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Abstract. In this paper, we investigate an inverse problem for the radiative transfer equation
that is coupled with a heat equation in a nonscattering medium in Rn, n \geq 2. The two equations
are coupled through a nonlinear blackbody emission term that is proportional to the fourth power
of the temperature. By measuring the radiation intensity on the surface of the blackbody, we prove
that the emission property of the system can be uniquely reconstructed. In particular, we design a
reconstruction procedure that uses merely one set of experimental setup to fully recover the emission
parameter.
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1. Introduction.

1.1. Motivation. Radiative transfer is the physical phenomenon of energy trans-
fer in the form of electromagnetic radiation. The classical model equation for such
phenomena is termed the radiative transfer equation, that encodes absorption, emis-
sion, and scattering processes along the radiation. The equation is widely used in
optical imaging [2], atmospheric science [22], and remote sensing [26].

We study the problem for the radiative transfer equation, when it is combined with
blackbody heat conductance. In particular, the blackbody radiation is coupled with
the classical radiative transfer equation through the ``source"" term (or the emission
term in the radiative transfer equation). According to the classical theory for the
total blackbody emission power, this source term mainly depends on the blackbody
temperature, which further satisfies the classical heat equation [18, 19]. The resulting
coupled system reads as follows:\Biggl\{ 

\partial tu+ \theta \cdot \nabla xu =  - \mu u+
\int 
Sn - 1 \Phi (\theta 

\prime , \theta )u(t, x, \theta \prime ) d\theta \prime + ub ,

\partial tT = \Delta xT  - ub + \mu 1
| Sn - 1| 

\int 
Sn - 1 u(t, x, \theta ) d\theta ,

(1.1)

where u \equiv u(t, x, \theta ) describes the radiation intensity at time t on the phase space
(x, \theta ), with the position x \in Rn and the direction \theta \in Sn - 1, and T is the temperature.
Here Sn - 1 is the unit sphere in Rn and n \geq 2.

The first equation of (1.1) is the classical radiative transfer equation with \mu \equiv \mu (x)
being the absorption coefficient, and

\int 
\Phi (\theta \prime , \theta )u(t, x, \theta \prime )d\theta \prime reflecting the fact that
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92 CHRISTIAN KLINGENBERG, RU-YU LAI, AND QIN LI

some photons moving in direction \theta \prime get scattered into the \theta direction according to
the kernel \Phi (\theta \prime , \theta ). ub is typically regarded as the source term that introduces new
energy into the system. For this particular case, it represents the blackbody emission
and is the term that is used to couple u and T . The temperature T satisfies the heat
equation with a heat sink ub, and a heat source that comes from absorbing the photons.
According to the classical theory from total a blackbody emission power argument,
the blackbody emission is proportional to the fourth power of the temperature:

ub = \sigma T 4 ,

where \sigma , the emission coefficient, is \sigma 0\kappa , with \sigma 0 known as the Stefan--Boltzmann
constant, and \kappa characterizes the emissivity of the medium. This parameter is typi-
cally unknown for different materials, and it is the parameter that we would like to
reconstruct by taking measurements on the boundary. For more details, we refer the
interested reader to the book [19, for example, Chapter 10].

1.2. The setup and main results. As a start, we confine ourselves to a simpler
situation where the scattering is turned off, meaning \Phi = 0. We also only look at the
steady state solution with t dependence eliminated. The absorption coefficient \mu is
assumed to be known, and we target at reconstructing the emission coefficient \sigma .

Let \Omega be an open bounded, connected, and strictly convex domain in Rn, n \geq 2,
with smooth boundary \partial \Omega . The coupled system now is presented as the following:\left\{         

\theta \cdot \nabla xu+ \mu u = \sigma T 4 in \Omega \times Sn - 1 ,

\Delta xT  - \sigma T 4 =  - \mu \langle u\rangle in \Omega ,

u = uB on \Gamma  - ,

T = TB on \partial \Omega ,

(1.2)

where the notation

\langle u\rangle (x) := 1

| Sn - 1| 

\int 
Sn - 1

u(x, \theta ) d\theta 

is the normalized radiation intensity at location x \in \Omega . The sets

\Gamma \pm := \{ (x, \theta ) \in \partial \Omega \times Sn - 1 : \pm \theta \cdot n(x) > 0\} 

collect the boundary coordinates that are pointing out of/into the domain, where
the notation n(x) is the unit outer normal vector at x \in \partial \Omega on the boundary. The
boundary condition uB prescribes how many photons are injected at the boundary
into the domain.

The forward problem for (1.2) amounts to solving u and T when boundary con-
ditions uB and TB are given, assuming \sigma and \mu are known. In the inverse problem, it
is to reconstruct \sigma from the outgoing measurement u| \Gamma +

for the boundary condition
(uB , TB).

To make the statement rigorous, we first need to have a mathematical setup in
which the coupled system (1.2) makes sense. Throughout the paper we assume \sigma and
\mu are compactly supported positive functions in C\gamma (\Omega ) with 0 < \gamma < 1. Moreover,
there exist positive constants \sigma m < \sigma M < \infty and \mu m < \mu M < \infty so that the following
bounds hold:

0 < \sigma m := min
\Omega 

\sigma , \| \sigma \| C\gamma (\Omega ) \leq \sigma M ,(1.3)

D
ow

nl
oa

de
d 

06
/0

2/
21

 to
 1

28
.1

04
.4

6.
20

6.
 R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/p
ag

e/
te

rm
s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

NONLINEAR RTE 93

and

0 < \mu m := min
\Omega 

\mu , \| \mu \| C\gamma (\Omega ) \leq \mu M .(1.4)

We will show, in section 2, that under conditions (1.3) and (1.4), the problem
(1.2) is well-posed for suitable chosen boundary conditions. More specifically, there
exist properly defined sets \scrX 1 \subset C\gamma (\Gamma  - ) and \scrX 2 \subset C2,\gamma (\partial \Omega ) so that when (uB , TB) \in 
\scrX = \scrX 1 \otimes \scrX 2, the problem (1.2) has a unique and positive solution (u, T ) \in C\gamma (\Omega \times 
Sn - 1)\times C2,\gamma (\Omega ). The unique existence of the solution is stated in Theorem 2.2 and its
positivity property is presented in Theorem 2.3. In particular, the well-posedness of
the problem allows us to define the boundary map from (uB , TB) \in C\gamma (\Gamma  - )\times C2,\gamma (\partial \Omega )
to u| \Gamma +

\in C\gamma (\Gamma +), meaning

(1.5)
\scrA \sigma : \scrX \subset C\gamma (\Gamma  - )\times C2,\gamma (\partial \Omega ) \rightarrow C\gamma (\Gamma +),

(u| \Gamma  - , T | \partial \Omega ) \mapsto \rightarrow u| \Gamma +
.

This places us at the right footing for reconstructing \sigma .
We now present the unique identification of \sigma from the map \scrA \sigma . It is stated in

the following theorem.

Theorem 1.1 (uniqueness). Let \Omega be an open bounded, connected, and strictly
convex domain in Rn, n \geq 2, with smooth boundary, and let \scrA \sigma j

be the bound-
ary operator defined in (1.5), where the system (1.2) is equipped with the media
\sigma = \sigma j for j = 1, 2. Suppose that \sigma j , \mu \in C\gamma (\Omega ), with 0 < \gamma < 1, are com-
pactly supported and satisfy (1.3)--(1.4). Given any fixed data (uB , TB) \in \scrX , if
\scrA \sigma 1(uB , TB) = \scrA \sigma 2(uB , TB), then \sigma 1 = \sigma 2 pointwisely in \Omega .

This unique reconstruction result holds true for any dimension with n \geq 2. The
proof of Theorem 1.1 in section 3 relies on the fact that the attenuated X-ray transfor-
mation P\mu f can uniquely determine f in Rn so long as n \geq 2. This is to say, suppose
the attenuation coefficient \mu is known, then by measuring the integration on a line,
the source term f can be reconstructed. We note that the result is rather strong since
a single measurement \scrA \sigma (uB , TB) corresponding to fixed data (uB , TB) needs to be
known. In some sense, only one experiment is sufficient to fully reconstruct the media
\sigma .

Besides the unique reconstruction, we also have a stability estimate.

Theorem 1.2 (stability estimate). Let \Omega be an open bounded, connected, and
strictly convex domain in R2 with smooth boundary, and let \scrA \sigma j

be the boundary
operator defined in (1.5), where the system (1.2) is equipped with the media \sigma = \sigma j

for j = 1, 2. Suppose that \sigma j , \mu \in C\gamma (\Omega ), 0 < \gamma < 1, are compactly supported and
satisfy (1.3)--(1.4). Given any fixed data (uB , TB) \in \scrX , then we have the following
stability estimate:

\| \sigma 1  - \sigma 2\| C(\Omega ) \leq C\| P \ast 
\mu (\scrA \sigma 1(uB , TB) - \scrA \sigma 2(uB , TB))\| C\gamma (\Omega ) ,

where the operator P \ast 
\mu is defined in (3.5) and the constant C depends on \Omega , \sigma M , \mu , \alpha j , \delta j

for j = 1.2.

As the proof of Theorem 1.1, the proof for obtaining the stability also heavily relies
on the two-dimensional reconstruction formula for the attenuated X-ray transform in
[20]. We can only derive the stability estimate for n = 2 in Theorem 1.2 due to this
dimensional restriction.
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94 CHRISTIAN KLINGENBERG, RU-YU LAI, AND QIN LI

The structure of the paper is organized as follows. We will devote section 2 to
addressing the well-posedness for the forward problem when boundary conditions are
properly chosen. It gives the definition of \scrA \sigma , as in (1.5), the right footing. We
further prove that the temperature T is strictly positive in the whole domain and this
positivity turns out to be a crucial factor in the reconstruction procedure. In section
3 we present the recipe, divided into a few substeps, to reconstruct the media \sigma and
show the validity of each substep. The stability of the reconstruction is finally shown
in section 4.

2. The forward problem. In this section, we show that for sufficiently small
boundary conditions, the boundary value problem (1.2) is well-posed, and thus \scrA \sigma is
a well-defined operator. This lays the basic groundwork for the further exploration of
the inverse problem.

Let \Omega \subset Rn, n \geq 2, be a bounded open set with smooth boundary, then the
H\"older space Ck,\gamma (\Omega ), 0 < \gamma < 1, is the collection of functions so that

\| u\| Ck,\gamma (\Omega ) :=
\sum 
| \beta | =k

sup
x,y\in \Omega ,x\not =y

| \partial \beta u(x) - \partial \beta u(y)| 
| x - y| \gamma 

+ \| u\| Ck(\Omega ) < \infty .

Here k \geq 0 is an integer. When k = 0, we abbreviate C0,\gamma (\Omega ) = C\gamma (\Omega ).
Before presenting the theorem about the well-posedness of (1.2), we first discuss

the geometry setup. Since the domain \Omega considered in this paper is connected and
strictly convex with C\infty boundary, for such a domain, there exists a C\infty -function
\xi : Rn - 1 \rightarrow R such that \Omega and its boundary can be described by

(2.1) \Omega = \{ x : \xi (x) < 0\} and \partial \Omega = \{ x : \xi (x) = 0\} .

Moreover, the strict convexity here means that there exists a constant D0 > 0 such
that

(2.2)

n\sum 
ij=1

\partial ij\xi (x)aiaj \geq D0| a| 2

for all x such that \xi (x) \leq 0 and all a = (a1, . . . , an) \in Rn. This gives \nabla x\xi (x) \not = 0
for any x \in \partial \Omega . The construction of \xi uses the distance function dist(x, \partial \Omega ) whose
regularity is the same as the regularity of \partial \Omega . We refer the reader to section 14.6
in [8] for more details. The outward normal vector n(x) at x \in \Omega is then given by

n(x) =
\nabla x\xi (x)

| \nabla x\xi (x)| 
\forall x \in \partial \Omega .

For every (x , \theta ) \in \Omega \times Sn - 1, we define the backward exit time \tau  - (x, \theta ) \geq 0 and
the backward exit position on \partial \Omega by

(2.3) \tau  - (x, \theta ) := sup\{ \{ 0\} \cup \{ \tau > 0 : x - s\theta \in \Omega for all 0 < s < \tau \} \} 

and

(2.4) x - (x, \theta ) := x - \tau  - (x, \theta )\theta \in \partial \Omega .

There are some basic properties of the exit time and exit location.
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Lemma 2.1 (see [9, Lemma 2]). Suppose \Omega \subset Rn is strictly convex and an open
bounded connected domain and has C\infty boundary. Suppose that there is a smooth
function \xi satisfying (2.1) and (2.2). For any (x, \theta ) \in \Omega \times Sn - 1, let \tau  - be the
backward exit time defined in (2.3) and x - \in \partial \Omega be the exit point defined in (2.4).
Then

(1) (\tau  - (x, \theta ), x - (x, \theta )) are uniquely determined for each (x, \theta ) \in \Omega \times Sn - 1;
(2) if \theta \cdot n(x - (x, \theta )) \not = 0, then \tau  - and x - are smooth functions in \Omega \times Sn - 1.

Noting that for a strictly convex domain \Omega , if (x, \theta ) \in \Omega \times Sn - 1, the condition
\theta \cdot n(x - (x, \theta )) \not = 0 always holds true.

We now present our well-posedness result in Theorem 2.2 and the positivity of
the solution in Theorem 2.3.

In Theorem 2.2, we utilize the contraction mapping principle to prove the unique
existence of the solution. Specifically, there exist sufficiently small parameters \delta j (with
j = 1, 2) such that when (uB , TB) \in \scrX 0 defined by

\scrX 0 := \{ (uB , TB) \in C\gamma (\Gamma  - )\times C2,\gamma (\partial \Omega ) : \| uB\| C\gamma (\Gamma  - ) < \delta 1, \| TB\| C2,\gamma (\partial \Omega ) < \delta 2\} ,
(2.5)

problem (1.2) has a unique solution (u, T ) \in C\gamma (\Omega \times Sn - 1)\times C2,\gamma (\Omega ).
In addition to the well-posedness, the positivity property of the solution is essen-

tial to the reconstruction of \sigma . In Theorem 2.3, one requires additional constraints
on the lower bounds of the imposed boundary conditions to ensure that the solution
(u, T ) is bounded away from zero. In particular, there exist sufficiently small param-
eters \alpha j and \delta j (with j = 1, 2) such that when (uB , TB) \in \scrX , the solution u and T
are strictly positive. Here the space \scrX is defined to be

\scrX :=\{ (uB , TB) \in C\gamma (\Gamma  - )\times C2,\gamma (\partial \Omega ) : uB \in \scrX 1, TB \in \scrX 2\} ,

where \scrX 1 \subset C\gamma (\Gamma  - ) and \scrX 2 \subset C2,\gamma (\partial \Omega ) are, respectively, defined by

\scrX 1 := \{ uB \in C\gamma (\Gamma  - ) : 0 < \alpha 1 \leq min
(x,\theta )\in \Gamma  - 

uB(x, \theta ), \| uB\| C\gamma (\Gamma  - ) < \delta 1\} 

and

\scrX 2 := \{ TB \in C2,\gamma (\partial \Omega ) : 0 < \alpha 2 \leq min
x\in \partial \Omega 

TB(x), \| TB\| C2,\gamma (\partial \Omega ) < \delta 2\} .

It poses a slightly higher restriction than \scrX 0 by imposing the lower bound \alpha i.
We first state the well-posedness theorem.

Theorem 2.2 (well-posedness). Let \Omega be an open bounded, connected, and
strictly convex domain in Rn, n \geq 2, with smooth boundary. Suppose that \sigma j and
\mu in C\gamma (\Omega ), 0 < \gamma < 1, satisfy (1.3) and (1.4). Then the problem (1.2) is well-posed
with small boundary data. In particular, one has that

(1) there exist constants \delta j > 0, j = 1, 2, sufficiently small, such that for any
(uB , TB) \in \scrX 0 (defined in (2.5)), the problem (1.2) has a unique solution
(u, T ) \in C\gamma (\Omega \times Sn - 1)\times C2,\gamma (\Omega );

(2) Moreover, there exists a constant C depending on \Omega , n, \sigma M , \mu , \delta j, j = 1, 2, so
that (u, T ) satisfies the estimates

\| T\| C2,\gamma (\Omega ) \leq C\| TB\| C2,\gamma (\partial \Omega ) + C\| uB\| C\gamma (\Gamma  - )(2.6)

and

\| u\| C\gamma (\Omega \times Sn - 1) \leq C\| uB\| C\gamma (\Gamma  - ) + C\| T\| 4
C2,\gamma (\Omega )

.(2.7)
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Proof. Step 1: Perform linearization. Let (u0, T0) solve the following problem:\Biggl\{ 
\theta \cdot \nabla xu0 + \mu u0 = 0 in \Omega \times Sn - 1 ,

\Delta xT0 =  - \mu \langle u0\rangle in \Omega 
(2.8)

with the same boundary data

u0| \Gamma  - = uB and T0| \partial \Omega = TB .

If (u, T ) solves (1.2), then we take the difference and call

\~u := u - u0 and \widetilde T := T  - T0 .

Then it is easy to see that these remainder terms satisfy\Biggl\{ 
\theta \cdot \nabla x\~u+ \mu \~u = \sigma (T0 + \widetilde T )4 in \Omega \times Sn - 1 ,

\Delta x
\widetilde T = \sigma (T0 + \widetilde T )4  - \mu \langle \~u\rangle in \Omega 

(2.9)

with trivial boundary conditions

\~u| \Gamma  - = 0 and \widetilde T | \partial \Omega = 0 .

The (u0, T0) system (2.8) is well-posed. Indeed, since u0 satisfies the transport
equation in (2.8) with boundary datum uB , it is straightforward to write down the
explicit solution:

u0(x, \theta ) = e - 
\int \tau  - (x,\theta )

0 \mu (x - s\theta )dsuB(x - \tau  - (x, \theta )\theta ) .(2.10)

Considering uB \in C\gamma (\Gamma  - ), \mu \in C\gamma (\Omega ) and \tau  - smooth, we have

max\{ \| u0\| C\gamma (\Omega \times Sn - 1) , \| \langle u0\rangle \| C\gamma (\Omega )\} \leq C\| uB\| C\gamma (\Gamma  - ) < C\delta 1 .

The unique existence of T0 of the elliptic equation is also straightforward. Note that
from Theorem 6.8 in [8], we have the following estimate:

\| T0\| C2,\gamma (\Omega ) \leq C\| TB\| C2,\gamma (\partial \Omega ) + C\| \langle u0\rangle \| C\gamma (\Omega )

\leq C\| TB\| C2,\gamma (\partial \Omega ) + C\| uB\| C\gamma (\Gamma  - ) \leq C(\delta 1 + \delta 2) ,(2.11)

where the constant C is independent of TB and uB .
These boil the well-posedness theory for (u, T ) system (1.2) down to showing that

of (\~u , \~T ) system (2.9), and is what we will prove below. To that end, we will employ
the contracting map argument.

Step 2: Design a contraction map. We consider the following problem:

(2.12) \Delta x\phi = g in \Omega , \phi = 0 on \partial \Omega .

According to [8], for any g \in C\gamma (\Omega ), we can define the solution operator of (2.12) by
\scrL  - 1. Then \scrL  - 1(g) is the unique solution of (2.12). Moreover, one has that

\| \scrL  - 1(g)\| C2,\gamma (\Omega ) \leq C\| g\| C\gamma (\Omega )(2.13)

for a constant C > 0, independent of g.
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We define the subset \scrS in C2,\gamma (\Omega ) by

\scrS = \{ \varphi \in C2,\gamma (\Omega ) : \varphi | \partial \Omega = 0, \| \varphi \| C2,\gamma (\Omega ) \leq \varepsilon \} ,(2.14)

where the constant \varepsilon > 0 will be determined later. We are now ready to define the
operator F on \scrS by

F (\varphi )(x) := \scrL  - 1(\sigma (T0 + \varphi )4  - \mu \langle \~u\varphi \rangle )

for any \varphi \in \scrS , where \~u\varphi is the solution to the boundary value problem for the
transport equation

\theta \cdot \nabla x\~u\varphi + \mu \~u\varphi = \sigma (T0 + \varphi )4 with \~u\varphi | \Gamma  - = 0 .(2.15)

In fact, for any \varphi \in \scrS , one has \sigma (T0 + \varphi )4  - \mu \langle \~u\varphi \rangle \in C\gamma (\Omega ). Then based on the
definition of \scrL  - 1, F (\varphi ) is the solution of \Delta xF (\varphi ) = \sigma (T0 + \varphi )4  - \mu \langle \~u\varphi \rangle with trivial
boundary condition. As a result, solving (2.9) is reduced to finding a fixed point of
F in \scrS .

Toward this goal, we will show that F is a contracting map which maps from the
set \scrS into itself. Specifically, we will first show for all \varphi \in \scrS , F (\varphi ) \in \scrS , and then
prove that there is a constant CF < 1 so that for all \varphi 1 , \varphi 2 \in \scrS ,

(2.16) \| F (\varphi 1) - F (\varphi 2)\| C2,\gamma (\Omega ) \leq CF \| \varphi 1  - \varphi 2\| C2,\gamma (\Omega ) .

To show F (\scrS ) \subset \scrS , we first explicitly write down the solution to the equa-
tion (2.15):

\~u\varphi (x, \theta ) =

\int \tau  - (x,\theta )

0

e - 
\int s
0
\mu (x - \eta \theta )d\eta \sigma (T0 + \varphi )4(x - s\theta ) ds, (x, \theta ) \in \Omega \times Sn - 1 .

(2.17)

This leads to the following estimates,

max\{ \| \langle \~u\varphi \rangle \| C\gamma (\Omega ) , \| \~u\varphi \| C\gamma (\Omega \times Sn - 1)\} \leq C\| \sigma (T0 + \varphi )4\| C\gamma (\Omega )

\leq C\sigma M\| T0 + \varphi \| 4
C2,\gamma (\Omega )

\leq C\sigma M (\| T0\| C2,\gamma (\Omega ) + \| \varphi \| C2,\gamma (\Omega ))
4 ,(2.18)

where we used the fact that \mu \in C\gamma (\Omega ), T0, \varphi \in C2,\gamma (\Omega ), \tau  - is smooth, and
\| \sigma \| C\gamma (\Omega ) \leq \sigma M as in (1.3). Hereafter, we denote by C any positive constant which
may vary from line to line.

Combining (2.11), (2.13), (2.14), and (2.18), we derive

\| F (\varphi )\| C2,\gamma (\Omega ) = \| \scrL  - 1(\sigma (T0 + \varphi )4  - \mu \langle \~u\varphi \rangle )\| C2,\gamma (\Omega )

\leq C\| \sigma (T0 + \varphi )4  - \mu \langle \~u\varphi \rangle \| C\gamma (\Omega )

\leq C(\| T0\| C2,\gamma (\Omega ) + \| \varphi \| C2,\gamma (\Omega ))
4

\leq C(\delta 1 + \delta 2 + \varepsilon )4 .

With \delta i and \varepsilon small enough, one has

C(\delta 1 + \delta 2 + \varepsilon )4 < \varepsilon ,
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98 CHRISTIAN KLINGENBERG, RU-YU LAI, AND QIN LI

meaning F (\varphi ) \in \scrS . To show (2.16), we note

\| F (\varphi 1) - F (\varphi 2)\| C2,\gamma (\Omega ) \leq C\| (\sigma (T0 + \varphi 1)
4  - \mu \langle \~u\varphi 1\rangle ) - (\sigma (T0 + \varphi 2)

4  - \mu \langle \~u\varphi 2\rangle )\| C\gamma (\Omega )

\leq C\sigma M (\varepsilon + \delta 1 + \delta 2)
3\| \varphi 1  - \varphi 2\| C2,\gamma (\Omega ) ,

where we used (2.11), (2.13), (2.14) again, and the estimate

\| \mu \langle \~u\varphi 1
\rangle  - \mu \langle \~u\varphi 2

\rangle \| C\gamma (\Omega ) \leq C\| \sigma (T0 + \varphi 1)
4  - \sigma (T0 + \varphi 2)

4\| C\gamma (\Omega )

due to (2.17). Thus, we further choose \varepsilon , \delta 1, and \delta 2 sufficiently small so that they
also satisfy

C\sigma M (\varepsilon + \delta 1 + \delta 2)
3 < 1 ,

which finally leads to (2.16).
Step 3: Summarize the well-posedness result. Since F (\scrS ) \subset \scrS and F is a contrac-

tion map on \scrS , by the contraction mapping principle, there exists a unique fixed point
of F on \scrS . We term this fixed point \widetilde T \in \scrS , and term the function \~u the corresponding
\~u\widetilde T as defined in (2.17). This fixed point satisfies

F ( \widetilde T ) = \widetilde T
and thus (\~u, \widetilde T ) is the solution of (2.9). Furthermore, (u, T ) \in C\gamma (\Omega \times Sn - 1)\times C2,\gamma (\Omega )
of the form

u = u0 + \~u and T = T0 + \widetilde T
is then the solution of (1.2).

Step 4: Prove the boundedness of solutions. To show the boundedness of u and
T , we recall that (\~u = \~u\widetilde T , \widetilde T ) is the solution of (2.9) and then we obtain

\| \widetilde T\| C2,\gamma (\Omega ) \leq C\| \sigma ( \widetilde T + T0)
4  - \mu \langle \~u\widetilde T \rangle \| C\gamma (\Omega )

\leq C\sigma M (\| T0\| C2,\gamma (\Omega ) + \| \widetilde T\| C2,\gamma (\Omega ))
4

\leq C\sigma M\| T0\| 4C2,\gamma (\Omega )
+ C\sigma M\| \widetilde T\| C2,\gamma (\Omega )

\Bigl( 
\| \widetilde T\| 3

C2,\gamma (\Omega )
+ \| T0\| 2C2,\gamma (\Omega )

\| \widetilde T\| C2,\gamma (\Omega )

+ \| T0\| 3C2,\gamma (\Omega )
+ \| T0\| C2,\gamma (\Omega )\| \widetilde T\| 2C2,\gamma (\Omega )

\Bigr) 
\leq C\sigma M (\delta 1 + \delta 2)

3\| T0\| C2,\gamma (\Omega ) + C\sigma M

\Bigl( 
\varepsilon 3 + \varepsilon (\delta 1 + \delta 2)

2

+ (\delta 1 + \delta 2)
3 + \varepsilon 2(\delta 1 + \delta 2)

\Bigr) 
\| \widetilde T\| C2,\gamma (\Omega ) .(2.19)

Now we let \varepsilon , \delta 1, \delta 2 be small enough such that the second term is controlled by
1
2\| \widetilde T\| C2,\gamma (\Omega ), which eventually leads to

\| \widetilde T\| C2,\gamma (\Omega ) \leq C\sigma M (\delta 1 + \delta 2)
3\| T0\| C2,\gamma (\Omega )

\leq C\| TB\| C2,\gamma (\partial \Omega ) + C\| uB\| C\gamma (\Gamma  - ) .

This concludes (2.6). Moreover, the estimate (2.7) follows by combining (2.10) with
(2.18).

Furthermore we have the positivity result.
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NONLINEAR RTE 99

Theorem 2.3 (positivity). Under the same conditions as in Theorem 2.2, let
\alpha 1, \alpha 2 satisfy

0 < \alpha j \leq \delta j , \alpha 4
2 \leq \alpha 1\mu me - d\mu M

\sigma M
, j = 1, 2.

Then we have the positivity of the solution, namely,

0 < e - d\mu M\alpha 1 \leq u in \Omega \times Sn - 1(2.20)

and

0 < \alpha 2 \leq T in \Omega ,(2.21)

where d := diam(\Omega ) is the diameter of \Omega and \mu M is defined in (1.4).

Proof. To show (2.20) and (2.21), that is, the boundedness from below, we utilize
the contradiction argument. We define a new function P by

P (x) := T (x) - \alpha 2.

Since \alpha 2 is a constant, P \in C2,\gamma (\Omega ) satisfies\biggl\{ 
\Delta xP = \sigma (T 4  - \alpha 4

2) + \sigma \alpha 4
2  - \mu \langle u\rangle in \Omega ,

P = TB  - \alpha 2 on \partial \Omega .
(2.22)

To show T \geq \alpha 2, it amounts to showing P \geq 0 in the entire domain \Omega . By the
contradiction argument, suppose that it is not true, then the subdomain

\Omega  - := \{ x \in \Omega : T  - \alpha 2 < 0\} 

is not empty. Since P is continuous, one has that \Omega  - is an open set. From (2.10), we
can deduce that

u(x, \theta ) = u0(x, \theta ) + \~u(x, \theta ) \geq u0(x, \theta ) \geq e - d\mu MuB(x - \tau  - (x, \theta )\theta ) \geq e - d\mu M\alpha 1 ,

where we used the fact that \~u \geq 0 according to (2.17), and d = diam(\Omega ) is the
diameter of \Omega . It immediately leads to

e - d\mu M\alpha 1 \leq \langle u\rangle (x) .

Since we choose the constant \alpha 2 to satisfy

0 < \alpha 2 \leq \delta 2 and \alpha 4
2 \leq \alpha 1\mu me - d\mu M

\sigma M
,

we can derive that

\sigma (x)\alpha 4
2 \leq \sigma M\alpha 4

2 \leq \alpha 1\mu me - d\mu M \leq \mu (x)\langle u\rangle (x)

for every x \in \Omega . Combining it with T 4 < \alpha 4
2 in \Omega  - , the right-hand side of the equation

(2.22) actually satisfies

\sigma (T 4  - \alpha 4
2) + \sigma \alpha 4

2  - \mu \langle u\rangle < 0 in \Omega  - ,

D
ow

nl
oa

de
d 

06
/0

2/
21

 to
 1

28
.1

04
.4

6.
20

6.
 R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/p
ag

e/
te

rm
s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

100 CHRISTIAN KLINGENBERG, RU-YU LAI, AND QIN LI

which gives that

\Delta xP < 0 in \Omega  - .

When \partial \Omega  - \cap \partial \Omega = \emptyset , the function P = 0 on \partial \Omega  - , and when \partial \Omega  - \cap \partial \Omega \not = \emptyset , since
TB - \alpha 2 \geq 0 on \partial \Omega , the minimum value of P on \partial \Omega  - is nonnegative. Thus, P | \partial \Omega  - \geq 0.
By the maximum principle [8], the solution P satisfies that

min
\Omega  - 

P = min
\partial \Omega  - 

P \geq 0 ,

which implies that

P = T  - \alpha 2 \geq 0 in \Omega  - .

This contradicts the definition of \Omega  - , suggesting that \Omega  - is indeed empty. Then we
obtain P \geq 0 and T \geq \alpha 2 for all x \in \Omega .

Remark 2.1. Based on Theorems 2.2 and 2.3, we have showed that there exist
constants \alpha j , \delta j , j = 1, 2, sufficiently small such that when (uB , TB) \in \scrX , the problem
(1.2) has a unique and positive solution (u, T ) \in C\gamma (\Omega \times Sn - 1) \times C2,\gamma (\Omega ) satisfying
the lower bounds (2.20) and (2.21). Moreover, the solution also satisfies the estimates
(2.6) and (2.7).

Remark 2.2. It is worth emphasizing that the well-posedness result holds in gen-
eral for any sufficiently small boundary data (uB , TB) in C\gamma (\Gamma  - )\times C2,\gamma (\partial \Omega ). In this
paper we crucially need the strict positivity of T as stated in (2.21) and thus more
constraints, such as the lower bounds of (uB , TB), are added in order to derive this.
Using the contraction mapping to show the well-posedness is a fairly standard tech-
nique and has been applied for nonlinear Boltzmann equations [12, 15, 17] and for
nonlinear elliptic equations [3, 5, 11, 13, 14, 16].

An immediate corollary is the following result.

Corollary 2.4. Suppose that \sigma and \mu in C\gamma (\Omega ) satisfy (1.3)--(1.4). The bound-
ary map \scrA \sigma , defined in (1.5), is a well-defined map from \scrX \subset C\gamma (\Gamma  - )\times C2,\gamma (\partial \Omega ) to
C\gamma (\Gamma +).

Proof. From (2.6) and (2.7), one has

\| u\| C\gamma (\Gamma +) \leq \| u\| C\gamma (\Omega \times Sn - 1) \leq C\| uB\| C\gamma (\Gamma  - ) + C(\| TB\| C2,\gamma (\partial \Omega ) + \| uB\| C\gamma (\Gamma  - ))
4 < \infty .

Since u| \Gamma +
= \scrA \sigma (u| \Gamma  - , T | \partial \Omega ), we complete the proof.

3. The inverse problem. We are now ready to show that the information of
\scrA \sigma uniquely determines the coefficient \sigma . The process is divided into three steps.

For one set of boundary condition (uB , TB) \in \scrX , the solution u and T over the
domain are completely preset. We then ran the following reconstruction procedure
for recovering the coefficient \sigma :

\bullet In the first step, we first view \sigma T 4 as the source term in the transport equation
in (1.2), and write u as an integral of T . For this particular set of (uB , TB),
with the measured data of u| \Gamma +

, we have the attenuated X-ray transform of
\sigma T 4 in every direction. We then use a reconstruction formula in Theorem 3.1
to reconstruct the term \sigma T 4.

\bullet For the remainder of the first step, since the term \sigma T 4 in the transport
equation is now recovered, the well-posedness of the problem for the transport
equation leads to the unique determination of the solution u.
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NONLINEAR RTE 101

\bullet The second step is to substitute the recovered \sigma T 4 and u into the elliptic
equation in (1.2). One can then uniquely identify the solution T due to the
well-posedness of the elliptic problem.

\bullet In the third step, since both \sigma T 4 (from the first step) and T (from the second
step) are now known, it is straightforward to reconstruct \sigma by recalling the
positivity of T .

We note that the entire reconstruction process only requires one set of uB , TB ,
meaning so long as one experiment is performed, the media information is completely
recovered.

The first step relies on the attenuated X-ray transform result and is the core of
our proof. It is summarized in Lemma 3.2. The second step, stated in Lemma 3.3, is
mainly on solving the boundary value problem for the elliptic equation. Finally, the
last step is presented in the proof of Theorem 1.1.

Let (uj , Tj) \in C\gamma (\Omega \times Sn - 1) \times C2,\gamma (\Omega ) be the solution to the problem for two
different media \sigma j , j = 1, 2:\biggl\{ 

\theta \cdot \nabla xuj + \mu uj = \sigma jT
4
j in \Omega \times Sn - 1 ,

\Delta xTj  - \sigma jT
4
j =  - \mu \langle uj\rangle in \Omega 

(3.1)

with boundary conditions

u| \Gamma  - = uB and T | \partial \Omega = TB ,

where (uB , TB) \in \scrX .
To motivate the reconstruction process for \sigma , we regard Sj = \sigma jT

4 as a source
term. Then the transport equation reads

(3.2) \theta \cdot \nabla xuj + \mu uj = Sj .

This source term Sj can then be recovered using the attenuated X-ray transform.
More specifically, let the attenuated X-ray transform P\mu f be defined to be

(3.3) P\mu f(x, \theta ) :=

\int 
R
e - 

\int \infty 
0

\mu (x+s\theta +\eta \theta )d\eta f(x+ s\theta ) ds , (x, \theta ) \in Rn \times Sn - 1 .

It is an easy exercise to see that this is a line integral and the value for all coordinates
in a line is unchanged, meaning that

P\mu f(x, \theta ) = P\mu f(x+ t\theta , \theta ) for all t \in R .

Since \sigma , \mu are compactly supported, Sj = 0, \mu = 0 outside \Omega . Together with
u1  - u2 = 0 on \Gamma  - , we obtain

(u1  - u2) (x, \theta ) = P\mu (S1  - S2)(x, \theta ) , (x, \theta ) \in \Gamma + .

The condition u1 - u2 = 0 on \Gamma + immediately leads to P\mu (S1 - S2) = 0 on \Gamma +; see the
proof of Lemma 3.2 for details. Then the question boils down to whether this implies
S1  - S2 = 0 in the domain. To that end we need to cite the following theorem.

Theorem 3.1 (an inversion formula, Theorem 2.1 in [20]). Suppose \mu and f are
compactly supported and continuous functions in R2 and \mu is given. Define P\mu f(x, \theta )
as in (3.3) on (x, \theta ) \in TS1, where TS1 is a subset of R2 \times S1:

TS1 := \{ (x, \theta ) : x \in R2, \theta \in S1, x \cdot \theta = 0\} .
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Then P\mu f on TS1 uniquely determines f on R2 with the following formula:

f(x) =  - 1

4\pi 

\biggl( 
\partial 

\partial x1
 - i

\partial 

\partial x2

\biggr) \int 
S1
e - 

\int \infty 
0

\mu (x - t\theta )dt \widetilde m(x, \theta )P\mu f(x, \theta )(\theta 1 + i\theta 2) d\theta 

=: P \ast 
\mu (P\mu f)(x) ,(3.4)

where x = (x1, x2) \in R2, \theta = (\theta 1, \theta 2) \in S1, and \widetilde m is calculated from \mu only. Here the
adjoint operator P \ast 

\mu is defined by

P \ast 
\mu (g)(x) :=  - 1

4\pi 

\biggl( 
\partial 

\partial x1
 - i

\partial 

\partial x2

\biggr) \int 
S1
e - 

\int \infty 
0

\mu (x - t\theta )dt \widetilde m(x, \theta )g(x, \theta )(\theta 1 + i\theta 2) d\theta .

(3.5)

This theorem states that the source f can be uniquely reconstructed using P\mu f as long
as \mu is given. In particular, if P\mu f = 0, then f = 0. The related results are also found
in the literature; see, for instance, [1, 4, 6, 7, 10, 21, 23, 24, 25] and the references
therein. It is important to note that although the result here is for n = 2, the results
can be easily extended to treat higher dimensions. For n \geq 3, one can always reduce
it to the two-dimensional case by restricting the attenuated X-ray transform to lines
in a family of planes whose union forms the whole space, meaning the uniqueness
result holds true for all n \geq 3.

In this paper, we do not need the explicit expression of \widetilde m for our purpose, and
thus we refer the interested reader to Theorem 2.1 in [20] for the detailed expression
of \widetilde m.

This allows us to perform our first step. We summarize the result in the following
lemma.

Lemma 3.2. If \scrA \sigma 1
(uB , TB) = \scrA \sigma 2

(uB , TB) for (uB , TB) \in \scrX , then

\sigma 1T
4
1 = \sigma 2T

4
2 in \Omega .

Moreover, one can uniquely determine the solution to the transport equation, namely,

u1 = u2 in \Omega \times Sn - 1 .

Proof. For a fixed set of boundary conditions (uB , TB) \in \scrX , there exists a unique
solution (uj , Tj) to the problem (3.1) for j = 1, 2. Then u1  - u2 \in C\gamma (\Omega \times Sn - 1) is
the solution to the following boundary value problem:\biggl\{ 

\theta \cdot \nabla x(u1  - u2) + \mu (u1  - u2) = \sigma 1T
4
1  - \sigma 2T

4
2 in \Omega \times Sn - 1 ,

u1  - u2 = 0 on \Gamma  - .
(3.6)

Noting that since \scrA \sigma 1
(uB , TB) = \scrA \sigma 2

(uB , TB), one has u1  - u2| \Gamma +
= 0 as well.

Thus for any point (x, \theta ) \in \Gamma +, we obtain

0 = (u1  - u2)(x, \theta ) =

\int \tau  - (x,\theta )

0

e - 
\int s
0
\mu (x - \eta \theta ) d\eta 

\bigl( 
\sigma 1T

4
1  - \sigma 2T

4
2

\bigr) 
(x - s\theta ) ds .(3.7)

We extend \mu , \sigma 1, and \sigma 2 to the whole space Rn by zero and keep the same regularity;
then we can extend the integral on the right-hand side of (3.7) to the whole real
line. It exactly says that the attenuated X-ray transformation of \sigma 1T

4
1  - \sigma 2T

4
2 is zero,

namely,
0 = P\mu (\sigma 1T

4
1  - \sigma 2T

4
2 )(x, \theta ).
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NONLINEAR RTE 103

To extend this equality on \Gamma + to the whole space Rn \times Sn - 1, one can see from the
definition of the attenuated X-ray transformation that for any (x, \theta ) \in Rn \times Sn - 1, if
there is a parameter t so that x+ t\theta \in \partial \Omega and (x+ t\theta , \theta ) \in \Gamma +, then

P\mu (\sigma 1T
4
1  - \sigma 2T

4
2 )(x+ t\theta , \theta ) = P\mu (\sigma 1T

4
1  - \sigma 2T

4
2 )(x, \theta ) = 0

due to (3.7). On the other hand, if there isn't such a t, that means the line does not
pass through \Omega , and since \Omega is strictly convex and \sigma j = 0 outside \Omega , the line integral
is also trivial. This finally leads to P\mu (\sigma 1T

4
1  - \sigma 2T

4
2 ) = 0 for all Rn \times Sn - 1.

Therefore, by applying Theorem 3.1, we obtain

\sigma 1T
4
1 = \sigma 2T

4
2 in \Omega ,

which suggests that u1  - u2 satisfies the transport equation \theta \cdot \nabla xu + \mu u = 0 with
trivial boundary conditions. Finally, by applying the well-posedness of the transport
equation, we obtain u1 = u2 in \Omega \times Sn - 1.

The second step is rather standard.

Lemma 3.3. If \sigma 1T
4
1 = \sigma 2T

4
2 in \Omega and u1 = u2 in \Omega \times Sn - 1, then T1 = T2 in \Omega .

Proof. Since u1 = u2 and \sigma 1T
4
1 = \sigma 2T

4
2 , the solution Tj , j = 1, 2 satisfies the

boundary value problem\biggl\{ 
\Delta xTj = \sigma 1T

4
1  - \mu \langle u1\rangle in \Omega ,

Tj = TB on \partial \Omega .
(3.8)

By the well-posedness of the elliptic equation, one concludes T1 = T2.

Now we are ready to show the final step---the unique identification of the coeffi-
cient \sigma .

Proof of Theorem 1.1. Given a datum (uB , TB) \in \scrX , from Theorems 2.2 and 2.3
(or Remark 2.1), the solution Tj , j = 1, 2, satisfies 0 < \alpha 2 \leq Tj , which means that
Tj is positive at every point in \Omega . Furthermore, from Lemmas 3.2 and 3.3, we have
derived that

\sigma 1T
4
1 = \sigma 2T

4
2 and T1 = T2 in \Omega ,

and then we obtain

\sigma 1T
4
1  - \sigma 2T

4
2 = (\sigma 1  - \sigma 2)T

4
1 = 0 .

Since T1 > 0 in \Omega , it forces that \sigma 1 must be equal to \sigma 2 at every point in \Omega . This
completes the proof of the theorem.

Remark 3.1. We emphasize that in the proofs of Lemmas 3.2 and 3.3 and Theo-
rem 1.1, the arguments do not rely on any specifically designed incoming data. The
results hold true for arbitrarily selected (uB , TB) \in \scrX . This means that one single set
of data is sufficient to acquire the uniqueness result.

4. Stability estimate. We further study the stability of the reconstruction in
this section. Since we apply the inversion formula (3.4), the stability estimate of \sigma 
will be derived only in the two-dimensional case.

Suppose that (u, T ) is the solution to the problem (3.1) with boundary data
(uB , TB) \in \scrX . Then T is positive away from zero in \Omega . Moreover, u is the solution to

\theta \cdot \nabla xu+ \mu u = \sigma T 4 in \Omega \times S1
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with boundary u = uB on \Gamma  - . Thus, for any point (x, \theta ) \in \Gamma +, the solution u can be
explicitly written as:

u(x, \theta ) = e - 
\int \tau  - (x,\theta )

0 \mu (x - s\theta )dsuB(x - \tau  - (x, \theta )\theta , \theta ) +

\int \tau  - (x,\theta )

0

e - 
\int s
0
\mu (x - \eta \theta ) d\eta \sigma T 4(x - s\theta ) ds

= e - 
\int \tau  - (x,\theta )

0 \mu (x - s\theta )dsuB(x - \tau  - (x, \theta )\theta , \theta ) + P\mu (\sigma T
4)(x, \theta ) ,

(4.1)

according to the definition of P\mu . In particular, one has

P\mu (\sigma T
4)(x, \theta ) = u(x, \theta ) - e - 

\int \tau  - (x,\theta )

0 \mu (x - s\theta )dsuB(x - (x, \theta ), \theta )(4.2)

for (x, \theta ) \in \Gamma +. In particular, the first term on the right-hand side is u| \Gamma + =
\scrA \sigma (uB , TB) and it is known and, moreover, the second term relies on uB and thus it is
also known. These imply that P\mu (\sigma T

4) on \Gamma + is now known. By a similar argument
to the proof of Lemma 3.2, one can recover the full information of P\mu (\sigma T

4) on R2\times S1.
By (3.4) in Theorem 3.1 and (4.2), the function \sigma T 4 can thus be reconstructed by the
inversion formula:

\sigma T 4(x) = P \ast 
\mu (P\mu (\sigma T

4))(x)

= P \ast 
\mu 

\biggl( 
\scrA \sigma (uB , TB) - e - 

\int \tau  - (x,\theta )

0 \mu (x - s\theta )dsuB(x - (x, \theta ), \theta )

\biggr) 
(x) for x \in \Omega .(4.3)

Note that the positive solution T can also be reconstructed from the knowledge of
\scrA \sigma (u| \Gamma  - , T | \partial \Omega ) as seen in the proof of Theorem 2.2. The coefficient \sigma can then be
expressed as

\sigma (x) = T - 4P \ast 
\mu 

\Bigl( 
\scrA \sigma (uB , TB) - e - 

\int \tau  - (x,\theta )

0 \mu (x - s\theta )dsuB(x - (x, \theta ), \theta )
\Bigr) 
(x) for x \in \Omega ,

(4.4)

due to the linearity of P \ast 
\mu .

We are now ready to show Theorem 1.2.

Proof of Theorem 1.2. From (4.4), one can derive that

\| \sigma 1  - \sigma 2\| C(\Omega ) \leq C\| T - 4
1  - T - 4

2 \| C(\Omega )\| P
\ast 
\mu (P\mu (\sigma 1T

4
1 ))\| C(\Omega )

+ \| T - 4
2 \| C(\Omega )\| P

\ast 
\mu (\scrA \sigma 1(uB , TB) - \scrA \sigma 2(uB , TB)) \| C(\Omega ) .(4.5)

For the first term on the right-hand side of (4.5), by applying the boundedness of Tj ,
that is, \| Tj\| C2,\gamma (\Omega ) \leq C(\delta 1 + \delta 2), in Theorem 2.2 one has

\| T - 4
1  - T - 4

2 \| C(\Omega ) \leq \| T1  - T2\| C(\Omega )\| (T
3
1 + T 3

2 + T1T
2
2 + T 2

1 T2)T
 - 4
1 T - 4

2 \| C(\Omega )

\leq C\alpha  - 8
2 (\delta 1 + \delta 2)

3\| T1  - T2\| C(\Omega ) .(4.6)

To derive the stability of \sigma , it is sufficient to estimate T1  - T2. Since Tj , j = 1, 2,
is a solution to

\Delta xTj  - \sigma jT
4
j =  - \mu \langle uj\rangle 

with the same boundary TB , the solution Tj satisfies the estimate

\| T1  - T2\| C2,\gamma (\Omega ) \leq C\| \sigma 1T
4
1  - \sigma 2T

4
2 \| C\gamma (\Omega ) + C\| \langle u1\rangle  - \langle u2\rangle \| C\gamma (\Omega )

\leq C\| P \ast 
\mu (\scrA \sigma 1

(uB , TB) - \scrA \sigma 2
(uB , TB)) \| C\gamma (\Omega ),(4.7)
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where we used (4.3) and the linearity of P \ast 
\mu . Here for the last inequality of (4.7), we

also used the fact that \| \langle u1\rangle  - \langle u2\rangle \| C\gamma (\Omega ) is controlled by \| \sigma 1T
4
1  - \sigma 2T

4
2 \| C\gamma (\Omega ) due

to (2.17). We then obtain

\| T - 4
1  - T - 4

2 \| C(\Omega ) \leq C\alpha  - 8
2 (\delta 1 + \delta 2)

3\| P \ast 
\mu (\scrA \sigma 1(uB , TB) - \scrA \sigma 2(uB , TB)) \| C\gamma (\Omega )

from (4.6) and (4.7). Finally, combining it together with (4.5), we have

\| \sigma 1  - \sigma 2\| C(\Omega )

\leq C\| P \ast 
\mu (\scrA \sigma 1

(uB , TB) - \scrA \sigma 2
(uB , TB)) \| C(\Omega )

+ C\| P \ast 
\mu (\scrA \sigma 1

(uB , TB) - \scrA \sigma 2
(uB , TB)) \| C\gamma (\Omega )\| P

\ast 
\mu (P\mu (\sigma 1T

4
1 ))\| C(\Omega ) ,

by recalling that

\| P \ast 
\mu (P\mu (\sigma 1T

4
1 ))\| C(\Omega ) = \| \sigma 1T

4
1 \| C(\Omega ) \leq C\sigma M (\delta 1 + \delta 2)

4 .
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