 0, p = 0 outside Q. Together with
u; —ug = 0 on I'_, we obtain

(ur —ug2) (x,0) = P,(S1 — S2)(x,0), (x,0)eTl,.

The condition u; —up = 0 on I' . immediately leads to P,(S; —S2) = 0 on I'y; see the
proof of Lemma 3.2 for details. Then the question boils down to whether this implies
S1 — 52 =0 in the domain. To that end we need to cite the following theorem.

THEOREM 3.1 (an inversion formula, Theorem 2.1 in [20]). Suppose u and f are
compactly supported and continuous functions in R* and u is given. Define P, f(x,0)
as in (3.3) on (x,0) € TS, where TS is a subset of R? x S':

TS' :={(2,0): z€R? 0eS', z-0=0}.
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Then P, f on TS' uniquely determines f on R? with the following formula:

10 =5z (ar ~agy) & e, O0PuT 0,001+ i02)

0x1 Zaxg

34) = Pi(P.f)(x),

where x = (z1,72) € R?, 0 = (01,02) € S', and m is calculated from p only. Here the
adjoint operator Py is defined by

(3.5)

Pi(g)(x) := —% (ail - iai) /51 e~ JoT 0t (2 0)g(x, 0) (01 + i) d .
This theorem states that the source f can be uniquely reconstructed using P, f as long
as u is given. In particular, if P, f = 0, then f = 0. The related results are also found
in the literature; see, for instance, [1, 4, 6, 7, 10, 21, 23, 24, 25] and the references
therein. It is important to note that although the result here is for n = 2, the results
can be easily extended to treat higher dimensions. For n > 3, one can always reduce
it to the two-dimensional case by restricting the attenuated X-ray transform to lines
in a family of planes whose union forms the whole space, meaning the uniqueness
result holds true for all n > 3.

In this paper, we do not need the explicit expression of m for our purpose, and
thus we refer the interested reader to Theorem 2.1 in [20] for the detailed expression
of m.

This allows us to perform our first step. We summarize the result in the following
lemma.

LeEMMA 3.2. If A,,(uB,TB) = As,(up,TB) for (up,Tg) € X, then
o T = ooTy in Q.
Moreover, one can uniquely determine the solution to the transport equation, namely,
UL = Ug in Q x S*L.

Proof. For a fixed set of boundary conditions (up,Tp) € X, there exists a unique
solution (u;,7T};) to the problem (3.1) for j = 1,2. Then u; —us € C?(Q x S"71) is
the solution to the following boundary value problem:

(3.6) { 0-V(up —uz) + p(ug —ug) = o1 T — 02Ty in Q@ x SP=1,

up —uz =0 onI'_.

Noting that since A, (up,TB) = Ag,(up,TB), one has u; — uz|p, = 0 as well.
Thus for any point (x,0) € I'}, we obtain

7 (z,0) .
(3.7) 0= (u; —u2)(z,0) = / e~ Jo mlz=—n0) dn (1T} — 02T (z — sb) ds..
0

We extend u, o1, and o9 to the whole space R™ by zero and keep the same regularity;
then we can extend the integral on the right-hand side of (3.7) to the whole real
line. It exactly says that the attenuated X-ray transformation of o1 T} — 02T}y is zero,
namely,

0= P,(01T} — 02T3)(, 0).
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To extend this equality on I'y to the whole space R™ x S"~! one can see from the
definition of the attenuated X-ray transformation that for any (z,0) € R™ x S*~1, if
there is a parameter ¢ so that « 4 t6 € 002 and (z +t0,0) € I'y, then

P, (1T} — 02T3) (x + 16,0) = P,(o1 T} — 02T3)(x,0) = 0

due to (3.7). On the other hand, if there isn’t such a ¢, that means the line does not

pass through 2, and since (2 is strictly convex and o; = 0 outside Q, the line integral

is also trivial. This finally leads to P, (01T} — 02T4) = 0 for all R™ x S*~1.
Therefore, by applying Theorem 3.1, we obtain

o1 T = ou T in Q,

which suggests that u; — ug satisfies the transport equation 6 - Vyu 4+ pu = 0 with
trivial boundary conditions. Finally, by applying the well-posedness of the transport
equation, we obtain u; = ug in  x S*1L. 0

The second step is rather standard.
LEMMA 3.3. If 4T} = 0213 in Q and uy = ug in Q x S*~L, then Ty = Ty in .

Proof. Since u; = up and o171 = 02T, the solution T;, j = 1,2 satisfies the
boundary value problem

(3.9) AT = oy T — plug)  in Q,
’ Tj = TB on 0N).
By the well-posedness of the elliptic equation, one concludes T} = T5. 0

Now we are ready to show the final step—the unique identification of the coeffi-
cient o.

Proof of Theorem 1.1. Given a datum (up,Tp) € X, from Theorems 2.2 and 2.3
(or Remark 2.1), the solution T}, j = 1,2, satisfies 0 < ay < Tj, which means that
T} is positive at every point in €2. Furthermore, from Lemmas 3.2 and 3.3, we have
derived that
o Tt =0oT} and Ty =T, inQ,

and then we obtain
O'1T14 — 0’2T24 = (0'1 - 02)T14 =0.

Since 77 > 0 in , it forces that o; must be equal to o9 at every point in 2. This
completes the proof of the theorem. 0

Remark 3.1. We emphasize that in the proofs of Lemmas 3.2 and 3.3 and Theo-
rem 1.1, the arguments do not rely on any specifically designed incoming data. The
results hold true for arbitrarily selected (up,Tp) € X. This means that one single set
of data is sufficient to acquire the uniqueness result.

4. Stability estimate. We further study the stability of the reconstruction in
this section. Since we apply the inversion formula (3.4), the stability estimate of o
will be derived only in the two-dimensional case.

Suppose that (u,T) is the solution to the problem (3.1) with boundary data
(up,Tp) € X. Then T is positive away from zero in 2. Moreover, u is the solution to

0-Vou+pu=ocT* inQxS!
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with boundary w = up on I'_. Thus, for any point (x,0) € 'y, the solution u can be
explicitly written as:

T_(x,0)

7 (z,0) .
u(z,0) =e o wa=s0)dsy, b (x — 1_(x,0)0,0) + / e~ Jo m@=n0)dng (56 ds
0

(4.1)
T_(x,0)

I wa=s0)dsy, o (x — 1_(2,0)0,0) + Py(oT*)(z,0),

according to the definition of P,. In particular, one has

(4.2) Pu(0T*)(@,0) = u(w,0) — e~ Jo " ma=sOdsy (0 (2,6),0)

for (x,0) € I'y. In particular, the first term on the right-hand side is u|p, =
A, (up,Tr) and it is known and, moreover, the second term relies on up and thus it is
also known. These imply that P,(cT*) on I'y is now known. By a similar argument
to the proof of Lemma 3.2, one can recover the full information of P,(cT*) on R? x S*.
By (3.4) in Theorem 3.1 and (4.2), the function oT* can thus be reconstructed by the
inversion formula:

oT*(z) = P;(PM(O'T4))($)

T_(x,0)

(43) =P; (Ac,(uB,TB) —e o wa=sdsy, b (x_(, 9),9)> (x) forzeQ.

Note that the positive solution T' can also be reconstructed from the knowledge of
A, (ulr_,T|oq) as seen in the proof of Theorem 2.2. The coefficient o can then be
expressed as

(4.4)
T_(2,0)

o(z) = T~*P; (Ag(uB,TB) e Jo T ua—sO)dsy (g, 9),9))@) for z € Q,

due to the linearity of P;.
We are now ready to show Theorem 1.2.

Proof of Theorem 1.2. From (4.4), one can derive that
o1 — U2Hc(§) < C||T1_4 - T2_4Hc(ﬁ)||P:(P;L(01Tf))“c(ﬁ)
(4.5) + 1Ty lle@ I B (Aoy (up, Tn) = Asy (up, T5)) e -

For the first term on the right-hand side of (4.5), by applying the boundedness of T},
that is, || T}j[| c2.~ ) < C(d1 + 62), in Theorem 2.2 one has

1T =T e S 1T = Tello@I(TF + T35 + T3 + TP )T T Y| o
(4.6) < Cay®(81 + 62)° | Ty = Toll o) -

To derive the stability of o, it is sufficient to estimate T} — T5. Since T}, j = 1,2,
is a solution to
Asz — JjT‘;1 = —,u(uj>

with the same boundary Tz, the solution 7} satisfies the estimate
IT1 = Toll 2y < Cllon Tt = 0215 ||y + Cllua) = (u2)ll oy
(4.7) < CIIP; (Ao, (45, T5) = Aoy (15, T5)) || o
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where we used (4.3) and the linearity of P;. Here for the last inequality of (4.7), we
also used the fact that ||(u1) — (u2)/os (@) 1s controlled by o1 T — 02T | o @ due
to (2.17). We then obtain

ITT* = T3 ey < Cag®(61 + 62)° (1P (As (up, T) — Aoy (us, T)) o

from (4.6) and (4.7). Finally, combining it together with (4.5), we have

l|o1 —‘72”0(5)
< C||P; (Ao, (up, TB) — A, (un, TB)) llc@m)
+C||Py; (Ao, (up, Tr) = Ao, (un, Tr)) ll o @) | P (Pul1 Tl oy »

by recalling that

12 (Pu(o1 T logmy = llorTi oy < Con(b1 +62)". O
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